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Abstract

We consider clustering problems in which the available
attributes can be split into two independent subsets, such
that either subset suffices for learning. Example applica-
tions of thismulti-view setting include clustering of web
pages which have an intrinsic view (the pages themselves)
and an extrinsic view (e.g., anchor texts of inbound hyper-
links); multi-view learning has so far been studied in the
context of classification. We develop and study partition-
ing and agglomerative, hierarchical multi-view clustering
algorithms for text data. We find empirically that the multi-
view versions ofk-Means and EM greatly improve on their
single-view counterparts. By contrast, we obtain negative
results for agglomerative hierarchical multi-view cluster-
ing. Our analysis explains this surprising phenomenon.

1. Introduction

In some interesting application domains, instances are
represented by attributes that can naturally be split into two
subsets, either of which suffices for learning. A prominent
example are web pages, which can be classified based on
their content as well as based on the anchor texts of inbound
hyperlinks; other examples include collections of research
papers. If few labeled examples and, in addition, unlabeled
data are available, then the co-training algorithm [4] and
other multi-view classification algorithms [15, 5] improve
the classification accuracy often substantially.

Multi-view algorithms train two independent hypothe-
ses which bootstrap by providing each other with labels for
the unlabeled data. The training algorithms tend to maxi-
mize the agreement between the two independent hypothe-
ses. Dasgupta et al. [7] have shown that the disagreement
between two independent hypotheses is an upper bound on
the error rate of one hypothesis; this observation explains
at least some of the often remarkable success of multi-
view learning. It also gives rise to the question whether

the multi-view approach can be used to improve clustering
algorithms.

Partitioning methods – such ask-Means,k-Medoids,
and EM – and hierarchical, agglomerative methods [11] are
among the clustering approaches most frequently used in
data mining. We study multi-view versions of these fami-
lies of algorithms for document clustering.

The rest of this paper is organized as follows. We review
related work in Section 2, the problem setting and evalu-
ation issues in Section 3. We discuss partitioning multi-
view clustering algorithms in Section 4 and hierarchical al-
gorithms in Section 5. Section 6 concludes.

2. Related Work

Research on multi-view learning in the semi-supervised
setting has been introduced by two papers, Yarowsky [18]
and Blum and Mitchell [4]. Yarowsky describes an algo-
rithm for word sense disambiguation. It uses a classifier
based on the local context of a word (view one) and a sec-
ond classifier using the senses of other occurrences of that
word in the same document (view two), where both classi-
fiers iteratively bootstrap each other.

Blum and Mitchell introduce the term co-training as a
general term for bootstrapping procedures in which two hy-
potheses are trained on distinct views. They describe a co-
training algorithm which augments the training set of two
classifiers with thenp positive andnn negative highest con-
fidence examples from the unlabeled data in each iteration
for each view. The two classifiers work on different views
and a new training example is exclusively based on the de-
cision of one classifier.

Blum and Mitchell require a conditional independence
assumption of the views and give an intuitive explanation on
why their algorithm works, in terms of maximizing agree-
ment on unlabeled data. They also state that the Yarowsky
algorithm falls under the co-training setting. The co-EM al-
gorithm [16, 10, 5] is a multi-view version of the Expecta-
tion Maximization algorithm for semi-supervised learning.
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Collins and Singer [6] suggest a modification of the co-
training algorithm which explicitly optimizes an objective
function that measures the degree of agreement between the
rules in different views. They also describe an extension to
the AdaBoost algorithm that boosts this objective function.

Dasgupta et al. [7] give PAC bounds for the general-
ization error of co-training in terms of the agreement rate
of hypotheses in two independent views. This also justifies
the Collins and Singer approach of directly optimizing the
agreement rate of classifiers over the different views.

Clustering algorithms can be divided into two categories
[3]: generative (or model-based) approaches and discrimi-
native (or similarity-based) approaches.

Model-based approaches attempt to learn generative
models from the documents, with each model represent-
ing one cluster. Usually generative clustering approaches
are based on the Expectation Maximization (EM) [8] algo-
rithm. The EM algorithm is an iterative statistical technique
for maximum likelihood estimation in settings with incom-
plete data. Given a model of data generation, and data with
some missing values, EM will locally maximize the like-
lihood of the model parameters and give estimates for the
missing values.

Similarity-based clustering approaches optimize an ob-
jective function that involve the pairwise document similar-
ities, aiming at maximizing the average similarities within
clusters and minimize the average similarities between clus-
ters. Most of the similarity based clustering algorithms fol-
low the hierarchical agglomerative approach [11], where a
dendrogram is build up by iteratively merging closest ex-
amples/clusters.

Related clustering algorithms that work in a multi-view
setting include reinforcement clustering [17] and a multi-
view version of DBSCAN [12].

3. Problem Setting and Evaluation

We consider the problem that data is generated by a mix-
ture model. Without knowing the true parameters of the
mixture model, we want to estimate parameters of mixture
components and thereby cluster the data into subsets so that
with high probability two examples that are generated by
the same mixture component get assigned to the same clus-
ter, and examples generated by different components get as-
signed to different clusters. We consider the special case
of a multi-view setting, where the available attributesV of
examples are split into disjoint setsV (1) andV (2). An in-
stancex is decomposed and viewed as(x(1), x(2)), where
x(1) andx(2) are vectors over the attributesV (1) andV (2),
respectively. These views have to satisfy theconditional
independenceassumption.

Definition 1 Views V (1) and V (2) are conditionally in-
dependentgiven a mixture componenty, when∀x(1) ∈

V (1), x(2) ∈ V (2) : p(x(1), x(2)|y) = p(x(1)|y)p(x(2)|y).

To measure the quality of a clustering, we use the aver-
age entropy over all clusters (Equation 1). It is based on the
impurity of a cluster given the true mixture components of
the data.pij is the proportion of the mixture componentj
in clusteri. mi is the size of clusteri, k is the number of
clusters, andm the total number of examples.

E =
k∑

i=1

mi

(
−∑

j

pij log(pij)

)

m
(1)

In order to evaluate the clustering algorithms presented
in the next sections we will use several data sets. One pop-
ular data set for evaluating multi-view classifiers is the We-
bKB data set [4, 15].

Based on its content (V (1)) as well as on the anchor texts
of inbound links (V (2)) a web page can be classified into six
different types of university web pages (course, department,
faculty, project, staff, student). We select all pages from the
data set for which links with anchor text exist. This results
in a data set with 2316 examples distributed over six classes
having the two-views property. We generate tfidf-vectors
without stemming.

For the WebKB data set the conditional independence
assumption might be slightly violated. To construct an
artificial data set that has the conditional independence
property, we adapt an experimental setting of [16]. We
use 10 of the 20 classes of the well known 20 newsgroups
data set. After building tfidf vectors, for each of the five
classes, we generate examples by concatenating vectors
x(1) from one group with randomly drawn vectorsx(2)

from a second group to construct multi-view examples
(x(1), x(2)). This procedure generates views which are
perfectly independent (peers are selected randomly). The
resulting classes are based on the following five pairs
of the original 20 newsgroup classes: (comp.graphics,
rec.autos), (rec.motorcycles, sci.med), (sci.space,
misc.forsale), (rec.sport.hockey, soc.religion.christian),
(comp.sys.ibm.pc.hardware, comp.os.ms-windows.misc).

We randomly select 200 examples for each of the 10
newsgroups, which results in 1000 concatenated examples
uniformly distributed over the five classes.

In order to find out how our algorithms perform when
there is no natural feature split in the data, we use docu-
ment data sets and randomly split the available attributes
into two subsets and average the performance over 10 dis-
tinct attribute splits. We choose six data sets that come
with the CLUTO clustering toolkit: re0 (Reuters-21578),
fbis (TREC-5), la1 (Los Angeles Times), hitech (San Jose
Mercury), tr11 (TREC) and wap (WebACE project). For a
detailed description of the data sets see [19].



For all experiments with partitioning clustering algo-
rithms the diagrams are based on averaging over ten clus-
tering runs to compensate for the randomized initialization.
Error bars indicate standard errors.

4. Multi-View EM Clustering

In this section we want to analyze whether we can extend
EM based cluster algorithms, so that they incorporate the
multi-view setting with independent views. Different EM
applications differ in specific models. We focus on models
that are suitable for document clustering. Gaussian mod-
els could be used for multi-view EM as well, but are not
applicable for document clustering. We firstly describe the
general EM algorithm extended for two views, then we de-
scribe two instances of this algorithm and present and ana-
lyze empirical results.

4.1. General Multi-View EM Algorithm

In the field of semi-supervised learning, co-EM based
methods Positive results on the co-EM algorithm for the
problem of semi-supervised learning [16, 5] lead to the
question whether co-EM can improve on EM for unsuper-
vised learning setting as well. The co-EM algorithm is
shown in Table 1. In each iterationi, each viewv finds
the model parametersΘ(v)

i which maximize the likelihood
given the expected values for the hidden variables of the
other view. In turns M, E steps in view one and M, E steps
in view two are executed. The single expectation and maxi-
mization steps are equivalent to the the E and M steps of the
original EM algorithm [8].

The algorithm is not guaranteed to converge. Our ex-
periments show that the algorithm often does not converge.
As displayed in Table 1, we do not run the algorithm until
convergence but until a special stopping criterion is met.

4.2. Mixture of Multinomials EM Algorithm

We now instantiate the general multi-view EM defini-
tion of Table 1 by a multi-view version of mixture-of-
multinomials EM. The mixture-of-multinomials model for
document clustering is based on the idea that generating a
document of lengthn from mixture componentj can be
modeled as a process in whichn words are drawn at ran-
dom from the dictionary. There is an individual probability
for each word in the dictionary and words are drawn with
replacement; hence, the number of occurrences of a spe-
cific word in the document is governed by a multinomial
distribution. Since there is a distinct distribution of words
in each mixture component, the resulting distribution which
governs the document collection is a mixture of multinomi-
als. Like all other tractable models, this model assumes in-

Table 1. Multi-View EM.

Input: Unlabeled dataD = {(x(1)
1 , x

(2)
1 ), . . . , (x

(1)
n , x

(2)
n )}.

1. InitializeΘ
(2)
0 , T , t = 0.

2. E step view 2: compute expectation for hidden variables
given the model parametersΘ(2)

0

3. Do until stopping criterion is met:

(a) Forv = 1 . . . 2:

i. t = t + 1

ii. M step viewv: Find model parametersΘ(v)
t that

maximize the likelihood for the data given the ex-
pected values for the hidden variables of viewv̄
of iterationt− 1

iii. E step viewv: compute expectation for hidden
variables given the model parametersΘ

(v)
t

(b) End Forv.

4. return combined̂Θ = Θ
(1)
t−1 ∪Θ

(2)
t

dependence of the word occurrences given the mixture com-
ponents – any model that does not make this assumption has
to deal with a number of covariances which is quadratic in
the number of dictionary entries.

For the estimation of mixture-of-multinomials model pa-
rameters we use an expectation maximization approach.
We adopt the definition of EM for mixture-of-multinomials
from [20]. The expectation step is shown in Equations 2
(likelihood) and 3 (posterior). The maximization step is
shown in Equations 4 (word probabilities) and 5 (prior),
wheren

(v)
il is the number of wordwl’s occurrences in doc-

umentx(v)
i in view v. Θ(v) denotes the combined set of

parametersθ(v)
j andα

(v)
ij .

P (x(v)
i |θ(v)

j ) =
∏

l

P
(v)
j (wl)n

(v)
il (2)

P (j|x(v)
i ,Θ(v)) =

α
(v)
ij P (x(v)

i |θ(v)
j )

∑
j′ α

(v)
ij′ P (x(v)

i |θ(v)
j′ )

(3)

P
(v)
j (wl) =

1 +
∑

i P (j|x(v)
i ,Θ(v))n(v)

il∑
l(1 +

∑
i P (j|x(v)

i , Θ(v))n(v)
il )

(4)

α
(v)
j =

1
m

∑

i

P (j|x(v)
i , Θ(v)) (5)

According to Table 1, running the mixture-of-multinomials
EM as multi-view EM means running M-step and E-step
in the respective view and interchanging the posteriors
P (j|x(v)

i ,Θ(v)). After each iteration we compute the log-
likelihood of the data (Equation 6) for each view. We ter-
minate the optimization process, if the log-likelihood of the



data did not reach a new maximum for a fixed number of
iterations in each view.

log P (X(v)|Θ(v)) =
m∑

i=1

log




k∑

j=1

α
(v)
ij P (x(v)

i |θ(v)
j )


 (6)

The final assignment of examples to partitionsπj , j =
1, . . . , k after termination is shown in Equation 7. We as-
sign an example to the cluster that has the largest averaged
posterior over both views.

πj = {xi ∈ X : j = argmaxj′(P (j′|x(1)
i , Θ(1)) +

P (j′|x(2)
i , Θ(2)))} (7)

In our experiments we often encountered empty clusters for
the mixture-of-multinomials EM. To prevent prior estima-
tions of zero, we set the prior to a constant valueα

(v)
j = 1

k .

4.3. Multi-View Spherical k-Means

A drawback of mixture-of-multinomials, described in
the preceding section, is that documents with equal compo-
sition of words but with different word counts yield differ-
ent posteriorsP (j|x(v)

i , Θ(v)). We can overcome this prob-
lem by normalizing each document vector to unit length. A
clustering algorithm that deals with this type of normalized
document vectors is sphericalk-Means [9], which is the reg-
ular k-Means algorithm with cosine similarity as distance
(similarity) measure.

In order to describe the multi-view version of spherical
k-Means, we simply need to describe the single expectation
and maximization steps, the sequence of those steps in the
multi-view setting again follows Table 1. The parameterΘv

consists of the concept vectorsc
(v)
j ; j = 1, . . . , k; v = 1, 2;

that have unit length‖c(v)
j ‖ = 1. k is the desired num-

ber of clusters. All example vectors also have unit length
‖x(v)

i ‖ = 1. We start with randomly initialized concept

vectorsc(2)
j , j = 1, . . . , k. An expectation step assigns the

documents that are closest to its concept vectorc
(v)
j to the

corresponding partitionπ(v)
j (Equation 8).

π
(v)
j = {x(v)

i ∈ X(v) : 〈x(v)
i , c

(v)
j 〉 > 〈x(v)

i , c
(v)
` 〉, ` 6= j} (8)

A maximization step computes new concept vectors (model
parameters) according to Equation 9.

c
(v)
j =

∑
x(v)∈π

(v)
j

x(v)

‖ ∑
x(v)∈π

(v)
j

x(v)‖ (9)

According to Table 1, after a maximization and an expecta-
tion step in one view, the partitionsπ(v)

j get interchanged for

a maximization and an expectation step in the other view,
and so on.

After each iteration we compute the objective function
for each view (Equation 10). We terminate the optimiza-
tion process, if the objective function did not reach a new
minimum for a fixed number of iterations in each view.

k∑

j=1

∑

x(v)∈π
(v)
j

〈x(v), c
(v)
j 〉 (10)

After termination, the corresponding cluster partitions
π

(1)
j andπ

(2)
j do not necessarily contain exactly the same

examples. In order to obtain a combined clustering result
we want to assign each example to one distinct cluster that
is determined through the closest concept vector. In order to
do this we compute a consensus mean for each cluster and
view. Only those examples are included that both views
agree on (Equation 11).

m
(v)
j =

∑
x
(1)
i ∈π

(1)
j ∧x

(2)
i ∈π

(2)
j

x
(v)
i

‖ ∑
x
(1)
i ∈π

(1)
j ∧x

(2)
i ∈π

(2)
j

x
(v)
i ‖

(11)

We assign each example to the final cluster that provides
the most similar consensus vector, determined by averaging
over the arcus cosine values in both views (Equation 12).

πj = {xi ∈ X : (12)

arccos(〈m(1)
j , x

(1)
i 〉) + arccos(〈m(2)

j , x
(2)
i 〉) <

arccos(〈m(1)
` , x

(1)
i 〉) + arccos(〈m(2)

` , x
(2)
i 〉), j 6= `}

4.4. Empirical Results

The comparison of multi-view mixture-of-multinomials
EM and sphericalk-Means with their single-view counter-
parts for the WebKB data set is shown in Figure 1. The
number of clusters is set tok = 6. Figure 2 displays the
same setting, but with different number of desired clusters
k. We notice a tremendous improvement of cluster quality
with the multi-view algorithms.

Figure 3 displays results for the artificial data set built
from the 20 newsgroup data set, as described in Section
3. On this data set the multi-view algorithms improve the
entropy even more than for the WebKB data set. The to-
tal independence property of the artificial data set seems to
support the success of multi-view EM.

Figure 4 shows the results for the six document data sets
without natural multi-view property, where we randomly
split the available attribute sets into two subsets. In ten of
twelve cases the multi-view outperform the single-view al-
gorithms significantly.
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Figure 1. Single and multi-view mixture-of-
multinomials EM (left) and sphericalk-Means (right)
for the WebKB data set.
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Figure 2. Single and multi-view mixture-of-
multinomials EM (left) and sphericalk-Means (right)
for the WebKB data set and differentk.
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Figure 3. Single and multi-view mixture-of-
multinomials EM (left) and sphericalk-Means (right)
for the artificial data set and differentk.

4.5. Analysis

We now want to investigate why the multi-view algo-
rithms obtain such dramatic improvemtents in terms of clus-
ter entropy over their single-view counterparts.

Dasgupta et al. [7] and Abney [1] have made the im-
portant observation that the disagreement between two in-
dependent hypotheses is an upper bound on the error risk of
either hypothesis. Let us briefly sketch why this is indeed
always the case. Consider a clustering problem with two
mixture components; letx be an instance with true mixture
componenty, and letπ(1)(x) andπ(2)(x) be two indepen-
dent clustering hypotheses which assignx to a cluster. Let
furthermore both hypothesesπ(1) andπ(2) have a risk of
assigning an instance to a wrong mixture component of at
most 50% (otherwise the clustering hypothesis has only re-
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Figure 4. Single and multi-view clustering for six
document data sets with random feature splits.

labeled the clusters).
In Equation 13 we distinguish between the two possible

cases of disagreement (either hypothesis may be wrong),
utilizing the independence assumption. In Equation 14 we
exploit the assumed error rate of at most 50%: both hy-
potheses are less likely to be wrong than just one hypothe-
sis. Exploiting the independence assumption again takes us
to Equation 15.

P (π(1)(x) 6= π(2)(x))
= P (π(1)(x) = y, π(2)(x) = ȳ)

+P (π(1)(x) = ȳ, π(2)(x) = y) (13)

≥ max
i

P (π(i)(x) = ȳ, π(̄i)(x) = ȳ)

+P (π(i)(x) = ȳ, π(̄i)(x) = y) (14)

= max
i

P (π(i)(x) 6= y) (15)

In unsupervised learning, the risk of assigning instances
to wrong mixture components cannot be minimized imme-
diately. However, the above argument says that by minimiz-
ing the disagreement between two independent hypotheses,
we can minimize an upper bound on the probability of an
assignment of an instance to a wrong mixture component.

In order to find out whether the multi-view EM algo-
rithm does in fact maximize the agreement between the
views, we determine the agreement rate of the mixture-of-
multinomials multi-view EM as shown in Equation 16. It is
the number of examples the views agree on the assignment
to components, divided by the total number of examplesm.

#

(
argmax

j
P (j|x(1)

i , Θ(1)) = argmax
j′

P (j′|x(1)
i , Θ(2))

)

m
(16)

For each iteration step the entropy and the corresponding
agreement rate are shown in Figure 5. With increasing en-
tropy the agreement of the views increases as well. This



means our algorithm optimizes an objective function where
the agreement rate is part of the optimization criterion.
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Figure 5. Entropy and agreement rate.

Additionally we want to analyze the relationship be-
tween the results of multi-view and single-view EM re-
garding the single-view objective function. We run the
mixture-of-multinomials multi-view EM until termination,
concatenate the resulting word probability vectorsP

(v)
j (wl)

and use the resulting vector as initialization for a single-
view clustering run in the concatenated space. Figure 6
shows the log-likelihood and entropy of the multi-view
run, the following single-view run and the single-view run
with regular random initialization. We calculate the log-
likelihood of the multi-view algorithm by computing the
regular single-view log-likelihood but replacingP (xi|θj)
with P (x(1)

i |θj)P (x(2)
i |θj) (Equation 17).

log(P (X|Θ)) =

n∑
i=1

log

(
k∑

j=1

αijP (x
(1)
i |θj)P (x

(2)
i |θj)

)
(17)

The single-view algorithm yields a higher likelihood –
which is not surprising because only the single-view algo-
rithm directly optimizes the likelihood. Surprisingly, how-
ever, we observe an even greater log-likelihood at the end
of the single-view run initialized with the multi-view re-
sult. This means we find better local optima by running co-
EM and transferring the resulting model-parameter into the
single-view setting compared to running single-view EM
with random initialization. We notice that the single-view
clustering which follows multi-view clustering does not af-
fect the entropy – hence, running a single-view algorithm
after a multi-view algorithm is not beneficial.

-8.8e+06

-8.7e+06

-8.6e+06

-8.5e+06

-8.4e+06

-8.3e+06

 0  10  20  30  40  50  60

Lo
g-

lik
el

ih
oo

d

Iteration

1 view
2 views

1 view continues 2 views  1.7

 1.8

 1.9

 2

 2.1

 0  10  20  30  40  50  60

E
nt

ro
py

Iteration

1 view
2 views

1 view continues 2 views

Figure 6. Log-likelihoods (left) and entropy (right)
of multi-view, continued single-view and regular
single-view EM (left).

In Section 4.1 we mentioned that the multi-view EM al-
gorithm is not guaranteed to converge. We consider the fol-
lowing simple example. We assume that we are clustering
with the multi-viewk-Means algorithm withk = 2. There
is one specific example whose attribute vector in view one
equals the concept vector of component one and in view two
equals the concept vector of component two.

By running the multi-viewk-Means algorithm this ex-
ample will be in turns assigned to component one and com-
ponent two. The algorithm will not converge because the
assignment of the specific example alternates.

5. Multi-View Agglomerative Clustering

Agglomerative clustering algorithms are based on itera-
tively merging nearest clusters. A natural extension of this
procedure for the multi-view setting is splitting up the iter-
ative merging procedure so that one iteration executes one
merging step in one view and the next iteration step in the
other view and so on. We want to find out if this approach
has advantages compared to clustering with a single view.
We will now describe this algorithm, present empirical re-
sults and analyze its behavior.

5.1. Algorithm

The general idea of our agglomerative multi-view clus-
tering is inspired by the co-training algorithm [4]. Co-
training greedily augments the training set with thenp pos-
itive andnn negative highest confidence examples from the
unlabeled data in each iteration for each view. Each new
training example is exclusively based on the decision of one
classifier in its view.

Agglomerative clustering is based on a distance mea-
sure between clusters. In the multi-view setting we have
two attribute setsV (1) andV (2) and two distance measures
d(1)(Ci, Cj) and d(2)(Ci, Cj). Agglomerative clustering
starts with each example having its own cluster. Then it-
eratively merging the closest clusters builds up a dendro-
gram. The multi-view agglomerative clustering is similar
but merges in turns the closest clusters in view one and view
two. All merging operations work on a combined dendro-
gram for both views, this results in one final dendrogram.
The algorithm is shown in Table 2.

By following this procedure, we assume that with low
dependence between the views we get a better quality
clustering than on the concatenated views. If a cluster
pair has a low distance in one view but a medium dis-
tance in the other view, then our algorithm would proba-
bly merge this pair in an earlier iteration than the cluster-
ing on concatenated views would do. The clustering den-
drogram gets built up on high confidence decisions made
in the separate views and one view might benefit from



Table 2. Multi-view agglomerative clustering.

Input: Unlabeled dataD = {(x(1)
1 , x

(2)
1 ), . . . , (x

(1)
n , x

(2)
n )}, dis-

tance measuresd1(Ci, Cj) andd2(Ci, Cj).

1. InitializeCi = xi, i = 1 . . . n.

2. Fort = 1 . . . n: Forv = 1 . . . 2:

(a) Find pair of closest clusters(Ci, Cj) =
argmin
(Ci,Cj)

dv(Ci, Cj), for i, j = 1 . . . (n− t + 1).

(b) MergeCi andCj .

3. Return dendrogram.

high confidence decision made in the other view. As dis-
tance measured(Ci, Cj), we use cosine similarity with
dmin(Ci, Cj) (single-linkage), dmax(Ci, Cj) (complete-
linkage) anddavg(Ci, Cj) (average-linkage) according to
[13].

5.2. Empirical Results

We compare the cluster quality of multi-view agglomer-
ative clustering with the regular single-view clustering on
the concatenated views. Figure 7 shows the entropy val-
ues for different values ofk (number of clusters) by starting
from the root node and expanding the firstk − 1 clusters in
reversed order as they were merged.

We notice that the multi-view agglomerative clustering
does not achieve lower entropy values compared to the cor-
responding single-view clustering. In some cases, espe-
cially for the WebKB data set with average-linkage, the en-
tropy of single-view clustering is much lower.
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Figure 7. Single and multi-view agglomerative clus-
tering for WebKB (left) and artificial data set (right).

5.3. Analysis

The question is, why does agglomerative multi-view
clustering deteriorate cluster quality in most cases, even if
our views are perfectly independent, as with the artificial
data set?

If we assume that our data is actually generated by a set
of mixture components, the the goal in agglomerative clus-

tering is to avoid merges of instances that belong to different
mixture components. We want to analyze the risk for those
cross-component merges for agglomerative multi-view and
single-view clustering.

We use cosine similarity in our agglomerative clustering,
so we are clustering in a space of directional data. We as-
sume a von Mises-Fisher (vMF) distribution for the real dis-
tribution of our mixture components ([2]). The von Mises-
Fisher distribution, for directional data, is the analog to the
Gaussian distribution for Euclidean data in the sense that it
is the unique distribution ofL2-normalized data that maxi-
mizes the entropy given the first and second moments of the
distribution ([14]).

According to this assumption, the vMF probability den-
sity of one component in one view is shown in Equation 18.
µ(v) is the mean vector,κ(v) the variance of the distribution
andc(κ(v)) a normalization term.

f(x(v)|µ(v), κ(v)) = c(κ(v))e
cos(x(v)^ µ(v))

κ(v)

= c(κ(v))e
〈µ(v),x(v)〉

κ(v)‖µ(v)‖‖x(v)‖ (18)

Before we proceed, we show that the cosine similarity be-
tween two example vectorsx and y in the concatenated
space can be written as the average over the cosine simi-
larities of the subspace vectors (Equation 20), if we assume
that‖x(1)‖ = ‖x(2)‖ and‖y(1)‖ = ‖y(2)‖.

cos(x^ y) =

(
x(1)

x(2)

)

√
‖x(1)‖2 + ‖x(2)‖2

(
y(1)

y(2)

)

√
‖y(1)‖2 + ‖y(2)‖2

=
〈x(1), y(1)〉+ 〈x(2)y(2)〉

2‖x(1)‖ · ‖y(1))‖ (19)

=
cos(x(1)^ y(1)) + cos(x(2)^ y(2))

2
(20)

If the two views are independent we can write the prob-
ability density of the concatenated views as a product of the
single densities as shown in Equation 21.

f(x|µ, κ) = f(x(1)|µ(1), κ(1))f(x(2)|µ(2), κ(2)) (21)

= c(κ(1))e
〈µ(1),x(1)〉

κ(1)‖µ(1)‖·‖x(1)‖ c(κ(2))e
〈µ(2),x(2)〉

κ(2)‖µ(2)‖·‖x(2)‖

For reasons of a simplified presentation we assume that
κ(1) = κ(2), ‖x(1)‖ = ‖x(2)‖ and‖µ(1)‖ = ‖µ(2)‖. With
this assumption we get Equation 22 and applying Equation
19 leads to Equation 23.

f(x|µ, κ) = c2(κ(1))e
〈µ(1),x(1)〉+〈µ(2),x(1)〉

κ(1)‖µ(1)‖·‖x(1)‖ (22)

= c2(κ(1))e
cos(x^ µ)

1
2 κ(1) (23)

We see that the resulting distribution is again vMF dis-
tributed with varianceκ = 1

2κ(1). If we consider the case



with only two mixture components, the distribution densi-
ties in the concatenated space have a smaller overlap, be-
cause the the variance is halved compared to the separate
views. We might assume that the similarity of the means of
the components in the concatenated views are doubled (as
the variance is halved), but this is not the case according to
Equation 20. The similarity of the means in the concate-
nated space is just the averaged similarity over the mean
similarities in the separate views. If distributions have a
smaller overlap, then the probability for cross-component
merges is smaller.

6. Conclusion

We presented the problem setting of clustering in a
multi-view environment and described two algorithm types
that work in this setting in terms of incorporating the condi-
tional independence property of the views.

The EM-based multi-view algorithms significantly out-
perform the single-view counterparts for several data sets.
Even when no natural feature split is available, and we ran-
domly split the available features into two subsets, we gain
significantly better results than the single-view variants in
almost all cases.

In our analysis we discovered that the multi-view EM al-
gorithm optimizes agreement between the views. Because
the disagreement is an upper bound on the error rate of one
view, the good performance of multi-view EM can be ex-
plained through this property.

The agglomerative multi-view algorithm yields equal or
worse results than the single-view version in most cases.
We identified that the reason for this behavior is that the
mixture components have a smaller overlap when the views
are concatenated. This means in the single-view setting the
probability for cross-component merges is lower, which di-
rectly improves cluster quality.
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