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Abstract: An instance can be easily depicted from different views in pattern recognition, and it is
desirable to exploit the information of these views to complement each other. However, most of the
metric learning or similarity learning methods are developed for single-view feature representation
over the past two decades, which is not suitable for dealing with multi-view data directly. In this
paper, we propose a multi-view cosine similarity learning (MVCSL) approach to efficiently utilize
multi-view data and apply it for face verification. The proposed MVCSL method is able to leverage
both the common information of multi-view data and the private information of each view, which
jointly learns a cosine similarity for each view in the transformed subspace and integrates the cosine
similarities of all the views in a unified framework. Specifically, MVCSL employs the constraints
that the joint cosine similarity of positive pairs is greater than that of negative pairs. Experiments
on fine-grained face verification and kinship verification tasks demonstrate the superiority of our
MVCSL approach.
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1. Introduction

Metric learning or similarity learning aims to develop an effective metric to measure
the similarities of samples [1]. Samples from the same class are projected into neighbor-
ing locations in the embedding space while samples of various categories are separated.
Recently, numerous metric learning or similarity learning approaches have been intro-
duced [1–3] and they have achieved a great success for numerous visual understanding
tasks including face verification [2], image retrieval [3], image classification [4], and person
re-identification.

Face verification is a representative task of pattern recognition and computer vision;
its purpose is to decide whether a pair of facial images belongs to the same subject or
not. Face verification has received wide attention since the unconstrained face image
datasets were released to the public, for example, labeled faces in the wild (LFW) (LFW) [5],
MegaFace [6] and other benchmark face image datasets [7]. A variety of metric learning-
based face verification methods have been introduced in the literature [2,8] to advance
the performance of face verification. Guillaumin et al. [9] proposed a logistic discriminant
method and a nearest neighbor method to learn a distance metric for calculating the
similarity of two face images. Koestinger et al. [10] introduced a large-scale metric learning
method to compute the Mahalanobis distance of images from the statistical inference
perspective and achieved the state-of-the-art performance. Schroff et al. [2] exploited the
deep convolutional neural networks for face verification and clustering and proposed a
FaceNet method to measure the distance of face images in Euclidean space. More detailed
introductions and developments of face verification can refer to the survey paper [8].
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Most of the metric learning approaches in face verification are developed for single-
view data so that they are not suitable for exploiting multi-view data efficiently. Multi-
view data are very common in the practical applications, and it usually describes the
information of the examples more comprehensively than single-view data. For instance, we
can use different feature representations to depict a face image, e.g., scale invariant feature
transform (SIFT) [11], local binary pattern (LBP) [12] and histogram of oriented gradient
(HOG) [13]. Multi-view learning aims to improve the performance of the classification
or recognition tasks by making use of multi-view representations of data. For the sake
of utilizing multi-view data, many multi-view learning methods have been introduced
in the last decade [14,15]; however, there are only a small number of them developed in
the multi-view metric learning perspective, and the existing multi-view metric learning
methods are mainly formulated in the framework of Mahalanbis distance metric learning.

In this paper, we develop a multi-view cosine similarity learning (MVCSL) approach
to efficiently utilize multi-view data from the cosine similarity learning framework. To
capture the correlation across multiple views and exploit the private information of each
view, the proposed MVCSL method jointly learns a cosine similarity for each view in the
transformed subspace and seeks the optimal combination of multiple cosine similarities
of multi-view feature representations under a unified framework, where the joint cosine
similarity of each positive pair is forced to be greater than a large constant value and the
joint cosine similarity of each negative pair is forced to be less than a small threshold.
Experimental results on the fine-grained face verification and facial kinship verification
applications demonstrate the advantages of our MVCSL method. Figure 1 illustrates the
basic idea of our proposed MVCSL approach.
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Figure 1. Illustration of the basic ideas of the proposed MVCSL method. (a) Preprocessing, (b) cosine
metric, (c) MVCSL. Given multi-view feature representations of each sample, MVCSL under the
large margin framework learns the optimal combination of the cosine similarities of multi-view data,
which constrains the joint cosine similarity of positive samples to be greater than a large value tp and
that of negative samples to be less than a small value tn.

The remainder of this paper is structured as follows. Section 2 briefly reviews the
related work. In Section 3, we detail the proposed multi-view cosine similarity learning
approach, and the experiments for face verification are presented in Section 4. Finally, the
paper is concluded in Section 5.

2. Related Work

The target of metric learning or similarity learning is, broadly speaking, to learn a
proper similarity measure for increasing the dissimilarity of inter-class samples and increas-
ing the similarity of intra-class samples. A variety of metric learning approaches have been
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proposed over the past decade, and they have been used in various applications of pattern
recognition including face recognition, image searching and fine-grained recognition. For
example, Xing et al. [16] designed metric learning as a convex optimization problem by
adopting a semidefinite programming formulation of similarity side information. Wein-
berger et al. [17] introduced the classical large margin nearest neighbor (LMNN) algorithm
that makes samples from the same class compose k-nearest neighbors and samples belong-
ing to various categories be separated by an appropriate margin. Davis et al. [18] presented
the information theoretic metric learning (ITML) approach by maximizing the entropy of a
multivariate Gaussian to learn a Mahalanobis distance. The keep it simple and straightfor-
ward metric learning (KISSME) [10] method was proposed to learn a distance metric by the
maximum likelihood estimators from the perspective of the statistical inference. Nguyen
and Bai [19] introduced a cosine similarity metric learning (CSML) method using the cosine
distance as the similarity measurement for a face verification task. In addition, several
methods based on fractal theory [20–22] were introduced to find an appropriate distance
metric for face recognition. Over the past few years, with the prosperity of deep learning
algorithms, more and more deep metric learning approaches [2,3,23] were also presented
to learn the nonlinear mapping functions using deep neural networks.

Although metric learning methods have been developed so far, most of them primarily
aim to seek a metric or similarity function for either the single-view feature or cascading
multiple types of features so that they cannot efficiently exploit multi-view feature rep-
resentations. For the sake of better exploiting multi-view data that usually include the
complementary information, several multi-view metric learning methods [7,15,24–26] have
been introduced to learn a more comprehensive metric than the single-view based metric
learning approaches. For instance, Lu et al. [7] developed a multi-view neighborhood
repulsed metric learning approach to utilize multiple feature representations of samples
for a kinship verification task. Xie and Xing [24] introduced a multi-modal distance metric
learning method that maps the samples in a single latent feature space. Hu et al. [15]
proposed a sharable and individual multi-view metric learning method to make use of both
the private characteristics from each view and the shared representation for different views.
Jia et al. [26] introduced a semi-supervised multi-view deep discriminant representation
learning method, which utilizes the consensus content of inter-view features and reduces
the redundancy of feature representations. However, these existing multi-view metric
learning methods are mainly formulated in the framework of Mahalanbis distance metric
learning. In this paper, we present a multi-view cosine similarity learning approach from
the cosine similarity learning framework by collaboratively learning multiple cosine simi-
larities to better exploit complementary information of multi-view feature representations.

3. Multi-View Cosine Similarity Learning

Suppose that we have a training set with N training samples X = {xi ∈ Rq|i =
1, 2, · · · , N}, where q is the dimension of the sample xi. For any sample, it can be easily
depicted in multiple views with various feature representations. Let Xκ = {xκ

i ∈ Rqκ |1 ≤
κ ≤ K}N

i=1 denote the features set of X from the κ-th view, where xκ
i is the κ-th view

representation of xi, and K and qκ are the total number of views and the dimension of xκ
i ,

respectively.
In general, it is not desirable to directly map multi-view features into a unified sub-

space, because the distributions of different views are different in their independent sub-
spaces, and it cannot take advantage of the specific characteristics of each view and ignores
the differences of information among the various views. To overcome this limitation, we
map samples of each view into the individual space via the linear transformation Wκ , and
the cosine similarity between xκ

i and xκ
j in the κ-th view is computed by:

csWκ (x
κ
i , xκ

j ) =
(xκ

i )
>WκW>κ xκ

j√
(xκ

i )
>WκW>κ xκ

i

√
(xκ

j )
>WκW>κ xκ

j

. (1)
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Considering that different view representations of each sample depict the same subject
and they are able to complement each other with the difference information, the joint cosine
similarity between the samples xi and xj is written as:

csθ(xi, xj) =
1
K

K

∑
κ=1

csWκ (x
κ
i , xκ

j ), (2)

where θ = {Wκ}K
κ=1 and csWκ (x

κ
i , xκ

j ) are the cosine similarity of the κ-th view between xi
and xj. Obviously, the cosine similarity score varies from −1 to 1, so it is very suitable for
similarity learning.

We formulate our multi-view cosine similarity learning (MVCSL) method under the
large margin framework to learn the optimal parameter θ = {Wκ}K

κ=1. The objective
function of our proposed MVCSL method is as:

min J = ∑
lij=1

h

(
τp −

1
K

K

∑
κ=1

csWκ (x
κ
i , xκ

j )

)

+ ∑
lij=−1

h

(
1
K

K

∑
κ=1

csWκ (x
κ
i , xκ

j )− τn

)

+ η
K

∑
κ=1
‖Wκ −W0‖2,

(3)

in which η is the coefficient of the regularization term, and h(x) = max(x, 0). τp and τn
are thresholds of cosine similarity for positive samples and negative samples, respectively,
−1 ≤ τn ≤ τp ≤ 1. W0 is a transformation matrix with ones on the diagonal and zeros
elsewhere. We treat the derivative h′(0) = 0 at point x = 0. Pairwise label lij = 1 represents
that xi and xj come from the same object (i.e., positive pairs) and lij = −1 denotes that xi
and xj are from different objects (i.e., negative pairs). By setting appropriate thresholds, the
joint cosine similarity of positive samples is more than a large value τp; simultaneously, the
joint cosine similarity between negative samples is less than a small value τn.

The gradient of J with regard to Wκ is calculated by:

∂J
∂Wκ

=− 1
K ∑

lij=1
h′
(
τp − csθ(xi, xj)

)∂csWκ (x
κ
i , xκ

j )

∂Wκ

+
1
K ∑

lij=−1
h′
(
csθ(xi, xj)− τn

)∂csWκ (x
κ
i , xκ

j )

∂Wκ

+ 2η
K

∑
κ=1

(Wκ −W0),

(4)

in which the gradients of the cosine similarity csWκ with regard to Wκ are computed by:

∂csWκ

(
xκ

i , xκ
j

)
∂Wκ

=
∂
(

f (Wκ)
g(Wκ)

)
∂Wκ

=
1

g(Wκ)

∂ f (Wκ)

∂Wκ
− f (Wκ)

g2(Wκ)

∂g(Wκ)

∂Wκ
,

(5)

in which

∂ f (Wκ)

∂Wκ
=

∂
(
(xκ

i )
>WκW>κ xκ

j

)
∂Wκ

=
(

xκ
i (x

κ
j )
> + xκ

j (x
κ
i )
>
)

Wκ , (6)
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∂g(Wκ)

∂Wκ
=

∂

(√(
(xκ

i )
>WκW>κ xκ

i
)(

(xκ
j )
>WκW>κ xκ

j

))
∂Wκ

=

√
(xκ

j )
>WκW>κ xκ

j√
(xκ

i )
>WκW>κ xκ

i

xκ
i (x

κ
i )
>Wκ

+

√
(xκ

i )
>WκW>κ xκ

i√
(xκ

j )
>WκW>κ xκ

j

xκ
j (x

κ
j )
>Wκ .

(7)

Substituting Formulas (6) and (7) into Formula (5), we can obtain the gradient:

∂csWκ

(
xκ

i , xκ
j

)
∂Wκ

=

(
xκ

i (x
κ
j )
> + xκ

j (x
κ
i )
>
)

Wκ√
(xκ

i )
>WκW>κ xκ

i

√
(xκ

j )
>WκW>κ xκ

j

−
(xκ

i )
>WκW>κ xκ

j(
(xκ

i )
>WκW>κ xκ

i
) 3

2
(
(xκ

j )
>WκW>κ xκ

j

) 1
2

xκ
i (x

κ
i )
>Wκ

−
(xκ

i )
>WκW>κ xκ

j(
(xκ

i )
>WκW>κ xκ

i
) 1

2
(
(xκ

j )
>WκW>κ xκ

j

) 3
2

xκ
j (x

κ
j )
>Wκ .

(8)

After obtaining the gradient ∂J
∂Wκ

, the stochastic gradient descent method is used to
update Wκ iteratively for each view until the objective function of our MVCSL method
is converged:

Wκ = Wκ − µ
∂J

∂Wκ
, (9)

where µ is the learning rate, κ = 1, 2, . . . , K. Algorithm 1 summarizes the main steps of the
MVCSL approach, in which we initialize the κ-th transformation Wκ as a matrix with ones
on the diagonal and zeros elsewhere, κ = 1, 2, . . . , K.

Algorithm 1: MVCSL

Input: Training set Xκ =
{

xκ
i ∈ Rqκ

}N
i=1 of the κ-th view; thresholds τp and τn; learning

rate µ; total iterative number T; convergence error ξ.
Output: {Wκ}K

κ=1.

1: Initialize {Wκ}K
κ=1

2: Compute the initial J0 by (3)
3: for t = 1, 2, . . . , T do
4: Compute the joint similarity csθ(xi, xj) by (2)
5: for κ = 1, 2, . . . , K do
6: Wκ ← Wκ − µ ∂J

∂Wκ

7: end for
8: Update Jt by (3)
9: if |Jt − Jt−1| < ξ then

10: return {Wκ}K
κ=1

11: end if
12: end for
13: return {Wκ}K

κ=1
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4. Experiments

This section conducts experiments on fine-grained face verification and kinship verifi-
cation to demonstrate the advantages of our MVCSL for exploiting multi-view data.

Following the common settings [15], we evaluate the proposed methods with three
different similarity learning baseline approaches as:

• MVC-s: This is the single-view cosine similarity learning method that learns a single
similarity metric via the objective function (3) using the single-view feature representation;

• Concatenation (abbrev., Con): All the multi-view feature representations are concate-
nated as a high-dimension feature vector, and then, the MVC-s method is employed
to find out the cosine similarity;

• MVC-i: We independently learn the mapping for each view, and then, we add up the
cosine similarities of all views as the final cosine similarity of a sample pair.

For the parameter settings of our MVCSL and baseline methods, we empirically set
thresholds tp and tn as 0.8 and 0.1, and µ as 0.01 for all experiments.

4.1. Fine-Grained Face Verification

Fine-grained face verification is a special task in face verification, where each negative
sample pair consists of very similar face images such as face images from twins and
similarly looking facial image of different subjects, so it is more difficult than general face
verification in real-world scenarios.

4.1.1. Dataset and Settings

The fine-grained face verification (FGFV) [27] dataset consists of 1820 face images
categorized into 455 negative pairs of face images and 455 positive pairs of face images. The
455 negative pairs are collected from very similar face images of twins without restrictions
on disturbances including lighting, expression, pose background and so on. The 455
positive pairs of face images are chosen from positive pairs of the LFW dataset [5]. We
evaluate our proposed MVCSL and baseline approaches on the well-aligned version of the
FGFV dataset, in which facial images were aligned and cropped into the pixels of 64× 64.
We then convert all images into the gray-scale and extract three hand-crafted features for
each face image as:

• LBP [12]: we partition an image into 8× 8 segments and obtain a 59-dimensional LBP
for each segment; then, we finally achieve a 3776-dimensional feature representation
by concatenating them.

• HOG [13]: we split an image into non-overlapping blocks 4× 4 and 8× 8 with two
different sizes and compute a nine-dimensional HOG feature on each block. Finally,
we achieve a feature representation of 2880 dimensions for each image.

• SIFT [11]: each facial image is segmented into 49 blocks to extract a feature representa-
tion of 6272 dimensions.

Lastly, each feature representation is reduced 200 dimensions by the principal compo-
nent analysis (PCA) method. We employ a 5-fold cross-validation strategy to evaluate our
method on the FGFV dataset under the image restricted setting, which only exploits the
pairwise labels of positive pairs and negative pairs.

The fine-grained LFW (FGLFW) [28] dataset includes 10-fold face image pairs, and
every fold is composed of 300 positive pairs of face images and 300 negative face image
pairs. The positive face pairs are the same as LFW [5], but the negative pairs are similar
face images that were manually selected from the LFW dataset. Figure 2 presents several
negative pairs of face images from LFW, FGFV and FGLFW datasets, where the negative
pairs of FGFV and FGLFW datasets are easy to incorrectly identify as the positive pairs.
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Figure 2. Negative pairs of face images sampled from the LFW, FGFV and FGLFW datasets. (a) LFW,
(b) FGFV, (c) FGLFW.

4.1.2. Experimental Results

This section evaluates the proposed MVCSL method and the baseline methods with
several traditional metric learning methods, namely ITML [18], side-information-based
linear discriminant analysis (SILD) [29], KISSME [10], similarity metric learning over
intra-personal subspace (Sub-SML) [30] and CSML [19]. Tables 1 and 2 show the mean
accuracies and standard error of various methods under restricted settings on the FGFV and
FGLFW datasets, respectively. The ITML, SILD and KISSME methods are formulated under
the Mahalanobis distance framework, while CSML and MVCSL are designed under the
cosine similarity framework. Compared with Mahalanobis distance-based methods, cosine
similarity-based methods achieve better performance, and our proposed MVCSL obtains
the best performance on both FGFV and FGLFW datasets. The reason is that our MVCSL
can collaboratively learn multiple similarity measures from multiple feature representations
to supplement each other with the difference information. In addition, Figures 3 and 4
plot the receiver operating characteristic (ROC) curves of various approaches on the FGFV
and FGLFW datasets, respectively, and these experiments further show the promising
performance of the proposed MVCSL method.

Table 1. Mean accuracy and standard error (%) of different methods on the FGFV dataset under the
image restricted setting.

Method HOG LBP SIFT

ITML 63.52 ± 4.41 62.86 ± 3.84 64.29 ± 4.29
KISSME 69.67 ± 3.37 68.35 ± 3.26 69.67 ± 3.40

SILD 70.00 ± 3.68 62.53 ± 3.17 68.57 ± 3.53
CSML 71.43 ± 1.94 72.31 ± 3.53 72.31 ± 3.24
MVC-s 79.23 ± 3.35 81.43 ± 1.96 78.90 ± 3.49

Method HOG, LBP, SIFT

Con 84.95 ± 2.29
MVC-i 82.31 ± 2.73

MVCSL 86.70 ± 2.62

4.2. Kinship Verification

Kinship verification aims to predict whether a given pair of face images has a kind of
kin relationship or not, which is a challenging subtask of face verification and has attracted
a lot of attention in pattern recognition and computer vision.
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Table 2. Mean accuracy and standard error (%) of different methods on the FGLFW dataset under
the image restricted setting.

Method HOG LBP SIFT

ITML 64.48 ± 1.54 65.07 ± 1.74 62.32 ± 1.84
KISSME 65.43 ± 1.29 66.60 ± 2.04 63.17 ± 2.36
Sub-SML 67.88 ± 2.32 69.18 ± 0.78 65.83 ± 2.01

CSML 68.00 ± 2.30 68.98 ± 2.83 67.87 ± 1.67
MVC-s 70.52 ± 2.22 71.18 ± 2.89 70.00 ± 1.39

Method HOG, LBP, SIFT

Con 71.62 ± 1.51
MVC-i 73.33 ± 2.40

MVCSL 74.23 ± 2.14
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Figure 3. ROC curves of various approaches on the FGFV dataset.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

MVCSL

MVC-i

Con

MVC-s

CSML

KISSME

ITML

Figure 4. ROC curves of various approaches on the FGLFW dataset.

4.2.1. Dataset and Settings

In this subsection, we evaluate the proposed MVCSL approach in KinFaceW-I [7]
and KinFaceW-II [7] datasets for the kinship verification task. The samples of them were
collected from the unconstrained conditions with the obvious variations on lighting, age,
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expression and posture. There are four kin relationships in them, i.e., father son (F-S), father
daughter (F-D), mother son (M-S) and mother daughter (M-D).

Referring to the experimental settings provided by the datasets, the positive pair
consists of two face images with kin relationship, and each negative pair is randomly
selected from two unrelated face images without kinship. In order to reduce the background
information of the sample image, we use the aligned KinFaceW-I and KinFaceW-II datasets,
where each image was scaled to the size of 64× 64 pixels. For feature representation, we
adopt the same setting as the FGFV dataset and extract LBP, HOG and SIFT features for each
sample, and each feature representation is reduced to 200 dimensions by PCA. According to
the benchmark protocol of the KinFaceW-I and KinFaceW-II datasets, we adopt the positive
and negative samples under the image restricted setting. In the experiment, we use a 5-fold
cross-evaluation strategy to divide the positive and negative sample pairs into five groups,
four groups for training and one group for test.

4.2.2. Experimental Results

We evaluate the MVCSL method with three evaluation strategies in the KinFaceW-I
and KinFaceW-II datasets. Tables 3 and 4 list the mean verification accuracy (%) on two
datasets. The mean verification accuracies of our MVC-s method with LBP, HOG and
SIFT descriptors are 73.15%, 77.07% and 75.91% on the KinFaceW-I dataset, and those are
75.50%, 79.50% and 80.05% on the KinFaceW-II dataset, respectively. We also notice that
the MVC-i and Con methods can learn the discriminative information of multiple feature
representations, and our MVCSL further mines the potential information between various
features. In Tables 3 and 4, we also provide the comparisons of the proposed MVCSL and
several representative kinship verification methods, and these compared methods include
block-based neighborhood repulsed metric learning (BNRML) [31], geometric mean metric
learning (GMML) [32], multi-view geometric mean metric learning (MVGMML) [33], dis-
criminative compact binary face descriptor (D-CBFD) [34], local large-margin multi-metric
learning (L2M3L) [25], and weakly supervised compositional metric learning (WSCML) [35].
We can see from two tables that our MVCSL method obtains a competitive performance on
both KinFaceW-I and KinFaceW-II datasets. Moreover, Figures 5 and 6 plot the ROC curves
of the proposed MVCSL and baseline approaches on two kinship datasets, respectively.
Experimental results on the benchmark kinship verification datasets intuitively show that
our MVCML approach is able to efficiently exploit the common information of different
feature representations and the private information of each feature representation to help
improve the performance of kinship verification task.

Table 3. Comparisons of mean verification accuracy (%) on the KinFaceW-I dataset under the
image-restricted setting.

Method F-S F-D M-S M-D Mean

MVC-s (LBP) 77.57 70.17 68.04 76.84 73.15
MVC-s (HOG) 82.37 73.53 73.22 79.16 77.07
MVC-s (SIFT) 81.42 74.27 71.52 76.41 75.91

MVC-i 82.69 73.53 71.97 80.36 77.14
Con 83.01 74.64 72.81 79.96 77.61

MVCSL 84.30 75.38 74.53 81.16 78.84
BNRML [31] 76.28 70.51 73.70 72.47 73.24
GMML [33] 69.28 72.42 69.42 74.36 71.37

MVGMML [33] 69.25 75.00 69.40 72.76 71.13
D-CBFD [34] 79.60 73.60 76.10 81.50 77.60
WSCML [35] 81.90 73.95 72.88 72.90 75.21
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Figure 5. ROC curves of the proposed MVCSL and baseline methods on the KinFaceW-I dataset.
(a) F-S, (b) F-D, (c) M-S, (d) M-D.

Table 4. Comparisons of mean verification accuracy (%) on the KinFaceW-II dataset under the
image-restricted setting.

Method F-S F-D M-S M-D Mean

MVC-s (LBP) 78.80 76.80 74.60 71.80 75.50
MVC-s (HOG) 83.80 76.40 79.60 76.40 79.05
MVC-s (SIFT) 83.00 77.60 81.00 78.60 80.05

MVC-i 83.80 77.60 81.20 78.80 80.35
Con 83.60 78.03 81.00 78.00 80.15

MVCSL 84.80 79.00 81.80 78.40 81.00

BNRML [31] 79.40 79.00 77.00 72.80 77.05
GMML [33] 68.60 73.20 67.80 68.40 69.50

MVGMML [33] 70.40 73.40 65.80 69.20 69.70
D-CBFD (HOG) [34] 81.00 76.20 77.40 79.30 78.50

L2M3L [25] 82.40 78.20 78.80 80.40 80.00
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Figure 6. ROC curves of the proposed MVCSL and baseline methods on the KinFaceW-II dataset.
(a) F-S, (b) F-D, (c) M-S, (d) M-D.

5. Conclusions

This paper proposes a multi-view cosine similarity learning (MVCSL) approach to
make use of multi-view feature representations of data and apply it for fine-grained
face verification and facial kinship verification tasks. The proposed MVCSL method can
complement each other with the difference information among multiple views by jointly
learning a cosine similarity for each view in a unified framework. Moreover, in order to
mine non-trivial samples, we set the margin to make sure that the joint cosine similarity of
positive pairs is greater than a large value and the joint cosine similarity of negative pairs
is less than a small value. Experimental results on the fine-grained face verification and
facial kinship verification tasks demonstrate the advantages of our MVCSL method for
exploiting multi-view data.

The main novelty and contribution of our work is to advance the multi-view metric
learning from the cosine similarity learning framework to better exploit multi-view data,
which is different from the existing multi-view metric learning methods that are mainly
formulated in the framework of Mahalanbis distance metric learning. The shortcoming of
the proposed MVCSL method is that the gradient-descent based method is used to find the
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linear transformation matrices, and we may not obtain the global optimal solution. In the
future, we hope we can further improve our MVCSL and achieve its closed-form solution.
In future work, we will apply our approach to other applications such as visual recognition,
classification and clustering in pattern recognition.
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