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Abstract

Images taken from scenes under water suffer distortion

due to refraction. While refraction causes magnification

with mild distortion on the observed images, severe dis-

tortions in geometry reconstruction would be resulted if

the refractive distortion is not properly handled. Differ-

ent from the radial distortion model, the refractive distor-

tion depends on the scene depth seen from each light ray as

well as the camera pose relative to the refractive surface.

Therefore, it’s crucial to obtain a good estimate of scene

depth, camera pose and optical center to alleviate the im-

pact of refractive distortion. In this work, we formulate the

forward and back projections of light rays involving a re-

fractive plane for the perspective camera model by explic-

itly modeling refractive distortion as a function of depth.

Furthermore, for cameras with an inertial measurement

unit (IMU), we show that a linear solution to the relative

pose and a closed-form solution to the absolute pose can

be derived with known camera vertical directions. We in-

corporate our formulations with the general structure from

motion framework followed by the patch-based multiview

stereo algorithm to obtain a 3D reconstruction of the scene.

We show through experiments that the explicit modeling

of depth-dependent refractive distortion physically leads to

more accurate scene reconstructions.

1. Introduction

Refraction of light is a commonly observed phenomenon

where the light changes its direction due to an alternation of

the propagation speed in different mediums. This results in

noticeable distortion when seeing things through a transpar-

ent medium like water, in which people observe illusions of

an underwater scene to become closer to the surface and get

magnified. To reconstruct the underwater scene, however, is

not trivial even for scenes under a flat water surface, where

only mild image distortion is generated. This is because the

refractive distortion depends on not only the distance from

(a) Image distortions (b) No distortion model

(c) Radial distortion model (d) Refractive distortion model

Figure 1. 3D reconstruction for a synthetic scene with three planar

surfaces under water: (a) An input image of the scene where the

surfaces are textured with checkerboard patterns to demonstrate

the refractive distortion. (b) 3D scene reconstruction without dis-

tortion modeling, resulting in noticeable curved reconstruction for

the bottom plane and slightly curved reconstruction on the other

two planes. (c) The radial distortion model provides minor help in

recovering the geometry distortion for 3D reconstruction. (d) 3D

scene reconstruction obtained by incorporating the refractive dis-

tortion, where all surfaces are correctly reconstructed as planes.

The color in the scene reconstruction encodes the height of a point

from the lowest (red) to the highest (blue). (Best viewed in color.)

the optical axis, as commonly used for modeling lens ra-

dial distortion, but also the scene depth of each light ray as

well as the camera position and orientation relative to the

refractive plane. As shown in Figure 1 with a synthetic ex-

ample, if refractive distortion is not taken into consideration

or simply modeled as radial distortion, incorrect 3D scene

structure will be resulted. Therefore, explicit modeling of

the refractive distortion as a function of scene depth and

camera parameters is crucial for scene reconstruction under

the refractive plane.

In this work, we focused on the scene reconstruction un-
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der a flat refractive geometry as it is one of the most rep-

resentative settings for scenes involving refraction. Typi-

cal cases include (1) flat surfaces separating the viewer and

the water body in aquaria, and (2) cameras enclosed in an

air chamber immersed in the water for underwater photog-

raphy. As addressed in [26], the analysis of this setting

not only contributes to the vision challenges it poses, but

also extends computer vision to a variety of applications in

oceanic engineering, psychology, biology, and archaeology.

For most of the underwater photography work, the cam-

era setup is fixed and therefore camera positions and ori-

entations relative to the refractive plane can be measured

with known calibration objects [17]. Here we deal with a

more general multi-camera setting and propose to utilize

the scene itself to obtain the estimate of camera parameters

and scene depth. This naturally leads to a new formulation

of structure and motion estimation framework involving the

refractive distortion. Our primary contributions are:

• With a thorough analysis of the basic components of

structure and motion estimation, an analytical formu-

lation is presented for forward projection and back pro-

jection by incorporating the refractive distortion.

• By explicitly incorporating the depth-dependent ratio

term into projection modeling, a simple yet exact two-

step formulation can be derived by separating the re-

fractive and perspective projections, which also con-

tributes to a much simpler form for deriving Jacobian

for non-linear optimization within the bundle adjust-

ment framework.

• For cameras with an inertial measurement unit (IMU),

we show that a linear solution to the relative pose and

a closed-form solution to the absolute pose can be de-

rived with known camera vertical directions.

2. Related Work

Photogrammetry: The analysis of refractive geometry

can be traced back to early work in photogrammetry started

by Rinner [22], where the highly nonlinear refractive dis-

tortion was approximated by a number of differential lin-

ear transformations for different zones of scene depth. In

1970s, the usage of stereo cameras for underwater pho-

tography was addressed by Höhle [13], where a numerical

method was described to find the unknowns of the refrac-

tive geometry. The successive efforts along the line of pho-

togrammetry were either (1) trying to model the light path

through multiple mediums with ray tracing [15], but requir-

ing prior knowledge of the shape and position of the refrac-

tive surfaces or two-phase calibration with a known calibra-

tion frame [17], (2) seeking for efficient approximation to

reduce the computation load as simple table lookup [19],

or (3) simply allowing the refractive effects to be absorbed

by the conventional camera calibration with a radial distor-

tion model [23]. While these methods were designated for

underwater photography with fixed refractive geometry, the

more general multiview setting including multiple cameras

or a camera with varying pose relative to the refractive sur-

faces has been less explored.

Image restoration and surface reconstruction: Image

restoration under refractive distortion has been investigated

since the early work of Hurase [21] for water surface recon-

struction. A static camera with the orthographic projection

model was assumed to observe an unknown planar pattern

under a disturbing water surface. Optical flow was utilized

to track point trajectory, and the center of a point trajec-

tory is considered to stay on a flat water surface, thereby

recovering the underwater pattern. Many works in image

restoration followed similar experimental setting [8, 25], in

which orthographic cameras and underwater planar patterns

were assumed. With a known underwater planar pattern,

light path triangulation could be performed to estimate the

dynamic surface normals by using two cameras by Morris

and Kutulakos [20], or higher-order curvature characteris-

tics by using general linear cameras (GLC) approximation

with a orthographic camera proposed by [6]. While ortho-

graphic camera is a useful model for surface reconstruction,

this model may not be suitable in a setting where cameras

are very close to the refractive surface as in many underwa-

ter applications, or 3D scene reconstruction is of interest.

3D reconstruction and depth estimation: Ben-Ezra

and Nayar [3] proposed a model-based approach to recover

the shapes and poses of transparent objects with known mo-

tion. By tracking points refracted through the transparent

object, object parameters could be estimated within a set of

object categories. For general scene reconstruction, Ding

and Yu introduced epsilon stereo matching [5] for inferring

2D disparities by fusing two GLCs in an energy minimiza-

tion framework. A volumetric reconstruction approach was

further proposed [7] to derive more accurate 3D scene re-

construction. The reflective surface and the camera within

the multiperspective camera system had to be calibrated

in order to decompose the reflected surface into piecewise

GLCs. Similar ideas can be applied for 3D reconstruction

with the refractive plane when camera poses relative to the

refractive plane have been estimated.

Multiview refractive geometry: The refractive geome-

try involving refraction with a perspective camera has not

attracted much attentions in computer vision community

until recently. In [26], Treibitz et al. categorized the com-

mon flat-interface for cameras in water-based applications

as non single-viewpoint cameras. This indicates that the re-

fractive distortion in general cannot be modeled as radial

distortion when the camera pupil doesn’t lie on the sur-

face. Chari and Sturm [4] explored the refractive geome-
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Figure 2. The refraction of a light in the 2D case.

try in a multi-camera setting, showing that theoretically the

existence of geometric entities like the projection matrix,

fundamental matrix and homography matrix. While it is

of theoretical interest, we try to incorporate refractive dis-

tortion seamlessly within the conventional structure from

motion framework, which leads to a simpler form ready for

use. In [1, 2], Agrawal et al. analyzed forward projection

for non-central catadioptric system comprising a perspec-

tive camera with multiple rotationally symmetric conic or

quadric reflectors on a plane. While they utilized the con-

tours of reflectors for initial pose estimation, and relied on

bundle adjustment for non-linear optimization, we focus on

the setting of multiple arbitrarily placed perspective cam-

eras with a refractive plane, and use the proposed relative

and absolute pose algorithms to estimate the initial pose. In

the next section, we will present our formulation of funda-

mental elements that constitute the building blocks for the

3D reconstruction for scenes under the refractive plane.

3. The Algorithm

In this section, we start with describing the fundamental

refraction law in the simplified 2D case, where a 4-th order

equation is formulated for deriving the intersection point of

light path and the refractive plane. We show that it naturally

extends to the general 3D case by introducing the refrax

ratio, which simplifies the derivation of forward projection

by dividing the refractive projection into two parts. For 3D

scene reconstruction, we take a similar approach as Snavely

et al. [24] by firstly performing relative pose estimation for

two images with a sufficient baseline. Next, we add one im-

age at a time by using the absolute pose estimation. Initial

estimate of 3D points are estimated by triangulation, fol-

lowed by the bundle adjustment for joint optimization of

structure and motion with scenes under a refractive plane.

With the accurate estimate of camera parameters, the patch-

based multiview stereo algorithm is incorporated for dense

3D scene reconstruction.

3.1. The refraction law

The refraction is governed by the Snell’s law to relate the

light paths of incident light and refracted light with respect

to the surface normal of the refractive plane:

sin θ1 = δ sin θ2, (1)

where δ = n2/n1 is the fraction ratio between the refrac-

tive indices of two mediums, θ1 and θ2 are the angles of

the incident light and refractive light with respect to the sur-

face normal as shown in Figure 2. The trigonometric re-

lations can be represented with the geometric locations of

optical center c, and the point p under the refractive surface

Φ. In the simplified 2D case, without loss of generality,

let’s assume the x-axis is aligned with the refractive sur-

face, z-axis is aligned with the camera optical center, there-

fore c = (0, cz)
⊤. With the point p = (px, pz)

⊤, a fourth

order quartic equation can be derived for the location of the

intersection point q = (qx, 0)⊤ of the light path from p to

c and the surface Φ [11]:

f(qx) =Nq4
x − 2Npxq3

x +

(

Np2
x −

p2
z

δ2
+ c2

z

)

q2
x

− 2c2
zpxqx − c2

zp
2
x = 0,

(2)

with N = 1 − 1
δ2 . The point q is also called the refrax of p

on the surface Φ.

3.2. The refrax ratio and forward projection

Before extending the 2D case into the general 3D case,

we introduce the refrax ratio λ, which is the ratio between

the projected distance from c to q onto the surface Φ, and

the projected distance from c to p onto the surface Φ. That

is,

λ =
qx − cx

px − cx

. (3)

With which, Eq. 2 can be rewritten as

f(λ) =Na4λ4 − 2Na4λ3 +

(

Na2 −
p2

z

δ2
+ c2

z

)

a2λ2

− 2a2c2
zλ − a2c2

z = 0,

(4)

where a is the projected distance between c and p onto

the refractive surface Φ. The merit of using the refrax ra-

tio is that the Eq. 4 also holds in the general 3D case.

Let c = (cx, cy, cz)
⊤ and p = (px, py, pz)

⊤, the distance

between the projections of c and p on the surface Φ be-

comes a =
√

(px − cx)2 + (py − cy)2. By solving λ in Eq.

4 given c and p, the refrax q of p on the surface Φ would

be

q = (cx + λ(px − cx), cy + λ(py − cy), 0)⊤. (5)

Since the light path from q to c is within a single medium

(i.e., the air), conventional perspective projection can be



readily applied. Hence the forward projection of p onto

the image plane of c via the surface Φ is simply achieved

by projecting q to the image plane of c with perspective

projection. The introduction of the refrax ratio λ simplifies

not only the formulation of forward projection, but also the

derivation of Jacobians in the later stage when we jointly

optimize the camera poses, optical centers, and 3D points

with the bundle adjustment framework as described in Sec-

tion 3.5.

3.3. Back projection

As shown in the previous subsection, the relation be-

tween a 3D point under the refractive plane and its projec-

tion to a camera is highly nonlinear. The forward projec-

tion involves solving a quartic equation followed by conven-

tional perspective projection. In contrast, back projection is

relative simple by casting a ray from the camera optical cen-

ter through the point projection on the image plane to reach

the refractive surface Φ, and then following the Snell’s law

to derive the corresponding refractive light path under the

surface. Denote the camera intrinsic matrix as K and ex-

trinsic matrix as
[

R t
]

, where R =
[

r1 r2 r3
]

is the

rotation matrix and t is the translation vector related with

the optical center by t = −Rc. Given a projection point on

the image plane denoted as u = (u, v, 1)⊤, the refrax point

q = (qx, qy, qz)
⊤ can be derived by back projection:

q = c + wR⊤K
−1

u, (6)

where the weighting factor w can be obtained using the

fact that q lies on the surface Φ coinciding the xy-plane

with z = 0. To simplify the notations, let’s denote

s = (sx, sy, sz)
⊤ = R⊤K

−1
u. Thus, qx = cx − czsx/sz ,

and qy = cy − czsy/sz . Let b be the projected distance

between q and c onto the surface Φ, we have

b =
√

(qx − cx)2 + (qy − cy)2 = |cz|
√

(s2
x + s2

y)/s2
z. (7)

A point p = (px, py, pz)
⊤ on the refractive light can be

written in terms of q and c:

[

px

py

]

=

[

qx

qy

]

+
pz

√

(δ2 − 1)b2 + δ2c2
z

[

qx − cx

qy − cy

]

(8)

=

[

cx

cy

]

−
1

sz

[

sx

sy

] (

cz −
pz

g(s)

)

, (9)

where g(s) =
√

(δ2 − 1)(s2
x + s2

y)/s2
z + δ2 is a function

dependent on the rotation matrix R and 2D projection u,

but independent of c and p.

The formulation of back projection with Eq. 9 leads to a

linear relation between the camera center and the 3D point

via its 2D projections given the camera pose. This is the

case for triangulation, where the 3D location of a point p

can be estimated by its 2D projections on two or more cam-

eras with known intrinsic and extrinsic parameters. For the

cases where only partial pose information is available such

as cameras with an inertial measurement unit (IMU), the

back projection can be reformulated to form a linear solu-

tion for relative pose estimation and a closed-form solution

for absolute pose estimation with two points, which will be

addressed in the next subsection.

3.4. Pose estimation with known vertical direction

Thanks to the recent advances of MEMS technology, the

deployment of MEMS-IMU in consumer electronic devices

such as digital cameras and smart phones is getting more

and more pervasive. IMUs such as accelerometers and dig-

ital compasses can be used to measure the orientation of the

device. Although the accuracy of the heading measured by

the digital compass is not good enough due to magnetic filed

disturbances, the roll and pitch angles can be measured ac-

curately even with low-cost IMUs [16]. Therefore, attempts

have been made to take the advantage of two known angles

(i.e., the vertical direction) to simplify the relative pose esti-

mation [9,14] and absolute pose estimation [16] for settings

involving only one medium.

For settings involving a refractive plane like water, con-

ventional epipolar geometry does not exist. Chari and

Sturm [4] derived a fundamental matrix of dimensions

12 × 12 that relates the lifted coordinates in one image to

a quartic curve in the other image. With the known vertical

direction, we will show that the estimation can be largely

simplified as the incident angle of each light ray from the

optical center passing through each image point becomes

available for calibrated cameras.

3.4.1 Relative pose estimation

For relative pose estimation with known vertical direction,

the task is to estimate relative position and relative heading

of the second camera with respect to the first camera given

a set of 2D point correspondences. By decomposing the

rotation matrix R by the rotation Rz around Z-axis and the

rotation Rver formed by the vertical direction, the refrax

point q in Eq. 6 can be rewritten as:

q =c + wR⊤

z R⊤

verK
−1u (10)

=c −
cz

vz

R⊤

z v, (11)

where v = (vx, vy, vz)
⊤ = R⊤

verK
−1u is the transformed

ray direction of the image point u with zero pitch and zero

roll with respect to the optical center, and

Rz =





Cφ −Sφ 0
Sφ Cφ 0
0 0 1



 , (12)



where we denote Cφ = cos φ and Sφ = sinφ. With above

parameterizations, the relation in Eq. 9 between the 3D

point p and optical center c can be described by
[

px

py

]

=

[

qx

qy

]

+
pz

vzg(v)

[

vx vy

vy −vx

] [

Cφ

Sφ

]

(13)

=

[

cx

cy

]

−
1

vz

(

cz −
pz

g(v)

) [

vx vy

vy −vx

] [

Cφ

Sφ

]

,

(14)

where g(v) =
√

(δ2 − 1)(v2
x + v2

y)/v2
z + δ2.

Without loss of generality, let’s assume the optical center

of the first camera is located at c1 = (0, 0, c1z)
⊤ with zero

heading (φ1 = 0◦). We can express px and py with pz:

[

px

py

]

=
1

v1z

(

pz

g(v1)
− c1z

) [

v1x

v1y

]

, (15)

where v1 is the transformed ray direction of u1. By

combining the above two equations with the trans-

formed light ray v2 associated with the correspond-

ing point u2 on the second image, we can elimi-

nate pz to get a linear equation e⊤x = 0, where

the vector e is composed of entries with known vari-

ables v1,v2, g(v1), g(v2), h, and x is composed of a set

of unknown variables [Cφ2
,Sφ2

, c2zCφ2
, c2zSφ2

, c2xCφ2
+

c2ySφ2
, c2xSφ2

− c2yCφ2
, c2x, c2y] with the constraint:

x2
1 + x2

2 = C2
φ2

+ S2
φ2

= 1. (16)

As there are eight unknown variables with one constraint,

and each pair of point correspondences provide one linear

equation, an equation system can be formed by stacking the

vectors e with seven pairs of point correspondences:

Ex = 0. (17)

A solution can be obtained by scaling the eigenvec-

tor corresponding to the smallest generalized eigenvalue

of the symmetric matrix E⊤E and the diagonal matrix

B = diag([1, 1, 0, 0, 0, 0, 0, 0]).
Note that there are two special cases that would cause

the rank deficiency to Eq. 17: (1) All 3D points are on the

plane passing through two camera centers and perpendicu-

lar to the refractive plane; (2) The two camera centers are on

the same height, and all 3D points are on the bisecting plane

of the line connecting two camera centers. These cases can

hardly happen in reality, and they can be resolved by ei-

ther selecting other point correspondences that don’t result

in rank deficiency within a RANSAC framework, or using

other cameras as the initial pair for relative pose estimation.

3.4.2 Absolute pose estimation

In [16], Kukelova et al. presented a closed form solution for

the absolute pose estimation with known vertical direction.

A minimal case of 2 points is derived by using the following

equality that relates a 3D point p and its 2D projection u:

[u]×K[RverRz|t]p = 0. (18)

In the setting with the refractive plane, the above equality

only holds for the refrax point q. Therefore, we can use Eq.

13 to relate the 3D point p and its 2D projection u:

[u]×K[RverRz|t]











px −
pz(vxCφ+vySφ)

vzg(v)

py −
pz(vyCφ−vxSφ)

vzg(v)

0
1











= 0. (19)

With similar trick by modeling τ = tan φ
2 as in [16], each

point with Eq. 19 provides two linear equations with mono-

mials τ2, τ, tx, ty, tz, 1. Therefore, with two points, four

equations can be used to eliminate tx, ty, tz , which lead

to a second-order polynomial of τ with two solutions. By

back-substituting the solutions to the original equations, we

can obtain tx, ty, tz and then test which solution provides

smaller reprojection error.

While the minimal case provides efficient solutions in

the RANSAC framework for removing the outliers, a lin-

ear formulation treating Cφ and Sφ as separate variables is

required for absolute pose estimation with more than two

points. This forms a constrained least squares problem with

a quadratic inequality constraint (LSQI), which can be re-

solved by using the generalized singular value decomposi-

tion followed by root searching [12].

3.5. Bundle adjustment

While the solutions from the relative pose and absolute

estimation are useful for estimating the locations of cam-

eras and 3D points, the solution obtained from linear es-

timation doesn’t necessary minimize the reprojection error.

Furthermore, the camera pose obtained with IMUs may also

contain small errors which can’t be recovered in linear op-

timization. To handle these issues, a non-linear solution by

bundle adjustment is investigated. Given m cameras and n
3D points with good initial guess, the goal of bundle adjust-

ment is to adjust the camera parameters and 3D point posi-

tions to minimize the distance between measured projection

point uij of the i-th 3D point pi to the j-th camera cj , and

the estimated projection ûij obtained with the estimated 3D

points and cameras parameters, i.e.,

(C∗,P∗) = argmin
C,P

∑

i,j

‖uij − ûij‖
2
2, (20)

where ûij is the image projection of the refrax point of the

point pi and camera center cj :

[

ûij

1

]

≡ KR(q̂ij − ĉj) = KR





λ̂ij(p̂ix − ĉjx)

λ̂ij(p̂iy − ĉjy)
−ĉjz



 , (21)



where the refrax ratio λ̂ij can be solved from the quartic

equation in Eq. 4.

Unlike common practice for optimizing extrinsic camera

parameters by its orientation and translation derived from

the camera projection matrix, Eq. 21 leads us to direct opti-

mization over the camera centers instead of translation vec-

tors. In this way, the projection can be decomposed into the

refractive projection between the mediums and the perspec-

tive projection above the surface. For refractive projection,

the refrax ratio is independent of camera poses. For per-

spective projection, the refrax ratio can be treated as a con-

stant. Therefore, the Jacobian of ûij with respect to camera

parameters and 3D point positions can be easily formulated.

We incorporate the derived Jacobian into the sparse bun-

dle adjustment framework [18,27], which exploits the spar-

sity of the underlining block structure of normal equations

for efficient optimization of the camera poses, optical cen-

ters, and 3D point positions. Accurate solutions can be ob-

tained as validated in our synthetic experiments.

3.6. Patch­based scene reconstruction

In the bundle adjustment framework, sparse point cor-

respondences by using SIFT features are sufficient for de-

riving accurate camera parameters. However, the 3D point

cloud itself is rather sparse and insufficient to represent the

scene geometry. To expand the reconstruction points, we

adopt the patch-based multiview stereo (PMVS) algorithm

by Furukawa and Ponce [10] to reconstruct a denser scene

geometry based on the expansion of matched Harris and

DoG interest points across multiple images. Forward pro-

jection and back projection as addressed above have to be

incorporated in order to take refraction into account. The

formulation of back projection also naturally extends to a

linear solution of triangulation for estimating 3D point po-

sitions with known camera parameters and point correspon-

dences. A better scene reconstruction can be obtained by in-

corporation of the refractive distortion with additional com-

putation load contributed by solving the quartic equation for

every forward projection. Note that the epipolar constraint

is utilized in PMVS to collect candidates for point match-

ing. As the conventional epipolar constraint doesn’t hold

for scenes with refractive distortion, this constraint needs to

be relaxed so that matched features can be included in the

collected candidates. This idea is similar to epsilon stereo

matching proposed by Ding and Yu [5].

4. Experiment

To evaluate the proposed approach, experiments are con-

ducted on both synthetic and real image sequences. In these

experiments, we compare three different cases of distor-

tion modeling: 1) no distortion model, 2) radial distortion

model, and 3) our proposed refractive distortion model. For

the first two cases, the structure from motion is performed

(a) (b)

Figure 3. (a) The setup of the synthetic scene composed of 3 planar

surfaces and 12 cameras. (b) One sample image from the synthetic

image sequence.

Table 1. Camera Localization Error Comparison (cm)

No Radial Refractive

distortion distortion distortion

rms error 1.062 0.717 0.025

with the Bundler [24] without considering the refraction. In

the second case, the radial distortion of camera lens is op-

timized within the the non-linear optimization process for

minimizing the reprojection error. In the third case, relative

pose and absolute pose estimation are performed with the

RANSAC framework to remove possible outliers. The non-

linear optimization by bundle adjustment is incorporated for

accurate camera localization, pose estimation, and position

estimation for the sparse point cloud.

4.1. Synthetic data

We create a synthetic scene rendered by the POVRay

ray tracing program for quantitative evaluation. The syn-

thetic scene is composed of three planar surfaces with tex-

ture mapped from the images acquired from the Middle-

bury stereo dataset (Teddy, Cones, and Venus). The scene

geometry is modeled as a square water tank with size

200 × 200 × 100 (L×W×H cm), with one plane on the

bottom, and the other two slanted planes tilted by ±30◦ as

shown in Figure 3(a). The camera is placed above water

with two different heights (30 and 40 cm, respectively), fol-

lowing a rounded path with 12 images taken in total. The

camera field of view is set to 75◦, with a pose facing the

scene center. One sample image of the synthetic image se-

quence is shown in Figure 3(b), where the refractive distor-

tion is easily observable.

First, we evaluate the performance of camera localiza-

tion. As shown in Table 1, the proposed refractive distortion

model greatly enhances the accuracy of camera localization.

In the first two cases, since the camera localization is not

aware of water, the camera locations could be up to a sim-

ilarity transform to the ground truth. We align the camera

locations with an estimate of similarity transform against

the ground truth, and then calculate the displacement error.

As expected, the error for the first case with no distortion



Figure 4. Sample images from the real image sequence.

modeling is larger due to the optimization is conducted in a

way to minimize the reprojection error instead of the cam-

era localization error. Even though the camera localization

errors are small in all three cases, the geometry reconstruc-

tion could differ a lot.

Next we evaluate the scene reconstruction by visual in-

spection. The scene reconstruction of three different cases

are shown in Figure 1(b)(c)(d). The reconstructed scene in

the case of no distortion modeling becomes very flat and

curved, while the bottom surfaces still get curved in the ra-

dial distortion case albeit its scene geometry seems to be

slightly better for the two slanted plane surfaces. The re-

constructed scene with our refractive distortion model faith-

fully recovers all three planer surfaces of the original scene

geometry without any distortion.

4.2. Real data

With the success on the synthetic data, we acquire real

data for qualitative comparison. A water tank is of size

15 × 12.5 × 11 (L×W×H inch), filled with water 9 inch
high. A checkerboard pattern is attached to the bottom of

the water tank for visual observation of the distortion pat-

tern. Images are captured with a Google Nexus S smart-

phone, with the orientation readings obtained from onboard

accelerometer and magnetic field sensors. Sample images

are shown in Figure 4. The scene contains a rectangle cof-

fee can and a round tea can placed on the bottom, and a

toothpaste leaned on the coffee can at one end and the bot-

tom of the water tank at the other end. In total 18 images

are taken following a path around the water tank. The path

is faithfully estimated by our camera localization with re-

fractive distortion modeling as shown in Figure 5(a). Fig-

ure 5(b) and (c) show the results of scene reconstruction

for no distortion model and radial distortion model, respec-

tively. The reconstructed scene gets distorted especially for

the bottom checkerboard plane for these two cases, where

−20

−10

0

10

20

−20

−10

0

10

20

−30

−20

−10

0

10

20

30

40

50

 

 

(a) Refractive Distortion

−40

−20

0

20

−40

−20

0

20

−20

−10

0

10

20

30

40

50

60

70

80

 

 

−60

−40

−20

0

20

40

60

−60

−40

−20

0

20

40

−40

−20

0

20

40

60

80

100

 

 

(b) No Distortion (c) Radial Distortion

Figure 5. The estimated camera path and scene reconstruction for

the real image sequence. The color in the scene reconstruction

encodes the height of a point from the lowest (red) to the highest

(blue). (Best viewed in color.)

the geometry distortion is a little less severe with the radial

distortion model. Another noticeable distortion is located

at the top face of the rectangle coffee can. With the refrac-

tive distortion model, the top surface is flat with the same

height, whereas the color gradient from light blue to dark

blue in the other two cases indicates a slanted surface is re-

constructed. Another interesting result to look at is the es-

timated camera pose compared to the IMU sensor reading.

As depicted in Figure 6, the estimated roll and pitch angles

stay close to the IMU in the refractive distortion model, in-

dicating the IMU sensor readings provide a very good ini-

tial guess of the roll and pitch angles for relative pose and

absolute pose algorithms. The magnitude of these two an-

gles in the no distortion model and radial distortion model

is smaller than the refractive distortion model. By observ-

ing the reconstructed cameras paths in Figure 5(b) and (c),

it is reasonable to have smaller angles as the camera path is

closer to the center of the scene. As for yaw angle, all three

methods obtain quite consistent estimation while the IMU

reading deviate the estimated angle by 3◦ to 10◦.

5. Conclusions

In this work, we explicitly model the refractive distortion

as a depth-dependent function for scene reconstruction. The
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Figure 6. The comparison of estimated camera orientations with

the measured camera orientations from IMU.

advantage of using a physics-based model leads to a more

realistic solution for recovering both scene geometry and

camera motion. By introducing the refrax ratio, we show

that bundle adjustment can be performed with a much sim-

pler form for deriving Jacobian for non-linear optimization.

By incorporating the known vertical direction, a seven-point

linear solution to the relative pose estimation and a closed-

form two-point solution to the absolute pose estimation can

be derived. These new algorithms serve as powerful ingre-

dients for the structure from motion framework involving

the refractive plane. Promising results from experiments

with synthetic and real image sequences justified the supe-

riority of the proposed refractive distortion modeling.

As of now, all formulations are based on the assumption

of flat refractive geometry involving only two mediums. A

more general setting with more than two mediums and non-

flat refractive geometry would be a valuable direction for

further investigation.
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