
Multi-View Description of Software Architectures 

Valhie Issarny, Titos Saridakis, Apostolos Zarras 

INRIA - IRISA 
Campus de Beaulieu, 35042 Rennes Cddex, FRANCE 

email: {issarny,saridaki,zarras}Qirisa.fr 

Abstract 
The specification of a software architecture using different 
ADLs allows system designers to carry out a number of 
complementary analyses. In this position paper, we go 
one step further in this direction by advocating the need 
for specifying distinct views of a software architecture, 
each characterizing a specific type of properties (i.e. func- 
tional, interaction, and quality properties). Multi-view 
description of a software architecture raises the issue of 
combining a set of architectural views so as to derive the 
resulting overall architecture. We propose some hints on 
how this can be handled. 

1 Introduction 
It is now recognized that the construction of complex 
software systems can greatly benefit from the software 
architecture paradigm [9]. The software architecture of 
a system describes the system’s gross organization using 
an ADL, which provides notations for the abstract spe- 
cification of its architectural elements. Practically, the 
construction of a system from its software architecture 
requires taking into account the following properties of 
components and connectors: (i) the functionality offe- 
red by a component must match the ones expected by 
the components connected to it; (ii) the connectors used 
for handling interactions among components must pro- 
vide communication protocols that conform to those ex- 
pected by components; (iii) the overall architecture must 
provide the desired pzlality in terms of criteria as diverse 
as dependability, efficiency, scalability, security, timeli- 
ness, and usability. In this position paper, we propose to 
use multi-view architectural descriptions to cope with the 
above types of properties. The next section discusses the 
different views of a software architecture. Section 3 then 
addresses the issue of architectural consistency that is the 

ISAW Orlando Florida USA 
1998 l-58 113-08 I -3/98/l 1 

validity of an overall software architecture with regards to 
its different descriptions. We conclude in Section 4. 

2 Architectural Views 
The construction of a software system requires to take 
into account the behavior of components with respect to 
their functional, interaction, and quality properties. Ba- 
sed on this premise, we claim that the software archi- 
tecture of a system should be subdivided into a set of 
complementary architectural views where each view cor- 
responds to one type of properties. A pragmatic jus- 
tification is that some of the aforementioned properties 
are already handled by existing ADLs (e.g. see [5] for 
an overview of ADLs), which may be conveniently ex- 
ploited through the ACME framework [2]. An additio- 
nal justification relates to the resulting benefit from the 
standpoint of design reuse and software evolution. For 
illustration, let us consider the example of a basic Dis- 
tributed File System (DFS) structure. Figure 1 depicts 
different views of the DFS software architecture where 
boxes denote components, ellipses denote connectors, and 
directed arrows denote flows of control. Furthermore, 
white boxes denote functional components (i.e. compo- 
nents implementing some algorithmic aspect of the sys- 
tem), and grey boxes denote components enforcing some 
quality property. Base constituents of the DFS are the 
client and the file service functional components. Notice 
that although we depict a single client component, there 
may be several instances of such. Specifically, the views 
that we consider for illustration are: a) the functional 
view, which gives the operations that may be called by 
any client of the file service, together with the file service 
operations, e.g. read and write; b) the interaction view, 
which gives the interaction protocol between the client 
and the service, e.g. a client-server interaction; c) two 
eficiency views, which give the DFS structure aimed at 
increasing its efficiency by employing respectively a pre- 
fetching technique and a distributed implementation of 
the service coupled with load balancing; and d) the depen- 
dability view, which gives the DFS structure with respect 
to the fault tolerant mechanisms that are used, e.g. re- 
plication of the file service whose management relies on 
some broadcast protocol. 

In parallel to the multi-view description of the DFS 

81 



Caching client 

File service File service 
Client Pmfoich 

File service 

a) Functional view b) Imeractiw view I 

c I) Efticiency view 

Balanced file service 

I 
~2) Efficiency view 

Client 

Dependable file service 

Replica 1 

Broadcast 

d) Lkpendabdily view 

Figure 1: Architectural views of the DFS 

architecture, let us consider a single view aggregating 
all the aforementioned architectural features, as depic- 
ted in Figure 2. Considering design reuse, the multi-view 
description allows developers to exploit the design deci- 
sions made for the specific architecture for other applica- 
tion domains; only the functional view is tightly coupled 
with the DFS design. All the other design aspects are at 
least eligible for any client-server architectural style provi- 
ded the adequate substitution of functional components 
(white boxes). From the perspective of software evolu- 
tion, the multi-view architecture facilitates the revision 
of each software property, independently of the others. 

So far, we have given a rough informal picture of ar- 
chitectural view descriptions. A question that raises is 
to identify which ADL should be used for formal des- 
criptions. As already identified in the software architec- 
ture community, existing ADLs together provide distinct 
useful capabilities. Hence, each architectural view may 
be described from different perspectives using different 
ADLs, so as to carry out complementary analyses. Ho- 
wever, a number of important issues remain open, related 
to the composition of a set of architectural views so as 
to produce the overall system architecture (e.g. produ- 
cing the architecture of Figure 2 from those depicted in 
Figure 1). 

3 Combining Views 
The combination of architectural views raises two com- 
plementary issues: (i) architectural consistency, i.e. ve- 
rifying whether the composition of the views’ behavior 
produces a correct behavior, and (ii) architectural struc- 
ture, i.e. producing the structure of the overall architec- 
ture from the structure of its composing views. 

Architectural consistency: One way to handle archi- 
tectural consistency is to derive the overall architecture 
first and then to carry out adequate analyses. However, 
we would like compositionality of views so as to exploit 

the results of the analyses performed on individual views. 
This issue is similar to the horizontal composition of re- 
finement patterns discussed in [6], which uses a syntactic 
criterion so as to avoid a case-by-case proof of correctness. 
Such a solution cannot be undertaken for the composi- 
tion of views. For illustration, let us consider the quality 
views of the DFS example: depending on replication ma- 
nagement used in the dependability view, this may im- 
pact negatively on the system’s performance and hence 
lower the actual benefit of the efficiency views. Another 
example is the combination of fault tolerance with secu- 
rity concerns where the former requires replication while 
handling the latter implies minimizing replication. Let us 
examine view compositionality in more detail, by consi- 
dering the various pairs of distinct types of views: 

l Functional-Interaction: The only aspect to be 
considered for architectural consistency is to ensure 
that the synchronization among functional opera- 
tions is consistent with the synchronization achieved 
by the underlying interaction protocol. Compositio- 
nality of functional and interaction views may then 
be handled in a way similar to the treatment of port- 
role compatibility in Wright [l]. The synchroniza- 
tion protocols associated to component operations 
are declared in the functional view and are checked 
for compatibility with the protocols declared in the 
corresponding components of the interaction view. 

l Interaction-Quality: The combination of inter- 
action with quality views requires to ensure that 
the interaction properties achieved among functio- 
nal components remain unchanged. Hence, we may 
reason on compositionality of interaction with qua- 
lity views in a way similar to the treatment of com- 
position between interaction and functional views. 
A quality view must declare the synchronization 
protocols enforced for its composing functional com- 
ponents, which are checked for compatibility with 
the interaction protocols of the corresponding com- 
ponents in the interaction view. 

82 



Distributed file service 

Client 

Caching client 

Prefetch 
Load 

Balancing 

Figure 2: The complete DFS 

l Quality-Quality: As previously suggested, reaso- 
ning about the compositionality of quality views is 
the most difficult part. We must ensure that for 
any two views Vi and Vz that are respectively tar- 
geted for quality properties of types 71 and 72, the 
quality property of type 72 (resp. 71) of the view 
Vi (resp. Vz) is consistent with the quality pro- 
perty of Vz (resp. Vi). In the framework of the 
Aster project’, we have been working on the abs- 
tract specification of architectural views enforcing 
some quality properties (i.e. dependability, security, 
and concurrency control) using temporal first-order 
logic so as to allow the analysis of architectures with 
respect to provided quality properties as well as qua- 
lity view refinement (e.g. see [4]). However, these 
properties are addressed independently and we are 
currently examining a solution to the compositiona- 
lity of associated views. A direct solution consists 
in requiring to associate to each quality view, its 
properties with respect to the other types of qua- 
lities. Reasoning about compositionality of quality 
views then amounts to verify consistency among the 
quality properties relating to the same quality type 
(i.e. the conjunction of the quality properties must 
not evaluate to false). The practicality of the above 
approach still needs to be devised. 

l Functional-Quality: A quality view may make 
assumptions on the quality properties of its com- 
posing functional components. Thus, a functional 
view may be composed with a quality view if the 
quality behavior of components in the functional 
view is consistent with the one of the correspon- 
ding components in the quality view. One way to 
handle this aspect is to have the specification of the 
quality properties provided by the functional com- 
ponents in the functional and quality views. These 
properties must then be checked for consistency at 
composition time in a way similar to the composi- 
tion of quality views. 

Although the treatment of view compositionality is not 
completely solved and still needs to be formally defined, 
we are confident that it can be handled in a rigorous way 
and even supported through CASE tools including the 
ones used by the Wright and Aster projects. 

‘http://www.irisa.fr/solidor/work/aster.html. 

Architectural structure: In addition to the view 
compositionality issue, there is the issue of deriving the 
overall architecture of a system from its composing views. 
The main objective here is to minimize the developer in- 
teraction by providing the adequate CASE tool. We are 
developing a special instance of such a tool [lo], which 
produces an architecture from a set of quality views and 
a functional view, for a specific interaction view (i.e. the 
view associated to the CORBA ORB). Let us notice that 
we expect existing solutions to the integration of various 
interaction protocols (e.g. UniCon [8]) to provide the ade- 
quate basis for extending the tool to the treatment of va- 
rious interaction views. 

4 Conclusions 
We have advocated the need for multi-view description of 
software architectures, and discussed the issue of compo- 
sing architectural views so as to derive the overall archi- 
tecture of a software system. Although results regarding 
the composition of architectural views are still at a pre- 
liminary stage, we are confident that a practical solution 
can be provided together with supporting CASE tools. 
To our knowledge, multi-view description of a software 
architecture has only been addressed from the perspec- 
tive of exploiting the distinct useful capabilities of existing 
ADLs (e.g. see [3]). Our work is complementary in that 
it addresses the combination of architectural descriptions 
characterizing different behaviors. Our notion of multi- 
view architecture may be considered as defining a set of 
architectural styles for an architecture. This approach 
has in particular been suggested in [7] to characterize the 
various aspects of product line architectures. However, 
the author does not examine this issue in detail, he only 
points out these potential benefits of architectural styles. 

References 
[l] R. Allen and D. Garlan. A Formal Basis for Ar- 

chitectural Connection. ACM Transactions on Soft- 
ware Engineering and Methodology, 6(3):213-249, 
July 1997. 

[2] D. Garlan, R. Monroe, and D. Wile. ACME: 
An Architecture Interchange Language. In Procee- 

83 



dings of the CASCON 97, pages 169-183, November 
1997. http://www.cs.cmu.edu/afs/cs/project/able/- 
www/papers-bib.html. 

[3] D. Garlan and 2. Wang. A Case Study 
in Software Architecture Interchange. Techni- 
cal report, Department of Computer Science, 
Carnegie-Mellon University, Pittsburgh, PA, USA, 
1998. http://www.cs.cmu.edu/afs/cs/project/able/- 
www/papers-bib.html. 

[4] V. Issarny, C. Bidan, and T. Saridakis. Characteri- 
zing Coordination Architectures According to Their 
Non-Functional Execution Properties. In Procee- 
dings of the 31st Hawaii International Conference 
on System Science, pages 275-283, January 1998. 
http://www.irisa.fr/solidor/work/aster.html. 

[5] N. Medvidovic and R. N. Taylor. A Framework for 
Classifying and Comparing Architecture Description 
Danguages. In Proceedings of 2he 5th ACM SIG- 
SOFT Symposium on Foundations of Software En- 
gineering, pages 60-76, September 1997. 

[6] M. Moriconi, X. Qian, and R. A. Riemenschneider. 
Correct Architecture Refinement. IEEE Ransac- 
tions on Software Engineering, 21(4):356-372, April 
1995. 

[7] D. E. Perry. Generic Architecture Description. In 
Proceedings of the International Workshop on the 
Principles of Software Evolution, 1998. 

[8] M. Shaw, R. DeLine, D. Kelin, T. Ross, D. Young, 
and G. Zelesnik. Abstraction for Software Architec- 
tures and Tools to Support Them. IEEE Transaction 
on Software Engineering, 21(4):314-335, April 1995. 

[9] M. Shaw and D. Garlan. Software Architecture: 
Perspectives on an Emerging Discipline. Prentice 
Hall, 1996. 

[lo] A. Zarras and V. Issarny. A Framework for Sys- 
tematic Synthesis of Transactional Middleware. In 
Proceedings of Middlewaregd, the IFIP International 
Conference on Distributed Systems Platforms and 
Open Distributed Processing, September 1998. To ap- 
pear. http://www.irisa.fr/solidor/work/aster.html. 

84 


