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Abstract

Multi-view clustering (MVC) optimally integrates
complementary information from different views to
improve clustering performance. Although demon-
strating promising performance in many applica-
tions, we observe that most of existing methods
directly combine multiple views to learn an op-
timal similarity for clustering. These methods
would cause intensive computational complexity
and over-complicated optimization. In this pa-
per, we theoretically uncover the connection be-
tween existing k-means clustering and the align-
ment between base partitions and consensus par-
tition. Based on this observation, we propose a
simple but effective multi-view algorithm termed
Multi-view Clustering via Late Fusion Alignment
Maximization (MVC-LFA). In specific, MVC-LFA
proposes to maximally align the consensus parti-
tion with the weighted base partitions. Such a cri-
terion is beneficial to significantly reduce the com-
putational complexity and simplify the optimiza-
tion procedure. Furthermore, we design a three-
step iterative algorithm to solve the new resultant
optimization problem with theoretically guaranteed
convergence. Extensive experiments on five multi-
view benchmark datasets demonstrate the effective-
ness and efficiency of the proposed MVC-LFA.

1 Introduction

Multi-view clustering (MVC) has been intensively studied re-
cently by integrating the available multi-view information to
categorize data items with similar structures or patterns into
the same group [Chen et al., 2007; Gönen and Alpaydin,
2008; Yu et al., 2012; Huang et al., 2012; Liu et al., 2013;
Gönen and Margolin, 2014; Liu et al., 2016; Li et al., 2016;
Liu et al., 2017; Liu et al., 2018]. Existing research in this
filed can be summarized into two categories. The first one
learns a latent consensus matrix via low-rank optimization
[Xia et al., 2014; Zhou et al., 2015]. In [Xia et al., 2014],
it is proposed to learn a latent low-rank transition probability
matrix shared from multiple views as the input to the standard
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Markov chain for clustering. The work in [Zhou et al., 2015]

captures the noises in each kernel and integrates them into
a low-rank framework. By following multiple kernel learn-
ing framework, the other category optimizes the optimal ker-
nel matrix as a linear combination of known kernel matri-
ces from a given library [Chen et al., 2007; Yu et al., 2012;
Liu et al., 2013; Gönen and Margolin, 2014; Liu et al., 2016;
Li et al., 2016; Liu et al., 2017; Liu et al., 2019]. In [Chen
et al., 2007], a three-step alternate algorithm is proposed to
jointly optimize clustering, kernel coefficients and dimension
reduction. The work in [Liu et al., 2016] proposes a multiple
kernel k-means clustering algorithm with matrix-induced reg-
ularization to reduce the redundancy of the pre-defined ker-
nels. Furthermore, local kernel alignment criterion has been
applied to multiple kernel learning to enhance the clustering
performance in [Li et al., 2016]. In [Liu et al., 2017], a mul-
tiple kernel algorithm is proposed to allow the optimal kernel
to reside in the neighborhood of the combinational kernels.
Our method in this paper belongs to the second category.

Although the aforementioned algorithms have improved
multi-view clustering from different aspects, we observe that
they suffer from the following drawbacks. i) The intensive
computational complexity, i.e., usually O(n3) per iteration
with n the number of samples, prevents them from being ap-
plied into medium or large-scale clustering tasks. ii) As the
work in [Liu et al., 2018] mentions, the optimization pro-
cesses of these methods are usually over-complicated, which
could increase the risk of being trapped into local minimums,
leading to unsatisfying clustering performance.

In this paper, we theoretically show that maximizing the
alignment between base partitions and consensus partition
is conceptually equivalent to minimize the loss function of
existing k-means clustering. Based on this observation, we
propose a novel algorithm named Multi-view Clustering via
Late Fusion Alignment Maximization (MVC-LFA). It max-
imizes the alignment between the consensus partition ma-
trix and the weighted base partition matrices with orthog-
onal transformation, where each base partition is generated
by performing clustering on each single view. The proposed
MVC-LFA jointly optimizes the orthogonal transformation
matrices, weight coefficients and the optimal consensus par-
tition. Moreover, we develop an efficient algorithm to solve
the resultant optimization problem, and theoretically analyze
its computational complexity and convergence. Extensive ex-
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Figure 1: Model pipeline for the proposed Multi-view Clustering via
Late Fusion Alignment (MVC-LFA). Firstly, we obtain the base par-
titions independently from each view by kernel k-means clustering.
Then, by maximizing alignment between the weighted basic parti-
tions generated from different views and the consensus partition, our
algorithm significantly reduces the time complexity from O(n3) to
O(n) per iteration and also gives rise to clustering performance.

periments on five multiple-view benchmark datasets are con-
ducted to evaluate the effectiveness and efficiency of our pro-
posed method, including the clustering performance, the run-
ning time, the evolution of the learned consensus matrix and
the objective value with iterations. As demonstrated, the pro-
posed algorithm enjoys superior clustering performance with
significant reduction in computational cost, in comparison
with several state-of-the-art multi-view clustering methods.

The contributions of this paper are summarized as follows,

• We theoretically prove that maximizing the alignment
between base partitions and the consensus partition is
conceptually equivalent to minimize the loss function of
k-means clustering. This observation motivates us to de-
sign a simple but effective multi-view clustering algo-
rithm.

• The proposed MVC-LFA integrates multiple views in a
late fusion manner. It simultaneously optimizes the con-
sensus partition, transformation matrices and the weight
coefficients of each view in a joint framework. To the
best of our knowledge, the proposed MVC-LFA is the
first attempt to address multiple view clustering via max-
imizing alignment between consensus clustering matrix
and weighted base partitions.

• An alternate optimization algorithm with proved conver-
gence is designed to efficiently tackle the resultant prob-
lem. By the virtue of it, MVC-LFA shows clearly supe-
rior clustering performance in comparison with state-of-
the-art methods. More importantly, MVC-LFA requires
significantly less computational time, especially critical
for large datasets with limited computing sources.

2 Related Work

2.1 K-means Clustering

As one of the classical and widely-used algorithms, k -means
provides an intuitive and effective way to perform cluster-
ing. To be specific, the clustering loss function of existing

k -means algorithms can be written as mentioned in [Bout-
sidis et al., 2015],

minH∗ Tr(XXT)− Tr(H∗TXXTH∗),

s.t. H∗ ∈ R
n×k ,H∗TH∗ = Ik,

(1)

where X and H∗ are the data and partition matrix respec-
tively. We can obtain the optimal H∗ for Eq. (1) by taking
the k eigenvectors that correspond to the k largest eigenvalues
of XXT.

Eq. (1) could not directly apply to data with multi views.
To overcome this limitation, many novel algorithms have
been proposed to extend the k -means into multi-kernel k -
means to handle multi-view clustering, which will be intro-
duced in the next section.

2.2 Multiple Kernel K-means Clustering
(MKKM)

For the multi-view based setting, we suppose that {xi}
n
i=1 ⊆

X is a collection of n samples with m views, and φp(·) :
x ∈ X 7→ Hp be the p-th feature mapping, which trans-
fers x into a reproducing kernel Hilbert space Hp (1 ≤
p ≤ m). Hence each sample xi is represented as φβ(x) =
[β1φ1(x)

⊤, · · · , βmφm(x)⊤]⊤ from m views, where β =
[β1, · · · , βm]⊤ consists of the coefficients of the m base ker-
nels {κp(·, ·)}

m
p=1. These coefficients will be optimized dur-

ing clustering. Based on the definition of φβ(x), a kernel
function can be expressed as,

κβ(xi,xj) = φβ(xi)
Tφβ(xj) =

∑m

p=1
β2
pκp(xi,xj). (2)

By denoting the optimal kernel matrix Kβ =
∑m

p=1 β
2
pKp,

the optimization goal of MKKM algorithm can be formulated
as,

minH,β Tr(Kβ(In −HHT))

s.t. H ∈ R
n×k , HTH = Ik , β

T
1m = 1, βp ≥ 0, ∀p.

(3)

The optimization problem in Eq. (3) can be solved by al-
ternately updating H and β. i) Optimizing H by fixed β.
With the kernel coefficients β fixed, H can be obtained by
solving a kernel k-means clustering optimization problem,

maxH Tr(HTKβH) s.t. H ∈ R
n×k,HTH = Ik. (4)

The optimal H for Eq. (4) can be obtained by taking the
k eigenvectors corresponding to the largest k eigenvalues of
Kβ. ii) Optimizing β by fixed H. With H fixed, β can be
optimized via solving the following quadratic programming
with linear constraints,

minβ
∑m

p=1
β2
pTr(Kp(In −HHT))

s.t. βT
1m = 1, βp ≥ 0.

(5)

Along with this line, many variants of MKKM have been
proposed in the literature. The work in [Liu et al., 2016] pro-
poses a multiple kernel k -means clustering algorithm with
matrix-induced regularization to reduce the redundancy and
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enhance the diversity of the pre-defined kernels. Furthermore,
local kernel alignment criterion has been applied to multiple
kernel learning to enhance the clustering performance in [Li
et al., 2016].

Although demonstrating promising performance, we ob-
serve that most of the existing multi-view clustering meth-
ods extend the Eq. (1) into multi-view by assuming that
Kβ =

∑m

p=1 βpKp for instance and learn an optimal similar-

ity representation K∗ to perform kernel k-means clustering.
As mentioned in [Liu et al., 2018], this category causes inten-
sive computational complexity , i.e., usually O(n3) per itera-
tion with n the number of samples and over-complicated opti-
mization increasing the risk of trapped into low-quality local
minimum. In the next section, we propose Multi-view Clus-
tering via Late Fusion Alignment Maximization(MVC-LFA)
to address this issue.

3 Multi-view Clustering via Late Fusion

Alignment Maximization (MVC-LFA)

3.1 Proposed Formulation

According to the aforementioned discussions, we firstly show
our theoretical result on the connection between the widely-
used k -means loss function and our proposed late fusion
alignment. In the following, we derive a new and related op-
timization goal of Eq. (1) for multi-view clustering based on
the following Theorem 1.

Lemma 1. For any given orthogonal matrix P with the size
of k×k, the inequality Tr2(P) ≤ k ·Tr(PTP) always holds.

Theorem 1. Based on Lemma 1, minimizing Eq. (1) is con-

ceptually equivalent to maximize Tr(H∗TX).

Proof. By taking P = H∗TX and according to Lemma

1, we can see that Tr2(H∗TX) ≤ k · Tr(H∗TXXTH∗).
As a result, Tr(XXT) − Tr(H∗TXXTH∗) ≤ 2k −

Tr(H∗TXXTH∗) ≤ 2k − 1
k
Tr2(H∗TX). Therefore, mini-

mizing Tr(XXT)−Tr(H∗TXYTH∗) is conceptually equiv-

alent to maximize Tr(H∗TX). This completes the proof.

Based on Theorem 1, we derive a simple but effective clus-
tering loss function for clustering. This new formulation can
be readily extended to handle multi-view clustering. To be
specific, after obtaining the basic partitions {Hp}

m

p=1 from

each single view, we conduct the new optimal combinational
data partition X =

∑m

p=1 βpHpWp to maximally align with

the optimal clustering partition. Compared with minimizing

Eq. (1), maximizing Tr(H∗TX) is much easier to optimize
since it only requires the singular value decomposition of X
in contrast to XXT so that significantly reduces the time-
complexity and simplifies the optimization procedure.

As a result, we obtain the objective function of our pro-
posed algorithm as follows,

maxH∗,{Wp}m

p=1
,β Tr(H

∗TX) + λTr(H∗TM),

s.t. H∗TH∗ = Ik,W
T
p Wp = Ik,

∑m

p=1
βp

2 = 1, βp ≥ 0,X =
∑m

p=1
βpHpWp,

(6)

where {Wp}
m

p=1 are a set of rotation matrices, M denotes

the average partition region and λ is a trade-off parameter.

The latter Tr(H∗TM) is a regularization on the consensus
partition to prevent H∗ from being too far way from prior
average partition. It is worth noting that we not only set an
optimization goal for the multi-view clustering with late fu-
sion, but also offer a new framework to fuse various clustering
methods, which implies that any kind of ensemble clustering
results can be applied to our framework. Moreover, as the
following optimization process shows, the proposed function
could be easily solved by an alternate algorithm with proved
convergence.

3.2 Alternate Algorithm

Although the problem in Eq. (6) is a relaxed version, it is
still troublesome to be solved by existing packages. In order
to solve it, we design a three-step alternate algorithm with
proved convergence, where each step could be easily solved
by the existing off-the-shelf packages.

Optimization H∗ with fixed {Wp}
m

p=1 and β

With {Wp}
m

p=1 and β being fixed, the optimization Eq. (6)

could be rewritten as follows,

maxH∗ Tr(H∗TU) s.t. H∗TH∗ = Ik, (7)

where U =
∑m

p=1 βpHpWp + λM. The problem in Eq. (7)

could be easily solved by taking the singular value decom-
position (SVD) of the given matrix U. Here the following
Theorem gives a closed-form solution for the problem in Eq.
(7).

Theorem 2. Suppose that the matrix U in Eq. (7) has the
economic rank-k singular value decomposition form as U =
SkΣkV

⊤
k , where Sk ∈ R

n×k,Σk ∈ R
k×k,Vk ∈ R

k×k. The
optimization in Eq. (7) has a closed-form solution as follows,

H∗ = SkV
T
k , (8)

Proof. By taking the the normal singular value decomposi-
tion U = SΣVT, the Eq. (7) could be rewritten as,

Tr(H∗TSΣVT) = Tr(VTH∗TSΣ), (9)

Considering that Q = VTH∗TS, we have QQT =
VTH∗TSSTH∗V = Ik. Therefore we can take

Tr(VTH∗TSΣ) = Tr(QΣ) ≤
∑k

i=1 σi. Hence in order to
maximize the value of Eq. (7), the solution should be given
as Eq. (8).

Optimization {Wp}
m

p=1 with fixed H∗ and β

With H∗ and β being fixed, for each single Wp, the optimiza-
tion problem in Eq. (6) is equivalent to Eq. (10) as follows,

maxWp
Tr(WT

p A) s.t. WT
p Wp = Ik, (10)

where A = βpH
T
pH

∗. And this problem in Eq. (10) could
be easily solved by taking the singular value decomposition
(SVD) of the given matrix V. Like the closed-form expressed
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in Theorem 2, if the matrixV has the singular value decom-
position form as A = SΣGT, the optimization in Eq. (10)
has a closed-form solution as Wp = SGT. Therefore, we
optimize one Wp with other Wi 6=p fixed at each iteration.
As a result, we can obtain a set of optimized {Wp}

m

p=1.

Optimization β with fixed H∗ and {Wp}
m

p=1

With H∗ and {Wp}
m

p=1 being fixed, the optimization prob-

lem in Eq. (6) is equivalent to the optimization problem as
follows,

maxβ
∑m

p=1
βpδp s.t.

∑m

p=1
βp

2 = 1, βp ≥ 0, (11)

where δp = Tr(H∗THpWp). This could be easily solved
with closed-form solution as follows,

βp = δp/

√

∑m

p=1
δ2p. (12)

In sum, our algorithm is outlined in Algorithm 1, where

obj(t) denotes the objective value at the t-th iteration. The
following Theorem 3 shows our algorithm is guaranteed to
converge.

Theorem 3. The proposed algorithm 1 is proved to converge
to a local optimum,

Proof. Note that for ∀p, q, Tr[(βpHpWp)
T
(βqHqWq)] ≤

Tr[(HpWp)
T
(HqWq)] ≤ 1

2 (Tr[(HpWp)
T
(HpWp)] +

Tr[(HqWq)
T
(HqWq)]) = k. As a result, we could derive

the upper bound of the optimization goal in Eq. (6). We

obtain that Tr(H∗TX) ≤ 1
2 (Tr[H

∗TH∗] + Tr[XTX]) =
1
2 (Tr[H

∗TH∗] + Tr(
∑m

p,q=1 (βpHpWp)
T
(βqHqWq))) ≤

k
2 (m

2 + 1). Meanwhile, the (H∗TM) ≤ 1
2 (Tr[H

∗TH∗] +
Tr[MTM]) = k. Consequently, the whole optimization
function is upper bounded. As the three subproblem is strictly
convex when optimizing one variable and keeping the oth-
ers fixed. The objective of Algorithm 1 is monotonically in-
creased when optimizing one variable with the others fixed
at each iteration. At the same time, the whole optimization
problem is upper-bounded. As a result, the proposed algo-
rithm can be verified to be convergent. This completes the
proof.

3.3 Discussion and Extensions

In this section, we analyze the computational complexity and
potential extensions.

Computational Complexity: With the optimization process
outlined in Algorithm 1, the computational complexity of
MVC-LFA is O(nk2 + mk3) per iteration, where n,m, k
represents the number of samples, views and clusters respec-
tively. This implies that our algorithm has a linearly growing
complexity with the number of samples, making it efficiently
to handle large-scale tasks comparing to the state-of-the-art
multiple-kernel clustering algorithms.

Algorithm 1 Multi-view Clustering via Late Fusion Align-
ment Maximization

Input: {Hp}
m

p=1 , k, λ and ǫ0.

Output: H∗ and β.

1: Initialize {Wp}
m

p=1 = Ik, β = 1√
m

and t = 1.

2: Calculate M by kernel k-means with average kernel.
3: while not converged do
4: Update H∗ by solving Eq. (7) with fixed {Wp}

m

p=1

and β.
5: Update {Wp}

m

p=1 with fixed H∗ and β by solving Eq.

(10).
6: Update β by solving Eq. (12) with fixed H∗ and

{Wp}
m

p=1.

7: t = t+ 1.

8: end while
(

obj(t−1) − obj(t)
)

/obj(t) ≤ ǫ0

9: return H∗ and β.

Extensions: MVC-LFA can be easily extended with the
following considerations. Firstly, MVC-LFA could be fur-
ther improved by capturing the noises or low-quality parti-
tions existing in basic partitions. For example, we could inte-
grate the basic partitions {Hp}

m

p=1 into the optimization pro-

cedure to capture more advanced base partitions. By doing so,
the high-quality basic partitions are further used to guide the
generation of consensus partition. Secondly, we could apply
more similarity-based clustering methods to generate basic
partitions. Exploring other generating methods and evaluat-
ing their clustering performance will be an interesting future
work.

4 Experiments and Analysis

In this section, we evaluate the effectiveness and efficiency
of the proposed MVC-LFA for five widely used multi-view
benchmark datasets from the aspects of clustering perfor-
mance, computational efficiency and convergence.

4.1 Experimental Settings

Datasets

The datasets used in our experiments are Oxford Flower17
and Flower1021, and Protein fold prediction2 and Columbia
Consumer Video (CCV)3 and Caltech 1014. The detailed in-
formation of the several datasets are listed in Table 1.

Compared Algorithm

In the experiments, MVC-LFA is compared with the follow-
ing state-of-the-art multi-view clustering methods. (1) Aver-
age multiple kernel k-means (A-MKKM): All kernels are
averagely weighted to conduct the optimal kernel, which is
used as the input of kernel k-means algorithm. (2) Single best

1http://www.robots.ox.ac.uk/˜vgg/data/

flowers/
2http://mkl.ucsd.edu/dataset/

protein-fold-prediction
3http://www.ee.columbia.edu/ln/dvmm/CCV/
4http://www.vision.caltech.edu

/Image Datasets/Caltech101
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Figure 2: (a) The clustering performance at each iteration performed on CCV dataset. (b) The objective value at each iteration performed on
CCV dataset. (c) The effect of λ on NMI on CCV dataset.The curves of other datasets are similar and are omitted due to space limit.

Dataset #Samples #Views #Clusters

Flower17 1360 7 17
ProteinFold 694 12 27
Flower102 8189 4 102

Caltech 1530 25 102
CCV 6773 3 20

Table 1: Datasets used in our experiments.

kernel k-means (SB-KKM): Kernel k-means is performed
on each single kernel and the best result is outputted. (3)
Multiple kernel k-means (MKKM) ([Huang et al., 2012]):
The algorithm alternatively performs kernel k-means and up-
dates the kernel coefficients. (4) Optimized data fusion for
kernel k-means clustering (OKKC) ([Yu et al., 2012]): The
algorithm propose to jointly optimize clustering, the kernel
coefficients and dimension reduction based on the metric of
Mahalanobis distance. (5) Co-regularized spectral cluster-
ing (CRSC) ([Kumar et al., 2011]): CRSC provides a co-
regularization way to perform spectral clustering on multiple
views. (6) Multiple kernel k-means with matrix-induced
regularization (MKKM-MR) ([Liu et al., 2016]): The al-
gorithm applies the multiple kernel k-means clustering with
a matrix-induced regularization to reduce the redundancy
and enhance the diversity of the kernels. (7) Multiple ker-
nel clustering with local kernel alignment maximization
(MKC-LKA)([Li et al., 2016]): The algorithm maximizes
the local kernel with multiple kernel clustering and focuses
on closer sample pairs that they shall stay together. (8) Opti-
mal neighborhood kernel clustering with multiple kernels
(ONKC)([Liu et al., 2017]): ONKC allows the optimal ker-
nel to reside in the neighborhood of linear combination of
base kernels and effectively enlarges the region from which
an optimal kernel can be chosen.

In all our experiments, all base kernels are first centered
and then normalized so that for all sample xi and p, we have
Kp(xi, xi) = 1 by following [Cortes et al., 2012]. For all
data sets, it is assumed that the true number of clusters is
known and set as the true number of classes. For the pro-
posed algorithm, the trade-off parameter λ is chosen from
[

2−15, 2−14, · · · , 215
]

by grid search.

The widely used clustering accuracy (ACC), normalized
mutual information (NMI) and purity are applied to evalu-

ate the clustering performance. For all algorithms, we repeat
each experiment for 50 times with random initialization to re-
duce the effectiveness of randomness caused by k-means, and
report the best result. All the experiments are performed on a
desktop with Intel core i7-5820k CPU and 16G RAM.

4.2 Clustering Performance

The ACC, NMI and Purity of the compared algorithms
on the five benchmark datasets are displayed in Table
2, where the best results are presented in red. From
the results, we have the following observations: i) As a
strong baseline, the recently proposed MKC-LKA ([Li et
al., 2016]) outperforms other early-fusion multiple-kernel
clustering methods in comparison. For example, it ex-
ceeds the second best early-fusion method (MKKM-MR) by
1.6%, 6.6%, 1.4%, 0.6%, 4.5% in terms of ACC on Flower17,
ProteinFold, Flower102, Caltech and CCV respectively.
These results verify the effectiveness of maximizing the ker-
nel alignment in a local way. ii) The proposed algorithm
MKC-LFA significantly and consistently outperforms MKC-
LKA by 0.7%,2.9%,3.2%,6.5%,17.3% in terms of ACC
on Flower17, ProteinFold, Flower102, Caltech and CCV, re-
spectively. Table 2 also reports the comparison of NMI and
purity. As can be seen, we also observe that our proposed al-
gorithm outperforms all other methods in both NMI and pu-
rity.

In summary, the above experimental results have well
demonstrated the effectiveness of our proposed MVC-LFA
comparing to other state-of-the-art methods. We attribute
the superiority of MVC-LFA as two aspects: i) MVC-LFA
employs joint fusion to update weighted basic partitions and
the consensus one and gets slightly higher performance than
other methods. To be specific, when a higher quality consen-
sus partition is obtained, we could further make full use of the
high-quality partition to guide the weighted basics ones and
improve the performance. ii) Comparing with the existing
early-fusion methods, the proposed MVC-LFA fuses multiple
kernel information in the partition level, which demonstrates
the benefits of fusing high-level information. These two fac-
tors contributes to the significant improvements on clustering
performance.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3782



Datasets A-MKKM SB-KKM
MKKM OKKC CSRC MKC-LKA MKKM-MR ONKC

Proposed
[Huang et al., 2012] [Yu et al., 2012] [Kumar et al., 2011] [Li et al., 2016] [Liu et al., 2016] [Liu et al., 2017]

ACC(%)
Flower17 51.03 42.06 45.37 44.85 51.76 60.69 59.69 60.88 61.16

ProteinFold 30.69 34.58 27.23 37.10 35.59 39.34 36.89 37.90 40.49

Flower102 27.29 33.13 21.96 22.32 38.60 40.84 40.24 37.32 42.16

Caltech 35.56 33.14 34.77 33.92 34.38 36.06 35.82 35.32 38.39

CCV 19.74 20.08 18.01 20.54 23.06 23.49 22.47 24.18 27.56

NMI(%)
Flower17 50.19 45.14 45.35 45.85 53.19 57.27 57.11 58.58 60.79

ProteinFold 40.96 42.33 37.16 40.75 45.66 47.55 45.13 46.93 48.96

Flower102 46.32 48.99 42.30 43.28 54.95 57.60 57.27 58.13 60.48

Caltech 59.90 59.07 59.64 57.22 58.35 60.98 60.18 60.41 61.65

CCV 17.16 17.73 15.52 16.28 18.89 17.11 18.62 18.24 20.59

Purity(%)
Flower17 51.99 44.63 46.84 45.00 53.68 61.79 60.03 61.64 62.32

ProteinFold 37.18 41.21 33.86 39.91 42.07 45.97 43.80 45.24 46.85

Flower102 32.28 38.74 27.61 28.12 45.04 48.21 46.39 47.64 50.44

Caltech 37.12 35.10 37.25 36.27 35.95 38.08 37.65 39.08 40.28

CCV 23.98 23.48 22.25 24.17 26.80 22.93 25.69 23.34 30.71

Table 2: ACC, NMI and purity comparison of different clustering algorithms on five benchmark data sets.

4.3 Running Time

To compare the computational efficiency of the proposed al-
gorithms, we record the running time of various algorithms
on these benchmark datasets and report them in Figure 3.
As can be seen, MVC-LFA in red has the shortest running
time on all datasets comparing to the-state-of-art multi-view
methods (MKKM, OKKC, CRSC, MKC-LKA (in green),
MKKM-MR and ONKC), demonstrating the computational
efficiency of the proposed method. As theoretically demon-
strated, MVC-LFA reduces the time complexity from O(n)3

to O(n) per iteration and avoid complicated optimization pro-
cedure. In sum, both the theoretical and the experimental re-
sults in Figure 3 have well demonstrated the computational
advantage of MVC-LFA, making it efficient to handle with
multi-view clustering.
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Figure 3: The running time comparison of different algorithms on
five benchmark datasets.

4.4 Convergence and Parameter Sensitivity Study

Our algorithm is theoretically guaranteed to converge accord-
ing to Theorem 3. For the experimental study, we conduct an
experiment on CCV dataset and set the hyperparameters λ as
22. Specifically, we evaluate the ACC, NMI and Purity of
consensus partition H∗ learned at each iteration, as shown in

Figure 2a. As can be observed, the clustering performance
of MVC-LFA shown in Figure 2a gradually increases and
has a slight variation with the increasing of iterations. This
has clearly demonstrated the effectiveness of the learned con-
sensus matrix H∗. Furthermore, as shown in Figure 2b, the
objective value of MVC-LFA does monotonically increase at
each iteration and it usually converges in less than 10 itera-
tions.

We also conduct the parameter sensitivity study on CCV
dataset and report the clustering performance by ranging λ
within the set of

[

2−15, 2−14, · · ·, 215
]

shown in Figure 2c.
From the observation, NMI first increases to a high value and
generally maintains it up to slight variation with the increas-
ing value of λ. The curves with other datasets are similar and
committed due to space limit. Comparing to MKKM-MR,
MVC-LFA demonstrates stable performance across a wide
range of λ.

5 Conclusion

In this article, we propose a simple but effective method
MVC-LFA, which maximizes the alignment between the con-
sensus partition matrix and the weighted base partition matri-
ces with orthogonal transformation. We theoretically uncover
the connection between the existing k-means and the pro-
posed alignment. Based on this, we derive a simple novel op-
timization goal for multi-view clustering, which significantly
reduces the computational complexity and simplifies the opti-
mization procedure. The proposed algorithm is developed to
efficiently solve the resultant optimization. By the virtue of
it, MVC-LFA shows clearly superior clustering performance
with significant reduction in computational cost on bench-
mark datasets, in comparison with state-of-the-art methods.
In the future, we will explore to capture the noises or bad
partition existing in basic partitions and further improve the
fusion method.
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