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Abstract

Active Appearance Models (AAMs) are generative, parametric models that have been successfully

used in the past to model deformable objects such as human faces. The original AAMs formulation

was 2D, but they have recently been extended to include a 3D shape model. A variety of single-view

algorithms exist for fitting and constructing 3D AAMs but one area that has not been studied is multi-

view algorithms. In this paper we present multi-view algorithms for both fitting and constructing 3D

AAMs.

Fitting an AAM to an image consists of minimizing the error between the input image and the closest

model instance; i.e. solving a nonlinear optimization problem. In the first part of the paper we describe

an algorithm for fitting a single AAM to multiple images, captured simultaneously by cameras with

arbitrary locations, rotations, and response functions. This algorithm uses the scaled orthographic

imaging model used by previous authors, and in the process of fitting computes, or calibrates, the

scaled orthographic camera matrices. In the second part of the paper we describe an extension of this

algorithm to calibrate weak perspective (or full perspective) camera models for each of the cameras.

In essence, we use the human face as a (non-rigid) calibration grid. We demonstrate that the

performance of this algorithm is roughly comparable to a standard algorithm using a calibration grid.

In the third part of the paper, we show how camera calibration improves the performance of AAM

fitting.
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A variety of non-rigid structure-from-motion algorithms, both single-view and multi-view, have been

proposed that can be used to construct the corresponding 3D non-rigid shape models of a 2D AAM.

In the final part of the paper, we show that constructing a 3D face model using non-rigid structure-

from-motion suffers from the Bas-Relief ambiguity and may result in a “scaled” (stretched/

compressed) model. We outline a robust non-rigid motion-stereo algorithm for calibrated multi-view

3D AAM construction and show how using calibrated multi-view motion-stereo can eliminate the

Bas-Relief ambiguity and yield face models with higher 3D fidelity.

Keywords

Active appearance models; Multi-view 3D face model construction; Multi-view AAM fitting; Non-

rigid structure-from-motion; Motion-stereo; Camera calibration

1 Introduction

Active Appearance Models (AAMs) (Cootes et al. 1998, 2001; Cootes and Kittipanyangam

2002; Edwards 1999), and the related concepts of Active Blobs (Sclaroff and Isidoro 1998,

2003) and Morphable Models (Blanz and Vetter 1999; Jones and Poggio 1998; Vetter and

Poggio 1997), are generative models of a certain visual phenomenon. AAMs are examples of

statistical models that are used to characterize the shape and the appearance of the underlying

object by a set of model parameters. Though AAMs are useful for other phenomena (Gross et

al. 2006; Hu et al. 2004), they are commonly used to model faces. In a typical application, once

an AAM has been constructed, the first step is to fit it to an input image, i.e. model parameters

are found to maximize the match between the model instance and the input image. The model

parameters can then be passed to a classifier. Many different classification tasks are possible.

Although AAMs were originally formulated as 2D, there are other deformable 3D models (3D

Morphable Models (Blanz and Vetter 1999)) and AAMs have also been extended to 3D (2D

+3D AAMs (Xiao et al. 2004a)). A number of algorithms have been proposed to build

deformable 3D face models and to fit them efficiently (Xiao et al. 2004a; Romdhani and Vetter

2003; Ahlberg 2001; Sung and Kim 2004; Wen and Huang 2003; Pighin et al. 1999; Dornaika

and Ahlberg 2004). Deformable 3D face models have a wide variety of applications. Not only

can they be used for tasks like pose estimation, which just require the estimation of the 3D

rigid motion, but also for tasks such as expression recognition and lipreading, which require,

explicitly or implicitly, estimation of the 3D non-rigid motion.

Most of the previous algorithms for AAM fitting and construction have been single-view. One

area that has not been studied much in the past (an exception is Cootes et al. 2000) is the

development of simultaneous multi-view algorithms. Multi-view algorithms can potentially

perform better than single-view as they can take into account more visual information. In this

paper we present multi-view algorithms to both fit and build 3D AAMs.

In the first part of the paper we study multi-view fitting of AAMs. Fitting an AAM to an image

consists of minimizing the error between the input image and the closest model instance; i.e.

solving a nonlinear optimization problem. Face models are usually fit to a single image of a

face. In many application scenarios, however, it is possible to set up two or more cameras and

acquire simultaneous multiple views of the face. If we integrate the information from multiple

views, we can possibly obtain better application performance. For example, Gross et al.

(2004) demonstrated improved face recognition performance by combining multiple images

of the same face captured from multiple widely spaced viewpoints. In Sect. 3, we describe how

a single AAM can be fit to multiple images, captured by cameras with arbitrary locations,

rotations, and response functions.
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The main technical challenge is relating the AAM shape parameters in one view with the

corresponding parameters in the other views. This relationship is complex for a 2D shape model

but is straightforward for a 3D shape model. We use 2D+3D AAMs (Xiao et al. 2004a) in this

paper. A 2D+3D AAM contains both a 2D shape model and a 3D shape model. Besides the

requirement of having a 3D shape model, the main advantage of using a 2D+3D AAM is that

2D+3D AAMs can be fit very efficiently in real-time (Xiao et al. 2004a). Corresponding multi-

view fitting algorithms could also be derived for other 3D face models such as 3D Morphable

Models (Blanz and Vetter 1999). We could easily have used a 3D Morphable Model instead

to conduct the research in this paper, but the fitting algorithms would have been slower.

To generalize the 2D+3D fitting algorithm to multiple images, we use a separate set of 2D

shape parameters for each image, but just a single, global set of 3D shape parameters as

represented in Fig. 1. We impose the constraints that for each view separately, the 2D shape

model for that view must approximately equal the projection of the single 3D shape model.

Imposing these constraints indirectly couples the 2D shape parameters for each view in a

physically consistent manner. Our algorithm can use any number of cameras, positioned

arbitrarily. The cameras can be moved and replaced with different cameras without any

retraining. The computational cost of the multi-view 2D+3D algorithm is only approximately

N times more than the single-view algorithm where N is the number of cameras. In Sect. 3 we

present a qualitative evaluation of our multi-view 2D+3D fitting algorithm. We defer the

quantitative evaluation to Sect. 5 where we also compare it with a calibrated multi-view

algorithm.

In the second part of the paper we study how our multi-view fitting algorithm can be used for

camera calibration. The multi-view fitting algorithm of Sect. 3 uses the scaled orthographic

imaging model used by previous authors, and in the process of fitting computes, or calibrates,

the scaled orthographic camera matrices. In Sect. 4 we describe an extension of this algorithm

to calibrate weak perspective (or full perspective) camera models for each of the cameras. In

essence, both of these algorithms use the human face as a (non-rigid) calibration grid. Such an

algorithm may be useful in a surveillance setting where we wish to install the cameras on the

fly, but avoid walking around the scene with a calibration grid.

The perspective algorithm requires at least two sets of multi-view images of the face at two

different locations. More images can be used to improve the accuracy if they are available. We

evaluate our algorithm by comparing it with an algorithm that uses a calibration grid and show

the performance to be roughly comparable.

In the third part of the paper we show how camera calibration can improve the performance

of multi-view face model fitting. We present an extension of the multi-view AAM fitting

algorithm of Sect. 3 that takes advantage of calibrated cameras. We use the calibration

algorithm of Sect. 4 to explicitly provide calibration information to the multi-view fitting

algorithm. We demonstrate that this algorithm results in far better fitting performance than

either the single-view fitting (Sect. 2) or the uncalibrated1 multi-view fitting (Sect. 3)

algorithms. We consider two performance measures: (1) the robustness of fitting—the

likelihood of convergence for a given magnitude perturbation from the ground-truth, and (2)

speed of fitting—the average number of iterations required to converge from a given magnitude

perturbation from the ground-truth.

1Note that for the uncalibrated multi-view algorithm described in Sect. 3, the calibration parameters are unknown and are estimated as
a part of the optimization. For the calibrated multi-view fitting algorithm the calibration parameters are known and are obtained from a
calibration algorithm (possibly the algorithm of Sect. 4.)
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In the final part of the paper we study calibrated multi-view construction of AAMs. A variety

of non-rigid structure-from-motion algorithms have be proposed, both nonlinear (Brand

2001; Torresani et al. 2001) and linear (Bregler et al. 2000; Xiao et al. 2004b; Xiao and Kanade

2005) that can be used for deformable 3D model construction from both a single view (Brand

2001; Bregler et al. 2000; Xiao et al. 2004b; Xiao and Kanade 2005) and multiple views

(Torresani et al. 2001).

In most cases, it is only practical to apply face model construction algorithms to data with

relatively little pose variation. Tracking facial feature points becomes more difficult the more

pose variation there is. Unfortunately, single-view and multi-view algorithms such as non-rigid

structure-from-motion have a tendency to scale (stretch or compress) the face in the depth-

direction when applied to data with only medium amounts of pose variation. The problem is

not the algorithms themselves, but the Bas-Relief ambiguity between the camera translation/

rotation and the depth (Zhang and Faugeras 1992a; Szeliski and Kang 1997; Soatto and

Brockett 1998; Hartley and Zisserman 2000). The Bas-Relief ambiguity is normally formulated

in the case of rigid structure-from-motion, but applies equally in the non-rigid case. As

empirically validated in Sect. 6, the result is a compressed/stretched face model, which gives

erroneous estimates of the 3D rigid and non-rigid motion.

One way to eliminate the ambiguity is to use a calibrated stereo rig instead of a single camera.

The known, fixed translation between the cameras then sets the scale and breaks the ambiguity.

The straightforward approach is to use stereo to build a static 3D model at each time instant

and then build the deformable model by modeling how the 3D shape changes across time. Two

algorithms that takes this approach are (Cootes et al. 1996; Gokturk et al. 2001), one in the

uncalibrated case (Cootes et al. 1996), the other in the calibrated case (Gokturk et al. 2001).

An alternative approach is to extend the non-rigid structure-from-motion paradigm of (Bregler

et al. 2000; Brand 2001; Torresani et al. 2001; Xiao et al. 2004b) and pose the face model

construction problem as a single large optimization over the unknown shape model modes, in

essence a large bundle adjustment. In Sect. 6 of this paper we derive a calibrated multi-view

non-rigid motion-stereo algorithm (Waxman and Duncan 1986; Zhang and Faugeras 1992b)

to do exactly this. Our multi-view algorithm explicitly incorporates the knowledge of the

calibrated relative orientation of the cameras in the stereo rig. In Sect. 6.5 we present qualitative

results to validate these claims. We also use the multi-view calibration algorithm described in

Sect. 4 to quantitatively compare the fidelity of 3D models.

2 Background

In this section we review 2D Active Appearance Models (AAMs) (Cootes et al. 2001) and 2D

+3D Active Appearance Models (Xiao et al. 2004a). We also revisit the efficient inverse

compositional fitting algorithms (Baker and Matthews 2004; Xiao et al. 2004a).

2.1 2D Active Appearance Models

The 2D shape s of a 2D Active Appearance Model is a 2D triangulated mesh. In particular, s

is a column vector containing the vertex locations of the mesh. AAMs allow linear shape

variation. This means that the 2D shape s can be expressed as a base shape s0 plus a linear

combination of m shape vectors si:

(1)
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where the coefficients pi are the shape parameters. AAMs are normally computed from training

data consisting of a set of images with the shape mesh (hand) marked on them (Cootes et al.

2001). The Procrustes alignment algorithm and Principal Component Analysis (PCA) are then

applied to compute the base shape s0 and the shape variation si (Cootes et al. 2001).

The appearance of an AAM is defined within the base mesh s0. Let s0 also denote the set of

pixels u = (u, v)T that lie inside the base mesh s0, a convenient notational short-cut. The

appearance of the AAM is then an image A(u) defined over the pixels u ∈ s0. AAMs allow

linear appearance variation. This means that the appearance A(u) can be expressed as a base

appearance A0(u) plus a linear combination of l appearance images Ai (u):

(2)

where the coefficients λi are the appearance parameters. The base (mean) appearance A0 and

appearance images Ai are usually computed by applying Principal Component Analysis to the

shape normalized training images (Cootes et al. 2001).

Although (1) and (2) describe the AAM shape and appearance variation, they do not describe

how to generate a model instance. The AAM model instance with shape parameters p and

appearance parameters λi is created by warping the appearance A from the base mesh s0 to the

model shape mesh s. In particular, the pair of meshes s0 and s define a piecewise affine warp

from s0 to s denoted2 W(u; p) (Matthews and Baker 2004).

2.2 Fitting a 2D AAM to a Single Image

The goal of fitting a 2D AAM to a single input image I (Matthews and Baker 2004) is to

minimize:

(3)

with respect to the 2D shape p and appearance λi parameters. In Matthews and Baker (2004)

it was shown that the inverse compositional algorithm (Baker and Matthews 2004) can be used

to optimize the expression in (3). The algorithm uses the “project out” algorithm (Hager and

Belhumeur 1998; Matthews and Baker 2004) to break the optimization into two steps. The first

step consists of optimizing:

(4)

with respect to the shape parameters p where the subscript span(Ai)
⊥ means project the vector

into the subspace orthogonal to the subspace spanned by Ai, i = 1, …, l. The second step consists

of solving for the appearance parameters:

2Note that for ease of presentation we have omitted any mention of the 2D similarity transformation that is used with an AAM to normalize
the shape (Cootes et al. 2001). In this paper we include the normalizing warp in W(u; p) and the similarity normalization parameters in
p. See Matthews and Baker (2004) for a description of how to include the normalizing warp in W(u; p).
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(5)

where the appearance vectors Ai are orthonormal. Optimizing (4) itself can be performed by

iterating the following two steps. Step 1 consists of computing:

where

where the following two terms can be pre-computed (and combined) to achieve high efficiency:

where

Step 2 consists of updating the warp by composing with the inverse incremental warp:

(6)

The resulting 2D AAM fitting algorithm runs at over 200 frames per second. See Matthews

and Baker (2004) for more details.

2.3 2D+3D Active Appearance Models

Most deformable 3D face models, including 3D Morphable Models (Blanz and Vetter 1999)

and the models in (Bregler et al. 2000; Brand 2001; Torresani et al. 2001; Xiao et al. 2004b),

use a 3D linear shape variation model, essentially equivalent to a 3D generalization of the

model in Sect. 2.1. The 3D shape s ̄ is a 3D triangulated mesh which can be expressed as a base

shape s ̄0 plus a linear combination of m ̄ shape vectors s ̄j:

(7)

where the coefficients p̄i are the shape parameters.

Ramnath et al. Page 6

Int J Comput Vis. Author manuscript; available in PMC 2009 October 15.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



A 2D+3D AAM (Xiao et al. 2004a) consists of the 2D shape variation si of a 2D AAM governed

by (1), the appearance variation Ai (u) of a 2D AAM governed by (2), and the 3D shape variation

s ̄j of a 3D AAM governed by (7). The 2D shape variation si and the appearance variation Ai

(u) of the 2D+3D AAM are constructed exactly as for a 2D AAM. The construction of the 3D

shape variation s ̄j is the subject of Sect. 6 of this paper.

To generate a 2D+3D model instance, an image formation model is needed to convert the 3D

shape s ̄ into a 2D mesh, onto which the appearance is warped. In Xiao et al. (2004a) the

following scaled orthographic imaging model was used:

(8)

where x = (x, y, z) is a 3D vertex location, (ox, oy) is an offset to the origin, σ is the scale and

the projection axes i = (ix, iy, iz) and j = (jx, jy, jz) are unit length and orthogonal: i · i = j · j =

1; i · j = 0. The model instance is then computed by projecting every 3D shape vertex onto a

2D vertex using (8). The 2D appearance A(u) is finally warped onto the 2D mesh (taking into

account visibility) to generate the final model instance.

2.4 Fitting a 2D+3D AAM to a Single Image

The goal of fitting a 2D+3D AAM to an image I (Xiao et al. 2004a) is to minimize:

(9)

with respect to p, λi, Pso, and p ̄ where K is a large constant weight. Equation (9) should be

interpreted as follows. The first term in (9) is the 2D AAM fitting criterion. The second term

enforces the (heavily weighted, soft) constraints that the 2D shape s equals the projection of

the 3D shape s ̄ with projection matrix Pso. In Xiao et al. (2004a) it was shown that the 2D AAM

fitting algorithm (Matthews and Baker 2004) can be extended to a 2D+3D AAM. The resulting

algorithm still runs in real-time (Matthews et al. 2007).

As with the 2D AAM algorithm, the “project out” algorithm (Matthews and Baker 2004) is

used to break the optimization into two steps, the first optimizing:

(10)

with respect to p, Pso, and p ̄, where Fi (p; Pso; p ̄) is the error inside the L2 norm in the second

term in (9) for each of the mesh x and y vertices. The second step solves for the appearance

parameters using (5). The 2D+3D algorithm has more unknowns to solve for than the 2D

algorithm. As a notational convenience, concatenate all the unknown parameters into one

vector q = (p; Pso; p ̄). Optimizing (10) is then performed by iterating the following two steps.

Step 1 consists of computing3:

3To simplify presentation, in this paper we omit the additional correction that needs to be made to Fi (p; Pso; p ̄) to use the inverse
compositional algorithm. See Xiao et al. (2004a) for details.
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(11)

where:

(12)

Step 2 consists of first extracting the parameters p, Pso, and p ̄ from q, and then updating the

warp using (6), and the other parameters Pso and p ̄ additively (Matthews et al. 2007).

3 Fitting a Single 2D+3D AAM to Multiple Images

In the previous section we reviewed some of the efficient algorithms to fit an AAM to a single

image. If we have multiple, simultaneous, views of the face, the performance of AAM fitting

can be improved if we use all views. We now describe an algorithm to fit a single 2D+3D AAM

simultaneously to multiple images.

Suppose that we have N images In: n = 1, …, N of a face that we wish to fit the 2D+3D AAM

to. In this section we assume that the images are captured simultaneously by synchronized, but

uncalibrated cameras (see Sect. 5 for a calibrated algorithm.) The naive algorithm is to fit the

2D+3D AAM independently to each of the images. This algorithm can be improved upon by

using the fact that, since the images In are captured simultaneously, the 3D shape of the face

is the same in all views. We therefore pose fitting a single 2D+3D AAM to multiple images

as minimizing:

(13)

simultaneously with respect to the N sets of 2D shape parameters pn, the N sets of appearance

parameters  (the appearance may be different in different images due to different camera

response functions, etc.), the N sets of camera matrices , and the one, global set of 3D shape

parameters p ̄. Note that the 2D shape parameters in each image are not independent, but are

coupled in a physically consistent4 manner through the single set of 3D shape parameters p ̄.
Optimizing (13) therefore cannot be decomposed into N independent optimizations. The

appearance parameters  can, however, be dealt with using the “project out” algorithm (Hager

and Belhumeur 1998;Matthews and Baker 2004), in the usual way; i.e. we first optimize:

4Note that directly coupling the 2D shape models would be difficult due to the complex relationship between the 2D shape in one image
and another. Multi-view face model fitting is best achieved with a 3D model. A similar algorithm could be derived for other 3D face
models such as 3D Morphable Models (Blanz and Vetter 1999). The main advantage of using a 2D+3D AAM (Xiao et al. 2004a) is the
fitting speed.
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(14)

with respect to pn, , and p ̄, and then solve for the appearance parameters:

Organize the unknowns in (14) into a single vector . Also, split the

single-view 2D+3D AAM terms into parts from (11) and (12) that correspond to the 2D image

parameters (pn and ) and the 3D shape parameters (p ̄):

Optimizing (14) can then be performed by iterating the following two steps. Step 1 consists of

computing:

(15)

where:

Step 2 consists of extracting the parameters pn, , and p ̄ from r, and updating the warp

parameters pn using (6), and the other parameters  and p ̄ additively.

The N image algorithm is very similar to N copies of the single image algorithm. Almost all

of the computation is just replicated N times, one copy for each image. The only extra

computation is adding the N terms in the components of ΔrSD and HMV that correspond to the

single set of global 3D shape parameters p ̄, inverting the matrix HMV, and the matrix multiply

in (15). Overall, the N image algorithm is therefore approximately N times slower than the
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single image 2D+3D fitting algorithm. (It is more than N times slower due to the large matrix

inversion and matrix multiplication step, but in practice only slightly so.)

3.1 Experimental Results

An example of using our algorithm to fit a single 2D+3D AAM to three simultaneously captured

images5 of a face is shown in Fig. 2. In the results in this paper, the translation and scale of the

2D face model in each view is initialized by hand and the 2D shape set to be the mean shape.

However, 2D+3D AAMs can easily be initialized with a face detector (Matthews et al. 2007).

See the movie iterations.mpg for the fitting video sequence. The initialization is displayed

in the top row of the figure, the result after 5 iterations in the middle row, and the final converged

result in the bottom row. In each case, all three input images are overlaid with the 2D shape

pn plotted in dark dots. We also display the recovered pose angles (roll, pitch and yaw) extracted

from the three scaled orthographic camera matrices  in the top left of each image. Each

camera computes a different relative head pose, illustrating that the estimate of  is view

dependent. The single 3D shape p ̄ for all views at the current iteration is displayed in the top-

right of the center image. The view-dependent camera projection of this 3D shape is also plotted

as a white mesh overlaid on the face.

Applying the multi-view fitting algorithm sequentially allows us to track the face

simultaneously in N video sequences. Some example frames of the algorithm being using to

track a face in a trinocular sequence is shown in Fig. 3. We also include the movie

tracking.mpg for the complete tracking sequence. The tracking remains accurate and stable

both over time and between views. In Sect. 5 we present a quantitative evaluation of this multi-

view algorithm.

4 Camera Calibration

4.1 Image Formation Model

The multi-view fitting algorithm in Sect. 3 uses the scaled orthographic image formation model

in (8). A more powerful model when working with multiple cameras (because it models the

coupling between the scales across the cameras through the focal lengths and average depths)

is the weak perspective model:

(16)

In (16), oz is the depth of the origin of the world coordinate system and z ̄ is the average depth

of the scene points measured relative to the world coordinate origin. The “z” (depth) direction

is k = i × j where × is the vector cross product, i = (ix, iy, iz), and j = (jx, jy, jz). The average

depth relative to the world origin z equals the average value of k · x computed over all points

x in the scene.

The weak perspective model is an approximation to the full perspective model:

5Note that the input images for all experiments described in this paper are chosen such that there is no occlusion of the face. For ways
to handle occlusion in the input data see Gross et al. (2006), Matthews et al. (2007).
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(17)

where the depth of the scene k · x is assumed to be roughly constant z ̄. The calibration

parameters of the two perspective models in (16) and (17) are interchangeable. When

evaluating the calibration results in Sect. 4.6 below we use the full perspective model. In the

calibrated fitting algorithms in Sect. 5 we use the weak perspective model because it is

reasonable to assume that the depth of the face is roughly constant, a common assumption in

many face modeling papers (Romdhani and Vetter 2003;Xiao et al. 2004a).

4.2 Camera Calibration Goal

Suppose we have N cameras n = 1, …, N. The goal of our camera calibration algorithm is to

compute the 2 × 3 camera projection matrix (i, j), the focal length f, the projection of the world

coordinate system origin into the image (ou, ov), and the depth of the world coordinate system

origin (oz) for each camera. If we superscript the camera parameters with n we need to compute

, and . There are 7 unknowns in  (rather than 10) because there are

only 3 degrees of freedom in choosing the 2 × 3 camera projection matrix (i, j) such that it is

orthonormal.

4.3 Calibration Using Two Time Instants

For ease of understanding, we first describe an algorithm that uses two sets of multi-view

images captured at two time instants. Deriving this algorithm also allows us to show that two

sets of images are needed and derive the requirements on the motion of the face between the

two time instants. In Sect. 4.4 we describe an algorithm that use an arbitrary number of multi-

view image sets and in Sect. 4.5 another algorithm that poses calibration as a single large

optimization.

The uncalibrated multi-view fitting algorithm of Sect. 3 uses the scaled orthographic camera

matrices  in (8) and optimizes over the N scale parameters σn. Using (16) instead of (8) and

optimizing over the focal lengths fn and origin depths  is ambiguous. Multiple values of fn

and  yield the same value of . However, the values of fn and  can be computed by

applying (a slightly modified version of) the uncalibrated multi-view fitting algorithm a second

time with the face at a different location. With the first set of images we compute in, jn,

. Suppose that  is the scale at this location. Without loss of generality we also

assume that the face model is at the world coordinate origin at this first time instant. Finally,

without loss of generality we assume that the mean value of x computed across the face model

(both mean shape s0 and all shape vectors si) is zero. It follows that z ̄ is zero and so:

(18)
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Suppose that at the second time instant the face has undergone a global 3D rotation R6 and 3D

translation T. Both the rotation R and translation T have three degrees of freedom. We then

perform a modified multi-view fit, minimizing:

(19)

with respect to the N sets of 2D shape parameters pn, the N sets of appearance parameters ,

the one global set of 3D shape parameters p ̄, the 3D rotation R, the 3D translation T, and the

N scale values . In this optimization all of the camera parameters (in, jn, , and ) except

the scale (σ) in the scaled orthographic model  are held fixed to the values computed in the

first time instant. Since the object underwent a global translation T then z ̄n = kn · T where kn

= in × jn is the z-axis of camera n. It follows that:

(20)

Equations (18) and (20) are two sets of linear simultaneous equations in the 2∗N unknowns

(fn and ). Assuming that kn · T ≠ 0 (the global translation T is not perpendicular to any of

the camera z-axes), these two equations can be solved for fn and  to complete the camera

calibration. Note also that to uniquely compute all three components of T using the optimization

in (19) at least one pair of the cameras must be verged (the axes (in, jn) of the camera matrices

 must not all span the same 2D subspace).

4.4 Multiple Time Instant Algorithm

Rarely are two sets of multi-view images sufficient to obtain an accurate calibration. The

approach just described can easily be generalized to T time instants. The first time instant is

treated as above and used to compute in, jn,  and to impose the constraint on fn and  in

(18). Equation (19) is then applied to the remaining T − 1 frames to obtain additional

constraints:

(21)

where Tt is the translation estimated in the tth time instant and  is the scale of the face in the

nth camera at the tth time instant. Equations (18) and (21) are then re-arranged to obtain an

over-constrained linear system which can then be solved to obtain fn and .

6Note that in the case of calibrated camera(s) it is convenient to think of the relative motion between the object and the camera(s) as the
motion of the object R, T. In the single camera case (see (9)) and the multiple cameras, single time instant case with uncalibrated camera
matrix P (see (13)) it is convenient to think of the relative motion as camera motion.
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4.5 Calibration as a Single Optimization

The algorithms in Sects. 4.3 and 4.4 have the disadvantage of being two stage algorithms. First

they solve for in, jn, , and , and then for fn and . It is better to pose calibration as the single

large non-linear optimization of:

(22)

summed over all cameras n and time instants t with respect to the 2D shape parameters pn,t,

the appearance parameters , the 3D shape parameters p ̄t, the rotations Rt, the translations

Tt, and the calibration parameters in, jn, fn, , and . In (22), In,t represents the image

captured by the nth camera in the tth time instant and the average depth z ̄ = kn · Tt in  given

by (16). Finally, we define the world coordinate system by enforcing R1 = I and T1 = 0.

The expression in (22) can be optimized by iterating two steps: (1) The calibration parameters

are optimized given the 2D shape and (rotated translated) 3D shape; i.e. the second term in

(22) is minimized given fixed 2D shape, 3D shape, Rt, and Tt. This optimization decomposes

into a separate 7 dimensional optimization for each camera. (2) A calibrated multi-view fit (see

Sect. 5) is performed on each frame in the sequence; i.e. the entire expression in (22) is

minimized, but keeping the calibration parameters in  fixed and just optimizing over the

2D shape, 3D shape, Rt, and Tt. The entire large optimization can be initialized using the

multiple time instant algorithm in Sect. 4.4.

4.6 Empirical Evaluation of Calibration

We tested our calibration algorithms on a trinocular stereo rig. Two example images of the

1300 input images from each of the three cameras are shown in Fig. 4. The complete input

sequence is included in the movie calib_input.mov. We wish to compare our calibration

algorithm with an algorithm that uses a calibration grid. In Sects. 4.6.1 and 4.6.2 we present

results for the epipolar geometry. We compute a fundamental matrix from the camera

parameters in, jn, fn, , and  estimated by our algorithm and use the 8-point algorithm

(Hartley 1995) to estimate the fundamental matrix from the calibration grid data. In Sect. 6.5.3

we present results for the camera focal length and relative orientation of the cameras, while

also comparing the 3D model building algorithms.

4.6.1 Qualitative Comparison of Epipolar Geometry—In Fig. 5 we show a set of

epipolar lines computed by the algorithms. In Fig. 5(a) we show an input image captured by

camera 1, with a few feature points marked on it. In Fig. 5(b) we show the corresponding points

in the other image and the epipolar lines. The solid dark colored epipolar lines are computed

using the 8-point algorithm on the calibration grid data. The dashed black epipolar lines are

computed using the two stage multiple time instant algorithm of Sect. 4.4. The solid light

colored epipolar lines are computed using the single large optimization algorithm of Sect. 4.5.

Figures 5(d) and (c) are similar for feature points marked in camera 3. While all three sets of

epipolar lines are very similar, the epipolar lines for the single large optimization algorithm

are overall closer to those for the 8-point algorithm than those of the two stage algorithm.
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4.6.2 Quantitative Comparison of Epipolar Geometry—In Figs. 6 and 7 we present

the results of a quantitative comparison of the fundamental matrices by extracting a set of

ground-truth feature point correspondences and computing the RMS distance between each

feature point and the corresponding epipolar line predicted by the fundamental matrix. In Fig.

6 we present results on 10 images of a calibration grid, similar (but not identical) to that used

by the calibration grid algorithm. The ground-truth correspondences are extracted using a

corner detector. In Fig. 7 we present results on 1400 images of a face at different scales. The

ground-truth correspondences are extracted by fitting a single-view AAM independently to

each image (i.e. no use of the multi-view geometry is used).

Although the optimization algorithm of Sect. 4.5 performs significantly better than the two

stage algorithm in Sect. 4.4, both AAM-based algorithms perform slightly worse than the 8-

point algorithm on the calibration grid data in Fig. 6. The main reason is probably that the

ground-truth calibration grid data covers a similar volume to the data used by the 8-point

algorithm, but a much larger volume than the face data used by the AAM-based algorithms.

When compared on the face data in Fig. 7 (which covers a similar volume to that used by the

AAM-based algorithm), the 8-point algorithm and the optimization algorithm of Sect. 4.5

perform comparably well.

5 Calibrated Multi-View Fitting

Once we have calibrated the cameras and computed in, jn, fn, , and  we can then use a

weak perspective calibrated multi-view fitting algorithm to fit a given AAM to multiple images.

We optimize:

with respect to the N sets of 2D shape parameters pn, the N sets of appearance parameters ,

the one global set of 3D shape parameters p ̄, the global rotation R, and the global translation

T. In this optimization,  is defined by (16) where z ̄ = kn · T. It is also possible to formulate

a similar scaled orthographic calibrated algorithm in which  is replaced with  defined in

(8) and the optimization is also performed over the additional N scales σn. Note that in these

calibrated fitting algorithms, the calibration parameters in, jn, fn, , and  are constant and

not optimized. As shown below, this leads to a lower dimensional optimization and more robust

fitting.

5.1 Empirical Evaluation

5.1.1 Qualitative Results—An example of using our calibrated multi-view fitting algorithm

to track by fitting a single 2D+3D AAM to three concurrently captured images of a face is

shown in Fig. 8. The complete fitting sequence is included in the movie

calib_fitting.mpg. The top row of the figure shows the tracking result for one frame. The

bottom row shows the tracking result for a frame later in the sequence. In each case, all three

input images are overlaid with the 2D shape pn plotted in dark dots. The view-dependent camera

projection of this 3D shape is also plotted as a white mesh overlaid on the face. The single 3D

shape p ̄ at the current frame is displayed in the top-right of the center image. We also display
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the recovered roll, pitch, and yaw of the face (extracted from the global rotation matrix R) in

the top left of the center image. The three cameras combine to compute a single head pose,

unlike Fig. 3 where the pose is view dependent.

5.1.2 Quantitative Results—In Fig. 9 we show quantitative results to demonstrate the

increased robustness and convergence rate of our calibrated multi-view fitting algorithms. In

experiments similar to those in Matthews and Baker (2004), we generated a large number of

test cases by randomly perturbing from a ground-truth obtained by tracking the face in the

multi-view video sequences. The global 3D shape parameters p ̄, global rotation matrix R, and

global translation T were all perturbed and projected into each of the three views. This ensures

the initial perturbation is a valid starting point for all algorithms. We then run each algorithm

from the same perturbed starting point and determine whether they converged or not by

computing the RMS error between the mesh location of the fit and the ground-truth mesh

coordinates. The algorithm is considered to have converged if the total spatial error is less than

2.0 pixels. We repeat the experiment 20 times for each set of 3 images and average over all

300 image triples in the test sequences. This procedure is repeated for different values of

perturbation energy. The magnitude of the perturbation is chosen to vary on average from 0 to

4 times the 3D shape standard deviation. The global rotation R, and global translation T are

perturbed by a scalar multiples α and β of this value. The values of α and β were chosen so that

the rotation and translation components introduce the same amount of perturbation energy as

the shape component (Matthews and Baker 2004).

In Fig. 9(a) we plot a graph of the likelihood (frequency) of convergence against the magnitude

of the random perturbation for the 2D+3D single-view fitting algorithm (Xiao et al. 2004a)

applied independently to each camera, the uncalibrated multi-view fitting algorithm described

in Sect. 3 and the two calibrated multi-view fitting algorithms: scaled orthographic and weak

perspective. The results clearly show that the calibrated multi-view algorithms are more robust

than the uncalibrated multi-view algorithm, which is more robust than the 2D+3D single-view

algorithm. Overall, the weak perspective calibrated multi-view fitting algorithm performs the

best. The main source of the increased robustness of the calibrated multi-view fitting algorithms

is imposing the constraint that the head pose is consistent across all N cameras. We also compute

how fast the algorithms converge by computing the average RMS mesh location error after

each iteration. Only trials that actually converge are used in this computation. The results for

two different magnitudes of perturbation (0.8 and 2.0) to the ground-truth are included in Fig.

9(b). The results indicate that the calibrated multi-view algorithms converge faster than the

uncalibrated algorithm, which converges faster than the single-view 2D+3D algorithm.

We include the movie fit_compare.mpg to demonstrate a few examples of the perturbation

experiments. The movie illustrates how the calibrated multi-view algorithms impose a

consistent head pose (c.f. uncalibrated algorithm) and a single 3D face shape (c.f. 2D+3D

algorithm). As a result, the calibrated algorithms sometimes converges when the other

algorithms diverge. The speed of convergence is also visibly faster.

In Table 1 we include timing results for our Matlab implementations of the four fitting

algorithms compared in this section. The results were obtained on a dual 2.5 GHz Power Mac

G5 machine and were averaged over 600 image triples with VGA (640 × 480) resolution. Each

algorithm was allowed to iterate until convergence over each image triple. Note that the results

for the single-view algorithm7 is just the cost of processing one image from the image triple.

The multi-view algorithms are all therefore approximately 3 times slower than the single-view

algorithm, as should be expected. Also note that since the weak perspective algorithm is more

7The single-view algorithm can be implemented in real-time (approximately 60 Hz) in C (Matthews et al. 2007).
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constrained it converges more quickly than the uncalibrated and scaled orthographic multi-

view algorithms. The single-view algorithm requires slightly fewer iterations than all of the

multi-view algorithms because it does not have to impose consistency on the 2D shapes in the

different views.

6 Multi-View 3D Model Construction

In the previous section we have shown that the performance of AAM fitting can be improved

by using multiple views and calibration information. Similarly, a 3D AAM can be constructed

more reliably using multiple calibrated cameras. In this section, we outline a calibrated multi-

view motion-stereo algorithm for 3D AAM construction and compare its performance with

other existing single-view and multi-view non-rigid structure-from-motion algorithms.

6.1 Non-Rigid Structure-from-Motion

One way to build a deformable 3D face model is to use 3D range data. In Blanz and Vetter

(1999), the 3D mesh vertices s ̄ are first located in a set of “training” 3D range scans. Principal

Component Analysis is then used to extract the base (or mean) shape s ̄0 and the m ̄ dominant

shape modes s ̄j. More recently, however, the task of building deformable face models from a

video captured by a single camera using non-rigid structure-from-motion has received a great

deal of attention (Bregler et al. 2000; Brand 2001).

Suppose that we have a sequence of images It of a face captured across time t = 1, …, T. Either

the face, the camera, or both may be moving. Assume we can track K 2D feature points in the

2D images It. Denote the tracking results:

Also denote the camera matrix of the camera at time t by Pt. Non-rigid structure-from-motion

can then be posed as minimizing:

(23)

with respect to the base shape s ̄0, the shape modes s ̄j, the shape parameters  and the camera

matrices Pt. If Pt is a perspective camera model, the above optimization is non-linear, but can

be solved using an appropriate nonlinear optimization algorithm (Xiao and Kanade 2005). If

Pt is a linear camera model, such as the scaled orthographic model (P = Pso), the above

optimization can be solved using a linear algorithm (Bregler et al. 2000; Brand 2001; Xiao et

al. 2004b).

6.2 Multi-View Structure-from-Motion

The single-view non-rigid structure-from-motion (NR-SFM) paradigm can be extended to

include information from multiple views/cameras to yield a multi-view non-rigid structure-

from-motion algorithm (Torresani et al. 2001) (MV-SFM).

Suppose we have a set of N > 1 cameras that simultaneously capture videos In,t for n = 1, …,

N across time t = 1, …, T. Denote the unknown camera matrices by Pn for n = 1, …, N and the
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global 3D rotation and translation of the face across time by Rt and Tt. Assume that we can

track K feature points across time in the videos In,t. Denote the tracking results as:

(24)

The problem then becomes one of minimizing:

(25)

with respect to the base shape s ̄0, the shape modes s ̄j, the shape parameters p̄t
j, the camera

matrices Pn, the global 3D rotation Rt and translation Tt of the face across time.

6.3 Stereo

Both the single-view and multi-view structure-from-motion algorithms suffer from the Bas

Relief ambiguity (Zhang and Faugeras 1992a; Szeliski and Kang 1997; Soatto and Brockett

1998; Hartley and Zisserman 2000). The Bas Relief ambiguity is an ambiguity between the

motion (translation or small rotation) of the cameras and the depths of the points in the scene.

In both the single-view and multi-view cases, the camera matrices must be solved for as well

as the structure of the scene. So, the ambiguity can manifest itself in the form of scaled depths

and motion between the cameras. If we have multiple calibrated cameras, however, it is

possible to derive better algorithms that do not suffer from the Bas-Relief ambiguity. As we

now describe, the simplest approach is to use stereo to fulfill the same role as a range-scanner.

Suppose now that we have a calibrated stereo rig with N > 1 cameras in it. Denote the known

(calibrated) camera matrices Pn for n = 1, …, N. Suppose that the nth camera captures the

images In,t across time t = 1, …, T as the face (and possibly the stereo rig) move. Assume that

we can track K feature points across time in the videos In,t, and also compute correspondence

between the cameras. Denote the tracked feature points as:

(26)

A stereo algorithm (similar to those in (Cootes et al. 1996; Gokturk et al. 2001)) to compute

the deformable model is then as follows:

1. Perform stereo at each time t by minimizing:

with respect to the 3D static shape s ̄t.

2. Align the 3D static shapes s ̄t with a transformation consisting of a 3D rigidity

transformation (6 degrees of freedom) and a single scale (1 degree of freedom); i.e.

perform a 3D “Procrustes” alignment.
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3. Compute s ̄0, s ̄j using Principal Component Analysis.

6.4 Motion-Stereo

The above stereo algorithm can be improved upon by posing the problem as a single large

optimization, a generalization of the non-rigid structure-from-motion formulation in (23). The

input to the motion-stereo algorithm is the same as the stereo algorithm, namely the camera

matrices Pn and the tracked feature points un,t. Denote the global 3D rotation and translation

of the face across time by Rt and Tt. In the stereo algorithm above, Rt and Tt are computed by

the 3D similarity Procrustes algorithm. The model construction problem can then be posed as

minimizing:

(27)

with respect to the base shape s ̄0, the shape modes s ̄j, the shape parameters p̄t
j, the global

rotations Rt, and the global translations Tt. The construction goal in (27) can be minimized

using the following motion-stereo algorithm:

1. Initialize using the stereo algorithm in Sect. 6.3

a. 3D similarity Procrustes → Rt, Tt.

b. Principal Components Analysis → s ̄0, s ̄j, p ̄tj.

2. Iterate the following two steps until convergence:

a. Fix s ̄0, s ̄j, solve for Rt, Tt, p̄t
j.

b. Fix p̄t
j, R

t, Tt, solve for s ̄0, s ̄j.

3. Project out any scale, rotation, or translation components left in the 3D shape modes

s ̄j.

In Step 2a, the optimization can be broken down into separate optimizations for each time t;

i.e. for each t minimize:

with respect to Rt, Tt, p̄t
j. In Step 2b, we break the optimization down in m ̄ + 1 sub-steps. We

first solve for the mean shape s ̄0 and then for each shape mode s ̄j in turn.

6.5 Experimental Evaluation

6.5.1 Input—The input to our four face model construction algorithms consists of a set of 2D

tracked facial feature points un,t (see (26)) in 312 images captured by n = 1, 2, 3 synchronized

cameras at t = 1, …, 104 time instants. We tracked 68 feature points independently in each

video sequence using a 2D Active Appearance Model (AAM) (Cootes et al. 2001;Matthews

and Baker 2004). Example results for 9 images (3 cameras × 3 time instants) are shown in Fig.

10. We also include the movie 2d_track.mpg showing the complete tracked input sequence.

Note that the head pose variation is substantial, but not too extreme. None of the videos contain

any full profiles. The input sequences were carefully chosen to maximize the head pose

variation, while not causing the 2D AAM to fail. In our experience, the head pose variation

Ramnath et al. Page 18

Int J Comput Vis. Author manuscript; available in PMC 2009 October 15.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



shown in Fig. 10 is the most that a single 2D AAM can cope with. While more sophisticated

tracking algorithms, which can cope with occlusions, severe foreshortening, and non-

Lambertian reflectance have been proposed, the pose variation in Fig. 10 is about the most that

can be tracked using the basic algorithm.

6.5.2 Qualitative Multi-View Model Construction Comparison—The results of

applying each of the four algorithms: (1) non-rigid structure-from-motion (NR-SFM) (Xiao et

al. 2004b), (2) multi-view non-rigid structure-from-motion (MV-SFM) (Torresani et al.

2001), (3) stereo, and (4) motion-stereo are summarized in Fig. 11. Note that the input to the

NR-SFM is generated by stacking together the image sequences from each of the three cameras.

All four algorithms therefore use exactly the same set of input image data.

For each model, we display the mean shape (s ̄0) and the first two shape modes (s ̄1, s ̄2) from

two viewpoints to help the reader visualize the 3D structure. The main thing to note in Fig. 11

is how “stretched” the NR-SFM and the MV-SFM models are. The depth (z) values of all of

the points in the mean shape appear to have been scaled by a constant multiplier. The underlying

cause of this stretching is the Bas-Relief ambiguity which occurs when applying (non-rigid)

structure-from-motion to data with little pose variation (Zhang and Faugeras 1992a;Szeliski

and Kang 1997;Soatto and Brockett 1998;Hartley and Zisserman 2000). The problem manifests

itself for both linear (NR-SFM) (Bregler et al. 2000;Brand 2001;Xiao et al. 2004b) and

nonlinear (MV-SFM) (Torresani et al. 2001) algorithms. The MV-SFM model is slightly better

than the NR-SFM model but the ambiguity persists as the problem is in the data. (Because the

problem is an ambiguity, it is possible that by chance the scale may be chosen more accurately.

The chance of accurate estimation of scale increases the more pose variation there is, and the

less noise there is (Zhang and Faugeras 1992a;Szeliski and Kang 1997;Soatto and Brockett

1998;Hartley and Zisserman 2000).) The motion-stereo and stereo models do not suffer from

this problem. In the next section we present a quantitative comparison using the calibration

algorithm derived in Sect. 4.

6.5.3 Quantitative Comparison using Camera Calibration—In this section we

quantitatively compare the performance of the four 3D face model construction algorithms in

terms of how well the resulting models can be used to perform camera calibration using the

algorithm in Sect. 4.5. One possible way of obtaining quantitative results might be to capture

range data as ground-truth. This approach, however, requires (1) calibrating and (2) aligning

the range data to the image data. Static range data also cannot be used to evaluate the deformable

3D shape modes. Ideally, we would like a way of evaluating the 3D fidelity of the face models

using video data of a moving face.

The algorithm in Sect. 4.5 is used to calibrate weak perspective camera matrices for a set of

stereo cameras using a 3D face model. By comparing the results of this algorithm with ground-

truth calibration data, we can indirectly measure the 3D fidelity of the face models. The relative

orientation component of the calibration primarily measures the pose estimation accuracy of

the algorithms, without any absolute head pose ground-truth. Estimating the focal lengths and

the epipolar geometry requires more than the relative orientation. Accurate focal lengths and

epipolar geometry requires the accurate non-rigid 3D tracking of the face in an extended

sequence.

We implemented the multi-view single optimization calibration algorithm in Sect. 4.5 and

compared the results with a calibration performed using a calibration standard grid and the

Matlab Camera Calibration Toolbox (Bouguet 2005). In Fig. 12 we present results for the yaw

rotation (about the vertical axis) between each pair of the three cameras and for each of the

three focal lengths. The yaw between each pair of the three cameras was computed from the

relative rotation matrices of the three cameras. We include results for each of the four models,
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and compare them to the ground-truth. The results in Fig. 12 clearly show the motion-stereo

algorithm to perform the best. The results for the NR-SFM model are a long way off. The

yaw8 is underestimated by a large factor, and the focal length overestimated by a similar factor.

Based on the results in Fig. 11, this is to be expected. The face model is too deep, so a medium

amount of parallax is generated by a too small yaw angle. Similarly, a scaling of the model is

interpreted as a too large motion in the depth direction and so too large a focal length. The MV-

SFM model also suffers from the same problem due to the scaled nature of the model albeit

generating better results than the NR-SFM model. Overall, the motion-stereo9 algorithm

clearly out performs both these algorithms and gives estimates of yaw and focal lengths that

are comparable to ground-truth calibration data (computed using the Matlab camera calibration

toolbox (Bouguet 2005)). To further emphasize this observation, we compute the percentage

deviation of the yaw and focal length estimates of each 3D model from the ground-truth data.

Although the bar graphs in Fig. 12 may look similar, the motion-stereo results for the focal

length are several times better than the stereo or MV-SFM results by the relative error measure

in Table 2.

7 Conclusion

7.1 Summary

In this paper we have studied multi-view AAM model fitting and construction. In Sect. 3 we

have described an algorithm to fit a single 2D+3D AAM to N images captured simultaneously

by N uncalibrated cameras. In the process, our algorithm computes: 2D shape parameters for

each image, a single set of global 3D shape parameters, the scaled orthographic camera matrix

for each view, and appearance parameters for each image (which may be different due to

different camera response functions). Our algorithm enforces the constraints that all of these

quantities are physically consistent in the 3D scene. The algorithm operates approximately N

times slower than the real-time single image 2D+3D AAM fitting algorithm (Matthews et al.

2007; Xiao et al. 2004a). We have shown our multi-view 2D+3D AAM algorithm to be both

slightly more robust and converge more quickly than the single-view 2D+3D AAM algorithm,

which is itself more robust than the single-view 2D AAM algorithm (Matthews and Baker

2004).

In Sect. 4 we have shown how the multi-view face model fitting algorithm can be extended to

calibrate a weak perspective (or full perspective) camera model. In essence, we use the human

face as a (non-rigid) calibration grid.

We demonstrated that the resulting calibration is of comparable accuracy to that obtained using

a calibration grid. We have also shown in Sect. 5, how the calibration algorithms described in

this paper can be used to improve the performance of multi-view face model fitting. The

calibrated multi-view algorithms perform better than the uncalibrated multi-view algorithm,

which performs better than the 2D+3D single-view algorithm in terms of frequency of

convergence and rate of convergence towards ground-truth when perturbed from the ground-

truth data.

In Sect. 6 we proposed a calibrated multi-view 3D model construction algorithm that is superior

to existing single-view and multi-view algorithms. We have shown that constructing a 3D face

model using a single-view or multi-view non-rigid structure-from-motion algorithm suffers

from the Bas-Relief ambiguity that may result in a “scaled” (stretched/compressed) model

8The results for the pitch and roll between each pair of cameras are omitted. The pitch and roll are very close to zero and so there is little
difference between any of the algorithms.
9Since the motion-stereo algorithm is the best among the four algorithms that we compared, we used the motion-stereo model for all the
fitting and calibration experiments described in the previous sections.
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when applied to data containing pose variation typical of that which can be obtained using a

standard face tracker such as a 2D Active Appearance Model (Cootes et al. 2001; Matthews

and Baker 2004). We have shown how using calibrated multi-view motion-stereo can eliminate

this ambiguity and yield face models with higher 3D fidelity. In Sect. 6.5.3 we quantitatively

compared the fidelity of the 3D models described in Sect. 6 using the calibration algorithm in

Sect. 4.5 and showed that calibrated multi-view motion-stereo algorithm performs the best for

calibration of camera relative orientations and focal lengths.

7.2 Discussion

In this paper we have shown how multi-view data can be used to improve both the fitting and

construction of face models. Multiple images always provide more information, but it is not

always obvious how best to take advantage of it. One of the interesting results of this paper is

that camera calibration considerably improves the performance of multi-view model fitting

and construction. In fact the results in Figs. 9 and 12 show that the benefit of using calibrated

multi-view over uncalibrated multi-view is in most cases perhaps even bigger than the benefit

of using uncalibrated multi-view over single-view. As model construction is typically

performed offline it is not a problem to use calibrated cameras. However, in the case of model

fitting, assuming calibration is not so easy. The cameras may be moved, they may be pan-tilt,

or it may not be possible to enter the scene. So automatic calibration is important in many

applications and dramatically improves fitting performance.

7.3 Future Work

In terms of multi-view 3D model construction, one limitation of our motion-stereo algorithm

is that it only computes the shape model for 68 points on the face. One area for future work

would be to extend our algorithm to compute dense 3D shape models. One possibility is to use

dense stereo to compute the 3D model, assuming calibrated cameras, followed by optical flow

methods (Brand 2001; Jones and Poggio 1998) or automatic construction methods (Baker et

al. 2004) to find the relationship between views.

In terms of multi-view fitting, one area of future work is batch fitting over time to a video

sequence. The main difference between a video sequence and a set of simultaneously captured

multi-view images is that the face cannot be assumed to have the same 3D shape in all images.

However, it is possible that the multi-view algorithms can be extended to temporal sequences

by imposing the constraint that the 3D shape does not change very fast; i.e. impose soft

constraints on the 3D shape over time instead of the hard constraint that it is exactly the same

in each of the views.

Acknowledgments

The research described in this paper was supported in part by Denso Corporation, U.S. Department of Defense contract

N41756-03-C4024, Office of Justice Award 2005-IJ-CX-K067, and National Institute of Mental Health grant R01

MH51435. Elements of the research described in this paper appeared previously in (Hu et al. 2004) and (Koterba et

al. 2005). We thank the reviewers of those papers for their feedback.

References

Ahlberg, J. Using the active appearance algorithm for face and facial feature tracking. Proceedings of the

international conference on computer vision workshop on recognition, analysis, and tracking of faces

and gestures in real-time systems; 2001. p. 68-72.

Baker S, Matthews I. Lucas–Kanade 20 years on: a unifying framework. International Journal of

Computer Vision 2004;56(3):221–255.

Ramnath et al. Page 21

Int J Comput Vis. Author manuscript; available in PMC 2009 October 15.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Baker S, Matthews I, Schneider J. Automatic construction of active appearance models as an image

coding problem. IEEE Transactions on Pattern Analysis and Machine Intelligence 2004;26(10):1380–

1384. [PubMed: 15641725]

Blanz, V.; Vetter, T. A morphable model for the synthesis of 3D faces. Computer graphics, annual

conference series (SIG-GRAPH); 1999. p. 187-194.

Bouguet, JY. Camera calibration toolbox for Matlab. 2005.

http://www.vision.caltech.edu/bouguetj/calib_doc

Brand, M. Morphable 3D models from video. Proceedings of the IEEE computer society conference on

computer vision and pattern recognition; 2001. p. 456-463.

Bregler, C.; Hertzmann, A.; Biermann, H. Recovering non-rigid 3D shape from image streams.

Proceedings of the IEEE computer society conference on computer vision and pattern recognition;

2000. p. 690-696.

Cootes, T.; Kittipanyangam, P. Comparing variations on the active appearance model algorithm.

Proceedings of the British machine vision conference; 2002. p. 837-846.

Cootes T, Di Mauro E, Taylor C, Lanitis A. Flexible 3D models from uncalibrated cameras. Image and

Vision Computing 1996;14:581–587.

Cootes, T.; Edwards, G.; Taylor, C. Active appearance models. Proceedings of the European conference

on computer vision; 1998a. p. 484-498.

Cootes, T.; Edwards, G.; Taylor, C. A comparative evaluation of active appearance model algorithms.

Proceedings of the British machine vision conference; 1998b. p. 680-689.

Cootes, T.; Wheeler, G.; Walker, K.; Taylor, C. Coupled-view active appearance models. Proceedings

of the British machine vision conference; 2000. p. 52-61.

Cootes T, Edwards G, Taylor C. Active appearance models. IEEE Transactions on Pattern Analysis and

Machine Intelligence 2001;23(6):681–685.

Dornaika, F.; Ahlberg, J. Fast and reliable active appearance model search for 3D face tracking.

Proceedings of the IEEE transactions on systems, man and cybernetics; 2004. p. 1838-1853.

Edwards, GJ. PhD thesis, University of Manchester, Division of Imaging Science and Biomedical

Engineering. 1999. Learning to identify faces in images and video sequences.

Gokturk, S.; Bouguet, J.; Grzeszczuk, R. A data driven model for monocular face tracking. Proceedings

of the international conference on computer vision; 2001. p. 701-708.

Gross R, Matthews I, Baker S. Appearance-based face recognition and light-fields. IEEE Transactions

on Pattern Analysis and Machine Intelligence 2004;26(4):449–465. [PubMed: 15382650]

Gross R, Matthews I, Baker S. Active appearance models with occlusion. Image and Vision Computing

2006;24(6):593–604.

Hager G, Belhumeur P. Efficient region tracking with parametric models of geometry and illumination.

IEEE Transactions on Pattern Analysis and Machine Intelligence 1998;20:1025–1039.

Hartley, R. In defense of the 8-point algorithm. Proceedings of the international conference on computer

vision; 1995. p. 1064-1070.

Hartley, R.; Zisserman, A. Multiple view geometry in computer vision. Cambridge: Cambridge

University Press; 2000.

Hu, C.; Xiao, J.; Matthews, I.; Baker, S.; Cohn, J.; Kanade, T. Fitting a single active appearance model

simultaneously to multiple images. Proceedings of the British machine vision conference; 2004. p.

437-446.

Jones, M.; Poggio, T. Multidimensional morphable models: a framework for representing and matching

object classes. Proceedings of the international conference on computer vision; 1998. p. 683-688.

Koterba, S.; Baker, S.; Matthews, I.; Hu, C.; Xiao, J.; Cohn, J.; Kanade, T. Multi-view AAM fitting and

camera calibration. Proceedings of the international conference on computer vision; 2005. p.

511-518.

Matthews I, Baker S. Active Appearance Models revisited. International Journal of Computer Vision

2004;60(2):135–164.Also appeared as Carnegie Mellon University Robotics Institute Technical

Report CMU-RI-TR-03-02

Matthews I, Xiao J, Baker S. 2D vs 3D deformable face models: representational power, construction,

and real-time fitting. International Journal of Computer Vision. 200710.1007/s11263-007-0043-2

Ramnath et al. Page 22

Int J Comput Vis. Author manuscript; available in PMC 2009 October 15.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://www.vision.caltech.edu/bouguetj/calib_doc


Pighin, FH.; Szeliski, R.; Salesin, D. Resynthesizing facial animation through 3d model-based tracking.

Proceedings of the international conference on computer vision; 1999. p. 143-150.

Romdhani, S.; Vetter, T. Efficient, robust and accurate fitting of a 3D morphable model. Proceedings of

the international conference on computer vision; 2003. p. 59-66.

Sclaroff, S.; Isidoro, J. Active blobs. Proceedings of the international conference on computer vision;

1998. p. 1146-1153.

Sclaroff S, Isidoro J. Active blobs: region-based, deformable appearance models. Computer Vision and

Image Understanding 2003;89(23):197–225.

Soatto, S.; Brockett, R. Optimal structure from motion: local ambiguities and global estimates.

Proceedings of the IEEE computer society conference on computer vision and pattern recognition;

1998. p. 282-288.

Sung, J.; Kim, D. Extension of AAM with 3D shape model for facial shape tracking. Proceedings of the

IEEE international conference on image processing; 2004. p. 3363-3366.

Szeliski R, Kang SB. Shape ambiguities in structure from motion. IEEE Transactions on Pattern Analysis

and Machine Intelligence 1997;19(5):506–512.

Torresani, L.; Yang, D.; Alexander, G.; Bregler, C. Tracking and modeling non-rigid objects with rank

constraints. Proceedings of the IEEE computer society conference on computer vision and pattern

recognition; 2001. p. 493-500.

Vetter T, Poggio T. Linear object classes and image synthesis from a single example image. IEEE

Transactions on Pattern Analysis and Machine Intelligence 1997;19(7):733–742.

Waxman A, Duncan J. Binocular image flows: steps toward stereo-motion fusion. IEEE Transactions on

Pattern Analysis and Machine Intelligence 1986;8(6):715–729.

Wen, Z.; Huang, TS. Capturing subtle facial motions in 3D face tracking. Proceedings of the international

conference on computer vision; 2003. p. 1343

Xiao, J.; Kanade, T. Uncalibrated perspective reconstruction of deformable structures. Proceedings of

the international conference on computer vision; 2005. p. 1075-1082.

Xiao, J.; Baker, S.; Matthews, I.; Kanade, T. Real-time combined 2D+3D active appearance models.

Proceedings of the IEEE computer society conference on computer vision and pattern recognition;

2004a. p. 535-542.

Xiao, J.; Chai, J.; Kanade, T. A closed-form solution to non-rigid shape and motion recovery. Proceedings

of the European conference on computer vision; 2004b. p. 573-587.

Zhang, Z.; Faugeras, O. 3D dynamic scene analysis. Berlin: Springer; 1992a.

Zhang Z, Faugeras O. Estimation of displacements from two 3-D frames obtained from stereo. IEEE

Transactions on Pattern Analysis and Machine Intelligence 1992b;14(12):1141–1156.

Ramnath et al. Page 23

Int J Comput Vis. Author manuscript; available in PMC 2009 October 15.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 1.

A representation of the experimental setup for multi-view 2D+3D AAM fitting. For each view

we have a separate set of 2D shape parameters and camera projection matrices, but just a single,

global set of 3D shape parameters and the associated global 3D rotation and translation. Our

fitting algorithm imposes the constraints that for each view separately, the 2D shape model for

that view must approximately equal the projection of the single 3D shape model
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Fig. 2.

An example of using our uncalibrated multi-view fitting algorithm to fit a single 2D+3D AAM

to three simultaneous images of a face. Each image is overlaid with the corresponding 2D shape

for that image in dark dots. The head pose (extracted from the camera matrix ) is displayed

in the top left of each image as roll, pitch and yaw. The single 3D shape p ̄ for the current ‘3-

frame’ is displayed in the top right of the center image. This 3D shape is also overlaid in each

image, using the corresponding , as a white mesh. See the movie iterations.mpg for a

video of the whole fitting sequence
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Fig. 3.

An example of our multi-view fitting algorithm being used to track a face in a trinocular

sequence. As the face is tracked we compute a single 3D shape and three estimates of the head

pose using three independent camera matrices. See the movie tracking.mpg for the complete

sequence
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Fig. 4.

Example inputs to our calibration algorithms: A set of simultaneously captured image sets of

a face at a variety of different positions and expressions. See calib_input.mov for the

complete input
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Fig. 5.

Qualitative comparison between our AAM-based calibration algorithms and the 8-point

algorithm (Hartley 1995). a An input image captured by the first camera with several feature

points marked on it. b The corresponding points and epipolar lines of the other image. The

solid dark colored epipolar lines are computed using the 8-point algorithm, the dashed black

epipolar lines using the two stage multiple time instant algorithm, and the solid light colored

epipolar lines are computed using the optimization algorithm. d Shows the input image of the

third camera, and c the corresponding points and epipolar lines for the second camera
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Fig. 6.

Quantitative comparison between our AAM-based calibration algorithms and the 8-point

algorithm (Hartley 1995) using a calibration grid. The evaluation is performed on 10 images

of a calibration grid (data similar to, but not used by the 8-point algorithm). The ground-truth

is extracted using a corner detector. We plot the RMS distance error between epipolar lines

and the corresponding feature points for each of the 10 images
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Fig. 7.

Quantitative comparison between our AAM-based calibration algorithms and the 8-point

algorithm (Hartley 1995) using a calibration grid. The evaluation is performed on 1400 images

of a face. The ground-truth is extracted using a single-view AAM fitting algorithm. We plot

the RMS distance error between epipolar lines and the corresponding feature points for each

of the 1400 images
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Fig. 8.

An example of using our calibrated multi-view fitting algorithm to fit a single 2D+3D AAM

to three simultaneously captured images of a face. Each image is overlaid with the

corresponding 2D shape for that image in dark dots. The single 3D shape p ̄ for the current triple

of images is displayed in the top right of the center image. This 3D shape is also projected into

each image using the corresponding Pn, and displayed as a white mesh. The single head pose

(extracted from the rotation matrix R) is displayed in the top left of the center image as roll,

pitch, and yaw. This should be compared with the algorithm in Sect. 3 in which there is a

separate head pose for each camera. See the movie calib_fitting.mpg for the complete

fitting sequence

Ramnath et al. Page 31

Int J Comput Vis. Author manuscript; available in PMC 2009 October 15.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 9.

a The likelihood (frequency) of convergence plot against the magnitude of a random

perturbation to the ground-truth fitting results computed by tracking through a trinocular

sequence. The results show that the calibrated multi-view algorithms are more robust than the

uncalibrated multi-view algorithm discussed in Sect. 3, which itself is more robust than the 2D

+3D single-view algorithm (Xiao et al. 2004a). b The rate of convergence is estimated by

plotting the average error after each iteration against the iteration number. The results show

that the calibrated multi-view algorithms converge faster than the uncalibrated algorithm,

which converges faster than the single-view 2D+3D algorithm
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Fig. 10.

Three example frames from each of three synchronized stereo cameras. In total, we tracked

the head independently through 104 frames in each camera using a 68 point 2D AAM (Cootes

et al. 2001; Matthews and Baker 2004). The pose variation in the three sequences is the most

that a single 2D AAM can cope with before it fails. See the movie 2d_track.mpg for the

complete tracked input sequence
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Fig. 11.

This figure shows the mean shape and first two shape modes of the single-view and multi-view

non-rigid structure-from-motion models, the stereo model and the motion-stereo model. The

main thing to note is that the non-rigid structure-from-motion models are “stretched” in the

depth direction
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Fig. 12.

A quantitative evaluation of the 3D fidelity of the models, obtained by using the models to

calibrate the cameras using the algorithm in Sect. 4.5. The results show the motion-stereo

algorithm to perform the best. The single-view non-rigid structure-from-motion model results

in estimates of the yaw and focal length that are both off by a large factor. The two error factors

are roughly the same. Using multi-view non-rigid structure-from-motion does help in reducing

the errors to a significant degree, but the results are still not as good as the motion-stereo model.

GT refers to the ground truth values computed using the Matlab camera calibration toolbox

(Bouguet 2005)
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Table 1

This table shows the timing results for our Matlab implementations of the four fitting algorithms evaluated in

Sect. 5.1.2 in milliseconds. The results were obtained on a dual 2.5 GHz Power Mac G5 machine and were

averaged over 600 image triples with VGA (640 × 480) resolution. Each algorithm was allowed to iterate until

convergence over each image triple. Note that the results for the single-view algorithm is just the cost of

processing one image from the image triple

Algorithm Time per frame Iterations per frame Time per iteration

2D+3D single-view 33.808 2.5209 13.401
uncalibrated multi-view 152.33 3.2915 46.247
scaled orthographic 152.94 3.2178 47.534
weak perspective 125.94 2.6131 48.158

Int J Comput Vis. Author manuscript; available in PMC 2009 October 15.
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