
Boston University
OpenBU http://open.bu.edu
Computer Science CAS: Computer Science: Technical Reports

1993-10-27

Multi-version Speculative
Concurrency Control with Delayed
Commit

Bestavros, Azer; Wang, Biao. "Multi-version Speculative Concurrency Control with
Delayed Commit", Technical Report BUCS-1993-014, Computer Science
Department, Boston University, October 1993. [Available from:
http://hdl.handle.net/2144/1468]
https://hdl.handle.net/2144/1468
Boston University



Multi-version Speculative Concurrency Control

with Delayed Commit

Azer Bestavros

(best@cs.bu.edu)

Biao Wang

(bwang@cs.bu.edu)

Computer Science Department

Boston University

Boston, MA 02215

October 27, 1993

Abstract

This paper presents an algorithm which extends the relatively new
notion of speculative concurrency control by delaying the commit-
ment of transactions, thus allowing other conicting transactions to
continue execution and commit rather than restart. This algorithm
propagates uncommitted data to other outstanding transactions thus
allowing more speculative schedules to be considered. The algorithm
is shown always to �nd a serializable schedule, and to avoid cascad-
ing aborts. Like speculative concurrency control, it considers strictly
more schedules than traditional concurrency control algorithms. Fur-
ther work is needed to determine which of these speculative methods
performs better on actual transaction loads.

Keywords: Real-time systems, Time constraints, Database Manage-
ment Systems, Concurrency control algorithms, Serializability.

1



1 Introduction

A real-time database management system is a combination of a conventional database management
system and a real-time system. Like a database system, it has to process transactions and guarantee
database consistency. Furthermore, it has to operate in real-time, satisfying time constraints on
each transaction [Abbo92].

For example, consider a database system to monitor the stock market. It must contain data
such as current stock prices, trading trends, and other economic indices. A process in the system
that checks the state of this database and updates it with new information must satisfy certain
timing constraints in order for the database to be accurate. For instance, buy and sell orders must
meet timing constraints so that prices and quantities are constant throughout the transaction.
Likewise, processes which read and analyze data to provide decision information for users, must
complete before the data values in the database change again. Thus, having transactions produce
results before their time constraints is as important as serial consistency.

Existing concurrency control algorithms for conventional database systems attempt to maxi-
mize concurrency (throughput), but ignore timing constraints. Deadline scheduling algorithms for
conventional real-time systems do consider timing constraints, but ignore data consistency prob-
lems. Since concurrency control algorithms may introduce unpredictable delays due to transaction
restarts and blocking, there is clearly a real need for a concurrency control model that combines
the timeliness of deadline scheduling algorithms and the data consistency provided by conventional
concurrency control algorithms.

The idea of redundant computation has been used in some real-time system applications. For
example, the space shuttle control program redundantly runs some time critical computations on
several computers simultaneously. The major advantage of doing this is that as long as one of the
computations �nishes successfully, the result is known. Thus several versions of the computation
can be run, with di�erent time bounds, guaranteeing an upper bound on the time to produce some
result.

Mena [Mena82] has classi�ed concurrency control algorithms into two classes: optimistic
algorithms (e.g. [Hari90b, Hari90a, Huan90, Kim91, Lin90, Son92]) and pessimistic algorithms
(e.g. [Abbo88, Stan88, Huan90, Sha91]). Bestavros has proposed (in [Best92]) a new approach,
Speculative Concurrency Control (SCC), which incorporates redundant computation into concur-
rency control algorithms. Speculative concurrency control redundantly executes the same trans-
action, under di�erent ordering assumptions. The algorithm then determines which ordering to
chose, based on the real-time constraints.

Redundant transaction execution is better at meeting time and synchronization constraints
because a variety of di�erent synchronization strategies can be tried in parallel, increasing the possi-
bility that one will meet the deadline. Furthermore, penalties incurred in one of these computations
need not a�ect the others. By comparison, in single threaded implementations, a restart really
must begin the entire transaction again with less time remaining before the deadline. Redundant

2



transaction execution has not been very widely used in today's commercial database applications
because of the cost factor. Bestavros has argued in [Best92] that for many real-time systems this
cost is justi�ed by their critical nature. Furthermore, as processors and memory become cheaper,
the availability of such resources is more realistic. Hence, redundant computation can be a very
powerful technique in real-time DBMSs.

SCC combines the Pessimistic and Optimistic Concurrency Control algorithms by using re-
dundant computation for the same transaction. One copy of the transaction runs under an op-
timistic concurrency control algorithm. Meanwhile, if a conict that threatens the consistency
of the database is detected, a redundant computation is started as early as possible creating an
alternate schedule. The alternate computation is blocked at the point which caused the conict.
The alternate schedule is adopted only if the suspected inconsistency materializes; otherwise, it is
abandoned. Even though it may do redundant computations, SCC will always start computation
for a transaction at the earliest time a potential conict is detected, by creating multiple copies of
conicting transactions, rather than waiting until the conict materializes.

In this paper, we propose a concurrency control model, called Multi-version Speculative Con-
currency Control with Delayed Commit (MSCC-DC), which is based on the SCC scheme, but which
combines it with other ideas that have been studied for real-time DBMSs. One typical way trans-
actions conict with each other is if one transaction writes some data, and a second transaction
then attempts to read that data. This creates potential conicts since there are two values of the
data, one that previously existed in the database, and another one that was written by the �rst
transaction. Under SCC, both transactions will start out running using the Optimistic Concurrency
Control algorithm. When the potential conict is detected, a copy of the second transaction will
be started and will continue until the conict point (the attempt to read the data) where it will be
blocked. In MSCC-DC, instead of blocking the alternate schedule at the conict point, we allow
the alternate schedule to continue and read the data value written by the �rst transaction. Since
at this stage the �rst transaction has not yet committed, we say the second transaction has read
uncommitted data. In general, presently used concurrency control schemes do not consider allowing
transactions to read uncommitted data since it could easily cause cascading aborts. However, by
limiting the length of a chain of transactions which read uncommitted (dirty) data, we can bound
the number of aborts caused by a materialized conict.

Moreover, the objective of a real-time DBMS is to minimize the percentage of transactions
which miss their deadlines. If a transaction T commits immediately after it �nishes its compu-
tation, it will cause all the other transactions that conict with it to abort, and if most of the
aborted transactions do not conict with each other, a better percentage of deadlines may be met
by committing the other transactions instead. Thus delaying the commit of a transaction T would
give us more time to determine which is the better combination of transactions to commit. Mean-
while, since the data written by transaction T is made available to other transactions, redundant
computation for active transactions can be started as early as possible.

The remainder of this paper is organized as follows. In section 2, we review some of the
previous work done in concurrency control for real-time DBMSs and provide motivation for our

3



research direction. In section 3, we present a basic overview of our concurrency control algorithm.
In section 4, we prove that MSCC-DC maintains database consistency, avoids unbounded cascading
aborts, and show some analysis of the algorithm. Finally, in section 5, we conclude this paper, and
describe our future research.

2 Previous Work

In a conventional DBMS, Agrawal has concluded in [Agra87] that pessimistic locking protocols,
due to their conservation of resources, perform better than optimistic techniques. Pessimistic two-
phase locking algorithms detect potential conicts as they occur. However, they may su�er possible
unbounded waiting due to blocking.

Consider the example below:

Transaction 1 Transaction 2

Read(a)
ReadLock(a)

Read(b)
ReadLock(b)

Write(b)
Write(a)

At this stage, transaction 1 is blocked waiting for transaction 2 to release the ReadLock on
b so that it can get the WriteLock on b. On the other hand, transaction 2 is blocked waiting for
transaction 1 to release the ReadLock on a so that it can get the WriteLock on b. None of the
transaction can proceed (deadlock). Furthermore, the resource conservation nature of pessimistic
algorithms becomes a draw back in the real-time environment where meeting the time-constraint
has a much higher priority than saving resources.

In [Hari90b, Hari90a], Haritsa, Carey and Linvy showed that for a real-time DBMS with �rm
deadlines (transactions which misses the deadlines are immediately discarded), optimistic algo-
rithms outperforms the pessimistic schemes. The key result is that, if low resource utilization is
acceptable (i.e. a large amount of wasted resources can be tolerated), then computing resources
wasted due to restart do not adversely a�ect performance. Thus, optimistic restart-based con-
currency control algorithms that allow a higher degree of concurrency become more attractive in
real-time DBMS over pessimistic blocking-based algorithms.

Classical Optimistic Concurrency Control algorithm [Kung81] consists of three stages of exe-
cution for a transaction: read, validation, and write. The key stage in the Optimistic Concurrency
Control scheme is the validation phase where the fate of the transaction is determined. A transac-
tion is allowed to execute unhindered (during its read stage) until it reaches its commit point, at
which time a validation test is applied. This test checks if there is any conict between the actions

4



of the transaction being validated and those of any other committed transactions. A transaction
is restarted if it fails its validation test, otherwise it commits by going through its write stage, in
which modi�cations to the database (updates or writes performed by the transaction during its
read stage) are made visible to other transactions.

One serious problem with optimistic schemes is that conict resolution is always done by
aborting the transaction that is being validated. However, conicts are not detected until the
validation phase, at which time it may be too late to restart. The Broadcast Commit variant (OCC-
BC) [Mena82, Robi82] of the classical Optimistic Concurrency Control scheme partially remedies
this problem. When a transaction commits, it noti�es those concurrently running transactions
which conict with it. Those transactions are restarted immediately. Note that there is no need to
check for conicts with already committed transactions since such transactions would have, in the
event of a conict, informed the validating transaction to restart. Thus, the validating transaction
is always guaranteed to commit. The broadcast commit method detects conicts earlier than the
classical OCC algorithm resulting in earlier restart.

SCC combines the advantage of both optimistic and pessimistic schemes while avoiding their
disadvantages [Best92]. It goes one step further in utilizing information about conicts. Instead of
waiting for a potential consistency threat to materialize and then taking a corrective measure, SCC
uses redundant resources to start speculating on corrective measures as soon as conict in question
develops. By starting on such corrective measures as early as possible, the likelihood of meeting
any set timing constraint is greatly enhanced.

To better illustrate the point, we use the following example. Assume there are two transactions
T1, and T2, which (among others) perform some conicting actions. In particular, T2 reads item
x after T1 has updated it. The basic optimistic algorithm restart transaction T2 when it enters
its validation stage, and because it conicts with the already committed transaction T1 on data
x. The scenario is illustrated in �gure 1. Obviously, the likelihood of the restarted transaction T2
meeting its timing constraint decreases.

T1
S Wx V/C

S Rx V/AT2

Time

Deadline
T2

Figure 1: Transaction management under the basic OCC algorithm.

The OCC-BC algorithm avoids waiting unnecessarily until a transaction's validation stage
in order to restart it. In particular, a transaction is aborted if any of its conicts with other
transactions in the system become a materialized consistency threat, i.e. one of the other transaction
commits. This is illustrated in �gure 2.

5



S Rx

T1
S Wx V/C

S Rx AT2

Time

Deadline
T2

V/C

Figure 2: Transaction management under the basic OCC-BC algorithm.

With the SCC approach, at the time when transaction T2 requests to read data item x, all
the information necessary to conclude that there is a conict (hence a potential consistency threat)
between transaction T2 and T1 (which previously updated data item x) is available. Instead of
pessimistically blocking T2, or optimistically ignoring the conict until the validation stage, SCC
makes a copy , or shadow, of the reader transaction T2. The original transaction T2 continues to run
uninterrupted, while the shadow transaction T 0

2 is restarted on a di�erent processor and allowed to
run concurrently using a pessimistic (locking) algorithms. Both versions of the same transaction
are allowed to run in parallel, each one being at a di�erent point of its execution. Only one of
the two transactions will be allowed to commit; the other will be aborted. Figure 3 and �gure 4
show two possible scenarios that may develop depending on the time needed for transaction T2 to
reach its validation stage. In �gure 3, T2 reaches its validation stage before T1. T2 is validated1

and committed without any need to disturb T1. The shadow transaction T 0

2 is aborted.

T2
S Rx V/C

Time

Deadline

T1
S Wx

S AT2’
T2

Figure 3: SCC schedule with an undeveloped potential conict.

If transaction T1 reaches its validation phase �rst, then transaction T2 cannot continue to
execute due to the (now visible) conict over x. T2 is aborted. The shadow transaction T 0

2 is
adopted. Compare �gure 4 to 2, we can see that SCC gains an earlier restart over OCC-BC.

One more problem with OCC-BC and other common concurrency control schemes is that
by committing a transaction as soon as it �nishes validating, it may cause a larger number of

1since T2's write-set does not intersect T1's read-set.

6



T2
S Rx

Time

Deadline

T1
S Wx

S

A

T2’
T2

V/C

Rx V/C

Figure 4: SCC schedule with a developed potential conict.

transactions to abort and miss their deadlines. For example, in �gure 5, committing T1 as soon
as it �nishes validating causes both T2 and T3 to abort, and both of them cannot be restarted
early enough to meet their deadlines. In [Hari90b], Harista showed that by making a lower priority
transaction wait after it �nishes validating, the numbers of transaction restarts are reduced, thus
increase the number of the transactions meeting their deadlines.

Time

Deadline

T1
S Wx T1

T2
S Rx

Deadline

T2

S Rx

A

V/CWy

S

DeadlineS Rx

ARyT3 T3

Figure 5: Missing deadlines under OCC-BC algorithm.

However, if we are not careful, delaying commit could also increase the number of transactions
missing deadlines because the transactions were not restarted as early as they could have been.
Let us look at Figure 6. The commitment of transaction T2 is delayed, but since T1 was not
restarted until T2 has committed, T1 still misses the deadline. If T1 could restart immediately after
T2 �nishes, it would have a better chance of meeting its deadline. The problem here is that the

7



data written by a transaction is not made available to other transactions until the transaction has
committed. In MSCC-DC, we allow T1 to read the item x written by T2 after the validation of
T2, without waiting for the write stage (i.e. Commit) to �nish. This gives T1 the opportunity to
restart as if T2 was committed immediately after the validation stage as illustrated in Figure 7.

T2

Time

S Rx Wx

T1
S Wx

Deadline

T2

Deadline

T1Rx

Cdelay

A

S Rx Wx

Figure 6: Example of delayed commit under OCC-BC algorithm.

T2

Time

T1

T2’

S Rx Wx

T1
S Wx

Deadline

T2

Deadline

T1Rx

S WxRx

S Rx

C

C

delay

’

delay A

A

V

Figure 7: Example using Multi-version Speculative Concurrency Control with Delayed Commit.

8



3 MSCC with Delayed Commit

To simplify the problem, we will assume that transaction execution goes through 3 stages: read,
validate, and write. However, during the validation stage, if (potential) conicts are detected,
instead of aborting the conicting transactions, it will follow the algorithm described below. We
say a transaction is FINISHED when it is at the end of the validation stage.

3.1 Assumptions

Without any loss of generality, we make the following assumptions:

1. Each transaction only writes once to each variable. All writes occur at the end of each trans-
action.

2. All transactions have equal priority.

3. Once a transaction is started, the system is aware of its deadline.

3.2 De�nition and notation

Here are some terms and notation symbols which are used throughout this paper:

� T 0
i : Primary copy of transaction Ti. T 0

i is the transaction that was �rst run on behalf of
transaction number i.2 It runs optimistically, and only reads the committed data.

� T
j
i : Secondary copies for transaction Ti. T

k
i is a running copy of transaction i. It is started

because the primary transaction T 0
k of another transaction k has FINISHED. The superscript

k indicates it is started on behalf of the transaction k. T k
i will reads dirty data from that

primary transaction T 0
k .

� WriteSet(T j
i ): contains all the objects that transaction T

j
i wrote.

� WriteList(Ti): a list of all the objects and their values that transaction (Ti) wrote.

� ReadSet(T j
i ): contains all the objects that transaction T

j
i has read.

� ReadList(T k
i )

3: contains all the objects that transaction T k
i read from WriteList.

� t: Current system time.

� Di: Deadline of transaction Ti.

2All primary transactions will have the superscript 0.
3only a secondary transaction will have a ReadList

9



3.3 Primary transaction

We describe the algorithm for the primary transactions:

for each primary transaction T 0
i

if T 0
i wants to read data X

if X 2WriteSet(T 0
j )

fork a copy of transaction T 0
i , call it T

j
i ;

T
j
i proceeds using the rules for secondary transactions described next with WriteList(Tj);

T 0
i reads the committed value of X ;

add X to ReadSet(T 0
i ) and proceed;

if T 0
i writes data X

add X to WriteSet(T 0
i );

add X and its value, (X; vx), to the WriteList(Ti);
if T 0

i reaches the end of transaction (at the FINISHED point)
if for all transaction Tn

j , ReadSet(T
n
j ) \WriteSet(T 0

i ) = �

Commit(T 0
i );

Secondary-Abort(T k
i );

else
for each transaction Tj

if ReadSet(T 0
j ) \WriteSet(T 0

i ) 6= �

start a new secondary transaction for Tj , call it T i
j ;

send the WriteList(Ti) to T i
j ;

Block(T 0
i );

3.4 Secondary transaction

We describe the algorithm for the secondary transactions:

for each secondary transaction T j
i (j 6= 0)

set WaitForSet = Tk where Tk is the primary transaction which T
j
i received the WriteList from;

if T j
i wants to read data X

if X 2WriteList(Tj)
read X from the WriteList;

add X to ReadList(T j
i );

else
read the committed value of X ;

add X to ReadSet(T j
i );

continue the transaction;

if T j
i wants to write data X

add X to WriteSet(T j
i );

if T j
i reaches the end of transaction (at the FINISHED point)

Block(T j
i );

10



3.5 Committing

The scheduler process determines when a transaction will actually attempt to commit, and follows
the algorithm below:

for each transaction Ti
When t = Di - slack time

if no secondary transactions has �nished
Primary-Commit(T 0

i );
else

call Secondary-Commit(T k
i ) where

T k
i is the last secondary transaction for Ti that �nished before Di;

Slack time is the time needed to allow execution of one of the commit functions, and for the
transaction to write data value into the database.

3.6 Functions

Some functions that are used in the primary and secondary transactions' algorithms:

Primary-Commit(T 0
i )

Begin

for each primary transaction T 0
j

if ReadSet(T 0
j ) \WriteSet(T 0

i ) 6= �

Primary-Abort(T 0
j );

promote the secondary transaction T i
j to be the new primary transaction T 0

j ;

/* T i
j was started when T 0

i FINISHED */

for each secondary transaction T k
j

if Ti 2WaitForSet(T k
j ) of secondary transaction T k

j

setWaitForSet(T k
j ) = �;

else if ReadSet(T k
j ) \WriteSet(T 0

i ) 6= �

Secondary-Abort(T k
j );

for all k Secondary-Abort(T k
i );

Commit(T 0
i );

End

Secondary-Commit(T j
i )

Begin

Primary-Abort(T 0
i );

Secondary-Abort(T k
i ); k 6= j;

if WaitForSet(T j
i ) 6= �

Primary-Commit(T 0
j );

for each primary transaction T 0
n

11



if ReadSet(T 0
n) \WriteSet(T j

i ) 6= �

Primary-Abort(T 0
n);

restart a new primary transaction for Tn;
for each secondary transaction T k

n

if ReadSet(T k
n) \WriteSet(T j

i ) 6= �

Secondary-Abort(T k
n );

Commit(T k
i );

End

Primary-Abort(T 0
i )

Begin

for all j
if WaitForSet(T i

j) = Ti
Abort(T i

j );

Abort(T 0
i );

End

Secondary-Abort(T k
i )

Begin

Abort(T k
i );

End

4 Analysis of the MSCC-DC algorithm

We will now go through an example to illustrate exactly how the algorithm works. Suppose we
have the transactions in �gure 8. When transaction T1 FINISHES, it is blocked. Meanwhile,
the WriteList(T1), containing the variable X and its value wrote by T 0

1 , is made available to both
T2 and T3, T2 restarts a secondary transaction T 1

2 since the ReadSet(T 0
2 ) contains X . T3 starts a

secondary copy T 1
3 later on, when it attempts to read X . Both T 1

2 and T 1
3 will read the X value

from the WriteList(T1), and all other variable value from the committed data. This situation is
shown in �gure 9.

By the time T 0
2 FINISHES, secondary transactions are started for both T1(namely T 2

1 ) and
T3(namely T 2

3 ). Similarly, when T 0
3 FINISHES, T 3

1 and T 3
2 are started for T1 and T2 respectively.

Figure 10 demonstrates the case. The deadline of T2 is eventually reached. Since neither secondary
copy of T2 has �nished yet, T 0

2 is committed and all the secondary transaction for T2 are aborted.
This leads to the abortion of primary transactions T 0

1 and T 0
3 because they both conict with T 0

2 .
Secondary transactions T 2

1 and T 2
3 are promoted to become primary transactions now that all the

data they read are committed. T 3
1 and T 1

3 are aborted since primary transactions that caused them
to be started have been aborted. The result is shown in �gure 11.

12



Time

T1 S Wx
Deadline

T1

T2 Deadline

T2
S Rx WxRy Wy

S WxRxT3
Deadline

T3

Figure 8: MSCC-DC: start

Time

T2 Deadline

T20

T2
1

S Rx Wx WyRy

S Rx RyWriteList(T 1)

S WxRxT3
0

Deadline

T3

T3

1 WxRxWriteList(T 1)

T1 S Wx
Deadline

T10
Blocked

Finished

Figure 9: MSCC-DC: T1 �nishes

13



S

T1 S Wx

T2

Time

Deadline

T2

Deadline

T1

T1

T3
0

0

0

T2
1

2

Blocked

Deadline

T3

T3

1

WriteList(T 1)

WriteList(T 1)

ST3

2 WriteList(T 2)

Blocked

Blocked

S Rx Ry

S Rx Wx WyRy

S WxRx

S

T

T

T

1

2

3

Rx

T1
3

WriteList(T 2)

WriteList(T )3

ST2
3

WriteList(T )3

Finished

Finished

Finished

Figure 10: MSCC-DC: T2 and T3 �nish

The same steps will be repeated when the new primary transactions for T1 and for T3 �nish.
New secondary transactions will be started, as seen in �gure 12. Eventually, T 2

3 will commits
because of the deadline, aborting the primary transaction for T1, and the secondary transaction for
T1 becomes the primary transaction.

We shall sketch a proof that the algorithm always produces a schedule that is serializable by
using induction on the number of transactions in the system. First, we know from the algorithm
that only one copy of each transaction will commit, and all the other copies of that transaction will
be aborted. Consider the base step of two transactions T1 and T2 in the system.

14



Time

S

T1 S Wx

T2 Deadline

T2

Deadline

T1

T1

T3
0

0

0

T2
1

2

Blocked

Deadline

T3

T3

1

WriteList(T 1)

WriteList(T 1)

ST3

2 WriteList(T 2)

Blocked

S Rx Ry

S Rx Wx WyRy

S WxRx

S

T

T

T

1

2

3

Rx

T1
3

WriteList(T 2)

WriteList(T )3

ST2
3

WriteList(T )3

Commit

A

A

A

A

A

A

promoted to be the primary transaction

promoted to be the primary transaction

Finished

Finished

Finished

Figure 11: MSCC-DC: T 0
2 commits

15



Time

Deadline

T1

Deadline

T2T2
BlockedS Rx Wx WyRy

Commit

T1 S Wx

T1

S

Finished

0

T1
3

Deadline

T3
T3

S Rx Wx

S Rx

0

T3
1

WriteList(T 1)

WriteList(T )3

Finished3T

Figure 12: MSCC-DC: after aborting

16



There are two possible cases:

� two transactions do not conict with each other:
The proof of this is trivial. Both transactions will just run under an optimistic algorithm. No
secondary transaction will be created. Any end result produced is equivalent to the result of
a serial execution order of either T1 ! T2 or T2 ! T1.

� two transactions conict with each other: By the MSCC-DC algorithm, there will be up to
four possible transactions running in the system. T 0

1 , T
2
1 , T

0
2 , and T

1
2 .

1. Since T1 and T2 conict with each other, and T 0
1 , T

0
2 both read committed data values

from the database, they cannot both commit and produce a result in this system.

2. T 2
1 and T 1

2 cannot both commit in this system either. In order for T 2
1 to commit, it has

to �rst let T 0
2 commit. This means T 1

2 will be aborted. The same argument holds if T 1
2

commits.

3. If the result of the system is produced by T 0
1 and T 1

2 , since T
1
2 reads data values from T 0

1 ,
this is the same schedule as the serial execution schedule of T1 ! T2.

4. By the same token, the result of the system produced by T 2
1 and T 0

2 is the same schedule
as the serial execution schedule of T2 ! T1.

The induction step is as follows:

� Assumption: assume for any number n of transactions: T1; :::; Tn, any �nal result produced by
MSCC-DC is equivalent of a result produced by a serialized schedule.

� Induction: assume there are n+1 number of transactions: T1; :::; Tn; Tn+1, we need to prove
any result produced by running the MSCC-DC algorithm is equivalent of a result produced
by a serialized schedule.
Consider the state when the �rst transaction tries to commit during the running of MSCC-DC.
There are two cases:

1. The transaction trying to commit is a primary transaction (T 0
i ).

2. The transaction trying to commit is a secondary transaction (T k
i ).

In the �rst case, the call to the function Primary-Commit(T 0
i ) is made, and T 0

i will be
committed. Any of the remaining primary transactions are aborted if they conict with T 0

i .
The secondary transactions (which read the data written by T 0

i ) for those transactions are
promoted to be primary transactions. This means T 0

i would be scheduled before any of the n
other transactions in any of the schedules produced by MSCC-DC. We assumed the schedule
for any n transactions produced by the MSCC-DC algorithm is serializable. By adding Ti
in front of that schedule, it proves the total schedule for the n+1 number of transactions is
serializable.

17



For the second case, we note when a secondary transaction (T k
i ) tries to commit, it calls to the

function Secondary-Commit(T k
i ). The function �rst calls Primary-Commit(T 0

k ) which is
where T k

i read data from. Since we actually have to commit a primary transaction before we
commit any secondary transaction, the proof of this case is almost the same as the �rst one.

One major problem in allowing transactions to read uncommitted data is that if the transaction
which wrote the data aborts, it may cause cascading aborts. MSCC-DC avoids this problem because
it only allows reading of dirty data from primary transactions. i.e. no transaction will read dirty
data from a transaction which also read dirty data. Below we describe the four kinds of action a
transaction can take:

1. Primary transaction commit: When a primary transaction T 0
i commits, it aborts all of its own

secondary transactions, and aborts all other conicting primary transactions T 0
j and secondary

transactions T k
j . (The ! here means \leads to the abortion of")

C(T 0
i )! A(T k

i )
C(T 0

i )! A(T 0
j )

C(T 0
i )! A(T k

j )

2. Secondary transaction commit: When a secondary transaction T k
i commits, it aborts its pri-

mary copy, and all other conicting primary transaction T 0
j and secondary transaction T k

j .

C(T k
i )! A(T 0

i )
C(T k

i )! A(T 0
j )

C(T k
i )! A(T k

j )

3. Primary transaction abort: When a primary transaction T 0
i aborts, it will aborts all secondary

transactions T k
j which read the dirty data wrote by T 0

i .

A(T 0
i )! A(T k

j )

4. Secondary transaction abort: When a secondary transaction T k
i aborts, it does not cause any

more abort.

As we can see from above, the longest aborting sequence happens when a secondary transaction
commits, which will cause a primary transaction to commit. This commitment then may abort
other primary transactions, and lead to the abortion of other secondary transactions:

C(T k
i )! C(T 0

j )! A(T 0
m)! A(T l

n)

When a primary transaction commits, it will abort another primary transaction which then in turn
may abort another secondary transaction:

C(T 0
i )! A(T 0

j )! A(T k
l )

18



4.1 Analysis

Previous concurrency control algorithms such as OCC-BC do not link the commitment of trans-
actions with their deadlines, which is essential for real-time DBMS. These schemes heavily favor
transactions which �nish early instead of those which have earlier deadlines. Some schemes try to
solve the problem by assigning priority to transactions according to deadlines. MSCC-DC provides
the link between commitment of transactions and their deadlines without actually assigning prior-
ities to transactions. This occurs at the expense of using polynomially more processing power. For
each transaction, the number of secondary transactions is bounded by the number of conicts it
has with other primary transactions. Given that we have n primary transactions, each transaction
can have up to n� 1 secondary transactions. Hence the number of total transactions in the system
is bounded by O(n2).

We only allow each secondary transaction to read uncommitted data from a single primary
transaction. A better result might be obtained if we permit some secondary transactions to read
uncommitted data from several primary transactions provided those primary transactions do not
conict with each other. Furthermore, in our new algorithm above, we delayed the commitment
of transactions until they actually reach their deadlines. It is possible that making the decision to
commit earlier may �nd a better solution.

5 Conclusion and Future Research

The algorithm used in MSCC-DC combines the advantages of other concurrency control algorithms.
However, many interesting research problems still remain to be investigated.

� Can an optimal commit time be found? When should a primary or secondary transaction
commit? How can we dynamically chose which is the better group of transactions to commit?

� What changes need to be made to add priorities? How would this change the performances of
the algorithm?

� Simulation remains to be done to show how much improvement is gained. This will also
provide an opportunity to test which is the more deciding factor in the performance of the
algorithm.

� How would performance di�er if we have some secondary transactions running pessimistically?

19



References

[Abbo88] Robert Abbott and Hector Garcia-Molina. \Scheduling real-time transactions: A performance
evaluation." In Prooceedings of the 14th International Conference on Very Large Data Bases,
Los Angeles, Ca, 1988.

[Abbo92] R. Abbott and H. Garcia-Molina. \Scheduling real-time transaction: A performance evalua-
tion." ACM Transactions on Database Systems, 17(3):513{560, September 1992.

[Agra87] R. Agrawal, M. Carey, and M. Linvy. \Concurency control performance modeling: Alternatives
and implications." ACM Transaction on Database Systems, 12(4), December 1987.

[Best92] Azer Bestavros. \Speculative Concurrency Control: A position statement." Technical Report
TR-92-016, Computer Science Department, Boston University, Boston, MA, July 1992.

[Hari90a] Jayant R. Haritsa, Michael J. Carey, and Miron Linvy. \Dynamic real-time optimistic concurrency
control." In Prooceedings of the 11th Real-Time Systems Symposium, December 1990.

[Hari90b] Jayant R. Haritsa, Michael J. Carey, and Miron Linvy. \On being optimistic about real-time
constraints." In Prooceedings of the 1990 ACM PODS Symposium, April 1990.

[Huan90] J. Huang, J. Stankovic, D. Towsley, and K. Ramamritham. \Real-time transaction processing:
Design, implementation and performance evaluation." Technical Report COINS TR-90-43, Uni-
versity of Massachusetts, Amherst, MA 01003, May 1990.

[Kim91] Woosaeng Kim and Jaideep Srivastava. \Enhancing real-time dbms performance with multiver-
sion data and priority based disk scheduling." In Prooceedings of the 12th Real-Time Systems
Symposium, December 1991.

[Kung81] H. Kung and John Robinson. \On optimistic methods for concurrency control." ACM Transac-
tions on Database Systems, 6(2), June 1981.

[Lin90] Yi Lin and Sang Son. \Concurrency control in real-time databases by dynamic adjustment of
serialization order." In Proceedings of the 11th Real-Time Systems Symposium, December 1990.

[Mena82] D. Menasce and T. Nakanishi. \Optimistic versus pessimistic concurrency control mechanisms in
database management systems." Information Systems, 7(1), 1982.

[Robi82] John Robinson. Design of Concurrency Controls for Transaction Processing Systems. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, 1982.

[Sha91] Lui Sha, R. Rajkumar, Sang Son, and Chun-Hyon Chang. \A real-time locking protocol." IEEE
Transactions on Computers, 40(7):793{800, 1991.

[Son92] S. Son, S. Park, and Y. Lin. \An integrated real-time locking protocol." In Prooceedings of the
IEEE International Conference on Data Engineering, Tempe, AZ, February 1992.

[Stan88] John Stankovic and Wei Zhao. \On real-time transactions." ACM, SIGMOD Record, 17(1):4{18,
1988.

20


