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Abstract— Pneumonia is one of the leading causes of child-
hood mortality worldwide. Chest x-ray (CXR) can aid the
diagnosis of pneumonia, but in the case of low contrast
images, it is important to include computational tools to aid
specialists. Deep learning is an alternative because it can
identify patterns automatically, even in low-resolution images.
We propose herein a convolutional neural network (CNN)
architecture with different training strategies towards detecting
pneumonia on CXRs and distinguishing its subforms of bacteria
and virus. We also evaluated different image pre-processing
methods to improve the classification. This study used CXRs
from pediatric patients from a public pneumonia CXR dataset.
The pre-processing methods evaluated were image cropping
and histogram equalization. To classify the images, we adopted
the VGG16 CNN and replaced its fully-connected layers with
a customized multilayer perceptron. With this architecture,
we proposed and evaluated four different training strategies:
original CXR image (baseline), chest-cavity-cropped image
(A), and histogram-equalized segmented image (B). The last
strategy method (C) implemented is based on ensemble between
strategies A and B. The performance was assessed by the area
under the ROC curve (AUC) with 95% confidence interval (CI),
accuracy, sensitivity, specificity, and F1-score. The ensemble
model C yielded the highest performances: AUC of 0.97 (CI:
0.96–0.99) to classify pneumonia vs. normal, and AUC of 0.91
(CI: 0.88–0.94) to classify bacterial vs. viral cases. All models
that used pre-processed images showed higher AUC than base-
line, which used the original CXR image. Image cropping and
histogram equalization reduced irrelevant information from
the exam, enhanced contrast, and was able to identify fine
CXR texture details. The proposed ensemble model increased
the representation of inflammatory patterns from bacteria and
viruses with few epochs to train the deep CNNs.

Clinical relevance— Deep learning can identify complex
radiographic patterns in low contrast images due to pneumonia
and distinguish its subforms of bacteria and virus. The corre-
lation of imaging with lab results could accelerate the adoption
of complementary exams to confirm the disease’s cause.

I. INTRODUCTION

The World Health Organization (WHO) states that pneu-

monia is a major pediatric problem and one of the lead-

ing causes of childhood mortality worldwide, especially in

Africa, South America, and Southeast Asia [1][2]. At least

90% of newly diagnosed cases occur in those developing

regions where medical resources are limited, and every year

about two million children under five years old die due to

pneumonia [3]. Bacterial and viral microorganisms are the
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most common etiologic agents responsible for community-

acquired pneumonia, but the identification of those pathogens

remains challenging [4]. Moreover, bacteria and virus need

different treatments, but the former may require more urgent

referral due to antibiotic intervention [2].

Chest x-ray (CXRs) is a low-risk and accessible exam

that represents an essential component to evaluate patients

with a suspicion of pneumonia. Radiography, along with

computed tomography, can aid the diagnosis of pneumonia

in conjunction with clinical and laboratorial data, according

to the American Thoracic Society (ATS) [5]. The ATS also

recommends CXRs to assess the extent of the disease and to

detect complications (e.g., abscess formation) [4]. However,

the detection of pneumonia in CXRs is still largely dependent

on the skills of physicians, and it is not always possible

to produce the image reports quickly as it relies on the

availability of expert radiologists [3].

Furthermore, radiographic patterns (like opacities) of

pneumonia are often related to the causative agent. Bac-

terial pneumonia typically exhibits a focal nonsegmental,

homogenous lobar inflammation consolidation (focal opac-

ities), whereas viral pneumonia generally manifests as more

diffuse bilateral interstitial or interstitial-alveolar patterns in

both lungs [2][4]. The radiographic appearance of it can

overlap with other diseases, and it can mimic other lung

consolidations and opacities due to low contrast of CXR,

especially from children because of the dose of radiation

received by the patient is relatively low, under normal cir-

cumstances [3][6]. Therefore, it is vital to include computer-

based tools to aid physicians in detecting diseases early and

potentially provide further information such as the type of

the infection (i.e., bacterial or viral), as they can improve

the accuracy and consistency of medical image diagnosis

through computational support used as a reference [7].

Some works have used computational tools to classify

pneumonia patients and normal subjects. For instance, Sousa

et al. [8] extracted wavelet features from CXRs and used as

input to three different machine learning methods. Chandra

et al. [9] extracted histogram features and used five different

image classifiers. However, they used hand-crafted image

features, which is a time-consuming and labor-intensive

task. Recently, the use of deep learning has been gaining

importance in solving this type of problem. Deep learning,

in particular convolutional neural networks (CNNs), is a

machine learning branch that uses raw data (i.e., image

pixels) as the algorithm input and abstracts layer-wise the

original imaging data into the final feature vector without
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requiring manual procedures [2]. The automated pattern

recognition and classification based on deep learning could

significantly mitigate problems caused by visual assessment

(e.g., subjectivity and time) and improve the efficiency of

specialists, reduce medical costs, and support the diagnosis

and treatment decisions of pediatric pneumonia [3][7].

In this context, this work evaluated the performance of

deep learning methods in the detection of pneumonia and to

distinguish between viral and bacterial pneumonia. Due to

low contrast between soft tissues and the nature of the CXR

exam to show overlapped structures, we hypothesize that

medical image pre-processing may enhance and highlight

CXR features to improve the classification tasks. Therefore,

we also aim to evaluate image processing methods to im-

prove recognition of radiographic patterns of pneumonia.

II. MATERIAL AND METHODS

A. Pneumonia CXR Dataset

This study used anteroposterior images from patients of

one to five years old from a public dataset (the Guangzhou

Pneumonia Chest X-ray dataset) [2], and hence, no Insti-

tutional Review Board approval was needed. CXR images

were used in experiments according to the original dataset

split training set: 2,538 bacterial pneumonia, 1,345 viral, and

1,349 without findings; testing set: 242 bacterial pneumonia,

148 viral pneumonia, and 234 without findings [2].

B. Image Pre-Processing

One of our hypotheses is that removing anatomical re-

gions from the CXR that are not relevant to pneumonia

detection would improve the training ability of deep CNNs,

and consequently, the classification performance. For this

purpose, an algorithm based on the U-Net CNN [10] was

developed to crop the chest cavity from the radiograph

images. This algorithm first segments the lungs from the

CXR using pre-trained U-Net weights and a transfer learning

approach to create a binary mask [11]. It then creates a

region of interest (ROI) from the extreme points on the

lungs mask and generates a bounding box to finally crop

the chest cavity (Figure 1-I), removing regions that are not

important for pneumonia detection, such as head, neck, arms,

and exam objects. In some cases, due to large opacities in

lung regions, the U-Net cannot detect one of the two lungs,

and the consequent extreme points on the binary mask do not

represent the extreme points on the chest cavity (Figure 1-II).

In order to identify these cases, a simple rule was created.

When the width of the chest cavity in the binary mask (wref

in Figure 1-II)) is not greater than the half-width of the

image (w), the distance wref is considered miscalculated.

To recalculate the width of the chest cavity (wref ), we take

as reference the minor distance between the image’s vertical

borders and the extreme points (a in Figure 1-II). This value

(a) will be the distance between the vertical borders of the

ROI and the image, and wref = w − 2a.

We also hypothesize that enhancing the ROIs by tradi-

tional image pre-processing would also improve radiographic

feature representation and pattern recognition. To increase
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Fig. 1: Image cropping process.

the contrast of the overlapped projection of soft tissues, his-

togram equalization by contrast-limited adaptive histogram

equalization (CLAHE) was then performed. CLAHE is a

powerful procedure to locally enhance image patterns by

limiting contrast amplification at a predefined value (in

this work, 0.01) on the histogram before computing the

cumulative distribution function [12].

C. Multi-View Ensemble Convolutional Neural Network

For classification purposes, we adopted the VGG16 CNN

[13] and replaced its fully-connected layers with a cus-

tomized multilayer perceptron (MLP) with three layers of

1024, 512, and 2 hidden neurons. VGG16 is a reasonably

simple, widely known neural network with only 19 convo-

lutional and pooling layers that was formerly used on CXR

classification [3][14]. The VGG16 convolutional layers were

initialized with weights trained on the ImageNet dataset [15]

and the MLP with random weights. Between each MLP-

layer, a Dropout Regularization layer was added with a rate

of 30%. The MLP used the ReLU activation function, except

the last layer, where the activation function was a softmax.

To evaluate the influence of pre-processing techniques

on classification performance, we proposed three different

training strategies, besides the baseline using original images:

• A: uses cropped images, as described in II.B;

• B: uses cropped images followed by histogram equal-

ization using the CLAHE method;

• C: the ensemble of the strategies A and B (Figure 2).

This strategy has an extra 3-layer MLP with 4, 10,

and 2 hidden neurons. Here, the strategies A and B,

composed by different gray-level intensities of the CXR

(i.e., normal and equalized, forming the multi-view

approach), are frozen, and their softmax probabilities

are concatenated in the first MLP-layer.

In this work, we did not use data augmentation to balance

the dataset. The training of the CNN and extra MLP of

the ensemble strategy were performed with thirty and ten

epochs, respectively. All training strategies were performed

by stochastic gradient descent in batches of 16 images per

step using an RMSprop Optimizer with a learning rate of

0.0001. As input, all images were resized to 224×224 pixels.

The metrics of the area under the ROC curve (AUC),

sensitivity, specificity, accuracy, and F1 score assessed the

performance of the four strategies. The Keras framework

v2.2.5 with TensorFlow backend v1.14.0 was used for deep

learning. Statistical analysis was performed by the DeLong’s

1239



P
B
(0)

P
B
(1)

VGG16  
P
A
(0)

P
A
(1)

Chest cavity cropping

U-Net

CXR image
pre-processing

MLP-based image meta-classifier

CLAHE

Multi-View CNN Ensemble

P
A
(0)

P
A
(1)

P
B
(0)

P
B
(1)

0

1

Input 

Layer

Hidden 

Layer

Output 

Layer

Concatenation

MLP
A

VGG16  
B

MLP

Fig. 2: Multi-view ensemble deep learning model for pneu-

monia classification. Different input images compose the

proposed strategy of multi-view ensemble learning of CNNs.

test using R v3.4.4. The experiments were performed on

Foxconn HPC M100-NHI with an 8-GPU cluster of NVIDIA

Tesla V100 16GB cards. This computing infrastructure al-

lowed the improvement in processing time of at least 7x in

comparison with a workstation of 12 cores of 3.2 GHz (16

Gb RAM) and NVIDIA GeForce GTX 1050 with 4GB.

III. RESULTS

Table I presents the results for two classification tasks

(normal vs. pneumonia and bacteria vs. virus). The ensemble

strategy C yielded the highest performances for both binary

tasks. This strategy combines the best properties of strategies

A and B, improving classification efficiency, according to the

statistical difference from the baseline. Due to the CLAHE

local enhancement mechanism, opacities can get more ho-

mogenous for bacteria and virus, making the classification

task more difficult between those patterns.

TABLE I: Performance obtained in the classification. AUC

is presented with 95% confidence interval (CI). The asterisk

indicates statistical difference from the baseline.

Strategy Baseline A B C

Pneumonia AUC 0.87 0.95* 0.96* 0.97*

vs. Normal CI 0.85-0.90 0.93-0.97 0.95-0.98 0.96-0.99

Bacteria AUC 0.85 0.88 0.83 0.91*

vs. Virus CI 0.81-0.88 0.85-0.92 0.80-0.87 0.88-0.94

Figure 3 shows models’ class activation maps (CAMs) to

corroborate that image cropping could leverage the detection

of diseases on CXR as the regions of interest are more rep-

resentative due to less information to be recognized. Image

cropping also reduced irrelevant information from the exam

and improved the representations of the region of interest

(i.e., chest cavity and lungs). Figure 4 presents an example in

which strategies A and B misclassified a patient with pneu-

monia as normal. However, strategy C correctly classified

the patient, which could indicate multi-view ensemble deep

learning may produce more reliable classification results, as

it would not consider the information of only one ”observer”.

Tables II and III present the performance comparison of the

proposed method and the methods in the literature for the

same dataset to classify pneumonia vs. normal patients and

bacterial vs. viral pneumonia cases, respectively.

IV. DISCUSSION

Some works have already evaluated deep learning models

in the detection of pediatric pneumonia on CXRs. Kermany

TABLE II: Comparison with the literature using the same

dataset of normal vs. pneumonia classification.

Article AUC Sensitivity Specificity Accuracy F1 Score

Kermany [2] 0.968 0.932 0.901 0.928 -

Liang [3] 0.953 0.967 0.803 0.905 0.927

This work 0.973 0.979 0.966 0.974 0.979

TABLE III: Comparison with the literature using the same

dataset of viral vs. bacterial pneumonia classification.

Article AUC Sensitivity Specificity Accuracy F1 Score

Kermany [2] 0.940 0.886 0.909 0.907 -

This work 0.907 0.963 0.851 0.921 0.890

et al. [2] adapted an Inception V3 architecture pre-trained

on the ImageNet dataset. A hundred epochs were used,

and it is not clear if they used or not data augmentation

techniques. Liang et al. [3] proposed an architecture based

on CNN and residual network. They trained for 100 epochs

and used data augmentation in images of 150x150 pixels to

balance the dataset. Moreover, they used the ChestXray14

dataset for transfer learning [16]. The proposed methods by

Kermany et al. and Liang et al. yielded AUCs of 0.968

and 0.953, respectively, in the classification of normal and

abnormal children’s exams over the same dataset. Kermany

et al. also subclassified pneumonia cases (bacterial vs. viral)

and yielded AUC of 0.940. However, all of those models

were trained with single architectures, which can lead to

limited prediction accuracy, even with optimum parameters.

To decrease this limitation, we proposed in this work a multi-

view ensemble CNN model to classify pneumonia.

(a) (b)

(c) (d)

Fig. 3: CAMs show the most informative regions for clas-

sification: (a-b) CAMs from original and cropped images,

respectively, of a patient with bacterial pneumonia; (c-d)

CAMs from original and cropped images, respectively, of

a patient with viral pneumonia.

Our model achieved a performance of AUC of 0.973,

sensitivity of 0.979, specificity of 0.966, accuracy of 0.974,

and F1 score of 0.979. This approach also can distinguish

its subforms of bacteria and virus with an AUC of 0.907.

For the best of our knowledge, the proposed method yielded

higher AUC for the classification of normal and patients with
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pneumonia when compared with the literature for the same

dataset. Unlike the literature [3], we adopted the VGG16

architecture with its default input size [13], which potentially

extracted more efficiently the network standard information.

A different VGG16 input size could limit network train-

ing and reduce image characterization potential. ImageNet

weight initialization was an easy method to initialize the net-

work, potentially enabling rapid convergence [15]. Moreover,

only 30 epochs were necessary to achieve this convergence.

(b)

(d)

(a)

(c)

Fig. 4: Classification results of a patient with pneumonia:

(a-b) cropped and CAM images, and (c-d) equalized and

CAM images, respectively. Strategies A and B misclassified

the patient as normal (false negative), while the proposed

strategy correctly classified it as a true positive.

Overall, pre-processing techniques yielded the highest

performances in binary classifications. Specifically, image

cropping reduced irrelevant information from the exam and

improved the representations of the region of interest (i.e.,

chest cavity and lungs). Histogram equalization enhanced

contrast of soft tissues and was able to identify fine tex-

tures from CXR. This multi-view approach with both pre-

processing methods (ROI cropping and CLAHE) is simple

to implement, and each method offers a different advantage

to the training, yielding better results on the classification

when compared with the use of the original CRX (baseline).

The external generalization using multi-view ensemble

CNN has potential due to the extra MLP that takes advantage

of the different features extracted from the original intensity

and histogram-equalized gray levels, and it learns to weigh

and associate the probabilities of different training methods

on the classification task. For these reasons, we highlight

the need for pre-processing of input medical images for

performance improvement of the VGG16 network.

Our main limitation was the lack of an independent exter-

nal dataset for generalization purposes. There are other pub-

licly available CXR datasets on the literature, i.e., ChestX-

ray8 and CheXpert [16], [17]. However, neither includes ex-

ams from pediatric patients. Moreover, they are known to be

inconsistent as the image labeling procedure was performed

by natural language processing on radiology reports, which

could lead to text-mining errors as labels may not accurately

reflect the visual content of the images [14][18].

We propose for future works to evaluate the generalization

of the multi-view ensemble deep learning model with other

cohorts and expand the investigation to include adult exams

from patients with pneumonia.
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