
Multi-Version Concurrency via

Timestamp Range Conflict Management
David Lomet

#
, Alan Fekete

*
, Rui Wang

#
, Peter Ward

*

#
Microsoft Research

Redmond, WA, USA 98052

{lomet, ruiwang}@microsoft.com
*
University of Sydney

Sydney, Australia

{alan.fekete, pwar3236}@sydney.edu.au

Abstract— A database supporting multiple versions of records

may use the versions to support queries of the past or to increase

concurrency by enabling reads and writes to be concurrent. We

introduce a new concurrency control approach that enables all

SQL isolation levels including serializability to utilize multiple

versions to increase concurrency while also supporting

transaction time database functionality. The key insight is to

manage a range of possible timestamps for each transaction that

captures the impact of conflicts that have occurred. Using these

ranges as constraints often permits concurrent access where lock

based concurrency control would block. This can also allow

blocking instead of some aborts that are common in earlier

multi-version concurrency techniques. Also, timestamp ranges

can be used to conservatively find deadlocks without graph based

cycle detection. Thus, our multi-version support can enhance

performance of current time data access via improved

concurrency, while supporting transaction time functionality.

I. INTRODUCTION

A. Our Goals

Some database systems support multiple versions, which

can be used to allow more sophisticated concurrency control

than traditional strict two-phase locking (S2PL), and/or to

support transaction time databases [12] with time travel

queries of past states. Commercially, Oracle was the earliest

with snapshot isolation[1], and transaction time support in its

Flashback and Total Recall features[21][22]. Among research

prototypes, we mention the original Postgres [26] and

Immortal DB [17][18][19] which use S2PL concurrency

control and support transaction time. Others have offered

serializable transactions where writers do not conflict with

reads that are in pre-declared read-only transactions

[4][5][12]. Two recent prototypes have concurrency control

that resembles snapshot isolation (allowing reads to run

concurrently with writes by accessing older versions) and yet

they ensure serializable execution [7][24].

The existing approaches each have disadvantages.

Snapshot isolation, while preventing several concurrency

anomalies, does not prevent them all[1]; so executions do not

satisfy the textbook definition of serializability, and

undeclared integrity constraints can be violated (this has been

observed in production code[13]). For systems with S2PL for

current-time transactions, versioning reduces the performance

of current time transactions below that of unversioned S2PL

[19], and this is often significantly less than the performance

of snapshot isolation, because in S2PL, a read operation is

blocked by any concurrent transaction that writes the same

data. The proposals of Cahill et al [7] (we call this “CRF”)

and Revilak et al (“ROO”)[24] do not support time-travel

queries, and adding these would be problematic, because

neither CRF nor ROO ensures that timestamps assigned to

versions agree with a serialization order of transactions. Thus

a query that looks at versions based on a given timestamp

would not necessarily report a state that agreed with any serial

history that leads to the observed final state.

We want all the features together, so we can have true

serializablilty (as well as weaker isolation levels), concurrent

readers and writers leading to better performance than S2PL,

and time travel queries. No previous proposal does all this.

B. General Approach

With multi-versioning, each version is tagged with a

timestamp associated with the transaction that created the

version. Usually this timestamp is assigned to the transaction

when it commits. Our key idea, which is unique to our

approach, is to dynamically track the bounds on what a

transaction’s timestamp can be as it executes. Whenever a

transaction accesses a resource and conflicts with another

transaction, we adjust the range within which its timestamp

must lie. Concurrent read/write access occurs by reading of a

version earlier than the one that an updating transaction is

concurrently creating, and adjusting timestamp ranges so that

reader’s timestamp range is earlier than the writer’s.

Creating versions, and finding a version to access based on

a timestamp, are done as in other multi-version systems. We

employ a more or less conventional lock manager[10][28] to

detect conflicting accesses, but once it is detected, we handle

it differently. We use the usual lock modes to determine

conflicts. The nature of the current access, read or write,

determines how transaction timestamp ranges are impacted

and whether concurrent access is possible. When no range

extent can be found for a transaction, it is aborted. Using

bounds for timestamps is similar in spirit to the timestamping

lock manager of [20] for dealing with a SQL CURRENT

TIME request that provides a latest possible transaction time,

mailto:ruiwang%7d@microsoft.com

but [20] did not permit concurrent read/write access, nor were

the ranges modified to enable greater concurrency. Bernstein

et al [3] track timestamp bounds, but they are not based on

conflicts, nor is serializability guaranteed.

C. Contributions

This paper proposes a new form of conflict manager that

we call a timestamping conflict manager or TCM. It tags

committed transactions with transaction timestamps that can

be made consistent with transaction isolation order, including

serializable, while enabling concurrent read/write access.

This is unique to our work here. Our primary contributions

are that our approach can:

1. Provide concurrent read/write access via multiple

versions, whose timestamps are consistent with the

transaction isolation level requested, including

serializable. To facilitate natural temporal queries, a

transaction’s timestamp is between its start and its

commit clock times.

2. Reduce the incidence of aborts, a downside of many prior

multi-version approaches. The usual snapshot isolation

techniques abort in write/write conflict cases; CRF and

ROO also abort for some read/write conflicts. Our

method has the flexibility of being able to block in many

cases on WW and RW conflicts that would abort using

other multi-version techniques.

3. Detect deadlocks via the timestamp range mechanism so

that wait-for graph cycle detection is not needed.

Timestamp ranges do “everything”. A transaction’s

timestamp range reflects all conflicts encountered thus far.

II. TIMESTAMPS AND LOCKING

A. Timestamps for Concurrency Control

We assume that each version is stamped by the transaction

that created the version. This “stamp” can be simply the

transaction identifier for the updater, or it can be a timestamp

assigned at the time an update transaction “commits”. If an

identifier, the “stamp” needs to be convertible into a

“timestamp” ordered consistent with the isolation order of the

transactions. Version timestamps permit us to choose the

appropriate version to be read by a transaction.

Timestamps have been used before in concurrency control,

notably with timestamp order based methods [2], where the

timestamp for a transaction is the transaction start time, and

conflicts not ordered in agreement with those timestamps are

aborted. However, these methods have not been widely

adopted because of fears of an excessive number of aborts.

Many techniques that assign timestamps to temporal versions

[17][25][26] choose timestamps for transactions at commit

time, using a conventional lock manager to handle conflicts

and guarantee isolation via two phase locking, and hence do

not provide concurrent reads and writes. Version IDs are used

also for snapshot isolation with an optimistic approach [22].

This is also used in [26], where timestamps are negotiated

during certification. However, optimistic methods preclude

blocking instead of abort, as read versions have already been

acted on by the time of certification.

B. Conflict Detection and Timestamps

CRF showed how the advantages of having multiple

versions can, when coupled with a more or less conventional

lock manager (insofar as conflict detection is concerned),

provide serializable transactions, while frequently enabling

read-write conflicts to proceed concurrently by having the

reader read an earlier version of the data.

We want the same high concurrency using multiple

versions, but with an additional requirement. We want

transaction timestamps to use with versions for transaction

time functionality. This requires that timestamps be ordered

consistently with the isolation order of transactions, including

serializable. The CRF approach does not enable this choice of

timestamps. Timestamping and concurrency control in

Immortal DB [17], which provided consistent timestamping,

did not support read/write concurrency. This prompted us to

take another look at the notion of a timestamping conflict

manager (TCM) of a more pervasive form.

The conventional lock manager blocks a new access to a

resource when the new access conflicts with an existing

access from another transaction. This conventional lock

manager typically is used to support access to current data,

even when transaction time versions are supported. But our

intent is to make it version aware to improve concurrency.

Our TCM is similar in many respects to a conventional lock

manager, and can exploit similar data structures because

conflict detection is the same. The non-conflict case, which is

the most common, is unchanged from a conventional lock

manager. This is the fast path in and out of lock managers.

Only the conflict cases are handled differently, where we need

to inspect timestamp ranges. The reward for this “inspection”

is that many read/write conflicts can proceed concurrently.

The basic idea is for the TCM to maintain a range of

timestamps for a transaction. This range is adjusted at each

conflicting access of the transaction with some other

transaction so that the timestamp range is consistent with the

conflicts that the transaction has encountered. Because there

is a range of timestamps, we can more flexibly re-order

transactions compared with timestamp order methods [2].

This re-ordering reduces the abort rate while preserving our

ability to choose an appropriate timestamp.

A lock manager maintains a conceptual lock matrix for

transactions and resources. Whenever a transaction locks a

resource, an entry is made for the appropriate lock matrix

entry, linking the resource and the transaction via the lock.

The matrix is usually accessed via hashing resource IDs,

dividing them into “hash buckets”. At each resource, active

accesses to a resource are enqueued. Each transaction is

likewise accessible via a hash table that refers to a set of

transactions, each with a transaction control block (TCB). A

TCB points to the set of resources accessed by the transaction

so that when the transaction is no longer “alive”, it is

straightforward to remove its TCM entries.

Like CRF, the TCM maintains information not just on

active transactions but also on recently committed transactions

(that are still “alive” in that they can affect the timestamps of

active transactions). An active transaction might commit with

a timestamp earlier than an already committed transaction.

We need to detect such cases, and adjust timestamp ranges

appropriately as these extended conflicts are detected.

C. Blocking Instead of Abort

When two snapshot isolation transactions conflict on writes,

one is aborted. When one has already committed, the

currently active transaction is aborted. When both

transactions are still uncommitted, we can choose either as a

victim. Many implementations abort as soon as a WW

conflict is detected (eager abort). Our TCM can sometimes

have the new writer wait for a resource as is done in

conventional locking. Indeed, it is also possible to deal with

some of the “abort” cases for RW conflicts by having the

requestor wait. Always blocking is possible, which leads to

conventional locking. With TCM, we block only when the

alternative is abort. We opt for increased concurrency when

timestamp ranges permit it.

Blocking can lead to circular waiting or deadlock.

Deadlocks are low frequency but they need to be dealt with

lest some resources be tied up indefinitely and some

transactions be prevented from completing. We identify

deadlocks using the same timestamp range validation as used

elsewhere, not by tracing conflict edges in a graph looking for

circular waiting.

The key to using timestamps in dealing with conflicts is to

ensure that the timestamp range associated with each

transaction fully reflects all the conflicts it has seen so far.

Then when circular waiting arises, this will be identified by

the new conflict not being resolvable via adjustments to the

timestamp range. We can be conservative here, aborting in

some cases where it might have been avoided. The low

frequency of deadlock and even of multiple enqueued blocked

transactions means deadlock should not be a costly issue.

D. Transaction Attributes

We associate each transaction with a transaction control

block (TCB) that is linked in the TCM to resources being

accessed by the transaction. Each transaction has at least the

following attributes:

1. TID: Transaction identifier X

2. X.early: earliest time at which X can commit. This is

initially set to the time the transaction begins.

3. X.end: (true) X.late is not null; (false) X.late is null.

X.end is initially false.

4. X.late: latest time before which X must commit.

5. X.committed: (true) X.timestamp is not null; (false)

X.timestamp is null.

6. X.timestamp: time at which X is committed (Note: One

can use X.early or X.late to store X.timestamp instead of

a separate field. It is kept separate here to make the

exposition simpler.)

7. Isolation level: Conflicts and response to them may

depend on transaction isolation level.

In a transaction time database, X.timestamp becomes the

timestamp of all versions updated by X when X commits.

Another transaction Y, reading at Y.early can see a transaction

consistent view of the database by reading a version with the

largest timestamp less than Y.early.

It is not necessary to physically store timestamps in

versions. The timestamp in the TCB is sufficient so long as

there is a mapping from a TID in the version to the TCB.

However, for transaction time functionality, driving the

timestamps into the versions as done in Immortal DB is

desirable to avoid runtime translation overhead.

E. Conflict Principles

How timestamp ranges are managed is dictated by the

following principles. In what follows, we use X and Y to

denote transactions making requests, and R to denote a

resource being accessed. The principles are organized by the

role they play.

Constraining transaction timestamp in a timestamp range:

1. When a transaction X commits, it chooses a value in

[X.early, X.late) as X.timestamp, and sets (X.early, X.late)

←X.timestamp. Thus, for a committed transaction, the

timestamp range collapses to X.timestamp.

Accessing the correct version:

2. When access by X is granted for a request for R, the

version of R accessed is the one with the largest

timestamp less than X.early (after access is granted).

This ensures that X’s timestamp is appropriate for the

database state that it reads, at the time of access.

3. A request by Y to write R is never moved ahead of a prior

request for R from any X that has accessed earlier

versions of R. This ensures that the version of R accessed

by X at the time of its request is never changed by a later

writer, even should X’s start time be pushed back by a

write that it may do subsequently.

4. A transaction X’s timestamp range must never include

any versions of resource it is accessing other than those it

created. This guarantees that the version it accesses from

other transactions will not change regardless of where its

timestamp is chosen in its range.

Ordering conflicting accesses and timestamps:

5. New conflicts never grow the range [X.early, X.late) of a

transaction. Thus, prior conflict imposed constraints will

continue to be honored, in particular the order of

transactions and their timestamps, while a new conflict

may impose a more stringent constraint.

6. When a request by X is granted to read a version of R

earlier than the version of a writer Y for R, X.late will not

be later than Y.early. This ensures that the reading

transaction X comes before the writing transaction Y,

which is required for the version that it reads to be the

correct version.

7. When Y blocks behind X waiting for R, X’s timestamp

range must be earlier than and disjoint from Y’s

timestamp range. This ensures that deadlocks are

avoided by the timestamp range technique of section II.C.

And when all else fails:

8. Where the above principles cannot be applied, abort of

one of the conflicting transactions.

F. Correctness

We argue for the correctness of our TCM approach in the

common "page" model [28], where a transaction consists of

read and write operations on named data items (that is, we

simplify the model to avoid predicate evaluation).

An essential lock management invariant is that, whenever T

has accessed item X, then T holds an appropriate lock on X.

For a system like TCM where version order is the same as the

creation order of the versions, the multi-version serialization

graph (MVSG) is generated by edges from T1 to T2 that arise

in one of four cases: (i) T1 writes a version X1 and then T2

writes another version X2 of the same item X, (ii) T1 writes X1

and then T2 reads that version X1, (iii) T1 reads version X1 and

then T2 writes X2, (iv) T2 writes X2, and then T1 reads a version

X1 that precedes X2 in the version order. In each of these cases,

at the point in the execution where the second access occurs,

the timestamp ranges for the transactions will be set so that

the timestamp range for T1 is entirely before the range for T2.

All subsequent steps of TCM preserve this relationship, until

eventually T1 and T2 are allocated point timestamps such that

timestamp(T1) < timestamp(T2).

That is, every edge in the serialization graph is compatible

with timestamp order, and so there are no cycles in the MVSG.

III. LOGIC FOR CONFLICTS

A. Basic Capabilities

We determine, for conflicting accesses, if one of the

transactions can precede the other, and then provide

appropriate access, adjusting the timestamp ranges

accordingly. For example, a writer cannot be moved ahead of

a reader (principle 3). If the reader in a read/write (R/W)

conflict reads a version earlier than the writer’s version, the

reader must have an earlier timestamp than the writer. Further,

once we have ordered the transactions in a conflict, we need

to make sure that the timestamp ranges of the conflicting

transactions are consistent with this ordering. That is, the

transaction that we have placed first has a timestamp range

that strictly precedes the timestamp range of the transaction

that is ordered later.

To test if we can order the transactions as required, we

invoke the can_be_before(A,B) function on transactions A

and B that returns true if the timestamp ranges for A and B

permit A to precede B. If we can order A and B according to

can_be_before, then we make the timestamp ranges of A and

B consistent with this ordering by invoking put_before(A,B).

This procedure ensures that the timestamp range for A is

disjoint from the timestamp of B and precedes it. These

functions are described in Figure 1.

The procedure put_before(A,B) reflects our tactic, in R/W

conflicts, of giving readers as much of the timestamp range as

is possible without aborting the writer. And for W/W

conflicts, we give as much of the timestamp range as is

possible to the earlier writer currently accessing the resource.

Other tactics are possible for adjusting timestamp ranges

during conflicts.

B. Handling Read and Write Requests
We now show how read and write accesses are handled.

This is shown in Figure 2. For both forms of access, conflicts

are, in fact, uncommon. Well-tuned database systems have

relatively low conflict rates. And the no-conflict path through

a lock manager is very efficient. Our conflict manager shares

that efficient no-conflict path, as shown in Figure 2. It is

when conflicts occur that the TCM has a very large advantage

over conventional lock managers.

While the logic within the TCM seems more complicated

than the corresponding lock manager (LM) logic, whenever

the TCM avoids blocking, it avoids the substantial overhead

(thousands of instruction cycles) of a thread switch. This

thread switching overhead does not appear in the logic of the

LM, but it is operating system code path to implement the LM

“block”. Further, because the TCM blocks much less

frequently, there will typically be fewer active transactions in

the system at any given time, with smaller average latency.

Hence the conflict frequency of dealing with conflicts will

also decrease, which is part of the “virtuous cycle” caused by

the reduced blocking (and hence increased concurrency) of

the TCM.

C. Aborts and Blocking

Figure 2 superimposes two concurrency control schemes.

The usual multi-version concurrency control (MV-CC)

approach is to abort in two conflict cases:

1. R/W: when it is impossible to have the reader precede the

writer and gain concurrent access;

2. W/W: always

can_be_before(A, B) returns(boolean)
if B.end & (B.late ≤ A.early+1) then
 return(false);
else /* when B doesn’t have late bound, A can always

 precede B */
 return(true);
end

put_before(A, B)
/* assumes can_be_before(A, B) has previously returned true, i.e.
⌐(B.late ≤ A.early+1) or B.late is not yet defined */
/* Since A must precede B, A.end */
if ~A.end then
 {A.end = true; /* in all cases, A.end becomes true */
 A.late = current_time;
 }
if B is reader then /* A must be a writer */
 { /* we give most of range to B */
 B.early = max{B.early, A.early+1};
 A.late = min{A.late, B.early};
 }
else /* Either A is a reader and gets most of the time range or

 A is a writer that currently holds a resource */
 { if B.end then
 {A.late = min{A.late, B.late-1};
 B.early = max{B.early, A.late};
 }
end

Fig. 1. Testing and ordering timestamp ranges.

There is a fundamental reason for this. Almost all MV-CC

approaches are examples of optimistic concurrency control

(CRF is an exception). Most optimistic approaches check for

conflicts at the end of the transaction. This is after potential

conflicts where the transaction proceeded despite these

conflicts. Hence the transaction has already chosen and used

a version. If that version is incorrect, abort is about the only

possible outcome.

In Figure 2, the abort approach is revealed by removing the

“WITH BLOCKING PERMITTED” boxes from the code.

Without that code, abort occurs exactly as indicated in the list

above. However, using our TCM, we identify conflicts early

(pessimistically), and can react differently. Since aborts

clearly waste the prior work of transactions, it is almost

always better if a transaction is blocked instead.

Blocking is enabled by including the “WITH BLOCKING

PERMITTED” boxes. The TCM has not chosen the version

of the resource that the requestor will read. Hence, if a

requestor’s timestamp range does not permit it to access a

version earlier than an uncommitted one, the requestor (reader

or writer) blocks waiting for the earlier writer to commit. It

then accesses the newly committed version.

With blocking, abort frequency is substantially reduced. A

read request virtually never leads to an abort. Only when

reader and writer have identical degenerate timestamp ranges

(exactly one time point in the range) is it impossible for the

reader to be ahead or behind the writer.

Abort is a bit more common with write requests, though

still much reduced when blocking is permitted. A writer can

never be moved ahead of an earlier reader because that

violates our principle 4 which protects the earlier holder from

later write requests changing the version it is reading.

Permitting blocking does not avoid an abort when the reader

(holder) cannot be earlier than the writer.

When the conflict is W/W, most MVCC techniques require

one of the writers to be aborted. However, as with

conventional locking, when blocking is possible (i.e.,

timestamp ranges permit the holder to precede the requestor),

the write request can block waiting for the earlier writer

transaction to commit and release the lock on the resource.

IV. LOCKING ISSUES

In the preceding, we have discussed conflicts in a general

setting, referring to readers and writers and without relating

them to specific lock modes. Here we want to discuss lock

modes more generally and discuss handling deadlocks.

A. Lock Modes

How our TCM identifies conflicts between locks is the

same as in a conventional lock manager [10] [28]. The lock

mode conflict matrix is unchanged. Further, as noted

previously, the non-conflict case is unchanged in going from

LM to TCM.

1) Readers and Writers: To deal with conflicts, we need to

associate lock modes with read and/or write access so that we

can use the pseudo-code in Figures 1 and 2 to determine

whether concurrent access, blocking, or abort results.

The rule we adopt is simple. If a lock mode conflicts with

S, it is treated as a write during conflicting accesses. A

request lock mode not conflicting with S is treated as a read

when it conflicts with other operations (from writers).

Further, while a write lock mode permits change to a data

object, it does not reveal whether the object will be read prior

to being changed. Thus, we conservatively assume that all

writes are also reads. This is the high frequency case, and is

the reason we can never move a later write request ahead of

any earlier request, read or write.

2) Multi-granularity Locking: Using the above technique

with the traditional multi-granularity hierarchy, S and IS are

readers, and IX, SIX, and X are writers. How to treat these

lock modes in our analysis of conflicts flows directly from

this classification. Note that this is conservative. Someone

holding an IX lock on a table will conflict with a transaction

with an S lock on the table. But the IX locker might never

actually write. This is similar to the conventional LM case

where one of the transactions involved will block (perhaps

unnecessarily).

Two IX locks do not conflict, even though we treat them

both as writers. This is not a problem. The impact of locking

on timestamp ranges only occurs in conflict cases. There is

no conflict at this point. If a conflict arises, it will be when

both transactions attempt to X lock the same lower level

resource, e.g. a record.

Read Request
If no-conflict then return /* 95% case; immediate access */
else /* holder must be a writer */
 { /* put reader ahead of writer if possible */
 if can_be_before(requestor, holder) then
 { put_before(requestor, holder);
 return; /* concurrent access */ }

abort holder} /* we do not abort readers */
 /* Abort is rare: both ranges must be same degenerate range. */
--
Write Request
If no-conflict then return /* 95% case, immediate access */
else /* test whether holder is reader or writer */
 {if can_be_before(holder, requestor) then
 {if holder is reader then /* put reader ahead of writer */
 {put_before(holder, requestor);
 return; /* concurrent access */}

abort requestor; }
/*Abort occurs when new writer cannot be after holder*/

 /* WITH BLOCKING PERMITTED */
 if can_be_before(holder, requestor) then

 put_before(holder, requestor);
 BLOCK; /* block until lock released */
 return; }

 /* WITH BLOCKING PERMITTED */
 else /* holder is a writer */
 {put_before(holder, requestor);
 BLOCK; /* block until lock released */
 return; }

Fig. 2. Handling Read and Write Requests

3) Update Locks: Update (U) mode locks are frequently

taken on a resource when it is necessary to read the resource

to decide whether it should be modified or not. Two U mode

locks conflict to prevent a potential deadlock that would arise

if two transactions had S mode locks on a resource, and both

wanted to write (modify) it. Instead, a transaction that might

write must take a U lock on the resource before it can upgrade

the lock to an X. S lockers cannot upgrade to a U. They must

take the U mode lock on a previously unlocked resource. U

mode locks do not conflict with S mode locks, a big plus for

reducing conflicts.

Our policy above classifies a U locker as a reader as U does

not conflict with S. The upgrade to X required for writing

produces the write conflict when we need it. However, this

does not tell us how to handle UU conflicts.

When readers conflict, as in the UU case (but not SS or

US), we choose to block the requestor, forcing it to have a

timestamp range later than the current U lock holder. If the

holder upgrades to X, the read/write conflict cannot result in

concurrent access as the U requestor already has a timestamp

range strictly after the range of the holder. The UU conflict

simply is transformed into a UX conflict and the U requestor

continues to wait. However, if the holder downgrades to S, the

requestor can then read and decide whether it needs to

upgrade. If so, its write is concurrent, producing a version

after the earlier reader. If not, it downgrades to S and

continues executing.

When a U request produces a UX conflict, the requestor

may read an earlier version than the X holder. Most of the

time, this will be fine as most U mode locks are not converted,

and concurrency is increased. However, if the U requestor

upgrades to X, it will have to abort as we cannot move a

writer ahead of a prior access.

4) Key Range Locks: If a transaction T1 reads a range of

keys that include k1 and k4 of a table in which these keys are

adjacent, when using key range locking it will obtain a key

range lock on k4 which covers the range between k1 and k4.

If transaction T2 inserts a key k3, T2 conflicts with T1 and

the insert is permitted as a concurrent RW conflict, with the

insert occurring temporally after the range read. However

T1’s range lock on k4 now appears to cover only (k3, k4]. So if

another transaction T3 inserts k2 in the gap between k1 and k3,

it now does not appear to conflict with T1 as the next key seen

is k3, which is not locked with T1’s key range lock. So if the

insertion were allowed to happen, and if T1 then rereads the

table, it might now see k2, which is a phantom.

We found a way, called lock propagation, of dealing with

this potential difficulty. Lock propagation acts on locks at the

time when k3 is inserted and splits the (k1, k4] range. When a

transaction inserts a record, it copies all key range locks from

the following key. In our example, the key range lock on k4 is

propagated to the newly inserted k3. This propagation will also

include the timestamp range information of the respective

transactions. Then, when T3 inserts k2, T1 will have a key

range lock on k3, so T3 will be seen to conflict with T1.

B. Deadlock Detection

In Figure 2, the abort cases shown “WITH BLOCKING

PERMITTED” strictly include the cases where deadlocks

arise. This timestamp based deadlock handling technique is

enabled by our adjusting timestamp ranges to agree with

conflict ordering at the time that a transaction blocks. Every

blocked transaction has a timestamp range that is disjoint from

and later than transactions earlier in the queue.

Whenever there is circular waiting, a transaction A that

completes that cycle (resulting in a deadlock) has blocked

other transactions. All these transactions will have timestamp

ranges disjoint with and later than A’s timestamp range. A is

now being blocked by one of these transactions or by another

transaction blocked by these. The requirement, when A is

blocked, is that it be later than the transaction blocking it. But

this is impossible. Hence the deadlock is “detected” and one

of the blocking transactions must be aborted. The inability to

reconcile timestamp ranges is a necessary but not a sufficient

condition for deadlock and hence is conservative as some

aborts occur without a deadlock.

V. SYSTEM OPERATION

We want to show how our conflict analysis fits into a wider

system. We discuss three aspects.

1 What does the TCM do when conflicts are detected?

Detecting conflicts and the no-conflict case handling are

unchanged.

2 How are significant milestones in a transaction’s

execution impacted? We present our versions of

modified operations along the lines of CRF.

3 When do we garbage collect the “locks” of committed

transactions in the TCM? Like CRF, we cannot use

transaction commit for this.

A. Conflict Handling

A requesting transaction may conflict with more than one

transaction that has “locked” the resource. For example, a

writer conflicts with every reader of a resource. Further,

when transactions block waiting for a resource, the requesting

transaction can conflict with multiple blocked transactions

enqueued on the resource. We describe these cases next.

1) Resource with at least one reader and no writers: A

writer, if it is to proceed concurrently with existing readers of

a resource, needs to come after all readers. Thus the writer

start time must be later than the end times of all readers.

Hence, A.early for writing transaction A is the latest time

required among the readers.

While a writer might be able to execute concurrently with

some readers, for the writer to proceed, it must be able to

execute concurrently with all the readers. If not, this is

because the writer timestamp range forces it to precede at

least one of the readers. In this case, the writer is aborted as

the “problem” reader has already read a version that is

different from the one that would be created by the writer.

2) Resource with at least one writer: When a transaction

has written a resource, we permit readers to execute

concurrently by reading an earlier version, when that is

possible. If a new reader does not have a timestamp range

that permits it to read the earlier version, that reader is

blocked. Both in the concurrent case and the blocked case,

the analysis we have done earlier in sections II and III can be

used to determine each reader’s timestamp range. A read

requestor almost never needs to abort (see III.C); it proceeds

either concurrently with the writer by reading an earlier

version, or by waiting for the writer to commit and then

reading this new version.

A reader will be moved forward in the queue of writers

waiting on the “locked” resource as far as possible, until it

reaches a writer that must precede it. If there is no such writer,

the read can execute concurrently with the active writer. A

new reader’s timestamp range is impacted solely by the

writers of the resource, not by the concurrent (or blocked and

waiting) readers and a read requestor is never delayed by

blocked readers, except for update lock mode conflicts (see

section IV.A.)

If a writer accesses a resource with an existing writer, it

must either abort or block waiting for the resource. To block,

the new writer must have a timestamp range that permits it to

follow the writer and all the concurrent readers and/or blocked

readers and writers as well. Otherwise it is aborted.

B. Transaction Stages

There are a number of milestones in the life cycle of a

transaction that we describe in this section.

BeginTransaction(A): Execute existing begin code, then:

 A.early ← current time; A.end ← false; A.commit

←false; both A.late and A.timestamp are indicated as

being undefined because A.end and A.commit are “false”.

EndTransaction(A, commit/abort): For commit, execute

existing commit code, then:

 A.commit ← true; A.timestamp ← A.early; A.late ←

A.early. We choose the earliest time for commit. There

are good reasons for this choice (see V.C). Other choices

are possible. We do not remove A’s locks from the TCM.

For abort, execute existing abort code, then:

 Remove transaction A locks from the TCM.

At transaction end, we unblock transactions waiting on A’s

locks, permitting them to resume execution.

C. TCM Garbage Collection

We need to wait until A’s commit timestamp can no longer

impact the timestamp ranges of active write transactions

before removing A from the TCM. By choosing the earliest

timestamp in the acceptable range, we hasten the time we can

remove A. (Read only transactions are discussed in section

VIII below.) A’s having read a version of a datum D forces

writers of D to be later than A. Thus, once no B exists with

B.early ≤ A.timestamp, A can be removed.

We can be lazier than necessary about removing A’s

“locks”, but we must not be more eager. Thus we need to

track B.early for active writers B, but can do it in a

conservative way. One approach (among many) is to count

the number of active transactions B with B.early in a small

interval Δt. When the count in an interval Δt is 0, we find the

earliest non-zero interval ΔT and delete committed

transactions in the TCM with timestamps earlier than ΔT.

VI. IMPLEMENTING A TCM

We have successfully produced the core of a timestamp

range conflict manager using InnoDB’s multi-version record

support. This section documents changes we made to InnoDB.

A. Transaction Timestamp Ranges

Our TCM keeps track of the earliest and latest possible

times a transaction can commit. This is the timestamp range

of the transaction. To keep track of this timestamp range in

InnoDB, we added extra attributes to the transaction structure.

When a transaction starts, it is assigned the current time as

the earliest time it can commit and the end time is unbounded.

As this transaction is involved in conflicts with other

transactions, this range shrinks. When the transaction commits,

we need to shrink the range down to a single point in time.

In our implementation, we use a 64-bit unsigned integer

counter to represent time. To get current time, the counter

value is retrieved and incremented. As mentioned in section

VII.B this method has limitations. A technique that provided

a sparser set of timestamps would provide more flexible

timestamp range adjustment possibilities when handling

conflicts, potentially reducing the number of aborts.

In interval notation, a transaction trx can commit at any

time in the interval [trx.early, trx.late). When the transaction

is committed, we set trx.late=trx.early+1. InnoDB’s existing

transaction state tracks if the transaction is committed or not.

The timestamp range attributes we added to InnoDB are

given in Figure 3.

B. Adjusting Timestamp Ranges

The code used for RW conflicts is shown in Procedure 1 in

Appendix A. There are two cases where we have chosen to

abort as there is no way to adjust the timestamps to satisfy the

situation. In both cases, we abort the requestor, who is the

writer.

The code used for WR conflicts is shown in Procedure 2 in

Appendix A. This is interesting due to the need to abort the

lock holder, which is achieved by adapting the code for

aborting transactions when deadlocks are found. Additionally,

as we wished to be able to tell the difference between

deadlocks and TCM aborts, we have added an error message

to MySQL which displays when this situation occurs. Finally,

on lines 11 and 27, it is not necessary to abort as blocking the

requestor suffices. However, abort is both simple and correct.

struct trx_struct { ...

 dulint early; /* earliest time a tran can commit */

 dulint late; /*latest time before which a tran must commit */

 unsigned end:1; /* indicates whether end is set */

... }

Fig. 3. Transaction Attributes for Timestamp Ranges

The code for WW conflicts is given in Procedure 3 of

Appendix A. Similarly to RW conflicts, we have chosen to

abort the requester on lines 21 and 33.

If the timestamp range is empty, it is impossible to satisfy

the constraint, and one of the transactions is aborted. In our

implementation, for simplicity we abort the transaction which

made the request.

If a transaction’s early bound on the timestamp is moved

backwards, this means that transaction which conflicted with

it is blocking the transaction from continuing. Due to reasons

described in subsection E.1 below, our implementation

chooses to abort transactions which could be blocked.

C. Record locking

In order to integrate these rules into the lock manager, we

first needed to understand how the lock manager handled lock

requests. When a read or write operation occurs on a record,

the lock_rec_lock function is called, which attempts to lock

the given record in the requested mode. As shown in Figure 4,

this function calls out to two other functions, first to

lock_rec_lock_fast, which handles the more common case of

no other locks on the record. If there are already locks on the

record, lock_rec_lock_slow is called, which itself checks to

see if the new lock request can be satisfied (or if the request

needs to be blocked or aborted).

The InnoDB lock manager was re-implemented to include

the pseudo-code shown in Procedures 1, 2 and 3. The changes

were localized to lock_rec_lock_slow, which handles

conflicting accesses. The new parts of the lock manager are

shown in “gray” blocks. The white blocks are not modified.

D. Reading correct record versions

A transaction needs to read the correct version of the record.

For instance, if it has previously read one version of the

record, it should always see that version unless it has modified

the version itself. Under S2PL, if T1 reads a record, and then

T2 writes the same record, T2 will block until T1 is committed

(or rolled back). However, with TCM, T2 is allowed to write

the new record, and T1 continues to read the old version.

InnoDB already can read previous versions of records. It

takes the most recent version, and uses the rollback log to

undo the change made to it, until it finds a version which the

transaction is allowed to see. The only part needing changes is

using the timestamp range of the transaction to specify what

versions the record is allowed to see. Given a transaction T1

and the transaction T2 which created some version of a record,

the rules for conflict resolution will adjust the timestamp

ranges such that T1’s timestamp range will never overlap T2’s

timestamp range. T1 reads the version of a record written by a

committed transaction with the largest timestamp earlier than

T1.early. The only exception to this is when the version was

also generated by T1.

Fig. 4. Lock Manager Logic. Shaded boxes are timestamp range related
changes made to InnoDB.

E. Other Modifications

1) Blocking and aborting transactions: When resolving

conflicts, concurrent access may not be possible. In such cases,

either at least one of the transactions must be aborted, or one

of the transactions will need to block until a conflicting lock is

released.
Under S2PL, a transaction is resumed from the blocking

state when all the conflicting locks on which it is waiting have

been released. However, with TCM, a record may

simultaneously have conflicting locks, so the rules for when

to resume a transaction need to be changed.

We have not implemented the rules for resuming blocked

transactions, instead opting to abort any transactions which

are blocked. When a transaction is aborted, we return a

DB_TCM_ABORT error added to InnoDB as a new error

code. This allows us to differentiate between errors from

conflict resolution and other lock problems.

2) Disabling Implicit Locking: InnoDB has the concept of

implicit and explicit locks. Implicit locks belong to the creator

of a record version. An implicit lock exists simply by creation

of a record, and reduces the number of lock objects (if a

transaction inserts 10000 records, there won’t be any lock

objects created). When another transaction accesses a version

with an implicit lock (creating transaction is not committed), a

conflict occurs and the implicit lock is converted to an explicit

lock, which is then used in the conflict resolution process. For

simplicity and to ensure correctness, we have disabled implicit

locking (requiring all locks to be explicit) in our

implementation.

3) Range Locks: To handle key range locks, which InnoDB

refers to as “gap” locks, we propagated the locks to adjacent

keys as described in Section IV.A. Lock propagation uses

additional lock block space and extra time copying the locks.

However neither of these issues is significant. During

implementation, lock propagation only required a single line

of code to be added!

VII. PERFORMANCE

Here we describe an initial performance evaluation of a

TCM implementation described in Section VI, based on

InnoDB, which maintains versions (but they are only used to

support weak isolation levels; InnoDB’s serializable

transactions use S2PL). We exploit InnoDB versioning and

add timestamp-bound management to its lock manager, so our

TCM provides serializable transactions, with timestamps

consistent with the serial schedule. Our evaluation considers

two factors. First we examine the overhead of performing

timestamp adjustments during record locking. Second, we

describe throughput and abort rate results. For both, we

describe the testing procedure and results. Since time travel

queries work identically for our design, as in a traditional

S2PL system with versions, we only measure examples of

current-time queries.

All testing was done using MySQL 5.1.48, run on Debian

(Sid) Linux, kernel version 2.6.35, with a Intel Core2 Duo

P8700 CPU, 3GB RAM, glibc version 2.10 and gcc 4.4.3. All

queries to the database were run with autocommit disabled

and at serializable isolation (using either the InnoDB S2PL

lock manager, or our novel TCM). InnoDB does not support

SI (though it can be added[7]) so we haven’t compared to this.

A. Timings

We first checked the timestamp range overhead during

record locking. In InnoDB, record locking is protected by the

kernel mutex (a global lock on InnoDB's data structures). If

the added overhead is significant, other parts of the system

will wait to acquire the mutex, hence losing concurrency and

decreasing performance.

The C function clock_gettime is the appropriate method for

timing record locking (lock_rec_lock), with microsecond-

resolution resolution and measuring only the computation

time of the current thread (using the Clock_Thread_Cputime_Id

timer). This is important. While record locking is protected

by a kernel mutex, other threads may be concurrently active.

The test load on the database for queries we ran using

mysqltest is shown in Figure 5, and was repeated 3000 times.

The S2PL lock manager had a mean execution time of

2145.44 microseconds, and a standard deviation of 1231.97

microseconds. The TCM had a mean of 2252.87

microseconds, and a standard deviation of 1232.55. Figure 6

shows the time distribution for the record locking function.

So, while our TCM’s record locking is slightly slower, on

average than InnoDB’s original S2PL lock manager’s,

adjusting timestamp ranges adds very little to the cost of

record locking.

B. Benchmarking

We built a benchmarking system where each experiment,

cycles through a sequence of states, the usual order being:

stopped, warm-up, measurement, stopped. Using it, we

measured transactions/second (throughput), and percentage of

transactions aborted (abort rate) for a simple benchmark

Each experiment connects to a database, runs setup queries,

and then starts a configurable number of clients on separate

threads. Each client is given a distribution of stored

procedures to run, and chooses procedures randomly with that

distribution. Transactions are run continuously, and when the

experiment enters the measurement state, the client starts

tracking transactions executed and aborted. When the

experiment enters the stopped state, clients stop and the

experiment reports results.

For our initial benchmarking, we created a key/value table

(both integers) and populated it with data (100 rows with keys

picked from a uniform distribution between 0 and 200). We

ran 20 clients for a warm-up period of 30 seconds, and then

measured for one minute, running the procedures in Figure 7

with equal probability. The input parameter is a random

number between 0 and 200, generated by the clients.

During our benchmark test, the S2PL system processed

3305 transactions/sec while the TCM system executed 3656

transactions/sec, a difference of about 10%. Figure 8

illustrates this comparative throughput. Figure 9 shows that

the TCM system had a 0.428% abort rate while the S2PL

system had a 1.018 % abort rate, over twice as high.

Our experiments indicate that our TCM is capable of

delivering results as good as, if not better than a S2PL lock

manager. Further, our TCM has room for improvement.

Transactions that could block are always aborted (see Section

VI) and timestamp generation could also be improved. These

should further increase throughput and decrease the abort rate.

CREATE PROCEDURE read1(IN x INTEGER)

BEGIN

 SELECT SUM(value) FROM t1 WHERE id IN (

 SELECT value FROM t1

 WHERE id = x);

END

CREATE PROCEDURE write1(IN x INTEGER)

BEGIN

 UPDATE t1

 SET value = value - 10

 WHERE id = x;

END

Fig. 7. Reading and Writing Benchmark Procedures

T1> SELECT value FROM t1 WHERE id = 3;

T2> SELECT * FROM t1;

T2> UPDATE t1 SET value = 3 WHERE id = 1;

T2> SELECT value FROM t1 WHERE id = 1;

T1> SELECT value FROM t1 WHERE id = 3;

T1> UPDATE t1 SET value = 9 WHERE id = 3;

T2> COMMIT;

T1> COMMIT;

Fig. 5. Procedure to generate timing data.

Fig. 6. Timing comparison: TCM vs. S2PL in μsec. Red bars show mean,

error bars show standard deviation.

Fig. 8. Transactions/sec for S2PL and TCM.

Fig. 9. Abort rates for S2PL and TCM.

VIII. DISCUSSION

There are other issues worth discussing: alternative ways to

handle conflicts, certain isolation levels, and how to extend

this to other settings. We briefly discuss these here.

A. Other Conflict Policies

Our illustrated conflict policy always favors readers. Other

policies are worth exploring, with a final choice based on an

analysis of system throughput, abort rates, and perhaps

considerations of fairness. Some alternative timestamp range

policies are: 1) make the impact on reader and writer equal; 2)

favor the writer at the expense of the reader; 3) favor the

current holder at the expense of the requestor; 4) favor the

transaction with the earliest start time at the expense of a later

transaction. As with timestamp ranges, there are alternative

abort victim policies. We explored choosing the writer as

victim. Some other choices are: 1) the reader; 2) the requestor;

3) the holder; 4) the later transaction, based on start time; 5)

the transaction with the fewest or most conflicts.

B. Snapshot Isolation

Snapshot isolation (SI) appears to work best when all

transactions are running at SI. An SI transaction read time is

then its start time and its updates are stamped with its commit

time. An SI transaction need not visit a lock manager for

reads. It certifies its writes at commit time, aborting if another

transaction’s writes conflict with its writes.

With a TCM, a transaction can have a timestamp that is

earlier than its commit time and hence earlier than a newly

started SI transaction. We need to prevent those transactions

from writing (creating) versions of objects read by the SI

transaction that would change the set of versions it reads. To

enforce this requires some extra effort. One simple approach

(others are possible) is to set the start time of the SI

transaction to before the earliest early time of any active

transactions. Then one can access the versions exactly as SI is

currently implemented, albeit with an earlier start time. The

negative here is not performance, but rather a perhaps subtle

change in the state being read.

We have to separate read timestamp from write timestamp.

We can do that by noting that a transaction is SI in the

transaction control block and separating read time from

timestamp range. An SI transaction’s write timestamp range

is handled like the timestamp ranges of other isolation levels.

However, unlike other isolation levels, SI’s definition requires

abort when there is a write/write conflict. Our conclusion is

that SI support, while possible in the context of a TCM, loses

some of its appeal. Serializability achieves so much of the

concurrency for which SI is now used that SI isolation level

has a much smaller advantage.

C. Read Committed

A read committed transaction RC sets only short term read

(S) locks. However, with multi-version support, the read

committed definition is not crisp (see [28]). There are two

possible versions RC might read: (1) RC might immediately

read the latest already committed version, or (2) RC might

wait until an X lock holder commits, and then read its newer

version. In any event, we want the timestamp for RC to be

later than any of the versions that it reads or writes over.

Unlike reads by serializable or repeatable read transactions,

a read by RC need not constrain timestamp ranges of other

transactions. RC may invoke the TCM to ensure that when it

reads, it reads a committed version. But the TCM need not

include the read in its conflict matrix. And, if RC can

determine when a version is committed and its timestamp by

examining the version itself, it can avoid read locks entirely.

D. Optimizing Read-only Transactions

When a transaction RO declares itself to be read-only,

supported commercially in, e.g., Rdb [11], RO need not set

any “locks” if it is sufficiently early. Here such a declaration

means that RO does not ask the TCM for permission to access

resources if it identifies a recent time at which there are no

concurrent transactions, i.e., earlier than the A.early of any

active read/write transaction A. Thus, RO runs an as-of query

for this time, just like any historical as-of query.

If RO is concurrent with active updaters, then it needs to

participate in keeping the overall schedule serializable, even

though it will never be aborted. We can set RO.late ←

RO.early to minimize its conflicts with concurrent read/write

transactions. Possible techniques for handling RO include

those used for SI (section VIII.B). Further, once RO’s time is

earlier than A.early, for any active R/W transaction A, RO can

continue without TCM visits, like an “as of” historical query.

E. Distributed Transactions

Dealing with distributed transactions using timestamping

has been described in the past, e.g. [16]. The idea is that each

cohort (local sub-transaction), when it enters the prepare

phase (phase 1) of two phase commit, responds to the

transaction manager with the timestamp range that bounds the

acceptable timestamp for the transaction. The transaction

manager can commit the transaction when the intersection of

all timestamp ranges from all cohorts is non-null as it can

choose any timestamp in this intersection as the transaction’s

timestamp. Otherwise, the transaction must abort. Our TCM

provides the required timestamp range. Thus, our TCM

approach can easily deal with distributed transactions as well

as local transactions.

0 1,000 2,000 3,000 4,000

S2PL

TCM

0.000% 0.400% 0.800% 1.200%

S2PL

TCM

F. Single Version Data

Systems may support both multi-version and single version

data. Because a TCM can provide both R/W concurrency and

conventional LM blocking behavior, it can be used for both.

For single version data, the TCM acts like a conventional

LM, blocking when conflicts occur. A TCM needs to retain

locks on single version data of an earlier committed

transaction until it can no longer impact timestamping of

active transactions, as with multi-version data. But garbage

collection can be prompt, as a single version data lock can be

dropped once its data is overwritten by a subsequent

committed transaction.

A TCM could be used in the place of an LM even when no

multi-version data is present. One gets the same LM blocking

behavior. Handling timestamp ranges increases TCM code

path when conflicts occur, but the common “no conflict” case

is the same. Deadlock detection can use the timestamp range

technique instead of checking for wait cycles, a simplification.

Aborts increase somewhat as null timestamp ranges occur

more frequently than real deadlocks, but this should be rare.

G. Transaction Time Database Systems

Transaction time database systems provide multi-version

support, including support for queries “as of” some past time

in order to read a transaction consistent version of the

database at a prior time. Immortal DB [19] went to great

effort to reduce the penalty of supporting versions on current

database access performance, reducing the penalty to a few

per cent. Adding timestamp range conflict management to a

transaction time database turns things around. With more

concurrency for multiple versions, current database access can

be improved. Supporting multiple versions thus turns into a

performance plus, not a penalty to be minimized.

Highly concurrent read access is possible using a

transaction time database with a conventional lock manager,

but only for transactions declared read-only. Given a TCM, a

read-only declaration is not needed to increase concurrency.

With a read-only declaration, we can reduce lock overhead,

however, sometimes while reading recent versions.

Using a TCM with a transaction time database has a very

limited implementation impact. No versioning or “as of”

query functionality need be changed. A TCM impacts only

the way in which timestamps are selected. The timestamping

process itself need not change.

H. Replication

Multi-master replication using snapshot isolation versions

has been frequently discussed [8][9][14][15]. There are

several flavors of snapshot isolation, with replication trade-

offs in terms of strength of guarantee and efficiency of

support. Replication that provides a variant of snapshot

isolation is not truly serializable, and proposals that are

serializable [6] do not allow read/write concurrency.

Our work does not deal directly with multi-master

replication. However, primary copy replication (all updates

go to the primary) with read-only secondaries [23] is readily

provided via the transaction-time support enabled by our

method. Readers at a secondary can see a historical

transaction’s serialized version with some small time delay.

That is, an historical query at time t1 cannot be asked until we

can guarantee that no active transaction can commit with a

timestamp earlier than t1. Like historical queries in general,

no locking is needed for these queries.

I. Conclusion

We have described our TCM timestamp range conflict

manager, and discussed how it enables R/W concurrent access

while providing all SQL isolation levels, including

serializability. The timestamp range technique can also

replace cycle detection as a way of detecting deadlocks. Our

InnoDB implementation demonstrates that using a TCM

improves performance while reducing the number of

deadlocks. Finally, TCM use leads to timestamps for versions

that are consistent with serialization order and so enables the

TCM to be used as part of a transaction time database system.

REFERENCES

[1] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Neil, P.

O'Neil: A Critique of ANSI SQL Isolation Levels. SIGMOD

1995: 1-10

[2] P. Bernstein, N. Goodman: Timestamp-Based Algorithms for

Concurrency Control in Distributed Database Systems. VLDB

1980: 285-300

[3] P. Bernstein, A. Fekete, H. Guo, R. Ramakrishnan, and P.

Tamma: Relaxed-currency serializability for middle-tier caching

and replication. SIGMOD 2006: 599-610

[4] P. Bober, M. Carey: Indexing for Multiversion Locking:

Alternatives and Performance Evaluation. IEEE TKDE 9(1): 68-

84 (1997)

[5] P. Bober, M. Carey: On Mixing Queries and Transactions via

Multiversion Locking. ICDE 1992: 535-545

[6] M. Bornea, O. Hudson, S. Elnikety, and A. Fekete: One-Copy

Serializability with Snapshot Isolation under the Hood. ICDE

2011: 625-636.

[7] M. Cahill, U. Röhm, A. Fekete: Serializable isolation for

snapshot databases. ACM TODS 34(4):article 20 (2009)

[8] K. Daudjee, K. Salem: Lazy Database Replication with

Snapshot Isolation. VLDB 2006: 715-726

[9] S. Elnikety, W. Zwaenepoel, and F. Pedone. Database

replication using generalized snapshot isolation. SRDS 2005:

73–84

[10] J. Gray, A. Reuter. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann 1993

[11] L. Hobbs, I. Smith, K. England: Rdb: A Comprehensive Guide.

Digital Press (1999)

[12] C. S. Jensen and R. T. Snodgrass. Temporal data management.

IEEE TKDE, 111(1):36--44, 1999.

[13] S. Jorwekar, A. Fekete, K. Ramamritham, S. Sudarshan.

Automating the detection of snapshot isolation anomalies.

VLDB 2007: 1263-1274.

[14] B. Kemme and G. Alonso. A New Approach to Developing and

Implementing Eager Database Replication Protocols. ACM

TODS,25(3):333–379, 2000.

[15] Y. Lin, B. Kemme, R. Jiménez-Peris, M. Patiño-Martínez, J.

Armendáriz-Iñigo: Snapshot isolation and integrity constraints

in replicated databases. ACM TODS 34(2): article 11, 2009

[16] D. Lomet: Using Timestamping to Optimize Two Phase

Commit. PDIS 1993: 48-55

[17] D. Lomet, R. Barga, M. Mokbel, G. Shegalov, R. Wang, Y. Zhu:

Transaction Time Support Inside a Database Engine. ICDE

2006: 35

[18] D. Lomet, M. Hong, R. Nehme, R. Zhang: Transaction time

indexing with version compression. PVLDB 1(1): 870-881

(2008)

[19] D. Lomet, F. Li: Improving Transaction-Time DBMS

Performance and Functionality. ICDE 2009: 581-591

[20] D. Lomet, R. Snodgrass, and C. Jensen: Using the Lock

Manager to Choose Timestamps. IDEAS 2005: 357-368

[21] Oracle: Oracle Flashback Technology. http://www.oracle.com/

technology/deploy/availability/htdocs/FlashbackOverview.htm,

2005

[22] Oracle:Total Recall http://www.oracle.com/technology/products

/database/oracle11g/pdf/flashback-data-archive-whitepaper.pdf,
2008.

[23] C. Plattner, G. Alonso, and M. T. Özsu. Extending DBMSs

with satellite databases. VLDB J, 17(4):657–682, 2008.

[24] S. Revilak, P. O’Neil, E. O’Neil: Precisely serializable

snapshot isolation (PSSI). ICDE, 2011: 482-493.

[25] B. Salzberg: Timestamping After Commit. PDIS 1994:160-167.

[26] M. Stonebraker: The Design of the POSTGRES Storage System.

VLDB, 289 – 300, 1987.
[27] M. Sinha, P. Nanadikar, S. Mehndiratta: Timestamp Based

Certification Schemes for Transactions in Distributed Database

Systems. SIGMOD 1985: 402-411.
[28] G. Weikum, G. Vossen: Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency Control

and Recovery. Morgan Kaufmann 2002.

APPENDIX A

Procedure 2: for WR conflicts

1 function lock_rec_adjust_timestamps_wr(holder, requester):

2 if not requester.end and not holder.end:

3 new_time = get current time

4 holder.early = new_time

5 requester.late = new_time

6 requester.end = True

8 else if not requester.end and holder.end:

9 if requester.early > holder.late:

10 if not holder.committed:

11 ABORT(holder) # COULD block requestor

13 else:

14 new_time = holder.late - 1

15 requester.late = new_time

16 requester.end = True

17 holder.early = new_time

19 else if requester.end and not holder.end:

20 if requester.late > holder.early:

21 holder.early = requester.late

23 else:

24 if requester.early > holder.late:

25 if not holder.committed:

26 # COULD block requestor

27 ABORT(holder)

29 else if requester.early <= holder.late <= requester.late

30 new_time = holder.late - 1

31 requester.late = new_time

32 holder.early = new_time

34 else if holder.early <= requester.late <= holder.late:

35 holder.early = requester.late

36 return SUCCESS

Procedure 1: for RW conflicts

1 function adjust_timestamps_rw(holder, requester):

2 if not requester.end and not holder.end:

3 new_time = get current time

4 holder.late = new_time

5 holder.end = True

6 requester.early = new_time

8 else if not requester.end and holder.end:

9 if holder.late > requester.early:

10 requester.early = holder.late

12 else if requester.end and not holder.end:

13 if requester.late > holder.early:

14 requester.early = requester.late - 1

15 holder.late = requester.late - 1

16 holder.end = True

17 else: # cannot be solved via blocking

19 ABORT(requester)

21 else:

22 if requester.early > holder.late:

23 # no adjustment needed

24 else if requester.early <= holder.late <= requester.late:

25 requester.early = holder.late

26 else if holder.early <= requester.late <= holder.late:

27 if not holder.committed:

28 new_time = requester.late - 1

29 holder.late = new_time

30 requester.early = new_time

31 else: # cannot be solved via blocking

33 ABORT(requester)

34 return SUCCESS

Procedure 3: for WW Conflicts
1 function lock_rec_adjust_timestamps_ww(holder, requester):

2 if not requester.end and not holder.end:

3 new_time = get current time

4 requester.early = new_time

5 holder.late = new_time

6 holder.end = True

7 ABORT(requester) # COULD block requester

8 else if not requester.end and holder.end:

9 if requester.early < holder.late:

10 requester.early = holder.late

11 if not holder.committed:

12 ABORT(requester) # COULD block requester

13 else if requester.end and not holder.end:

14 if requester.late > holder.early:

15 new_time = requester.late - 1

16 holder.late = new_time

17 holder.end = True

18 requester.early = new_time

19 ABORT(requester) # COULD block requester

20 else: # we can abort either transaction here

21 ABORT(requester)

22 else:

23 if requester.early > holder.late:

24 ABORT(requester) # COULD block requester

25 else if requester.early <= holder.late <= requester.late:

26 requester.early = holder.late

27 ABORT(requester) # COULD block requester

28 else if holder.early <= requester.late <= holder.late:

29 requester.early = requester.late - 1

30 holder.late = requester.late – 1

31 ABORT(requester) # COULD block requester

32 else: # we can abort either transaction here

33 ABORT(requester)

34 return SUCCESS

http://www.oracle.com/%20technology/deploy/availability/htdocs/
http://www.oracle.com/%20technology/deploy/availability/htdocs/
http://www.oracle.com/technology/products

