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Abstract. Expression recognition from non-frontal faces is a challenging re-
search area with growing interest. This paper works with a generic sparse coding
feature, inspired from object recognition, for multi-view facial expression recog-
nition. Our extensive experiments on face images with seven pan angles and five
tilt angles, rendered from the BU-3DFE database, achieve state-of-the-art results.
We achieve a recognition rate of 69.1% on all images with four expression inten-
sity levels, and a recognition performance of 76.1% on images with the strongest
expression intensity. We then also present detailed analysis of the variations in
expression recognition performance for various pose changes.

1 Introduction

The increasing applications of facial expression recognition, especially those in Human
Computer Interaction, have attracted a great amount of research work in this area in
the past decade. However, much of the literature focuses on expression recognition
from frontal or near-frontal face images [1, 2]. Expression recognition from non-frontal
faces is much more challenging. It is also of more practical utility, since it is not trivial
in real applications to always have a frontal face. Nonetheless, there are only a handful
of works in the literature working with non-frontal faces. There has been experimental
evidence in both face recognition and Psychology that non-frontal faces may achieve
better recognition performance than frontal ones [2–4]. However, there has not been
much effort on a detailed analysis of the effect of large pose variations (both pan and
tilt angles) on the expression recognition performance. This paper, apart from achieving
state-of-the-art results, also attempts to fill in these gaps.

1.1 Related Works

Most existing works focus on recognizing six basic expressions that are universal and
recognizable across different cultures. These include anger (AN), fear (FE), disgust
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(DI), sad (SA), happy (HA) and surprise (SU) [2]. Some of the notable works in expres-
sion recognition focusing on frontal or near-frontal faces include [5–13]. For a compre-
hensive survey of the works in expression recognition please refer to [1] and [14]. In
the following, we shall briefly review the papers that concentrate on non-frontal view
facial expression recognition.

The works on non-frontal view expression recognition can be classified based upon
the types of features employed. Some works use geometric features, e.g., Hu et al. [15]
and Rudovic et al. [16, 17] use displacement or mapping of manually labeled key points
to the neutral or frontal face views of the same subject. Whereas, some researchers
extract various low-level features (e.g., SIFT) on pre-labeled landmark points and use
them for further processing [2]. Some of such works include those by Hu et al. [18] and
Zheng et al. [19].

Note that the aforementioned approaches require the facial key-points location infor-
mation, which needs to be pre-labeled. However, in real applications, key-points need
to be automatically detected, which is a big challenge itself in the case of non-frontal
faces. To address this issue, there have been some attempts which do not require key-
point locations; they rather extract dense features on detected faces1. The prominent
examples in this category include works by Moore and Bowden [20, 21], Zheng et al.
[22] and Tang et al. [23]. Moore and Bowden [20, 21] extract LBP features and its vari-
ants from non-overlapping patches. While, Zheng et al. [22] and Tang et al. [23] extract
dense SIFT features on overlapping image patches. Zheng et al. [22] use regional co-
variance matrices for the image-level representation. Tang et al. [23], after dense feature
extraction, represent the images with super vectors which are learnt based on ergodic
hidden markov models (HMM).

It is worthwhile to mention that the BU3D-FE database [24] has become the de-facto
standard for works in this area. Many works use five pan angle views rendered from the
database (0◦, 30◦, 45◦, 60◦and 90◦) [15, 18–21]. However, in real-world situations, we
have variations in both pan and tilt angles. Thus, in more recent works [22, 23], people
are working with a range of both pan and tilt angles.

Unlike many previous works, our work neither requires key-point localization nor
needs a neutral face. We work with 35 views rendered from the BU-3DFE database
(combination from 7 pan angles and 5 tilt angles). Unlike [22] and [23], we use all
the four expression intensity levels. This work beats the state-of-the-art performance in
the same experimental setting as [22] and [23]. Apart from performing better, it also
does a significant analysis on the effect of pose and intensity variations on expression
recognition results. To our best knowledge, such analysis has not been done before in
the literature for such a wide range of pan and tilt angle views. This gives valuable
insights to the the multi-view expression recognition problem.

In the following, we first describe the BU-3DFE database used in this work in Sec-
tion 2. Then we present the generic sparse coding feature from object recognition in
Section 3. Multi-view expression recognition experiments are conducted in Section 4.
And we present detailed discussions of the results in Section 5. Finally, Section 6 con-
cludes our paper.

1 Extraction of dense features essentially implies computing features on an entire image region
from overlapping or non-overlapping image patches.
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2 Database

The database used in this work is the publicly available BU3D-FE database [24]. It
has 3D face scan and associated texture images of 100 subjects, each performing 6
expressions at four intensity levels. The facial expressions presented in this database
include anger (AN), disgust (DI), fear (FE), happy (HA), sad (SA) and surprise (SU).
Each subject also has a neutral face scan. Thus, there are a total of 2500 3D faces.
The dataset is quite diverse and contains subjects of both gender with various races.
Interested readers are referred to [24] for further details.

We used an openGL based tool from the database creators to render multiple views.
We generated views with seven pan angles (0◦, ±15◦, ±30◦, ±45◦) and five tilt angles
(0◦, ±15◦, ±30◦). These views were generated for each subject with 6 expressions and
4 intensity levels, resulting in an image dataset with 5× 7××6× 4× 100 = 84000
images. Some sample images of a subject in various pan and tilt angles are shown in
Figure 1.

Face images with different pan and tilt angles
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Fig. 1. Rendered facial images of a subject with various pan and tilt angles

3 The Generic Sparse Coding Feature

Recently, much progress has been made in learning mid-level feature representations
for image classification [25–28]. These approaches typically follow a common pipeline
that consists of three computational modules:

1. Local feature extraction: Local descriptors (e.g., raw patches, SIFT or HOG) are
extracted from image patches densely sampled from the image to capture the local
statistics.

2. Descriptor encoding: Each local descriptor is transformed into some code with
desired properties (e.g., hard or soft vector quantization [28], LLC [27] or sparse
coding [26]), such as compactness, sparseness, or statistical independence.
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Fig. 2. Spatial pyramid structure for representing the image

3. Spatial feature pooling: The codes are then pooled (e.g., averaging [25] or taking
the maximum [26, 27]) over different spatial locations across multiple spatial scales
to obtain the image level feature representation.

With these mid-level feature representations, state-of-the-art recognition performances
have been reported in object recognition and scene classification tasks on benchmark
datasets, such as Caltech-101 [29], Caltech-256 [30] and Scene 15 [25]. In this work, we
follow the line of mid-level feature learning and apply the image categorization tech-
nique for multiple view facial expression analysis. Specifically, we follow the ScSPM
work [26] for building the facial image feature representation by max pooling the sparse
codes of the local descriptors in a spatial pyramid. The following briefly describes the
procedure for building feature representation based on sparse coding.

First, we densely extract local descriptors from the image, and represent the image
as sets of local descriptors in a three level spatial pyramid X =

[
X0

11,X
1
11,X

1
12, ...,Y

2
44

]
,

where Xs
i j is a matrix containing local descriptors from the (i, j)-th spatial block in the

s-th spatial scale. As shown in Figure 2, on the s-th image spatial scale, there are 2s

evenly divided spatial blocks in total. Given the dictionary D offline trained [31] from
randomly sampled descriptors, we encode the local descriptors into sparse codes by

Ẑs
i j = argmin

Z
‖Xs

i j −DZ‖2
2 +λ‖Z‖1, (1)

where the �1-norm enforces sparsity of the representation and λ controls the sparsity
penalty. After encoding all local descriptors into sparse codes, we can similarly rep-
resent these sparse codes in the spatial pyramid S =

[
Ẑ0

11, Ẑ
1
11, Ẑ

1
12, ..., Ẑ

2
44

]
. The final

feature representation is obtained by max pooling over the sparse codes in each spatial
block across different spatial scales, i.e.,

β =
[
β s

i j

]
, β s

i j = max(|Ẑs
i j|), (2)

where β is a concatenation of β s
i j over all (i, j,s) and the “max” operation is performed

over each row of Ẑs
i j. As shown in [26], max pooling in conjunction with sparse coding

works well with linear classifiers, achieving surprisingly good results on image classi-
fication tasks. The framework is also backed up by biophysical evidences in the visual
cortex (V1) [32].
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4 Multi-view Expression Recognition

In this section we detail our work on multi-view expression recognition. We conduct
extensive experiments on the 84,000 face images extracted from the BU-3DFE database
in 35 views with 4 intensity levels (as outlined in Section 2). The 100 subjects in the
database, are randomly divided into five partitions. We do 5-fold cross validation on
the 84,000 images and then average the results. In each fold, images from four subject
partitions (80% subjects) are used as training and images from the remaining partition
(20% subjects) are used as testing. Thus we ensure that the training and testing datasets
do not simultaneously contain images from the same subject. We first extract dense
SIFT features from images on a regular grid with step size of 3 pixels in both horizontal
and vertical directions. Then a randomly sampled subset of these SIFT features is used
to train the dictionary, D ∈ R

128×1024. This dictionary is then used to sparsely encode
the SIFT features extracted from each image, from which max pooling is applied to
obtain the image-level representation.

We choose to adopt a ‘universal’ approach for classification, as in [22] and [23].
For such an approach, in essence, the classifier is trained on the entire training set with
all the poses. Thus the ‘universal’ approach does not require a pose detection step in
testing. This not only saves computation but also avoids possible pose estimation errors.
We used linear SVM [33] as the classifier. Its computational complexity is O(n) in
training and constant in testing. Thus, it can scale up well with large scale datasets.

The overall recognition accuracy for 5-fold cross-validation, averaged across all the
subjects, expressions, intensity levels and poses, comes out to be 69.1%. The respective
class confusion matrix is shown in Table 1. The effect of varying expression intensities
on expression recognition, averaged for all the poses is plotted in Figure 3. The effects
of variations in pan and tilt angles on expression recognition performance are shown
in Figure 4. Similarly the effects of variations in pan and tilt angles for various ex-
pression intensity levels are shown in Figure 5. Figure 6, on the other hand, shows the
effect of the simultaneous variations of pan and tilt angles on the average recognition
performance.

Note that no other previous work in the literature experimented with all the expres-
sion intensity levels and all the subjects for the aforementioned pan and tilt angles.

Table 1. Classification confusion matrix for over-all recognition performance averaged over all
poses and expression intensity levels

Overall
classification

Predicted
AN DI FE HA SA SU

Ground
Truth

AN 64.2 8.4 4.1 2.2 18.1 3.1
DI 10.9 70.1 5.8 3.9 5.2 4.3
FE 7.5 9.5 51.1 13.7 9.5 8.7
HA 2.1 4.3 9.4 81.2 1.7 1.4
SA 19.6 5.2 7.2 2.3 63.4 2.3
SU 1.8 3.0 4.7 3.0 2.6 85.0



Multi-view Facial Expression Recognition Analysis 583

Table 2. Performance comparison with previous works on the strongest expression intensity

Zheng et al [22] Tang et al. [23] Ours
68.2% 75.3% 76.1%
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Fig. 3. Recognition performance for various expressions with different intensities
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Fig. 4. Effects of changes in pan (a) and tilt (b) angles on the recognition performance of various
expressions

Zheng et al. [22] and Tang et al. [23] follow the same experimental setting of 5-fold
cross validation with the same set of pan and tilt angle views, but only focus on the
strongest expression intensity level. Hence their image dataset consists of 21,000 im-
ages. To fairly compare the performance of this work to those of [22] and [23], we
repeat the experiments on the strongest expression intensity level. The comparison of
our results with those of [22] and [23] is given in Table 2.
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Fig. 5. Effects of changes in pan (a) and tilt (b) angles on the recognition performance of various
expression intensity levels
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Fig. 6. Effects of changes in both pan and tilt angles on the overall expression recognition perfor-
mance

5 Discussions

Our work with multi-view expression recognition shows promising results compared to
the other state-of-the-art works. Unlike [22] and [23], we experiment with all the four
expression intensity levels, which is harder compared to working with just the strongest
expression intensity level. This can also be observed from Figures 3 and 5 that the most
subtle expressions are the most difficult ones to recognize.

We intend to address a series of questions in this work. For instance, we consider
whether the recognition performance is affected in the same manner across different
expressions with change in their intensity level. Please refer to Figure 3 for this pur-
pose. It displays the recognition rates for various expressions of different intensities,
averaged across all the pan and tilt angle views. It can be observed that the recognition
performance of the disgust (DI), fear (FE), happy (HA) and surprise (SU) expressions
increases with the increase of expression intensity levels. However, this trend is not
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strictly followed for the anger (AN) and sad (SA) expressions. Note that the variations
in the recognition performance from the least intense (level 1) to the most intense (level
4) anger and sad expressions is much smaller compared to the other expressions. This
may stem from the reason that it may be harder for the subjects to display such expres-
sions in varying intensity levels.

Another point to analyze is how does the variation in pan or tilt angles affects the
recognition performance. Please consider Figures 4 and 5 for this purpose. Note that
here, the results are averaged across the all the intensity levels, across corresponding
tilt angles in Figure 4(a) and across the respective pan angles in Figure 4(b); similarly,
the recognition rates are averaged across all the expressions, across corresponding tilt
angles in Figure 5(a) and across the respective pan angles in Figure 5(b). One may note
that, the average expression recognition performance has its maximum value on 0◦ pan
or tilt angle. There is a slight performance drop up till ±30◦ pan angle (Figures 4(a) and
5(a)) and beyond that the performance drop is more significant. Similarly the average
performance drop beyond ±15◦ tilt angle (Figures 4(b) and 5(b)) is more significant.
Thus, the frontal and near-frontal views give better average recognition performance.

Then we can ask how do individual expressions respond to change in pan or tilt
angles. In Figure 4, one can observe that there are three ‘clusters’ of curves. The first
cluster has only the fear expression performance. It is significantly worse compared to
the other expressions for all the variations in pose (in pan or tilt angles). This may be
due to greater variation in expressing fear amongst the subjects. The other group of
curves giving similar performance are for disgust, anger and sad expressions. And the
group of curves giving the best performance is for the happy and surprise expressions.
One can note from these figures that the negative expressions (fear, anger, disgust, sad)
perform significantly worse than the positive ones, for all the variations in pan and tilt
angles. One can also make some interesting observations from the variation in tilt angles
in Figure 4(b). For instance, for the fear and anger expressions, -30◦ tilt angle view
give better performance compared to +30◦ tilt angle view. For the disgust expression,
however, the positive tilt angle views give better performance compared to the negative
tilt angle views. For the other expressions, the trend is approximately symmetric.

We can also analyze the effect of change in pan and tilt angles on individual intensity
levels. One can notice from Figure 5 that the curves for the four intensity levels are
more or less parallel, meaning thereby that the individual intensities are affected more
or less similarly with the change in pan or tilt angles. The two strongest expression
intensity levels perform significantly better than the other two, for all the pan or tilt
angle variations. However, in real life situations, the expressions are subtle, in general,
thus posing a harder research problem for recognition. The third strongest expression
intensity still performs significantly better than the most subtle expression intensity
level. The expression intensities, in general, achieve a maximum recognition rate at 0◦
pan or tilt angle. There is also a significant performance dip at pose angles beyond±30◦
pan or ±15◦ tilt, for all the expression intensities.

Similarly, to address the variation of both pan and tilt angles on average recognition
performance please refer to Figure 6. Please note that each ‘box’ in this figure, gives
the average recognition performance of 2400 images in the corresponding pan and tilt
angle view combination. Also note that there is a significant performance decrease be-
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yond ±30◦ pan and ±15◦ tilt angle view. Other than that, the performance seems more
or less comparable (in the middle). The view with 15◦ pan and 0◦ tilt gives the best
performance. However, it is very close to the frontal view performance.

6 Concluding Remarks

Our work sets a new state-of-the-art for multi-view facial expression recognition on
the BU3D-FE database. We also provide a detailed analysis of variations in expression
recognition performance with changes in a range of pan angles, tilt angles and both.
Such an in-depth analysis is the first of its kind with such a wide range of pan and
tilt angle variations. This can aid in designing various expression recognition systems.
Also, unlike many other works, the approach used in this work neither requires any key
point detection nor does it need a neutral face, and thus is more suitable for practical
purposes.
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