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Abstract— A database supporting multiple versions of records 

may use the versions to support queries of the past or to increase 

concurrency by enabling reads and writes to be concurrent.  We 

introduce a new concurrency control approach that enables all 

SQL isolation levels including serializability to utilize multiple 

versions to increase concurrency while also supporting 

transaction time database functionality.  The key insight is to 

manage a range of possible timestamps for each transaction that 

captures the impact of conflicts that have occurred.  Using these 

ranges as constraints often permits concurrent access where lock 

based concurrency control would block.  This can also allow 

blocking instead of some aborts that are common in earlier 

multi-version concurrency techniques.  Also, timestamp ranges 

can be used to conservatively find deadlocks without graph based 

cycle detection.  Thus, our multi-version support can enhance 

performance of current time data access via improved 

concurrency, while supporting transaction time functionality. 

I. INTRODUCTION 

A. Our Goals 

Some database systems support multiple versions, which 

can be used to allow more sophisticated concurrency control 

than traditional strict two-phase locking (S2PL), and/or to 

support transaction time databases [12] with time travel 

queries of past states. Commercially, Oracle was the earliest 

with snapshot isolation[1], and transaction time support in its 

Flashback and Total Recall features[21][22]. Among research 

prototypes, we mention the original Postgres [26] and 

Immortal DB [17][18][19] which use S2PL concurrency 

control and support transaction time.  Others have offered 

serializable transactions where writers do not conflict with 

reads that are in pre-declared read-only transactions 

[4][5][12]. Two recent prototypes have concurrency control 

that resembles snapshot isolation (allowing reads to run 

concurrently with writes by accessing older versions) and yet 

they ensure serializable execution [7][24]. 

The existing approaches each have disadvantages.  

Snapshot isolation, while preventing several concurrency 

anomalies, does not prevent them all[1]; so executions do not 

satisfy the textbook definition of serializability, and 

undeclared integrity constraints can be violated (this has been 

observed in production code[13]).  For systems with S2PL for 

current-time transactions, versioning reduces the performance 

of current time transactions below that of unversioned S2PL 

[19], and this is often significantly less than the performance 

of snapshot isolation, because in S2PL, a read operation is 

blocked by any concurrent transaction that writes the same 

data. The proposals of Cahill et al [7] (we call this “CRF”) 

and Revilak et al (“ROO”)[24] do not support time-travel 

queries, and adding these would be problematic, because 

neither CRF nor ROO ensures that timestamps assigned to 

versions agree with a serialization order of transactions. Thus 

a query that looks at versions based on a given timestamp 

would not necessarily report a state that agreed with any serial 

history that leads to the observed final state. 

We want all the features together, so we can have true 

serializablilty (as well as weaker isolation levels), concurrent 

readers and writers leading to better performance than S2PL, 

and time travel queries.  No previous proposal does all this.  

B. General Approach 

With multi-versioning, each version is tagged with a 

timestamp associated with the transaction that created the 

version.  Usually this timestamp is assigned to the transaction 

when it commits. Our key idea, which is unique to our 

approach, is to dynamically track the bounds on what a 

transaction’s timestamp can be as it executes.  Whenever a 

transaction accesses a resource and conflicts with another 

transaction, we adjust the range within which its timestamp 

must lie.  Concurrent read/write access occurs by reading of a 

version earlier than the one that an updating transaction is 

concurrently creating, and adjusting timestamp ranges so that 

reader’s timestamp range is earlier than the writer’s.   

Creating versions, and finding a version to access based on 

a timestamp, are done as in other multi-version systems. We 

employ a more or less conventional lock manager[10][28] to 

detect conflicting accesses, but once it is detected, we handle 

it differently.  We use the usual lock modes to determine 

conflicts. The nature of the current access, read or write, 

determines how transaction timestamp ranges are impacted 

and whether concurrent access is possible. When no range 

extent can be found for a transaction, it is aborted.   Using 

bounds for timestamps is similar in spirit to the timestamping 

lock manager of [20] for dealing with a SQL CURRENT 

TIME request that provides a latest possible transaction time, 
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but [20] did not permit concurrent read/write access, nor were 

the ranges modified to enable greater concurrency.  Bernstein 

et al [3] track timestamp bounds, but they are not based on 

conflicts, nor is serializability guaranteed. 

C. Contributions 

This paper proposes a new form of conflict manager that 

we call a timestamping conflict manager or TCM.  It tags 

committed transactions with transaction timestamps that can 

be made consistent with transaction isolation order, including 

serializable, while enabling concurrent read/write access.  

This is unique to our work here.  Our primary contributions 

are that our approach can: 

1. Provide concurrent read/write access via multiple 

versions, whose timestamps are consistent with the 

transaction isolation level requested, including 

serializable.  To facilitate natural temporal queries, a 

transaction’s timestamp is between its start and its 

commit clock times. 

2. Reduce the incidence of aborts, a downside of many prior 

multi-version approaches.  The usual snapshot isolation 

techniques abort in write/write conflict cases; CRF and 

ROO also abort for some read/write conflicts. Our 

method has the flexibility of being able to block in many 

cases on WW and RW conflicts that would abort using 

other multi-version techniques.  

3. Detect deadlocks via the timestamp range mechanism so 

that wait-for graph cycle detection is not needed.  

Timestamp ranges do “everything”.  A transaction’s 

timestamp range reflects all conflicts encountered thus far. 

II. TIMESTAMPS AND LOCKING 

A. Timestamps for Concurrency Control 

We assume that each version is stamped by the transaction 

that created the version.  This “stamp” can be simply the 

transaction identifier for the updater, or it can be a timestamp 

assigned at the time an update transaction “commits”.  If an 

identifier, the “stamp” needs to be convertible into a 

“timestamp” ordered consistent with the isolation order of the 

transactions.  Version timestamps permit us to choose the 

appropriate version to be read by a transaction. 

Timestamps have been used before in concurrency control, 

notably with timestamp order based methods [2], where the 

timestamp for a transaction is the transaction start time, and 

conflicts not ordered in agreement with those timestamps are 

aborted.   However, these methods have not been widely 

adopted because of fears of an excessive number of aborts.  

Many techniques that assign timestamps to temporal versions 

[17][25][26] choose timestamps for transactions at commit 

time, using a conventional lock manager to handle conflicts 

and guarantee isolation via two phase locking, and hence do 

not provide concurrent reads and writes. Version IDs are used 

also for snapshot isolation with an optimistic approach [22].  

This is also used in [26], where timestamps are negotiated 

during certification.  However, optimistic methods preclude 

blocking instead of abort, as read versions have already been 

acted on by the time of certification.    

B. Conflict Detection and Timestamps 

CRF showed how the advantages of having multiple 

versions can, when coupled with a more or less conventional 

lock manager (insofar as conflict detection is concerned), 

provide serializable transactions, while frequently enabling 

read-write conflicts to proceed concurrently by having the 

reader read an earlier version of the data.   

We want the same high concurrency using multiple 

versions, but with an additional requirement.  We want 

transaction timestamps to use with versions for transaction 

time functionality.  This requires that timestamps be ordered 

consistently with the isolation order of transactions, including 

serializable.  The CRF approach does not enable this choice of 

timestamps.  Timestamping and concurrency control in 

Immortal DB [17], which provided consistent timestamping, 

did not support read/write concurrency.  This prompted us to 

take another look at the notion of a timestamping conflict 

manager (TCM) of a more pervasive form. 

The conventional lock manager blocks a new access to a 

resource when the new access conflicts with an existing 

access from another transaction.  This conventional lock 

manager typically is used to support access to current data, 

even when transaction time versions are supported.  But our 

intent is to make it version aware to improve concurrency.  

Our TCM is similar in many respects to a conventional lock 

manager, and can exploit similar data structures because 

conflict detection is the same.  The non-conflict case, which is 

the most common, is unchanged from a conventional lock 

manager.  This is the fast path in and out of lock managers.  

Only the conflict cases are handled differently, where we need 

to inspect timestamp ranges.  The reward for this “inspection” 

is that many read/write conflicts can proceed concurrently.  

The basic idea is for the TCM to maintain a range of 

timestamps for a transaction.  This range is adjusted at each 

conflicting access of the transaction with some other 

transaction so that the timestamp range is consistent with the 

conflicts that the transaction has encountered.  Because there 

is a range of timestamps, we can more flexibly re-order 

transactions compared with timestamp order methods [2].  

This re-ordering reduces the abort rate while preserving our 

ability to choose an appropriate timestamp. 

A lock manager maintains a conceptual lock matrix for 

transactions and resources.  Whenever a transaction locks a 

resource, an entry is made for the appropriate lock matrix 

entry, linking the resource and the transaction via the lock.  

The matrix is usually accessed via hashing resource IDs, 

dividing them into “hash buckets”.  At each resource, active 

accesses to a resource are enqueued.  Each transaction is 

likewise accessible via a hash table that refers to a set of 

transactions, each with a transaction control block (TCB).   A 

TCB points to the set of resources accessed by the transaction 

so that when the transaction is no longer “alive”, it is 

straightforward to remove its TCM entries. 

Like CRF, the TCM maintains information not just on 

active transactions but also on recently committed transactions 

(that are still “alive” in that they can affect the timestamps of 

active transactions).  An active transaction might commit with 



a timestamp earlier than an already committed transaction.  

We need to detect such cases, and adjust timestamp ranges 

appropriately as these extended conflicts are detected. 

C. Blocking Instead of Abort  

When two snapshot isolation transactions conflict on writes, 

one is aborted.  When one has already committed, the 

currently active transaction is aborted.  When both 

transactions are still uncommitted, we can choose either as a 

victim.  Many implementations abort as soon as a WW 

conflict is detected (eager abort).  Our TCM can sometimes 

have the new writer wait for a resource as is done in 

conventional locking.  Indeed, it is also possible to deal with 

some of the “abort” cases for RW conflicts by having the 

requestor wait.  Always blocking is possible, which leads to 

conventional locking.  With TCM, we block only when the 

alternative is abort.  We opt for increased concurrency when 

timestamp ranges permit it.  

Blocking can lead to circular waiting or deadlock.  

Deadlocks are low frequency but they need to be dealt with 

lest some resources be tied up indefinitely and some 

transactions be prevented from completing.  We identify 

deadlocks using the same timestamp range validation as used 

elsewhere, not by tracing conflict edges in a graph looking for 

circular waiting. 

The key to using timestamps in dealing with conflicts is to 

ensure that the timestamp range associated with each 

transaction fully reflects all the conflicts it has seen so far.  

Then when circular waiting arises, this will be identified by 

the new conflict not being resolvable via adjustments to the 

timestamp range.  We can be conservative here, aborting in 

some cases where it might have been avoided.  The low 

frequency of deadlock and even of multiple enqueued blocked 

transactions means deadlock should not be a costly issue.  

D. Transaction Attributes 

We associate each transaction with a transaction control 

block (TCB) that is linked in the TCM to resources being 

accessed by the transaction.  Each transaction has at least the 

following attributes: 

1. TID: Transaction identifier X 

2. X.early: earliest time at which X can commit.  This is 

initially set to the time the transaction begins.   

3. X.end: (true) X.late is not null; (false) X.late is null. 

X.end is initially false. 

4. X.late: latest time before which X must commit. 

5. X.committed: (true) X.timestamp is not null; (false) 

X.timestamp is null. 

6. X.timestamp: time at which X is committed (Note: One 

can use X.early or X.late to store X.timestamp instead of 

a separate field.  It is kept separate here to make the 

exposition simpler.)  

7. Isolation level: Conflicts and response to them may 

depend on transaction isolation level. 

In a transaction time database, X.timestamp becomes the 

timestamp of all versions updated by X when X commits.  

Another transaction Y, reading at Y.early can see a transaction 

consistent view of the database by reading a version with the 

largest timestamp less than Y.early.  

It is not necessary to physically store timestamps in 

versions.  The timestamp in the TCB is sufficient so long as 

there is a mapping from a TID in the version to the TCB.  

However, for transaction time functionality, driving the 

timestamps into the versions as done in Immortal DB is 

desirable to avoid runtime translation overhead. 

E. Conflict Principles  

How timestamp ranges are managed is dictated by the 

following principles.  In what follows, we use X and Y to 

denote transactions making requests, and R to denote a 

resource being accessed.  The principles are organized by the 

role they play. 

Constraining transaction timestamp in a timestamp range: 

1. When a transaction X commits, it chooses a value in 

[X.early, X.late) as  X.timestamp, and sets (X.early, X.late) 

←X.timestamp.  Thus, for a committed transaction, the 

timestamp range collapses to X.timestamp. 

Accessing the correct version: 

2. When access by X is granted for a request for R, the 

version of R accessed is the one with the largest 

timestamp less than X.early (after access is granted).  

This ensures that X’s timestamp is appropriate for the 

database state that it reads, at the time of access. 

3. A request by Y to write R is never moved ahead of a prior 

request for R from any X that has accessed earlier 

versions of R.  This ensures that the version of R accessed 

by X at the time of its request is never changed by a later 

writer, even should X’s start time be pushed back by a 

write that it may do subsequently.    

4. A transaction X’s timestamp range must never include 

any versions of resource it is accessing other than those it 

created.  This guarantees that the version it accesses from 

other transactions will not change regardless of where its 

timestamp is chosen in its range.  

Ordering conflicting accesses and timestamps: 

5. New conflicts never grow the range [X.early, X.late) of a 

transaction.  Thus, prior conflict imposed constraints will 

continue to be honored, in particular the order of 

transactions and their timestamps, while a new conflict 

may impose a more stringent constraint.  

6. When a request by X is granted to read a version of R 

earlier than the version of a writer Y for R, X.late will not 

be later than Y.early.  This ensures that the reading 

transaction X comes before the writing transaction Y, 

which is required for the version that it reads to be the 

correct version. 

7. When Y blocks behind X waiting for R, X’s timestamp 

range must be earlier than and disjoint from Y’s 

timestamp range.  This ensures that deadlocks are 

avoided by the timestamp range technique of section II.C. 

And when all else fails: 

8. Where the above principles cannot be applied, abort of 

one of the conflicting transactions. 



F. Correctness 

We argue for the correctness of our TCM approach in the 

common "page" model [28], where a transaction consists of 

read and write operations on named data items (that is, we 

simplify the model to avoid predicate evaluation). 

An essential lock management invariant is that, whenever T 

has accessed item X, then T holds an appropriate lock on X.  

For a system like TCM where version order is the same as the 

creation order of the versions, the multi-version serialization 

graph (MVSG) is generated by edges from T1 to T2 that arise 

in one of four cases: (i) T1 writes a version X1 and then T2 

writes another version X2 of the same item X, (ii) T1 writes X1 

and then T2 reads that version X1, (iii) T1 reads version X1  and 

then T2 writes X2, (iv) T2 writes X2, and then T1 reads a version 

X1 that precedes X2 in the version order. In each of these cases, 

at the point in the execution where the second access occurs, 

the timestamp ranges for the transactions will be set so that 

the timestamp range for T1 is entirely before the range for T2. 

All subsequent steps of TCM preserve this relationship, until 

eventually T1 and T2 are allocated point timestamps such that  

timestamp(T1) < timestamp(T2). 

That is, every edge in the serialization graph is compatible 

with timestamp order, and so there are no cycles in the MVSG. 

III. LOGIC FOR CONFLICTS 

A. Basic Capabilities 

We determine, for conflicting accesses, if one of the 

transactions can precede the other, and then provide 

appropriate access, adjusting the timestamp ranges 

accordingly. For example, a writer cannot be moved ahead of 

a reader (principle 3).  If the reader in a read/write (R/W) 

conflict reads a version earlier than the writer’s version, the 

reader must have an earlier timestamp than the writer.  Further, 

once we have ordered the transactions in a conflict, we need 

to make sure that the timestamp ranges of the conflicting 

transactions are consistent with this ordering.  That is, the 

transaction that we have placed first has a timestamp range 

that strictly precedes the timestamp range of the transaction 

that is ordered later. 

To test if we can order the transactions as required, we 

invoke the can_be_before(A,B) function on transactions A 

and B that returns true if the timestamp ranges for A and B 

permit A to precede B.  If we can order A and B according to 

can_be_before, then we make the timestamp ranges of A and 

B consistent with this ordering by invoking put_before(A,B). 

This procedure ensures that the timestamp range for A is 

disjoint from the timestamp of B and precedes it.  These 

functions are described in Figure 1. 

The procedure put_before(A,B) reflects our tactic, in R/W 

conflicts, of giving readers as much of the timestamp range as 

is possible without aborting the writer.  And for W/W 

conflicts, we give as much of the timestamp range as is 

possible to the earlier writer currently accessing the resource.  

Other tactics are possible for adjusting timestamp ranges 

during conflicts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Handling Read and Write Requests 
We now show how read and write accesses are handled.  

This is shown in Figure 2.  For both forms of access, conflicts 

are, in fact, uncommon.  Well-tuned database systems have 

relatively low conflict rates.  And the no-conflict path through 

a lock manager is very efficient.  Our conflict manager shares 

that efficient no-conflict path, as shown in Figure 2.  It is 

when conflicts occur that the TCM has a very large advantage 

over conventional lock managers. 

While the logic within the TCM seems more complicated 

than the corresponding lock manager (LM) logic, whenever 

the TCM avoids blocking, it avoids the substantial overhead 

(thousands of instruction cycles) of a thread switch.  This 

thread switching overhead does not appear in the logic of the 

LM, but it is operating system code path to implement the LM 

“block”.  Further, because the TCM blocks much less 

frequently, there will typically be fewer active transactions in 

the system at any given time, with smaller average latency.  

Hence the conflict frequency of dealing with conflicts will 

also decrease, which is part of the “virtuous cycle” caused by 

the reduced blocking (and hence increased concurrency) of 

the TCM. 

C. Aborts and Blocking 

Figure 2 superimposes two concurrency control schemes.  

The usual multi-version concurrency control (MV-CC) 

approach is to abort in two conflict cases: 

1. R/W: when it is impossible to have the reader precede the 

writer and gain concurrent access; 

2. W/W: always  

can_be_before(A, B) returns(boolean) 
if B.end & (B.late ≤ A.early+1) then  
     return(false); 
else /* when B doesn’t have late bound, A can always              

                precede B */ 
     return(true); 
end 
___________________________________________ 
put_before(A, B)   
/* assumes can_be_before(A, B) has previously returned true, i.e.    
⌐(B.late ≤ A.early+1) or B.late is not yet defined */ 
/* Since A must precede B, A.end  */ 
if ~A.end then  
     {A.end = true; /* in all cases, A.end becomes true */ 
      A.late = current_time;   
     } 
if B is reader then /* A must be a writer */ 
     { /* we give most of range to B */ 
      B.early = max{B.early, A.early+1}; 
      A.late = min{A.late, B.early}; 
     } 
else /* Either A is a reader and gets most of the time range or  

             A is a writer that currently holds a resource  */ 
     { if B.end then 
 {A.late = min{A.late, B.late-1}; 
        B.early = max{B.early, A.late}; 
       } 
end 

Fig. 1. Testing and ordering timestamp ranges. 



There is a fundamental reason for this.  Almost all MV-CC 

approaches are examples of optimistic concurrency control 

(CRF is an exception).  Most optimistic approaches check for 

conflicts at the end of the transaction.  This is after potential 

conflicts where the transaction proceeded despite these 

conflicts.  Hence the transaction has already chosen and used 

a version.  If that version is incorrect, abort is about the only 

possible outcome. 

In Figure 2, the abort approach is revealed by removing the 

“WITH BLOCKING PERMITTED” boxes from the code.  

Without that code, abort occurs exactly as indicated in the list 

above.  However, using our TCM, we identify conflicts early 

(pessimistically), and can react differently.  Since aborts 

clearly waste the prior work of transactions, it is almost 

always better if a transaction is blocked instead. 

Blocking is enabled by including the “WITH BLOCKING 

PERMITTED” boxes.  The TCM has not chosen the version 

of the resource that the requestor will read.  Hence, if a 

requestor’s timestamp range does not permit it to access a 

version earlier than an uncommitted one, the requestor (reader 

or writer) blocks waiting for the earlier writer to commit.  It 

then accesses the newly committed version. 

With blocking, abort frequency is substantially reduced.  A 

read request virtually never leads to an abort.  Only when 

reader and writer have identical degenerate timestamp ranges 

(exactly one time point in the range) is it impossible for the 

reader to be ahead or behind the writer. 

Abort is a bit more common with write requests, though 

still much reduced when blocking is permitted.  A writer can 

never be moved ahead of an earlier reader because that 

violates our principle 4 which protects the earlier holder from 

later write requests changing the version it is reading.  

Permitting blocking does not avoid an abort when the reader 

(holder) cannot be earlier than the writer. 

When the conflict is W/W, most MVCC techniques require 

one of the writers to be aborted.  However, as with 

conventional locking, when blocking is possible (i.e., 

timestamp ranges permit the holder to precede the requestor), 

the write request can block waiting for the earlier writer 

transaction to commit and release the lock on the resource. 

IV. LOCKING ISSUES 

In the preceding, we have discussed conflicts in a general 

setting, referring to readers and writers and without relating 

them to specific lock modes.  Here we want to discuss lock 

modes more generally and discuss handling deadlocks. 

A. Lock Modes 

How our TCM identifies conflicts between locks is the 

same as in a conventional lock manager [10] [28].   The lock 

mode conflict matrix is unchanged.  Further, as noted 

previously, the non-conflict case is unchanged in going from 

LM to TCM. 

1) Readers and Writers: To deal with conflicts, we need to 

associate lock modes with read and/or write access so that we 

can use the pseudo-code in Figures 1 and 2 to determine 

whether concurrent access, blocking, or abort results. 

     

   

 

 

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

The rule we adopt is simple.  If a lock mode conflicts with 

S, it is treated as a write during conflicting accesses.  A 

request lock mode not conflicting with S is treated as a read 

when it conflicts with other operations (from writers).  

Further, while a write lock mode permits change to a data 

object, it does not reveal whether the object will be read prior 

to being changed.  Thus, we conservatively assume that all 

writes are also reads. This is the high frequency case, and is 

the reason we can never move a later write request ahead of 

any earlier request, read or write.  

2) Multi-granularity Locking: Using the above technique 

with the traditional multi-granularity hierarchy, S and IS are 

readers, and IX, SIX, and X are writers.  How to treat these 

lock modes in our analysis of conflicts flows directly from 

this classification.  Note that this is conservative.  Someone 

holding an IX lock on a table will conflict with a transaction 

with an S lock on the table.  But the IX locker might never 

actually write.  This is similar to the conventional LM case 

where one of the transactions involved will block (perhaps 

unnecessarily). 

Two IX locks do not conflict, even though we treat them 

both as writers.  This is not a problem.  The impact of locking 

on timestamp ranges only occurs in conflict cases.  There is 

no conflict at this point.  If a conflict arises, it will be when 

both transactions attempt to X lock the same lower level 

resource, e.g. a record. 

Read Request   
If no-conflict then return /* 95% case; immediate access */ 
else /* holder must be a writer */ 
  {   /* put reader ahead of writer if possible */ 
   if can_be_before(requestor, holder) then  
       { put_before(requestor, holder);  
        return; /* concurrent access */  } 
 
 
 
 
 
                
   
abort holder}  /* we do not abort readers */ 
 /* Abort is rare: both ranges must be same degenerate range. */  
---------------------------------------------------------------------------------------- 
Write Request  
If no-conflict then return /* 95% case, immediate access */  
else  /* test whether holder is reader or writer */ 
   {if can_be_before(holder, requestor) then  
 {if holder is reader then /* put reader ahead of writer */ 
              {put_before(holder, requestor); 
                return; /* concurrent access */} 
 
 
          
               

 
 
abort requestor; }  
/*Abort occurs when new writer cannot be after holder*/ 

    /* WITH BLOCKING PERMITTED */ 
    if can_be_before(holder, requestor) then  

    put_before(holder, requestor);  
    BLOCK; /* block until lock released */ 
    return; }  

 

 /* WITH BLOCKING PERMITTED */ 
  else  /* holder is a writer */ 
        {put_before(holder, requestor); 
        BLOCK; /* block until lock released */ 
        return; }  

 

Fig. 2. Handling Read and Write Requests 



3) Update Locks: Update (U) mode locks are frequently 

taken on a resource when it is necessary to read the resource 

to decide whether it should be modified or not.  Two U mode 

locks conflict to prevent a potential deadlock that would arise 

if two transactions had S mode locks on a resource, and both 

wanted to write (modify) it.  Instead, a transaction that might 

write must take a U lock on the resource before it can upgrade 

the lock to an X.  S lockers cannot upgrade to a U. They must 

take the U mode lock on a previously unlocked resource.  U 

mode locks do not conflict with S mode locks, a big plus for 

reducing conflicts.   

Our policy above classifies a U locker as a reader as U does 

not conflict with S.  The upgrade to X required for writing 

produces the write conflict when we need it.  However, this 

does not tell us how to handle UU conflicts.   

When readers conflict, as in the UU case (but not SS or 

US), we choose to block the requestor, forcing it to have a 

timestamp range later than the current U lock holder.  If the 

holder upgrades to X, the read/write conflict cannot result in 

concurrent access as the U requestor already has a timestamp 

range strictly after the range of the holder.  The UU conflict 

simply is transformed into a UX conflict and the U requestor 

continues to wait. However, if the holder downgrades to S, the 

requestor can then read and decide whether it needs to 

upgrade.  If so, its write is concurrent, producing a version 

after the earlier reader.  If not, it downgrades to S and 

continues executing. 

When a U request produces a UX conflict, the requestor 

may read an earlier version than the X holder.  Most of the 

time, this will be fine as most U mode locks are not converted, 

and concurrency is increased.  However, if the U requestor 

upgrades to X, it will have to abort as we cannot move a 

writer ahead of a prior access.  

4) Key Range Locks: If a transaction T1 reads a range of 

keys that include k1 and k4 of a table in which these keys are 

adjacent, when using key range locking it will obtain a key 

range lock on k4 which covers the range between k1 and k4. 

If transaction T2 inserts a key k3, T2 conflicts with T1 and 

the insert is permitted as a concurrent RW conflict, with the 

insert occurring temporally after the range read.  However 

T1’s range lock on k4 now appears to cover only (k3, k4].   So if 

another transaction T3 inserts k2 in the gap between k1 and k3, 

it now does not appear to conflict with T1 as the next key seen 

is k3, which is not locked with T1’s key range lock.  So if the 

insertion were allowed to happen, and if T1 then rereads the 

table, it might now see k2, which is a phantom.  

We found a way, called lock propagation, of dealing with 

this potential difficulty.  Lock propagation acts on locks at the 

time when k3 is inserted and splits the (k1, k4] range. When a 

transaction inserts a record, it copies all key range locks from 

the following key. In our example, the key range lock on k4 is 

propagated to the newly inserted k3. This propagation will also 

include the timestamp range information of the respective 

transactions.  Then, when T3 inserts k2, T1 will have a key 

range lock on k3, so T3 will be seen to conflict with T1. 

B. Deadlock Detection 

In Figure 2, the abort cases shown “WITH BLOCKING 

PERMITTED” strictly include the cases where deadlocks 

arise.  This timestamp based deadlock handling technique is 

enabled by our adjusting timestamp ranges to agree with 

conflict ordering at the time that a transaction blocks.  Every 

blocked transaction has a timestamp range that is disjoint from 

and later than transactions earlier in the queue. 

Whenever there is circular waiting, a transaction A that 

completes that cycle (resulting in a deadlock) has blocked 

other transactions.  All these transactions will have timestamp 

ranges disjoint with and later than A’s timestamp range.  A is 

now being blocked by one of these transactions or by another 

transaction blocked by these.  The requirement, when A is 

blocked, is that it be later than the transaction blocking it.  But 

this is impossible.  Hence the deadlock is “detected” and one 

of the blocking transactions must be aborted.  The inability to 

reconcile timestamp ranges is a necessary but not a sufficient 

condition for deadlock and hence is conservative as some 

aborts occur without a deadlock.     

V. SYSTEM OPERATION 

We want to show how our conflict analysis fits into a wider 

system.  We discuss three aspects.   

1 What does the TCM do when conflicts are detected?  

Detecting conflicts and the no-conflict case handling are 

unchanged. 

2 How are significant milestones in a transaction’s 

execution impacted?  We present our versions of 

modified operations along the lines of CRF. 

3 When do we garbage collect the “locks” of committed 

transactions in the TCM?  Like CRF, we cannot use 

transaction commit for this.  

A. Conflict Handling 

A requesting transaction may conflict with more than one 

transaction that has “locked” the resource.  For example, a 

writer conflicts with every reader of a resource.  Further, 

when transactions block waiting for a resource, the requesting 

transaction can conflict with multiple blocked transactions 

enqueued on the resource.  We describe these cases next. 

1) Resource with at least one reader and no writers: A 

writer, if it is to proceed concurrently with existing readers of 

a resource, needs to come after all readers.  Thus the writer 

start time must be later than the end times of all readers.  

Hence, A.early for writing transaction A is the latest time 

required among the readers. 

While a writer might be able to execute concurrently with 

some readers, for the writer to proceed, it must be able to 

execute concurrently with all the readers.  If not, this is 

because the writer timestamp range forces it to precede at 

least one of the readers.  In this case, the writer is aborted as 

the “problem” reader has already read a version that is 

different from the one that would be created by the writer. 

2) Resource with at least one writer: When a transaction 

has written a resource, we permit readers to execute 



concurrently by reading an earlier version, when that is 

possible.   If a new reader does not have a timestamp range 

that permits it to read the earlier version, that reader is 

blocked.  Both in the concurrent case and the blocked case, 

the analysis we have done earlier in sections II and III can be 

used to determine each reader’s timestamp range.  A read 

requestor almost never needs to abort (see III.C); it proceeds 

either concurrently with the writer by reading an earlier 

version, or by waiting for the writer to commit and then 

reading this new version. 

A reader will be moved forward in the queue of writers 

waiting on the “locked” resource as far as possible, until it 

reaches a writer that must precede it.  If there is no such writer, 

the read can execute concurrently with the active writer.  A 

new reader’s timestamp range is impacted solely by the 

writers of the resource, not by the concurrent (or blocked and 

waiting) readers and a read requestor is never delayed by 

blocked readers, except for update lock mode conflicts (see 

section IV.A.)     

If a writer accesses a resource with an existing writer, it 

must either abort or block waiting for the resource.  To block, 

the new writer must have a timestamp range that permits it to 

follow the writer and all the concurrent readers and/or blocked 

readers and writers as well.   Otherwise it is aborted.   

B. Transaction Stages 

There are a number of milestones in the life cycle of a 

transaction that we describe in this section. 

BeginTransaction(A): Execute existing begin code, then: 

 A.early ← current time; A.end ← false; A.commit 

←false; both A.late and A.timestamp are indicated as 

being undefined because A.end and A.commit are “false”. 

EndTransaction(A, commit/abort): For commit, execute 

existing commit code, then: 

 A.commit ← true; A.timestamp ← A.early; A.late ← 

A.early.  We choose the earliest time for commit.  There 

are good reasons for this choice (see V.C).  Other choices 

are possible. We do not remove A’s locks from the TCM.  

For abort, execute existing abort code, then: 

 Remove transaction A locks from the TCM. 

At transaction end, we unblock transactions waiting on A’s 

locks, permitting them to resume execution. 

C. TCM Garbage Collection 

We need to wait until A’s commit timestamp can no longer 

impact the timestamp ranges of active write transactions 

before removing A from the TCM.  By choosing the earliest 

timestamp in the acceptable range, we hasten the time we can 

remove A.  (Read only transactions are discussed in section 

VIII below.)  A’s having read a version of a datum D forces 

writers of D to be later than A.  Thus, once no B exists with 

B.early ≤ A.timestamp, A can be removed.  

We can be lazier than necessary about removing A’s 

“locks”, but we must not be more eager.  Thus we need to 

track B.early for active writers B, but can do it in a 

conservative way.  One approach (among many) is to count 

the number of active transactions B with B.early in a small 

interval Δt.  When the count in an interval Δt is 0, we find the 

earliest non-zero interval ΔT and delete committed 

transactions in the TCM with timestamps earlier than ΔT.  

VI. IMPLEMENTING A TCM 

We have successfully produced the core of a timestamp 

range conflict manager using InnoDB’s multi-version record 

support. This section documents changes we made to InnoDB. 

A.  Transaction Timestamp Ranges 

Our TCM keeps track of the earliest and latest possible 

times a transaction can commit.  This is the timestamp range 

of the transaction. To keep track of this timestamp range in 

InnoDB, we added extra attributes to the transaction structure. 

When a transaction starts, it is assigned the current time as 

the earliest time it can commit and the end time is unbounded. 

As this transaction is involved in conflicts with other 

transactions, this range shrinks. When the transaction commits, 

we need to shrink the range down to a single point in time. 

In our implementation, we use a 64-bit unsigned integer 

counter to represent time.  To get current time, the counter 

value is retrieved and incremented.  As mentioned in section 

VII.B this method has limitations.  A technique that provided 

a sparser set of timestamps would provide more flexible 

timestamp range adjustment possibilities when handling 

conflicts, potentially reducing the  number of aborts.  

In interval notation, a transaction trx can commit at any 

time in the interval [trx.early, trx.late). When the transaction 

is committed, we set trx.late=trx.early+1. InnoDB’s existing 

transaction state tracks if the transaction is committed or not. 

The timestamp range attributes we added to InnoDB are 

given in Figure 3. 

 

 
 

 

 

 

B. Adjusting Timestamp Ranges 

The code used for RW conflicts is shown in Procedure 1 in 

Appendix A.  There are two cases where we have chosen to 

abort as there is no way to adjust the timestamps to satisfy the 

situation.  In both cases, we abort the requestor, who is the 

writer. 

The code used for WR conflicts is shown in Procedure 2 in 

Appendix A. This is interesting due to the need to abort the 

lock holder, which is achieved by adapting the code for 

aborting transactions when deadlocks are found. Additionally, 

as we wished to be able to tell the difference between 

deadlocks and TCM aborts, we have added an error message 

to MySQL which displays when this situation occurs.  Finally, 

on lines 11 and 27, it is not necessary to abort as blocking the 

requestor suffices.  However, abort is both simple and correct.   

struct trx_struct { ... 

  dulint early; /* earliest time a tran can commit */ 

  dulint late; /*latest time before which a tran must commit */ 

  unsigned end:1; /* indicates whether end is set */ 

... } 

 
Fig. 3. Transaction Attributes for Timestamp Ranges 



The code for WW conflicts is given in Procedure 3 of 

Appendix A.  Similarly to RW conflicts, we have chosen to 

abort the requester on lines 21 and 33.   

If the timestamp range is empty, it is impossible to satisfy 

the constraint, and one of the transactions is aborted. In our 

implementation, for simplicity we abort the transaction which 

made the request. 

If a transaction’s early bound on the timestamp is moved 

backwards, this means that transaction which conflicted with 

it is blocking the transaction from continuing. Due to reasons 

described in subsection E.1 below, our implementation 

chooses to abort transactions which could be blocked. 

C. Record locking 

In order to integrate these rules into the lock manager, we 

first needed to understand how the lock manager handled lock 

requests. When a read or write operation occurs on a record, 

the lock_rec_lock function is called, which attempts to lock 

the given record in the requested mode. As shown in Figure 4, 

this function calls out to two other functions, first to 

lock_rec_lock_fast, which handles the more common case of 

no other locks on the record. If there are already locks on the 

record, lock_rec_lock_slow is called, which itself checks to 

see if the new lock request can be satisfied (or if the request 

needs to be blocked or aborted). 

The InnoDB lock manager was re-implemented to include 

the pseudo-code shown in Procedures 1, 2 and 3.  The changes 

were localized to lock_rec_lock_slow, which handles 

conflicting accesses.  The new parts of the lock manager are 

shown in “gray” blocks.  The white blocks are not modified. 

D. Reading correct record versions 

A transaction needs to read the correct version of the record. 

For instance, if it has previously read one version of the 

record, it should always see that version unless it has modified 

the version itself. Under S2PL, if T1 reads a record, and then 

T2 writes the same record, T2 will block until T1 is committed 

(or rolled back). However, with TCM, T2 is allowed to write 

the new record, and T1 continues to read the old version. 

InnoDB already can read previous versions of records.  It 

takes the most recent version, and uses the rollback log to 

undo the change made to it, until it finds a version which the 

transaction is allowed to see. The only part needing changes is 

using the timestamp range of the transaction to specify what 

versions the record is allowed to see.  Given a transaction T1 

and the transaction T2 which created some version of a record, 

the rules for conflict resolution will adjust the timestamp 

ranges such that T1’s timestamp range will never overlap T2’s 

timestamp range.   T1 reads the version of a record written by a 

committed transaction with the largest timestamp earlier than 

T1.early.  The only exception to this is when the version was 

also generated by T1.  

 

 
Fig. 4. Lock Manager Logic. Shaded boxes are timestamp range related 
changes made to InnoDB. 

E. Other Modifications 

1) Blocking and aborting transactions: When resolving 

conflicts, concurrent access may not be possible. In such cases, 

either at least one of the transactions must be aborted, or one 

of the transactions will need to block until a conflicting lock is 

released.  
Under S2PL, a transaction is resumed from the blocking 

state when all the conflicting locks on which it is waiting have 

been released. However, with TCM, a record may 

simultaneously have conflicting locks,   so the rules for when 

to resume a transaction need to be changed. 

We have not implemented the rules for resuming blocked 

transactions, instead opting to abort any transactions which 

are blocked.  When a transaction is aborted, we return a 

DB_TCM_ABORT error added to InnoDB as a new error 

code. This allows us to differentiate between errors from 

conflict resolution and other lock problems. 

2) Disabling Implicit Locking: InnoDB has the concept of 

implicit and explicit locks. Implicit locks belong to the creator 

of a record version. An implicit lock exists simply by creation 

of a record, and reduces the number of lock objects (if a 

transaction inserts 10000 records, there won’t be any lock 

objects created). When another transaction accesses a version 

with an implicit lock (creating transaction is not committed), a 

conflict occurs and the implicit lock is converted to an explicit 

lock, which is then used in the conflict resolution process.  For 

simplicity and to ensure correctness, we have disabled implicit 

locking (requiring all locks to be explicit) in our 

implementation. 

3) Range Locks: To handle key range locks, which InnoDB 

refers to as “gap” locks, we propagated the locks to adjacent 

keys as described in Section IV.A.  Lock propagation uses 

additional lock block space and extra time copying the locks.  

However neither of these issues is significant. During 

implementation, lock propagation only required a single line 

of code to be added! 

 



VII. PERFORMANCE 

Here we describe an initial performance evaluation of a 

TCM implementation described in Section VI, based on 

InnoDB, which maintains versions (but they are only used to 

support weak isolation levels; InnoDB’s serializable 

transactions use S2PL).  We exploit InnoDB versioning and 

add timestamp-bound management to its lock manager, so our 

TCM provides serializable transactions, with timestamps 

consistent with the serial schedule.  Our evaluation considers 

two factors. First we examine the overhead of performing 

timestamp adjustments during record locking.  Second, we 

describe throughput and abort rate results.  For both, we 

describe the testing procedure and results. Since time travel 

queries work identically for our design, as in a traditional 

S2PL system with versions, we only measure examples of 

current-time queries. 

All testing was done using MySQL 5.1.48, run on Debian 

(Sid) Linux, kernel version 2.6.35, with a Intel Core2 Duo 

P8700 CPU, 3GB RAM, glibc version 2.10 and gcc 4.4.3.  All 

queries to the database were run with autocommit disabled 

and at serializable isolation (using either the InnoDB S2PL 

lock manager, or our novel TCM). InnoDB does not support 

SI (though it can be added[7]) so we haven’t compared to this. 

A. Timings 

We first checked the timestamp range overhead during 

record locking.  In InnoDB, record locking is protected by the 

kernel mutex (a global lock on InnoDB's data structures).  If 

the added overhead is significant, other parts of the system 

will wait to acquire the mutex, hence losing concurrency and 

decreasing performance.  

The C function clock_gettime is the appropriate method for 

timing record locking (lock_rec_lock), with microsecond-

resolution resolution and measuring only the computation 

time of the current thread (using the Clock_Thread_Cputime_Id 

timer).  This is important.  While record locking is protected 

by a kernel mutex, other threads may be concurrently active. 

The test load on the database for queries we ran using 

mysqltest is shown in Figure 5, and was repeated 3000 times.  

The S2PL lock manager had a mean execution time of 

2145.44 microseconds, and a standard deviation of 1231.97 

microseconds.  The TCM had a mean of 2252.87 

microseconds, and a standard deviation of 1232.55.  Figure 6 

shows the time distribution for the record locking function.  

So, while our TCM’s record locking is slightly slower, on 

average than InnoDB’s original S2PL lock manager’s, 

adjusting timestamp ranges adds very little to the cost of 

record locking. 
 

 

 

 

 

 

 

 
 

 

 

   

 

 

 

 

 

 

 

B. Benchmarking 

We built a benchmarking system where each experiment, 

cycles through a sequence of states, the usual order being: 

stopped, warm-up, measurement, stopped.  Using it, we 

measured transactions/second (throughput), and percentage of 

transactions aborted (abort rate) for a simple benchmark 

Each experiment connects to a database, runs setup queries, 

and then starts a configurable number of clients on separate 

threads.  Each client is given a distribution of stored 

procedures to run, and chooses procedures randomly with that 

distribution.  Transactions are run continuously, and when the 

experiment enters the measurement state, the client starts 

tracking transactions executed and aborted. When the 

experiment enters the stopped state, clients stop and the 

experiment reports results. 

For our initial benchmarking, we created a key/value table 

(both integers) and populated it with data (100 rows with keys 

picked from a uniform distribution between 0 and 200).  We 

ran 20 clients for a warm-up period of 30 seconds, and then 

measured for one minute, running the procedures in Figure 7 

with equal probability. The input parameter is a random 

number between 0 and 200, generated by the clients. 

During our benchmark test, the S2PL system processed 

3305 transactions/sec while the TCM system executed 3656 

transactions/sec, a difference of about 10%.  Figure 8 

illustrates this comparative throughput. Figure 9 shows that 

the TCM system had a 0.428% abort rate while the S2PL 

system had a 1.018 % abort rate, over twice as high. 

Our experiments indicate that our TCM is capable of 

delivering results as good as, if not better than a S2PL lock 

manager.  Further, our TCM has room for improvement.  

Transactions that could block are always aborted (see Section 

VI) and timestamp generation could also be improved. These 

should further increase throughput and decrease the abort rate.  
 

CREATE PROCEDURE read1(IN x INTEGER) 

BEGIN 

 SELECT SUM(value) FROM t1 WHERE id IN ( 

     SELECT value   FROM t1 

     WHERE id = x); 

END 

--------------------------------------------------------------------------------------- 

CREATE PROCEDURE write1(IN x INTEGER) 

BEGIN 

 UPDATE t1 

     SET value = value - 10 

     WHERE id = x; 

END 

Fig. 7. Reading and Writing Benchmark Procedures 

T1> SELECT value FROM t1 WHERE id = 3; 

T2> SELECT * FROM t1; 

T2> UPDATE t1 SET value = 3 WHERE id = 1; 

T2> SELECT value FROM t1 WHERE id = 1; 

T1> SELECT value FROM t1 WHERE id = 3; 

T1> UPDATE t1 SET value = 9 WHERE id = 3; 

T2> COMMIT; 

T1> COMMIT; 

Fig. 5. Procedure to generate timing data. 

Fig. 6. Timing comparison: TCM vs. S2PL in μsec.  Red bars show mean, 

error bars show standard deviation. 



  
Fig. 8. Transactions/sec for S2PL and TCM.   

 
Fig. 9. Abort rates for S2PL and TCM. 

VIII. DISCUSSION 

There are other issues worth discussing: alternative ways to 

handle conflicts, certain isolation levels, and how to extend 

this to other settings.  We briefly discuss these here. 

A.  Other Conflict Policies 

Our illustrated conflict policy always favors readers.  Other 

policies are worth exploring, with a final choice based on an 

analysis of system throughput, abort rates, and perhaps 

considerations of fairness.  Some alternative timestamp range 

policies are: 1) make the impact on reader and writer equal; 2) 

favor the writer at the expense of the reader; 3) favor the 

current holder at the expense of the requestor; 4) favor the 

transaction with the earliest start time at the expense of a later 

transaction.  As with timestamp ranges, there are alternative 

abort victim policies.  We explored choosing the writer as 

victim.  Some other choices are: 1) the reader; 2) the requestor; 

3) the holder; 4) the later transaction, based on start time; 5) 

the transaction with the fewest or most conflicts. 

B. Snapshot Isolation 

Snapshot isolation (SI) appears to work best when all 

transactions are running at SI.  An SI transaction read time is 

then its start time and its updates are stamped with its commit 

time.  An SI transaction need not visit a lock manager for 

reads.  It certifies its writes at commit time, aborting if another 

transaction’s writes conflict with its writes.    

With a TCM, a transaction can have a timestamp that is 

earlier than its commit time and hence earlier than a newly 

started SI transaction.  We need to prevent those transactions 

from writing (creating) versions of objects read by the SI 

transaction that would change the set of versions it reads.  To 

enforce this requires some extra effort.  One simple approach 

(others are possible) is to set the start time of the SI 

transaction to before the earliest early time of any active 

transactions.  Then one can access the versions exactly as SI is 

currently implemented, albeit with an earlier start time.  The 

negative here is not performance, but rather a perhaps subtle 

change in the state being read. 

We have to separate read timestamp from write timestamp.  

We can do that by noting that a transaction is SI in the 

transaction control block and separating read time from 

timestamp range.  An SI transaction’s write timestamp range 

is handled like the timestamp ranges of other isolation levels.  

However, unlike other isolation levels, SI’s definition requires 

abort when there is a write/write conflict.  Our conclusion is 

that SI support, while possible in the context of a TCM, loses 

some of its appeal.  Serializability achieves so much of the 

concurrency for which SI is now used that SI isolation level 

has a much smaller advantage.   

C.  Read Committed 

A read committed transaction RC sets only short term read 

(S) locks.  However, with multi-version support, the read 

committed definition is not crisp (see [28]).  There are two 

possible versions RC might read: (1) RC might immediately 

read the latest already committed version, or (2) RC might 

wait until an X lock holder commits, and then read its newer 

version.  In any event, we want the timestamp for RC to be 

later than any of the versions that it reads or writes over.   

Unlike reads by serializable or repeatable read transactions, 

a read by RC need not constrain timestamp ranges of other 

transactions.  RC may invoke the TCM to ensure that when it 

reads, it reads a committed version.  But the TCM need not 

include the read in its conflict matrix.  And, if RC can 

determine when a version is committed and its timestamp by 

examining the version itself, it can avoid read locks entirely.   

D. Optimizing Read-only Transactions 

When a transaction RO declares itself to be read-only, 

supported commercially in, e.g., Rdb [11], RO need not set 

any “locks” if it is sufficiently early.  Here such a declaration 

means that RO does not ask the TCM for permission to access 

resources if it identifies a recent time at which there are no 

concurrent transactions, i.e., earlier than the A.early of any 

active read/write transaction A.  Thus, RO runs an as-of query 

for this time, just like any historical as-of query.   

If RO is concurrent with active updaters, then it needs to 

participate in keeping the overall schedule serializable, even 

though it will never be aborted.  We can set RO.late ← 

RO.early to minimize its conflicts with concurrent read/write 

transactions.  Possible techniques for handling RO include 

those used for SI (section VIII.B).  Further, once RO’s time is 

earlier than A.early, for any active R/W transaction A, RO can 

continue without TCM visits, like an “as of” historical query. 

E.  Distributed Transactions 

Dealing with distributed transactions using timestamping 

has been described in the past, e.g. [16].  The idea is that each 

cohort (local sub-transaction), when it enters the prepare 

phase (phase 1) of two phase commit, responds to the 

transaction manager with the timestamp range that bounds the 

acceptable timestamp for the transaction.  The transaction 

manager can commit the transaction when the intersection of 

all timestamp ranges from all cohorts is non-null as it can 

choose any timestamp in this intersection as the transaction’s 

timestamp.  Otherwise, the transaction must abort.  Our TCM 

provides the required timestamp range.   Thus, our TCM 

approach can easily deal with distributed transactions as well 

as local transactions. 
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F.  Single Version Data 

Systems may support both multi-version and single version 

data.  Because a TCM can provide both R/W concurrency and 

conventional LM blocking behavior, it can be used for both.  

For single version data, the TCM acts like a conventional 

LM, blocking when conflicts occur.  A TCM needs to retain 

locks on single version data of an earlier committed 

transaction until it can no longer impact timestamping of 

active transactions, as with multi-version data.  But garbage 

collection can be prompt, as a single version data lock can be 

dropped once its data is overwritten by a subsequent 

committed transaction.   

A TCM could be used in the place of an LM even when no 

multi-version data is present.  One gets the same LM blocking 

behavior.  Handling timestamp ranges increases TCM code 

path when conflicts occur, but the common “no conflict” case 

is the same. Deadlock detection can use the timestamp range 

technique instead of checking for wait cycles, a simplification.  

Aborts increase somewhat as null timestamp ranges occur 

more frequently than real deadlocks, but this should be rare.   

G. Transaction Time Database Systems 

Transaction time database systems provide multi-version 

support, including support for queries “as of” some past time 

in order to read a transaction consistent version of the 

database at a prior time.  Immortal DB [19] went to great 

effort to reduce the penalty of supporting versions on current 

database access performance, reducing the penalty to a few 

per cent.  Adding timestamp range conflict management to a 

transaction time database turns things around.  With more 

concurrency for multiple versions, current database access can 

be improved.  Supporting multiple versions thus turns into a 

performance plus, not a penalty to be minimized.      

Highly concurrent read access is possible using a 

transaction time database with a conventional lock manager, 

but only for transactions declared read-only.  Given a TCM, a 

read-only declaration is not needed to increase concurrency.  

With a read-only declaration, we can reduce lock overhead, 

however, sometimes while reading recent versions.  

Using a TCM with a transaction time database has a very 

limited implementation impact.  No versioning or “as of” 

query functionality need be changed.   A TCM impacts only 

the way in which timestamps are selected.  The timestamping 

process itself need not change.  

H. Replication 

Multi-master replication using snapshot isolation versions 

has been frequently discussed [8][9][14][15].  There are 

several flavors of snapshot isolation, with replication trade-

offs in terms of strength of guarantee and efficiency of 

support.  Replication that provides a variant of snapshot 

isolation is not truly serializable, and proposals that are 

serializable [6] do not allow read/write concurrency. 

Our work does not deal directly with multi-master 

replication.  However, primary copy replication (all updates 

go to the primary) with read-only secondaries [23] is readily 

provided via the transaction-time support enabled by our 

method.  Readers at a secondary can see a historical 

transaction’s serialized version with some small time delay.  

That is, an historical query at time t1 cannot be asked until we 

can guarantee that no active transaction can commit with a 

timestamp earlier than t1.  Like historical queries in general, 

no locking is needed for these queries. 

I. Conclusion 

We have described our TCM timestamp range conflict 

manager, and discussed how it enables R/W concurrent access 

while providing all SQL isolation levels, including 

serializability.  The timestamp range technique can also 

replace cycle detection as a way of detecting deadlocks.  Our 

InnoDB implementation demonstrates that using a TCM 

improves performance while reducing the number of 

deadlocks.  Finally, TCM use leads to timestamps for versions 

that are consistent with serialization order and so enables the 

TCM to be used as part of a transaction time database system.   
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Procedure 2: for WR conflicts 

1 function lock_rec_adjust_timestamps_wr(holder, requester): 

2    if not requester.end and not holder.end: 

3       new_time = get current time 

4       holder.early = new_time 

5       requester.late = new_time 

6       requester.end = True 

8    else if not requester.end and holder.end: 

9       if requester.early > holder.late: 

10         if not holder.committed: 

11            ABORT(holder) # COULD block requestor 

13      else: 

14            new_time = holder.late - 1 

15            requester.late = new_time 

16            requester.end = True 

17            holder.early = new_time 

19  else if requester.end and not holder.end: 

20     if requester.late > holder.early: 

21         holder.early = requester.late 

23  else:  

24     if requester.early > holder.late: 

25        if not holder.committed: 

26           # COULD block requestor 

27           ABORT(holder) 

29     else if requester.early <= holder.late <= requester.late 

30        new_time = holder.late - 1 

31        requester.late = new_time 

32        holder.early = new_time 

34     else if holder.early <= requester.late <= holder.late: 

35         holder.early = requester.late 

36  return SUCCESS 

 

Procedure 1: for RW conflicts 

1 function adjust_timestamps_rw(holder, requester): 

2    if not requester.end and not holder.end: 

3       new_time = get current time 

4       holder.late = new_time 

5       holder.end = True 

6       requester.early = new_time 

8    else if not requester.end and holder.end: 

9       if holder.late > requester.early: 

10          requester.early = holder.late 

12   else if requester.end and not holder.end: 

13     if requester.late > holder.early: 

14         requester.early = requester.late - 1 

15         holder.late = requester.late - 1 

16         holder.end = True 

17      else:  # cannot be solved via blocking 

19         ABORT(requester) 

21   else: 

22      if requester.early > holder.late: 

23         # no adjustment needed 

24     else if requester.early <= holder.late <= requester.late: 

25         requester.early = holder.late 

26      else if holder.early <= requester.late <= holder.late: 

27         if not holder.committed: 

28            new_time = requester.late - 1 

29            holder.late = new_time 

30            requester.early = new_time 

31      else:  # cannot be solved via blocking 

33         ABORT(requester) 

34   return SUCCESS 

Procedure 3: for WW Conflicts 
1 function lock_rec_adjust_timestamps_ww(holder, requester): 

2    if not requester.end and not holder.end: 

3       new_time = get current time 

4       requester.early = new_time 

5       holder.late = new_time 

6       holder.end = True 

7       ABORT(requester) # COULD block requester 

8    else if not requester.end and holder.end: 

9       if requester.early < holder.late: 

10         requester.early = holder.late 

11      if not holder.committed: 

12         ABORT(requester) # COULD block requester 

13  else if requester.end and not holder.end: 

14      if requester.late > holder.early: 

15         new_time = requester.late - 1 

16         holder.late = new_time 

17         holder.end = True 

18         requester.early = new_time 

19         ABORT(requester) # COULD block requester 

20      else: # we can abort either transaction here 

21         ABORT(requester) 

22   else: 

23      if requester.early > holder.late: 

24         ABORT(requester) # COULD block requester 

25      else if requester.early <= holder.late <= requester.late: 

26         requester.early = holder.late 

27         ABORT(requester) # COULD block requester 

28      else if holder.early <= requester.late <= holder.late: 

29         requester.early = requester.late - 1 

30         holder.late = requester.late – 1 

31         ABORT(requester) # COULD block requester  

32      else: # we can abort either transaction here 

33         ABORT(requester) 

34   return SUCCESS 
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