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Multi‑view clustering 
for multi‑omics data using unified 
embedding
Sayantan Mitra1*, Sriparna Saha1 & Mohammed Hasanuzzaman2

in real world applications, data sets are often comprised of multiple views, which provide consensus 

and complementary information to each other. Embedding learning is an effective strategy for nearest 
neighbour search and dimensionality reduction in large data sets. this paper attempts to learn a 

unified probability distribution of the points across different views and generates a unified embedding 
in a low‑dimensional space to optimally preserve neighbourhood identity. probability distributions 

generated for each point for each view are combined by conflation method to create a single unified 
distribution. The goal is to approximate this unified distribution as much as possible when a similar 
operation is performed on the embedded space. As a cost function, the sum of Kullback‑Leibler 

divergence over the samples is used, which leads to a simple gradient adjusting the position of 

the samples in the embedded space. the proposed methodology can generate embedding from 

both complete and incomplete multi‑view data sets. finally, a multi‑objective clustering technique 

(AMOSA) is applied to group the samples in the embedded space. the proposed methodology, Multi‑

view neighbourhood embedding (MvNE), shows an improvement of approximately 2−3% over state‑
of‑the‑art models when evaluated on 10 omics data sets.

Modern data sets are usually comprised of multiple distinct feature representations, o�en referred to as multi-
view data, providing consistent and complementary  information1. For example, in the case of multilingual data, 
each language represents a separate view; in a biomedical data repository, a clinical sample  record2 may include 
patient information, gene expression intensity and clinical traits etc. By exploiting the characteristics of di�er-
ent views, multi-view learning can obtain better performance over single view  learning1. Multi-view clustering 
provides a natural way of generating clusters from multi-view data and has attracted considerable attention.

Multi-view learning has started with Canonical correlation analysis (CCA)3 and a series of works on co-
training  methods4–7. Co-training maximizes the mutual agreement amongst di�erent views in a semi-supervised 
setting. �e reasons of its success have been investigated  by8  and9. According to the mechanisms and principles, 
multiview clustering methods can be broadly divided into four typical classes; (i) subspace-based:  these models 
learn a uni�ed feature representation from all the views.10–16; (ii) late fusion based:  model under this category 
combines the clustering results from multiple views to obtain the �nal  clustering16–18; (iii) co-training based:  
methods under this category treats multi-view data by using co-training strategy; (iv) spectral based:  under this 
category, methods learn an optimal similarity matrix to capture the structure of the clusters, which serves as an 
a�nity matrix for spectral  clustering19–21.

Amongst these wide variety of multi-view clustering methods, subspace ones perform better and are widely 
studied. �ey attempt to exploit the subspace by adopting di�erent techniques, including canonical correlation 
analysis (CCA)22–25, aims at �nding linear projections of di�erent views with maximal mutual correlation, struc-
tured  sparsity26, Gaussian  process27,28, kernel  embedding29 and non-negative matrix factorization (NMF)30,31. 
�ese embedding techniques learn the latent feature set either by using co-variance or a�nity matrix, or, by 
directly projecting or factorizing the feature sets to desired latent space, ignoring the data similarity ranking. Cao 
et al. proposed Diversity-induced Multi-view Subspace Clustering (DiMSC)32 that exploits the complementary 
information from di�erent views. For enforcing diversity the algorithm uses Hilbert-Schmidt Independence 
Criterion (HSIC). Xie et al.  proposed33, a tensor-Singular Value Decomposition (t-SVD) based multiview sub-
scpace clustering. It uses tensor multi-rank to capture the complementary information between the views and 
solve the multi-view clustering problem as an optimization problem. Zhang et al.34 proposed two variations 
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of Latent Multi-View Subspace Clustering (LMSC) algorithm, linear LMSC (lLMSC) and generalized LMSC 
(gLMSC). lLMSC uses a linear correlation between each view and the latent representation, and gLMSC uses 
neural networks to obtain the generalized relationships between the views.

Clustering has many important applications in the �eld of biology and  medicine35. �e rapid development 
of high throughput technology makes available a large number of di�erent omics data to study the biological 
 problems36. It is possible to collect multiple omics data for the same person. �rough examining the di�erent 
omics data, it is possible to distinguish reliably between di�erent categories of  cancer37. Integration of multiple 
omics data can better understand the underlying molecular mechanism in complex biological processes, and 
therefore o�ers more sophisticated ways to address biological or medical  issues38,39. �us, compared to single 
data types, multi-omics methods achieve better performance. So far, a lot of approaches for data integration 
have been suggested in the literature. �ese data integration methods mainly depend on two strategies: (i) space 
projection  method40, and (ii) metric (similarity measures) fusion  technique41.

Nevertheless, these methods follow very di�erent approaches to obtain the patterns of samples or genes from 
multiple data domains. Earlier methods have utilized high correlated samples in the datasets to identify the multi-
dimensional genomic  modules42–44. However, these “co-modules” can only detect the sample structures across 
data types and may lead to biased  clustering45. Shen et al. proposed iCluster which obtains the cluster-structures 
from multi-omics data by using a joint latent variable template. Mo et al. developed  iClusterPlus46, the iCluster 
extension, which uses linear regression models to learn di�erent properties of omics data. However, the major 
drawback of this method is that it holds some strong assumptions which may fail to capture meaningful biological 
information. SNF (similarity network fusion)41 can resolve such problems as an almost assumption-free and rapid 
approach and uses local structure preservation method to modify sample similarity networks for each type of data. 
But, SNF can only characterize pair-wise similarity (e.g., Euclidean distance) in the samples, and is sensitive to 
local data noises or outliers. Further, pair-wise similarity can’t capture the true underlying structure in di�erent 
subspaces, leading to inaccurate clustering. Nguyen et al. proposed  PINS47, to identify clusters that are stable in 
response to repeated perturbation of the data. It integrates clusters by examining their connectivity matrices for the 
di�erent omics data. Mitra et al.48 proposed an ensemble-based multi-objective multi-view algorithm for classify-
ing patient data. �is method is computationally very expensive. One drawback common to all these algorithms 
is that they treat all omics equally, which may not be biologically appropriate. As a result, the clusters discovered 
are o�en poorly associated with patient outcomes. �us, there is a scarcity of more e�ective integration approach.

For patient strati�cation, multiple omics data can unfold more precise structure in the samples, that are not 
possible to disclose using single omic data. Combined information from multiple omics improves the perfor-
mance of the clustering algorithm. Some of the advantages of using multi-omics clustering are as follows: (i) it 
reduces the e�ect of noise in the data, (ii) each omic can reveal structures that are not present in other omics, 
(iii) di�erent omics can unfold di�erent cellular aspects.

Motivated by the above requirements, in this paper, we have proposed a probabilistic approach to map the 
high dimensional multi-omics data to a low dimensional uni�ed embedding preserving the neighbourhood 
identity across the views. It is meaningful to obtain an integrated heterogeneous feature set in a probabilistic 
model because di�erent properties of the data, like, variance and mean, can be combined e�ectively in a prob-
ability space. Under each view in the higher dimensional space, a Gaussian is centered on every sample, and the 
densities under this Gaussian are used to generate a probability distribution over all the potential neighbours 
of the sample. �e di�erent probability distributions of each sample across di�erent views are combined by 
 con�ation49. �e aim is to approximate this uni�ed distribution as much as possible when a similar operation is 
carried out in the embedded domain. Intuitively, a probabilistic embedding framework is a more conscientious 
approach because it circumvents the problems of di�erent representations and incomparable scales. Further, we 
have applied multi-objective clustering to cluster the obtained embedded data sets. �e main advantage of this 
technique is that it is capable of extracting di�erent shaped clusters present in a data set. �e general overview 
of the proposed methodology is shown in Fig. 1.

�e proposed model MvNE (Multi-view Neighbourhood Embedding) is evaluated on 10 cancer data sets and 
results are compared with state-of-the-art methods.

Some of the bene�ts of the proposed methodology are as follows: 

1. MvNE combines the views in the probability space. Combination of the views in the probability space pre-
serves various statistical properties of the individual views.

2. Con�ations of normal distributions coincide with the classical weighted least squares method, hence yield-
ing best linear unbiased and maximum likelihood estimators. �e use of this method provides a weighted 
combination of several views which is an important criterion for view combination. Hence, it reduces the 
overhead of �nding optimal weights for each view.

3. �e proposed methodology is extended to handle the datasets having incomplete views.
4. To the best of our knowledge, the current work is the �rst attempt in combining multiple omics data in the 

probability space in biomedical domain.
5. To the best of our knowledge, con�ation method for combining multiple views was never used in the literature.

Methods
Under this section, we have described the process of generating uni�ed embedding to handle the multi-view 
data sets.

problem statement. Given a data set X = {x1, x2, . . . , xn}, with n samples, we use Xv = {xv1 , x
v

2 , . . . , x
v

n
} ∈

R
dv×n(v = 1, 2, . . . ,m) , to represent the vth view of the data set with dv feature dimensions. �e task is 
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to obtain an embedding in the lower dimension, Y = {y1, y2, . . . , yn} ∈ R
demb×n , by unifying all m number of 

views, and categorizing it into C classes. Here, Y is optimized so that the sum of the Kullback-Leibler divergence 
between the two distributions (computed from higher dimension, X , and lower dimension, Y ) is minimized.

Conflation of probability.  �e con�ation is de�ned as the distribution determined by the normalized 
product of the probability density or probability mass  functions49. It can be easily calculated and also minimizes 
the maximum loss in Shannon information in combining several independent distributions into a single distri-
bution. �e con�ation of normal distributions produces the classical weighted mean squares and the maximum 
likelihood estimators for normally-distributed unbiased  samples49. �e traditional methods of combining prob-
ability distributions, viz., averaging the probabilities and averaging the data, are as follows:

Averaging the probabilities. One of the common methods of combining the probabilities is by averaging them 
over every set of values, P(X) = (P1(X) + P2(X))/2 . �is method has a signi�cant disadvantage. Firstly, the 
mean of the combined distribution is always exactly the average of the means, independent of the relative accu-
racy or variance of each. It is unreasonable to weight the two distributions equally. Secondly, it generates a 
multi-modal distribution, whereas the desired output distribution should be in the form as that of the input 
data—normal, or at least unimodal.

Averaging the data. Another common method that does preserve the normality is to average the data. Here P 
is calculated on (X1 + X2)/2 . Again, the main disadvantage of this method is that the obtained distribution has 
the mean exactly the average of the means of the input distributions, irrespective of the relative accuracies or 
variances of the two inputs (shown in Fig. 2). �e variance of P is never larger than the maximum variance of 
P1 and P2.

�e con�ation of probabilities (denoted by symbol “&”) is a method for consolidating uniformly weighted 
data.

If P1 and P2 have probability mass functions of f1 and f2 , respectively, then con�ation is denoted as follows:

In Fig. 2, we have shown the comparison between con�ation, averaging the probabilities and averaging the 
data methods. Initially, it may seem counter-intuitive that con�ation of the two distributions produces a much 
narrower curve. However, if the two measurements obtained from di�erent sources are assumed equally valid, 
then the overlap region between the two distributions contains the real value with relatively high probability.

Generation of initial unified data set by combining all views.  Initially, we generate a uni�ed data 
set, X ∈ R

d×n by concatenating the views, Xv
∈ R

dv×n , such that d =

∑
v
dv . For the points not appearing in all 

the views, we have replaced the missing features with zeros.
A�er obtaining X, we have used a stacked autoencoder (SAE) to obtain an uni�ed representation of the data 

set, Yinit ∈ R
demb×n . Here, demb represents the feature dimension in the embedded domain. Recent research has 

(1)&(P1, P2) =

f1(x)f2(x)
∑

y f1(y)f2(y)

Figure 1.  Di�erent views of the data sets are combined in the probabilistic space by con�ation method. �e 
low-dimensional embedding is generated by approximating the combined probability distribution in the lower-
dimensional space.
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shown that SAE consistently produces well separated and semantically meaningful representation on real-world 
 data50.

�e SAE comprises of an autoencoder part and a decoder part. Suppose, we are having a three layer architec-
ture: an input layer, three hidden layers and an output layer. In Fig. 3, the “feature” layer is the bottleneck i.e., the 
output of this layer is the required embedding. In the input layer, we provide the original sample vector as input. 
For example, we provide a vector of size 200 as input and want the embedding to be of size 30. �en the input and 
output layers will have size 200 and the bottleneck layer will have size, 30. �e input vector is �rst squeezed to 
the size of 30 and then we reconstruct the 200 sized vector from this size of 30. �e reconstructed vector, i.e., the 
value of the output layer should be similar to the input vector. For this, we have used mean squared error between 
the input and output vectors as the loss function. Once the network is trained, the decoder part is discarded and 
only the encoder part is used to generate the embedding. �e details of the network is explained below.

Each layer of SAE is a denoising autoencoder, trained to reconstruct the output of the previous layer a�er 
random  corruption50.

�e denoising autoencoder is de�ned as follows:

Here, Dropout(.) randomly sets a part of input dimension to 0. g1(.) and g2(.) are the activation functions for 
encoder and decoder, respectively. For training the network, the least-square loss, ||x − y||2

2
 is minimized. As the 

activation function, we have used recti�ed linear units (ReLUs)51, for every encoder/decoder pair.
A�er training, all the encoder and decoder layers are concatenated together, to form a deep autoencoder. �e 

schematic of the deep autoencoder is shown in Figure 3. It is a multilayer deep autoencoder having a bottleneck 

(2)x̂ ∼ Dropout(x)

(3)h1 = g1(W1x̂ + b1)

(4)ĥ ∼ Dropout(h1)

(5)y = g2(W2ĥ + b2)

Figure 2.  Example of con�ation technique. �e red curves are the two independent distributions, yellow curve 
is the probability distribution obtained by averaging the probabilities, blue curve is the probability distribution 
obtained by averaging the data and green curve denotes the distribution obtained by con�ation technique.

Figure 3.  Network structure of the stacked autoencoder. Output of the “feature” layer is the Yinit .
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coding layer in the middle. �e reconstructed network is then �ne-tuned to minimize the reconstruction loss. 
We have discarded the decoder layer and used the encoder to generate the initial embedding, Yinit.

Generation of unified probability distribution.  For each sample point, i, and its potential neighbour, j, 
in the view, v, the symmetric probability, pvij , that i selects j as its neighbour is given by Eqn 6:

Here,

�e dissimilarity, dvij is computed by the Eq. 8. It is the scaled squared Euclidean distance between the high 
dimensional samples, xi and xj , in the view v.

Here σ v
i

 is generated as such that the entropy of distribution over neighbors equals to log k52. Here, k is the e�ec-
tive number of nearest neighbors.

A�er obtaining the Gaussian distribution of each sample point in each view, the combined probability for 
each sample is generated by con�ation  method49 shown in Eq. 9.

By the basic properties of  con�ation53, the obtained uni�ed probability, pij , is the weighted-squared-mean of the 
pvij , and is normal. �e obtained P is further symmetrized by the Eq. 10.

In the embedded dimension, the induced probability, qij , that ith point will pick jth point as neighbour, is cal-
culated by a Student t-distribution with one degree of  freedom54, given in Eq. 11. Student t-distribution is used 
instead of Gaussian because the density of a point is evaluated much faster under Student t-distribution since it 
does not involve any exponential.

To �nd the optimal embedding, the sum of the Kullback-Leibler divergence between the two distributions is 
minimized as given in Eq. 12:

Extension to incomplete multi-view data-set. In this section, we have shown how our proposed algorithm can be 
extended for incomplete view settings. In case of incomplete view data, all samples do not appear in every view. 
�e only change that we have to make is in the generation of uni�ed probability, pij . For generating pij under 
incomplete view settings, we have used the Eq. 13. When all the views are complete, Eq. 13 is reduced to Eq. 9. 
From the equation, it can be seen that for the samples occurring in more than one view we have used con�ation, 
but for the points occurring exactly in a single view, we have used the original probability as generated by Eq.6.

Here, Sin is the set of points occurring in more than 1 view.

(6)pvij =
exp{(−dvij)

2}
∑

k �=i exp{(−dvik)
2}

(7)
pvii = 0 and

∑

i,j

pvi,j = 1

(8)(dvij)
2 =

||xvi − xvj ||
2

2{σ v
i }2

(9)pij =

∏

v

pvij

∏

v

pvij +
∏

v

∑

k �=j

pvik

(10)pij =
pij + pji

2n

(11)qij =
{1 + ||yi − yj||

2}−1

∑
l �=k{1 + ||yl − yk||2}−1

(12)C = KL(P||Q) =
∑

i

∑

j

pij log

(

pij

qij

)

(13)pij =











































pvij
V when sample j occurs in only 1 view

but i occurs in more than 1 view
pvij when row i occurs in only 1 view

�

v;i,j∈Sin

pvij

�

v;i,j∈Sin

pvij +
�

v

�

i,k∈Sin;k �=j

pvik
otherwise
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Rest of the methodologies are similar to those of the complete view setting. Finally, to obtain the optimal 
embedding, Eq. 12 is minimized.

�e generation of uni�ed view is explained with examples in the supplementary �le.

Generation of the final embedding.  A�er obtaining an uni�ed probability distribution P for each sam-
ple point in the data set (in Section ) and a combined data set Yinit (in Section ), an uni�ed �nal embedding Y is 
generated. At �rst, instead of randomly initializing Y , we initialize it with Yinit . We start by calculating qij using 
Eq. 11 for Y , and try to minimize the KL-divergence in Eq. 12. Using stochastic gradient descent the values of 
Y are optimized. Finally, the embedding Y is obtained. �e working methodology of the proposed algorithm is 
shown in Algorithms 1 and 2.

optimization. �e KL divergence between the two joint probability distributions, P and Q, is given by 
Eq. 12. �e equation can be written as:

Before performing the derivation, we de�ne the following terms

Now, for change in yi , the pairwise distances that may change are dij and dji , ∀j . Hence, the gradient of the cost 
function, C, with respect to yi is given by:

∂C
∂dij

 is obtained by di�erentiating KL-divergence in Eq. 14.

For k = i and l = j, the gradient 
∂((i+d

2

kl)
−1)

∂dij
 is non zero and also 

∑
k  =l pkl = 1 . Hence, the gradient, ∂C

∂dij
 , is given 

by,

Substituting this in Eq. 18, we have the �nal gradient as:

Generation of clusters. Here, we have discussed about the algorithm used to generate the clusters from 
the embedded sample points.

Multi-objective clustering technique. Multi-objective optimization (MOO) based clustering algorithms are bet-
ter in capturing clusters having di�erent  shapes55 and can detect the number of clusters automatically from 
the data set. For our experiment, we have used the algorithm, Archived Multi-objective Simulated Annealing 
(AMOSA), similar to that used  in56. We have used center based encoding. �e centers of the clusters are encoded 
in a solution to represent a partitioning. �e concepts of variable length encoding are used to automatically iden-
tify the number of clusters from a data set. �e number of clusters in di�erent solutions are varied over a range. 
�e choice of the algorithm is not restricted to this, any other MOO based algorithm can be used. 

(14)
C =

∑

i

∑

j

pij log pij − pij log qij

(15)dij =||yi − yj||

(16)
S =

∑

k �=l

{1 + d
2

lk}
−1

(17)
∂C

∂yi
=

∑

j

(

∂C

∂dij
+

∂C

∂dji

)

(yi − yj)

(18)= 2

∑

j

∂C

∂dij
(yi − yj)

∂C

∂dij
= −

∑

k �=l

pkl
∂ log qkl

∂dij

= −
∑

k �=l

pkl

(

1

qklS

∂((i + d
2
kl)

−1)

∂dij
−

1

S

∂S

∂dij

)

(19)
∂C

∂dij
= 2(pij − qij)(1 + d

2

ij)
−1

(20)
∂C

∂yi
= 4

∑

j

(pij − qij)(1 + ||yi − yj||
2)−1(yi − yj)
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(a) Objective functions used For our experiments, we have simultaneously optimized two objective functions, 
viz., Xie-Beni(XB)  index57 and PBM  index58.

  XB-index57 computes the ratio between the cluster compactness and cluster separation. �e minimum 
value of XB-index represents the optimal partitioning. 

 where K = number of clusters 

d(xr ,Cq) = distance between the cluster center and the points within the cluster, d(Cl ,Cm)) = distance 
between cluster centers.

  PBM index58 is de�ned as follows: 

 Here, K = number of clusters, DK = maxK
k,l=1

d(Ck ,Cl) and EK =

∑
K

k=1

∑nk

l=1
d(xk

l
,Ck) . Here, xk

l
 = lth 

point of the kth cluster, Ck = the center of the kth cluster and nk = samples in the kth cluster. Maximum value 
of PBM index corresponds to the optimal number of clusters.

(b) Mutation operator �ere are three mutation operators to explore the search space: 

(a) Normal mutation Under this technique, a cluster center is randomly selected and its feature values 
are replaced by random values drawn from the Laplacian distribution. �e distribution is given by, 
p(ǫ) ∝ e−

|ǫ−µ|
δ  with µ = old value at the cluster center and δ = 1.0 (sets the magnitude of perturbation).

(b) Insert mutation Under this case, a set of solutions are randomly selected and the corresponding 
number of clusters are increased by 1.

(c) Delete mutation Under this case, a set of solutions are randomly selected and the corresponding 
number of clusters are decreased by 1.

Results
�is section gives an overview of the datasets used in our experiment, experimental setup and some of the 
results obtained.

(21)XB =

∑K
q=1

∑n
r=1 µ2

qrd(xr ,Cq)

n(minl �=md(Cl ,Cm))
,

µqr =

{

1 : rth-data point ∈ qth-cluster
0 : otherwise,

(22)PBM(K) =

(

1

K
×

E1

EK

× DK

)
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Data sets. For performance evaluation of MvNE, experiments are performed on 10 benchmark omics data 
sets downloaded from https ://tcga-data.nci.nih.gov/tcga/. For all the data sets, following three views are used: 
gene expression, miRNA expression and DNA Methylation. Speci�cations of the datasets are shown in Table 1. 
Clinical data is used for obtaining the clusters from each dataset. Brief descriptions of the datasets are given 
below:

Breast cancer (BRCA). �is Breast cancer dataset contains samples from patients. �e breast cancer dataset 
have 4 clusters: Her2, Basal,LumA,  LumB59,60.

Glioblastoma multiforme (GBM). �is dataset cotai patient samples su�ering from GBM. GBM can be classi-
�ed into four di�erent  types61: Classical, Mesenchymal, Neural and Proneural.

Ovarian cancer (OVG). Details of the patients having ovarian serous cystadenocarcinoma tumors are listed in 
this dataset. Based on the cancer stages thre are three groups: stage II/A/B/C ; III/A/B/C and IV.

Colon cancer (COAD). Data from patients su�ering from Colon Adenocarcinoma are present here. Based on 
di�erent stages of the cancer it is divided into 4 groups: stage I/A/B/C; II/A/B/C; III/A/B/C and IV/A/B.

Liver hepatocellular carcinoma(LIHC). Data from patients su�ering from liver cancer are listed here. Based on 
di�erent stages of the cancer it is divided into 4 groups: I; II; III/A/B/C; and IV.

Lung squamous cell carcinoma (LUSC). Data from patients su�ering from lung cancer are present here. Based 
on di�erent stages of the cancer it is divided into 4 groups: I/A/B/C; II/A/B; III; and IV.

Skin cutaneous melanoma(SKCM). Data from patients su�ering from Melanoma cancer is present in the data-
set. Based on di�erent stages of the cancer it is divided into 4 groups: 0, II/A/B/C; III/A/B/C; and IV/A/B/C.

Sarcoma (SARC). SARC contains samples from patients su�ering from sarcoma. Based on the cancer types it 
has four main groups: Leiomyosarcoma, Dedi�erentiated liposarcoma, Pleomorphic MFH and Myxo�brosar-
coma.

Kidney renal clear cell carcinoma (KIRC). KIRC contains samples from patients su�ering from kidney cancer. 
Based on di�erent stages of the cancer it is divided into 4 groups: I/A/B/C, II/A/B/C; III/A/B/C; and IV/A/B/C..

Acute myeloid leukemia (AML). AML dataset contains samples from patients su�ering from Leukemia. Based 
on the type of cancer it is divided into 2 groups: Qiet and Kirc+.

comparing methods. Under this section, we have discussed about the algorithms that were used for com-
parison. Two baseline methods are developed based on the di�erent techniques for combining probabilities. �e 
details are as follows: 

 1. MCCA 62: Canonical correlation analysis (CCA) works with only two views. Witten and Tibshirani pro-
posed sparse multiple CCA (MCCA) which supports more than two views. It operates by maximizing the 
pairwise correlation between projections and CCA-RLS63.

Table 1.  Description of the di�erent views of the data sets. �e numbers in the brackets are selected features.

Dataset

No. of features

Samples #ClustersGene expression miRNA expression DNA methylation

BRCA 20510 (400) 1046 (220) 4885 (400) 684 4

GBM 12042 (400) 534 (110) 5000 (400) 274 4

OVG 12043 (400) 800 (190) 5000 (400) 291 3

COAD 20351 (400) 705 (170) 5000 (400) 221 4

LIHC 20531 (400) 705 (170) 5000 (400) 410 4

LUSC 20531 (400) 705 (170) 5000 (400) 344 4

SKCM 20531 (400) 705 (170) 5000 (400) 450 4

SARC 20531 (400) 1046 (241) 5000 (400) 217 4

KIRC 20531 (400) 705 (170) 5000 (400) 212 4

AML 20531 (400) 705 (168) 5000 (400) 170 2
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 2. MultiNMF11: It performs NMF on each view individually: Each omic Dv is factorized into Wv
H

v . �e omics 
are then integrated by enforcing the constraint that the Wv matrices are close to the “concensus” matrix 
W.

 3. DiMSC32: Diversity-induced Multi-view Subspace Clustering (DiMSC) uses Hilbert Schmidt Independence 
Criterion (HSIC) as diversity term to exploit the complementary information between di�erent views.

 4. LRACluster64: �is uses a latent sample representation to determine the distribution of the features. It 
optimizes a convex objective and o�ers a solution that is globally optimal.

 5. PINS47: To combine clusters of di�erent views, it uses a connectivity matrix. �e number of the clusters is 
chosen in such a way that the perturbation is robust. Perturbation is obtained by adding Gaussian noise 
to the data.

 6. SNF41: It is a similarity-based approach that generates a similarity network separately for each view. Such 
networks are fused together by an iterative process.

 7. iClusterBayes65: It uses Bayesian regularization based joint latent-variable model to detect the clusters from 
multi-omics data.

 8. MVDA44: In this approach, the information from various data layers (views) is incorporated at the result 
stage of each single view clustering iteration. �is functions by factorizing the membership matrices in a 
late integration manner.

 9. MvNE: Our proposed multi-view clustering methodology uses con�ation method to combine the views 
in the probabilistic domain and generates an uni�ed embedding. We have applied multi-objective opti-
mization algorithm,  AMOSA56, on the embedded data sets to obtain the clusters. AMOSA automatically 
determines the number of clusters from the data set. From the obtained Pareto-front, we have reported 
the results of the solutions which have high NMI values.

 10. AvgProb: As a baseline method, we have at �rst generated a probability distribution of the samples on each 
view and then combined the distributions by considering the average of the probabilities over the views. 
Final embedding is generated by minimizing the KL divergence between the obtained average probability 
and the probability in embedded domain.

 11. AvgData: As a baseline method, we have generated a combined distance matrix by considering the aver-
age of distance matrices from all the three views. �is probability distribution in the higher dimension 
is generated from this combined distance matrix. Final embedding is generated by minimizing the KL 
divergence between the generated probability and the probability in the embedded domain.

preprocessing of data sets. Most omics data sets have a much smaller number of samples than the num-
ber of features. To manage di�erent distributions, feature normalization in di�erent omics data is important. 
In addition, dimensionality reduction/ feature selection is necessary to provide equal opportunities to di�erent 
omics data in clustering process. Reduction of dimensionality is also important for retaining the most signi�cant 
features, reducing computation load. We have used an unsupervised technique for choice of features, variance 
ranking, in our approach. We have measured the variance of each feature for this. For gene expression and 
DNA methylation data sets, top 400 features with highest variance scores are selected. For miRNA sequence, 
top 22–24% features are selected. �is is because miRNA sequences have less number of features compared to 
other two.

experimental settings. For state-of-the-art methods, we have used the codes released by corresponding 
authors. For our method, empirically we have selected the size of low dimensional embedding, dim, as 80 for all 
the data sets. �e size of the nearest neighbour, k, is set to 30 empirically for all data sets. �e total iteration of 
gradient descent is set to 2000, initial momentum is set to 0.5 and �nal momentum is set to 0.9. Initially learning 
rate ( η ) is set to 200, and a�er every iteration, it is updated by adaptive learning rate scheme described by Jacobs 
et al.66.

evaluation metrics. Two measurement indices, normalized mutual information (NMI)67 and adjusted rand 
index (ARI)68 are used to compare MvNE with other approaches. Both metrics measure the di�erences between 
the real and the predicted partitions; higher values indicate more similarity with the predicted group.

Here C and E are the true class labels and cluster labels, respectively. I(.) is the mutual information, H(.) is the 
entropy.

parameters study. �ere are two main parameters in the proposed methodology, i.e., the size of the k near-
est neighbors (k) and the uni�ed embedding dimension (dim). Under this section, we have analyzed the perfor-
mance of MvNE with changes in these parameters. Results on all the ten data sets are reported in Figs. 4 and 5.

From Fig. 4 it is evident that, when k is too small, the probability distribution has very little information 
regarding the global structure of the clusters and it is too much focused on the local structure which causes the 
clusters to break into several sub clusters deteriorating the performance of the algorithm. If the k is too large, it 
fails to capture the structures of the clusters properly, causing merging of clusters and the algorithm is not stable 
when k is large. Empirically we have set the value of k to 30 for all data sets.

Figure 5 shows that, when dim is too small, uni�ed embedding fails to capture enough information to re�ect 
the structure of the data set. When it is too large, the performance degrades. One of the reasons for this is the 

(23)NMI(C,E) =
2 × I(C;E)

H(C) + H(E)
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use of Student-t distribution with one degree of freedom. With the increase in dimension it fails to preserve the 
local structure of the data set because in higher dimension, the heavy tails comprise of a relatively large portion 
of the probability mass. Empirically we have kept the embedded dimension to 80 for all data sets.

In SAE, we have kept the input layer size to the size of the input vectors, for example, like for gene expression 
values, we have kept input dimension size to 400. �ere are three hidden layers of size, 500, 80 and 500, respec-
tively. �e output layer has same size that of the input layer. �e dropout value is set to 5%.

For the multi-objective clustering algorithm, we have set the parameters in accordance  to56. We did not tune 
the settings of  AMOSA69 because the main focus of the paper is on generating the optimal embedding. �e 
parameter settings are as follows: Tmax = 100 , Tmin = 0.001 , Iteration = 100 , rate of cooling= 0.9 , Min clusters= 2 , 
Max clusters=

√

{samples} , SL = 50 and HL = 40 .  �e algorithm is executed for 20 times.

Gene marker  identification.  BRCA data set includes four groups of patients, i.e., LumB, LumA, Her2 
and Basal. A binary classi�cation problem is solved to identify the most signi�cant genes from each class. Two 
groups, one with samples from one class and the other with samples from other classes are formed. Signal-to-
noise ratio (SNR)70 is determined for each gene a�er considering both classes. It is described as,

Here µ is the mean and σ is the standard deviation of each class.
Genes with high SNR values correspond to high value of expression for the class to which they belong and 

vice versa. Finally, 5 up regulated (high SNR) and 5 down regulated (lowest SNR values) genes are selected from 
SNR list.

(24)SNR =
µ1 − µ2

σ1 + σ2

× 100,

Figure 4.  Change in NMI(%) with changes in k.

Figure 5.  Change in NMI(%) with the changing dimension (dim) of the embedded dataset.



11

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:13654  | https://doi.org/10.1038/s41598-020-70229-1

www.nature.com/scientificreports/

Table 2 shows the list of selected gene markers for all the classes.

Statistical  significance  test.  �e signi�cance test is carried out using one-way Analysis of Variance 
(ANOVA) test at 5% signi�cance level. �e results obtained by our proposed methodology MvNE over 20 runs 
are compared with other algorithms. �e p-values are shown in the Table 3. �e reported p-values indicate that 
statistically signi�cant results are obtained.

Discussion
In Tables 4 and 5, we have compared the NMI and Adjusted Rand Index (ARI) values over 10 omics data sets 
obtained by di�erent clustering methods. In terms of NMI and ARI, our proposed methodology, MvNE, shows an 
improvement of 2–3% and 1.8–2.9% over all the data sets with respect to state-of-the-art algorithms, respectively. 
�e maximum NMI and ARI values are marked in bold in Tables 4 and 5 respectively.

From the results, it can be seen that  iClusterBayes65 performs poorly as it may get stuck at local optimal solu-
tions due to complex structure.

Further in Table 6, we have also reported the macro F1 − score and Accuracy results obtained by our proposed 
methodology for all the 10 omic datasets.

�e baseline method, AvgProb, performs poorly as average of the probabilities failed to capture the structure 
of the probability distribution as discussed under the “Methods”. MvNE outperforms both the baseline methods, 
AvgData and AvgProb, showing the superiority of the con�ation method.

Our hypothesis of generating subspaces by combining di�erent views in the probabilistic domain proves 
e�ective with the results obtained.

�e BRCA dataset has 4 classes, so a total of 40 genes with 20 down-regulated genes and 20 up-regulated are 
obtained. Fig 6 shows the heatmap plot of these genes. Here, red means higher levels of expression values, green 
means lower levels of expression, and black means moderate levels of expression. Fig 6 also indicates that genes 
known for a speci�c tumor class are either down-regulated or up-regulated.

We have listed the gene expression pro�le plot for each BRCA dataset group in Fig 7. �e structure compact-
ness shows that the clustered samples have the same form of gene expression, i.e., there is a strong continuity 
between them within a cluster sequence.

In Table 3, we have reported the p-values obtained by our proposed model when compared with other 
state-of-the-art and baseline models. �ese results are below 5% signi�cance level. �is shows that performance 
improvements obtained by our proposed model, MvNE, are statistically signi�cant.

theoretical analysis. Time complexity. �e proposed methodology can be divided into three parts, viz., 
generation of the initial embedding using SAE, generation of the �nal low dimensional embedding and �nally 
the AMOSA algorithm for clustering. �e time complexity of each part of the algorithm is as follows: 

1. Time complexity of SAE In our proposed approach, we have used 3 hidden layers. �e time complexity of 
matrix multiplication is Mij ∗ Mjk is O(j ∗ j ∗ k).

  Since, we have total 4 layers (3 hidden layers and 1 output layer), so we require total 4 weight matri-
ces to compute the output layer, say, Wji ,Wkj ,Wlk and Wml . For a training sample t, number of itera-
tions as n and input vector of size, i; the time complexity for total forward and backward pass is typically: 
O(n ∗ t ∗ (ij + jk + kl + lm))

  However, we have parallelized the SAE by using GPUs.
2. Generation of embedding from high dimensional space �e time complexity of generating the low dimensional 

embedding for N number of samples is O(N ∗ N) . So, for very large dataset, this method is very slow. In 
the supplementary �le, we have shown results on large datasets having more than 3000 samples. But this 
algorithm is best suited for biological datasets where less number of samples are available.

Table 2.  5 up regulated and 5 down regulated Gene markers for BRCA dataset.

LumA LumB Her2 Basal

 Up regulated genes

CIRBP ARL6IP1 ERBB2 DSC2

TENC1 PTGES3 GGCT YBX1

KIF13B PCNA ACTR3 FOXC1

COL14A1 PLEKHF2 STARD3 ANP32E

NTN4 SFRS1 GRB7 PAPSS1

 Down regulated genes

TUBA1C TRIM29 GREB1 XBP1

FOXM1 PPL ESR1 GATA3

MYBL2 SFRP1 MAPT ZNF552

MKI67 ZFP36L2 TBC1D9 MLPH

TPX2 NDRG2 BCL2 FOXA1
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3. Time complexity of AMOSA For a population size of P, iteration of iter and N number of samples, AMOSA 
has time complexity of O(NlogN ∗ P ∗ iter)

Convergence analysis. For convergence analysis of our algorithm, we have shown the error plots for all the 
datasets while generating the low dimensional embedding. From Fig. 8, it can be observed that for 1000 itera-
tions, there is a monotonic decrease in the error value for all the datasets. �is shows the convergence of our 
proposed methodology.

O(n ∗ t ∗ (ij + jk + kl + lm))

Figure 6.  Heatmap showing the levels of expression of selected gene markers in the BRCA dataset for each 
subclass.

Figure 7.  Gene expression pro�le plot in the BRCA dataset for each subclass.
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conclusion
In this paper, we have proposed an unsupervised probabilistic approach to generate an uni�ed neighbourhood 
embedding for multi-view data sets. �e proposed methodology combines the multiple omics data in the prob-
ability space and then generates an uni�ed embedding preserving the statistical properties of each view as well 
as the combined neighbourhood information of the samples. Assigning equal weightage to each view is not very 
likely for solving patient classi�cation problems. One of the key bene�ts of our proposed methodology is that 
it utilizes a weighted combinations of views. �e con�ation method used here for combining di�erent omics 
data, automatically assigns high weightage to the more accurate omics data. Another advantage of the proposed 
methodology is that it can handle data having incomplete views, i.e., missing samples in some views. �e results 
for incomplete views are shown in the supplementary �le. However, one of the major drawbacks of the proposed 
methodology is the time complexity of calculating the embedding in the lower dimensions. It has very high time 

Table 3.  �e p-values obtained on comparing MvNE with other comparing methods in terms of NMI.

BRCA GBM OVG COAD LIHC LUSC SKCM SARC KIRC AML

MCCA 0.0014 0.0091 0.0031 0.0184 0.0151 0.0073 0.0043 0.0269 0.0302 0.02546

MultiNMF 0.0086 0.0076 0.0051 0.0303 0.0054 0.0019 0.0089 0.0214 0.0275 0.0139

DiMSC 0.0056 0.0034 0.0051 0.0291 0.0104 0.0078 0.0035 0.0235 0.0207 0.0201

LRAcluster 0.0036 0.0211 0.0215 0.0012 0.0036 0.0051 0.0062 0.0084 0.0051 0.0167

PINS 0.0044 0.0112 0.0008 0.0273 0.0089 0.0045 0.0244 0.0062 0.0065 0.0163

SNF 0.0126 0.0057 0.0086 0.0076 0.0277 0.0062 0.0119 0.00634 0.0026 0.0062

iClusterBayes 0.0045 0.0118 0.0086 0.0124 0.0357 0.0023 0.0076 0.0048 0.0034 0.0043

MVDA 0.0042 0.0132 0.0071 0.0051 0.0043 0.0073 0.0009 0.0015 0.0021 0.0077

AvgProb 0.0051 0.0178 0.0012 0.0012 0.0057 0.0031 0.0064 0.0068 0.0074 0.0053

AvgData 0.0061 0.0113 0.0091 0.0051 0.0049 0.0028 0.0098 0.0041 0.0092 0.0062

Table 4.  Comparison results in terms of NMI.

BRCA GBM OVG COAD LIHC LUSC SKCM SARC KIRC AML

MvNE 0.4192(±0.15) 0.4449(±0.18) 0.1247(±0.01) 0.1151(±0.02) 0.1024(±0.02) 0.2816(±0.02) 0.1359(±0.01) 0.1512 ( ±0.01) 0.1137(±0.01) 0.4507(±0.11)

MCCA 0.2086 0.2865 0.0731 0.0784 0.0546 0.2031 0.0952 0.0993 0.0765 0.3046

MultiNMF 0.3001 0.3606 0.0713 0.0657 0.0489 0.2401 0.0981 0.0836 0.0755 0.2787

DiMSC 0.3856 0.4089 0.1015 0.0917 0.0806 0.2598 0.0996 0.1051 0.0892 0.3166

LRAcluster 0.0146 0.0532 0.0304 0.0328 0.0573 0.0672 0.0483 0.0475 0.0389 0.3629

PINS 0.0118 0.0153 0.0095 0.0459 0.0348 0.0237 0.0382 0.0262 0.0279 0.2219

SNF 0.3581 0.026 0.0068 0.0332 0.0129 0.0082 0.0088 0.0233 0.0908 0.4349

iClusterBayes 0.0121 0.0306 0.0081 0.0106 0.0258 0.0112 0.0044 0.0177 0.0108 0.0894

MVDA 0.3912 0.4213 0.1063 0.0993 0.0775 0.2694 0.1195 0.1121 0.0955 0.2871

AvgProb 0.0119 0.0281 0.0092 0.0151 0.0261 0.0108 0.0038 0.0107 0.0109 0.0604

AvgData 0.3804 0.4053 0.1035 0.09193 0.0705 0.2644 0.1007 0.0891 0.1008 0.3014

Table 5.  Comparison results in terms of ARI.

BRCA GBM OVG COAD LIHC LUSC SKCM SARC KIRC AML

MvNE 0.2623(±0.02)
0.3609(±0.013

)
0.0957(±0.01) 0.0561(±0.01)

0.0215(±0.004

)
0.1571(±0.03) 0.0560(±0.02) 0.0715(±0.01) 0.0937(±0.01) 0.3915(±0.14)

MCCA 0.1903 0.2243 0.03031 0.0182 0.0031 0.1012 0.0093 0.0188 0.0195 0.1846

MultiNMF 0.2107 0.25476 0.04112 0.0163 0.0041 0.1107 0.0102 0.0208 0.0203 0.1964

DiMSC 0.2189 0.2806 0.0503 0.0191 0.0061 0.1142 0.0113 0.0212 0.0341 0.2137

LRAcluster 0.0086 0.0076 0.0051 0.0184 0.0054 0.0098 0.0055 0.0263 0.0392 0.2546

PINS 0.0144 0.0089 0.0045 0.0244 0.0067 0.0065 0.0016 0.0152 0.0136 0.1195

SNF 0.0126 0.0027 0.0062 0.0119 0.0063 0.0026 0.00062 0.0238 0.0157 0.3667

iClusterBayes 0.0045 0.0357 0.0023 0.0076 0.0048 0.0034 0.0043 0.0399 0.0288 0.0482

MVDA 0.2457 0.3441 0.0614 0.0194 0.0085 0.1351 0.0145 0.02366 0.0355 0.2021

AvgProb 0.021 0.0512 0.0091 0.00651 0.0096 0.0851 0.0013 0.0209 0.0205 0.0508

AvgData 0.2107 0.3404 0.0716 0.1941 0.0091 0.1261 0.01321 0.01326 0.01201 0.2709
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complexity. So for large datasets, the algorithm is slow. �is algorithm is best suited for medium sized datasets, 
like patient strati�cation datasets where the number of samples are generally low. Results on 10 omics datasets 
illustrate that our methodology provides better results.
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