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Multi-View Geometry for General Camera Models

P. Sturm

INRIA Rhône-Alpes, 38330 Montbonnot, France

Abstract

We consider the structure from motion problem for a pre-

viously introduced, highly general imaging model, where

cameras are modeled as possibly unconstrained sets of pro-

jection rays. This allows to describe most existing cam-

era types, including pinhole cameras, sensors with radial or

more general distortions, catadioptric cameras (central or

non-central), etc. We introduce a hierarchy of general cam-

era models: the most general model has unconstrained pro-

jection rays whereas the most constrained model dealt with

here is the central model, where all rays pass through a sin-

gle point. Intermediate models are what we call axial cam-

eras (all rays touch a single line), and x-slit cameras (rays

touch two lines). The foundations for a multi-view geometry

of completely non-central cameras are given, leading to the

formulation of multi-view matching tensors, analogous to

the fundamental/essential matrices, trifocal and quadrifo-

cal tensors of perspective cameras. This framework is then

specialized explicitly for the two-view case, for the interme-

diate camera types mentioned above.

1. Introduction

Many different types of cameras including pinhole,

stereo, catadioptric, omnidirectional and non-central cam-

eras have been used in computer vision. Most existing cam-

era models are parametric (i.e. defined by a few intrinsic pa-

rameters) and address imaging systems with a single effec-

tive viewpoint (all rays pass through one point). In addition,

existing calibration or structure from motion procedures are

often taylor-made for specific camera models, see examples

e.g. in [3, 11, 7].

The aim of this work is to relax these constraints: we

want to propose and develop calibration and structure from

motion methods that should work for any type of camera

model, and especially also for cameras without a single ef-

fective viewpoint. To do so, we first renounce on parametric

models, and adopt the following very general model: a cam-

era acquires images consisting of pixels; each pixel captures

light that travels along a ray in 3D. The camera is fully de-

scribed by [9]:

• the coordinates of these rays (given in some local co-

ordinate frame).

• the mapping between rays and pixels; this is basically

a simple indexing.

Figure 1. Examples of imaging systems; (c)–(e) are non-central

devices. (a) Catadioptric system. (b) Central camera (e.g. per-

spective, with or without radial distortion). (c) Camera looking at

reflective sphere. (d) Omnivergent imaging system [18, 21]. (e)

Stereo system.

This general imaging model allows to describe virtually

any camera that captures light rays travelling along straight

lines. Examples are (cf. figure 1):

• a camera with any type of optical distortion, such as

radial or decentering.

• a camera looking at a reflective surface, e.g. as often

used in surveillance, a camera looking at a spherical

or otherwise curved mirror [12]. Such systems, as op-

posed to central catadioptric systems [1, 6] using e.g.

parabolic mirrors, do not in general have a single ef-

fective viewpoint.

• multi-camera stereo systems: put together the pixels of

all image planes; they “catch” light rays that definitely

do not travel along lines that all pass through a sin-

gle point. Nevertheless, in the above general camera

model, a stereo system (with rigidly linked cameras) is

considered as a single camera.

• other acquisition systems, many of them non-central,

see e.g. [2, 14, 17, 18, 21, 25, 26], insect eyes, etc.

In this paper, we propose the foundations for a mult-

view geometry of the general, non-central camera model,

leading to the formulation of multi-view matching tensors,

analogous to the fundamental or essential matrices, trifocal

and quadrifocal tensors of perspective cameras. The multi-

view geometry will be formulated for calibrated cameras,

i.e. we do not directly work with image point correspon-

dences, but rather with correspondences between associated

camera rays in 3D.

We also introduce a natural hierarchy of camera models:

the most general model has unconstrained projection rays



whereas the most constrained model dealt with here is the

central model, where all rays pass through a single point.

Intermediate models considered in this paper are axial and

x-slit cameras. The two-view geometry, first established for

non-central cameras, is specialized for these intermediate

camera types in this paper. Several works exist on epipo-

lar geometry for omnidirectional cameras, central and non-

central ones [5, 8, 15, 19, 22, 24]. Most of them aimed

at obtaining matching constraints between uncalibrated im-

ages, whereas in this paper, we deal with calibrated cameras

and give a rather complete treatment of the problem.

The paper is organized as follows. §2 gives some back-

ground on Plücker coordinates for 3D lines, used to param-

eterize camera rays. A hierarchy of camera models is pro-

posed in §3. §4 gives parameterizations of projection rays,

for the different camera models. The multi-view geometry

for the general camera model, as well as two-view geometry

for intermediate models, is given in §5.

2. Plücker Coordinates

We represent projection rays as 3D lines, via Plücker co-

ordinates. Several definitions exist for them; we use the fol-

lowing. Let A and B be the homogeneous coordinates of

3D points defining a line. The line can be represented by the

skew-symmetric 4 × 4 Plücker matrix L = ABT − BAT.

It is independent (up to scale) of the points used to repre-

sent the line. An alternative representation for the line is its

Plücker coordinate vector of length 6:

L =











A4B1 − A1B4

A4B2 − A2B4

A4B3 − A3B4

A3B2 − A2B3

A1B3 − A3B1

A2B1 − A1B2











(1)

We sometimes split it in two 3-vectors a and b,

aT =
(
L1 L2 L3

)
bT =

(
L4 L5 L6

)

which satisfy the so-called Plücker constraint: aTb = 0.

Consider a metric transformation defined by a rotation

matrix R and a translation vector t, acting on points via:

C →

(
R t

0T 1

)

C

Plücker coordinates are then transformed according to
(

a

b

)

→

(
R 0

−[t]×R R

)(
a

b

)

Two lines intersect if the following relation holds:

LT

2

(
0 I

I 0

)

L1 = aT

2
b1 + bT

2
a1 = 0 (2)

Table 1. Camera models, defined by 3D points and lines that have

an intersection with all projection rays of a camera.

Points/lines cutting rays Description

None Non-central camera

1 point Central camera

2 points Camera with a single ray

1 line Axial camera

1 point, 1 line Central 1D camera

2 skew lines X-slit camera

2 coplanar lines Union of a non-central 1D

camera and a central camera

3 coplanar lines without Non-central 1D camera

a common point

3. A Hierarchy of Camera Models

A non-central camera may have completely uncon-

strained projection rays, whereas for a central camera,

there exists a point – the optical center – that lies on all

projection rays. An intermediate case is what we call axial

cameras, where there exists a line that cuts all projection

rays – the camera axis (not to be confounded with optical

axis). Examples of cameras falling into this class are:

• x-slit cameras [16, 27] (also called two-slit or crossed-

slits cameras), and their special case of linear pushb-

room cameras [10]. Note that these form a sub-class

of axial cameras, as explained below.

• stereo systems consisting of 2 central cameras or 3 or

more central cameras with collinear optical centers.

• non-central catadioptric cameras of the following type:

the mirror is any surface of revolution and the opti-

cal center of the central camera looking at it (can be

any central camera, not only pinhole), lies on its axis

of revolution. It is easy to verify that in this case, all

projection rays cut the mirror’s axis of revolution, i.e.

the camera is an axial camera, with the mirror’s axis

of revolution as camera axis. Note that catadioptric

cameras with a spherical mirror and a central camera

looking at it, are always non-central axial cameras.

These three classes of camera models may also be de-

fined as: existence of a linear space of d dimensions that

has an intersection with all projection rays: d = 0 defines

central, d = 1 axial and d = 2 general non-central cameras.

Intermediate classes do exist. X-slit cameras are a spe-

cial case of axial cameras: there actually exist 2 lines in

space that both cut all projection rays. Similarly, central 1D

cameras (cameras with a single row of pixels) can be de-

fined by a point and a line in 3D. Camera models, some of

which without much practical importance, are summarized

in table 1. A similar way of defining camera types was sug-

gested in [16].



Table 2. Parameterization of projection rays for different camera models (see text).

Camera model Central Axial X-slit

finite infinite finite infinite finite+finite finite+infinite

Parameterization

of projection rays

(
a

0

)











0
0
a3

b1

b2

0

















a

b1

b2

0













0
a2

a3

b

















1 0 0 0
0 1 0 0
0 0 1 0
W 0 −Y 0
0 0 0 1
0 0 0 0

















a1

a2

a3

b2

















1 0 0 0
0 1 0 0
0 W 0 0
0 0 1 0
0 0 0 1
0 0 0 0

















a1

a3

b1

b2







It is worthwhile to consider different classes due to the

following observation: the usual calibration and motion es-

timation algorithms proceed by first estimating a matrix or

tensor by solving linear equation systems (e.g. the calibra-

tion tensors in [23] or the essential matrix [19]). Then, the

parameters that are searched for (usually, motion parame-

ters), are extracted from these. However, when estimating

for example the 6 × 6 essential matrix of non-central cam-

eras based on image correspondences obtained from central

or axial cameras, then the associated linear equation system

does not give a unique solution (much like when estimating

a fundamental matrix from correspondences coming from

coplanar 3D points). Consequently, the algorithms for ex-

tracting the actual motion parameters, can not be applied

without modification.

In the following, we deal with central, axial, x-slit and

fully non-central cameras.

4. Parameterizations

Multi-view geometry will be formulated in terms of the

Plücker coordinates of camera rays. For other models than

the fully non-central one, camera rays belong to constrained

sets, as explained in the previous section. We may thus

choose the cameras’ local coordinate systems such as to ob-

tain “simpler” coordinate vectors for camera rays, and in

turn simpler matching constraints. Since we deal with cali-

brated cameras, rays are given in metric coordinate systems,

and we may apply rotations and translations to fix local co-

ordinate systems. Appropriate parameterizations for differ-

ent models are explained in the following.

4.1. Central Cameras

All rays go through a single point, the optical center. We

distinguish the cases of a finite and infinite optical center.

Finite optical center. We choose a local coordinate sys-

tem with the optical center as origin. This leads to projec-

tion rays whose Plücker sub-vector b is zero, cf. table 2.

This is one reason why the multi-focal tensors, e.g. the fun-

damental matrix, can be written with a “base size” of 3.

Infinite optical center (e.g. affine camera). We can not

adopt the optical center as origin, thus choose a coordinate

system where it has coordinates (0, 0, 1, 0)T. Projection

rays are then of the form given in the 3rd column of table 2.

4.2. Axial Cameras

All rays touch a line, the camera axis. Again, by choos-

ing local coordinate systems appropriately, the formulation

of the multi-view relations may be simplified. We distin-

guish the cases of a finite and an infinite camera axis.

Finite axis. Assume that the camera axis is the Z-axis.

Then, all projection rays have Plücker coordinates with

L6 = b3 = 0, cf. the 4th column of table 2.

Infinite axis. We choose a local coordinate system where

the axis is the line at infinity with coordinates (1, 0, 0)T
(line

coordinates on plane at infinity). The camera axis’ Plücker

coordinates are then given by (0, 0, 0, 1, 0, 0)T. Projection

rays thus have coefficients with L1 = a1 = 0 (this is ob-

tained using (2)), cf. the 5th column of table 2.

Multi-view relations for axial cameras, with finite or in-

finite axis, can thus be formulated via tensors of “base size”

5, e.g. the essential matrix will be of size 5× 5 (see §5.3.2).

4.3. X­Slit Cameras

As mentioned above, x-slit cameras are defined as fol-

lows: there exist two lines – camera axes – that cut all pro-

jection rays. The case of the two axes cutting one another,

i.e. being coplanar, is not of interest here, so we consider

two mutually skew axes. Two cases are thus possible: (i)

both axes are finite lines or (ii) one of the two axes is a

line at infinity. In any case, one axis at least is a finite line;

we adopt a local coordinate system as said above for axial

cameras (with finite axis). As for the second axis, we have

to distinguish the two cases.

Two finite axes. Having fixed the first axis, we still have

the freedom to rotate about it and translate along it. Since

the two axes are skew, we may thus obtain a local coordinate

system, where the second axis goes through a point on the

Y -axis, and is parallel to the XZ-plane. Hence, it will be

defined by two points as follows:

AT =
(
0 Y 0 1

)
BT =

(
X 0 Z 0

)

The second axis’ Plücker coordinates are thus given by:

LT

2
=
(
X 0 Z −Y Z 0 Y Z

)

Projection rays cut the two axes, so must be of the form:

PT =
(
a1 a2 a3

(
Y Z
X

a1 − Y a3

)
b2 0

)



We divide by X , but this is no problem since it can not

be zero, otherwise the second axis would be parallel to the

first one, and thus coplanar, which is excluded here. Let us

replace Y Z
X

by W . Then, each projection ray can be param-

eterized by 4 coefficients (which are defined up to scale), as

given in the 6th column of table 2.

One finite and one infinite axis. Having fixed the first

axis, we still have the freedom to rotate about it and trans-

late along it. Translation has no effect on the infinite sec-

ond axis, but we may rotate about the first axis, such that

the second one has coordinates (0, cosΘ, sinΘ)
T

(homo-

geneous coordinates of a line at infinity). The second axis’

Plücker coordinates are thus:

LT

2 =
(
0 0 0 0 cosΘ sin Θ

)

Projection rays cut the two axes, so must be of the form:

PT =
(
a1 −a3 tanΘ a3 b1 b2 0

)

For ease of notation, let us define W = − tanΘ. Then,

each projection ray can be parameterized by 4 coefficients

(defined up to scale), as given in the last column of table 2.

4.4. General Non­Central Cameras

No such simplification occurs, and multi-view tensors

will have “base size” 6.

5. Multi-View Geometry

We establish the foundations of a multi-view geometry

for general (non-central) cameras. Its cornerstones are, as

with perspective cameras, matching tensors. We show how

to establish them, analogously to the perspective case.

Here, we only talk about the calibrated case; the uncali-

brated case is nicely treated for perspective cameras, since

calibrated and uncalibrated cameras are linked by projective

transformations. For non-central cameras however, there is

no such link: in the most general case, every pair (pixel,

camera ray) may be completely independent of other pairs.

5.1. Reminder on Perspective Multi­View Geometry

We briefly review how to derive multi-view matching re-

lations for perspective cameras [4]. Let Pi be projection

matrices of n images. Image points qi are matching, if there

exist a 3D point Q and scale factors λi with:

λiqi = PiQ, ∀i = 1 · · ·n

This may be formulated as the following matrix equation:








P1 q1 0 · · · 0

P2 0 q2 · · · 0
...

...
...

. . .
...

Pn 0 0 · · · qn








︸ ︷︷ ︸

M










Q

−λ1

−λ2

...

−λn










=








0
0
...

0








The matrix M, of size 3n×(4+n) has thus a null-vector,

meaning that its rank is less than 4 + n. Hence, the deter-

minants of all submatrices of size (4 + n) × (4 + n) must

vanish. These determinants are multi-linear expressions in

terms of the coordinates of image points qi. Every possible

submatrix should be considered, but only those with 2 or

more rows per view, give rise to constraints linking all pro-

jection matrices. Hence, constraints can be obtained up to n

views with 2n ≤ 4+n, meaning that only for up to 4 views,

matching constraints linking all views can be obtained.

The constraints for n views take the form:

3∑

i1=1

3∑

i2=1

· · ·

3∑

in=1

q1,i1q2,i2 · · · qn,in
Ti1,i2,··· ,in

= 0 (3)

where the multi-view matching tensor T of dimension

3 × · · · × 3 depends on and partially encodes the cameras’

projection matrices Pi.

Note that as soon as cameras are calibrated, this the-

ory applies to any central camera: for a camera with ra-

dial distortion for example, the above formulation holds for

distortion-corrected image points.

5.2. Multi­View Geometry of Non­Central Cameras

Here, instead of projection matrices (depending on cali-

bration and pose), we deal with pose matrices:

Pi =

(
Ri ti

0T 1

)

(4)

These are the similarity transformations that map a point

from some global reference frame, into the camera’s local

coordinate frames (note that since no optical center and no

camera axis exist, no assumptions about the local coordinate

frames are made). As for image points, they are now re-

placed by camera rays. We will obtain expressions in terms

of the rays’ Plücker coordinates, i.e. we will end up with

matching tensors T and matching constraints of the form

(3), with the difference that tensors will have size 6×· · ·×6
and act on Plücker line coordinates:

6∑

i1=1

6∑

i2=1

· · ·

6∑

in=1

L1,i1L2,i2 · · ·Ln,in
Ti1,i2,··· ,in

= 0 (5)

In the following, we explain how to derive such matching

constraints. Consider a set of n camera rays and let them be

defined by two points Ai and Bi each; the choice of points

to represent a ray is not important, since later we will fall

back onto the ray’s Plücker coordinates.

Now, a set of n camera rays are matching, if there exist

a 3D point Q and scale factors λi and µi with:

λiAi + µiBi = PiQ, ∀i = 1 · · ·n

i.e. if the point PiQ lies on the line spanned by Ai and Bi.



Like for perspective cameras, we group these equations

in matrix form:








P1 A1 B1 · · · 0 0

P2 0 0 · · · 0 0
...

...
...

. . .
...

...

Pn 0 0 · · · An Bn








︸ ︷︷ ︸

M












Q

−λ1

−µ1

...

−λn

−µn












=








0

0
...

0








As above, this equation shows that M must be rank-

deficient. However, the situation is different here since the

Pi are of size 4×4 now, and M of size 4n×(4+2n). We thus

consider submatrices of M of size (4+2n)× (4+2n). Fur-

thermore, in the following we show that only submatrices

with 3 rows or more per view, give rise to constraints on all

pose matrices. Hence, 3n ≤ 4 + 2n, and again, n ≤ 4, i.e.

multi-view constraints are only obtained for up to 4 views.

Let us first see what happens for a submatrix of M where

some view contributes a single row. The two columns cor-

responding to its base points A and B, are multiples of one

another: they contain only zeroes, besides a single non-zero

coefficient, in the single row associated with the considered

view. Hence, the determinant of the considered submatrix

of M is always zero, and no constraint is available.

In the following, we exclude this case, i.e. we only con-

sider submatrices of M where each view contributes at least

two rows. Let N be such a matrix. Without loss of gener-

ality, we start to develop its determinant with the columns

containing A1 and B1. The determinant is then given as a

sum of terms of the following form:

(A1,jB1,k − A1,kB1,j) det N̄jk

where j, k ∈ {1..4}, j 6= k, and N̄jk is obtained from N by

dropping the columns containing A1 and B1 as well as the

rows containing A1,j and A1,k. We observe several things:

• The term (A1,jB1,k −A1,kB1,j) is nothing else than a

Plücker coordinate of the ray of camera 1 (cf. §2). By

continuing with the development of the determinant of

N̄jk, it becomes clear that the total determinant of N

can be written in the form:

6∑

i1=1

6∑

i2=1

· · ·
6∑

in=1

L1,i1L2,i2 · · ·Ln,in
Ti1,i2,··· ,in

= 0

i.e. the coefficients of the Ai and Bi are “folded to-

gether” into Plücker coordinates of camera rays and T

is a matching tensor relating the n cameras. Its coeffi-

cients depend exactly on the cameras’ pose matrices.

• If camera 1 contributes only two rows to N, then the

determinant of N becomes of the form:

L1,x

(
6∑

i2=1

· · ·

6∑

in=1

L2,i2 · · ·Ln,in
Ti2,··· ,in

)

= 0

Table 3. Cases of multi-view matching constraints for central and

non-central cameras. Columns named “useful” contain entries of

the form x-y-z etc. that correspond to sub-matrices of M that give

rise to matching constraints linking all views: x-y-z refers to sub-

matrices containing x rows from one camera, y from another etc.

central non-central

# views M useful M useful

2 6 × 6 3-3 8 × 8 4-4

3 9 × 7 3-2-2 12 × 10 4-3-3

4 12 × 8 2-2-2-2 16 × 12 3-3-3-3

i.e. it only contains a single coordinate L1,x of the ray

of camera 1, and the tensor T does not depend at all on

the pose of that camera. Hence, to obtain constraints

relating all cameras, each camera has to contribute at

least three rows to the considered submatrix of M.

We are now ready to establish the different cases that

lead to useful multi-view constraints. As mentioned above,

for more than 4 cameras, no constraints linking all of them

are available: submatrices of size at least 3n× 3n would be

needed, but M only has 4+2n columns. So, only for n ≤ 4,

such constraints exist.

Table 3 gives all useful cases, both for central and non-

central cameras. These lead to two-view, three-view and

four-view matching constraints, encoded by essential ma-

trices, trifocal and quadrifocal tensors. Deriving their forms

is now mainly a mechanical task.

5.3. The Case of Two Views

We have so far explained how to formulate bifocal, tri-

focal and quadrifocal matching constraints between non-

central cameras, expressed via matching tensors of dimen-

sion 6× 6 to 6× 6× 6× 6. To make things more concrete,

we explore the two-view case in some more detail in the

following. We show how the bifocal matching tensor, or es-

sential matrix, can be expressed in terms of the motion/pose

parameters. This is then specialized from non-central to ax-

ial, x-slit and central cameras. The essential matrices for

these cases are summarized in table 4. That table also gives

the minimum numbers of correspondences required for esti-

mating the essential matrices using linear equations. These

are not explained in detail due to lack of space, but can be

derived easily by considering coefficients in essential matri-

ces, that are zero are appear twice.

5.3.1. Non-Central Cameras

For simplicity, we assume here that the global coordinate

system coincides with the first camera’s local coordinate

system, i.e. the first camera’s pose matrix is the identity.

As for the pose of the second camera, we drop indices, i.e.

we express it via a pose matrix P, composed of a rotation



Table 4. Essential matrices for different camera models. The last column gives the minimum number of correspondences between projection

rays required for computing essential matrices using linear equations.

Camera model Essential matrix Size # corr.

Non-central En =

(
−[t]×R R

R 03×3

)

6 × 6 17

Axial with finite axis Eaf =









−[t]×R





R11 R12

R21 R22

R31 R32





(
R11 R12 R13

R21 R22 R23

)

02×2









5 × 5 16

Axial with infinite axis Eai =









t1R32 − t3R12 t1R33 − t3R13 R21 R22 R23

t2R12 − t1R22 t2R13 − t1R23 R31 R32 R33

R12 R13 0 0 0
R22 R23 0 0 0
R32 R33 0 0 0









5 × 5 11

X-slit with two finite axes Exff =







1 0 0 W2 0
0 1 0 0 0
0 0 1 −Y2 0
0 0 0 0 1







Eaf









1 0 0 0
0 1 0 0
0 0 1 0

W1 0 −Y1 0
0 0 0 1









4 × 4 13

X-slit with one finite and one infi-

nite axis

Exfi =







1 0 0 0 0
0 1 W2 0 0
0 0 0 1 0
0 0 0 0 1







Eaf









1 0 0 0
0 1 0 0
0 W1 0 0
0 0 1 0
0 0 0 1









4 × 4 10

Central with finite optical center Ecf = −[t]×R 3 × 3 8

Central with infinite optical center Eci =





t2R13 − t1R23 R31 R32

R13 0 0
R23 0 0



 3 × 3 4

matrix R and a translation vector t, according to (4). The

matrix M is thus given as:

M8×8 =

(
I4×4 A1 B1 0 0

P 0 0 A2 B2

)

For a matching pair of rays, M must be rank-deficient.

Here, this implies that its determinant is equal to zero. It can

be developed to the following expression, where the Plücker

coordinates L1 and L2 are defined as in equation (1):

LT

2

(
−[t]×R R

R 0

)

︸ ︷︷ ︸

En

L1 = 0 (6)

We find the essential matrix En, as was done in [19].

5.3.2. Axial Cameras

Finite axis. As mentioned in §3, we adopt local coordi-

nate systems where camera rays have L6 = 0. Hence, the

epipolar constraint (6) can be expressed by a reduced es-

sential matrix of size 5 × 5, which acts on reduced Plücker

vectors, consisting of the first five Plücker coordinates. This

essential matrix is obtained from the non-central one En (6),

by dropping its sixth row and column, leading to Eaf , as

given in table 4.

Note that this essential matrix is in general of full rank

(rank 5), but may be rank-deficient. It can be shown that it is

rank-deficient exactly if the axes of the two camera cut each

other. In that case, the left and right null-vectors of Eaf rep-

resent the camera axes of one view in the local coordinate

system of the other one (one gets their Plücker vectors when

adding a zero as 6th coordinate).

Infinite axis. The epipolar constraint (6) can be expressed

by a reduced essential matrix Eai (cf. table 4) of size 5× 5,

acting on reduced Plücker vectors, consisting of the last

five Plücker coordinates (cf. table 2). It is always rank-

deficient; its right null-vector is (0, 0, R11, R12, R13)
T

,

which represents the second camera’s axis, expressed in

the first camera’s coordinate system (to get its Plücker vec-

tor, add a zero as 1st coordinate). The left null-vector is

(0, 0, R11, R21, R31)
T

, which represents the first camera’s

axis, expressed in the second camera’s coordinate system.

5.3.3. X-Slit Cameras

Two finite axes. We get a reduced essential matrix Exff

(cf. table 4) of size 4×4, acting on reduced Plücker vectors

of the form (a1, a2, a3, b2)
T

(cf. §4.3).



Contrary to previous cases, the essential matrix now not

only encodes motion, but also “intrinsic parameters” (the

coefficients Wi and Yi of the two cameras’ second axes).

One finite and one infinite axis. We get a reduced es-

sential matrix Exfi (cf. table 4) of size 4 × 4, acting on

reduced Plücker vectors of the form (a1, a3, b1, b2)
T

(cf.

§4.3). Again, it not only encodes motion, but also “intrinsic

parameters” (the coefficients Wi of the two cameras’ infi-

nite axes).

5.3.4. Central Cameras

Finite optical center. As mentioned in §3, we here deal

with camera rays of the form (L1, L2, L3, 0, 0, 0)T. Hence,

the epipolar constraint (6) can be expressed by a reduced

essential matrix of size 3 × 3. We actually find here the

“classical” 3 × 3 essential matrix Ecf = −[t]×R [11, 13].

Infinite optical center. The essential matrix in this case

is Eci, cf. table 4. This resembles the affine fundamental

matrix [20], but is not the same: here, the essential matrix

acts on 3D lines, not on image points. For example, the right

null-vector of Eci is (0, R32,−R31)
T

, which represents the

3D line with Plücker coordinates (0, 0, 0, R32,−R31, 0)
T

.

This is the line spanned by the two optical centers, i.e. the

baseline (expressed in the first camera’s coordinate system).

6. Conclusion

We have proposed a multi-view geometry for non-central

cameras, the first to our knowledge. A natural hierarchy

of camera models has been introduced, grouping cameras

into classes depending on, loosely speaking, the spatial dis-

tribution of their projection rays. Two-view geometry was

specialized in detail to different camera models. We hope

that this theoretical work allows to define some common

ground for recent efforts in characterizing the geometry of

non-classical cameras.

Concerning possibilites for further work, geometrical re-

lations between cameras of different types would be simple

to derive along the lines used here, and all expressions can

of course be transcribed in tensor notation. In this paper, we

concentrated on the theory and did not address the issue of

actually estimating the matching tensors and extracting mo-

tion parameters from them. It is relatively straightforward

though to extract the motion parameters from the various

essential matrices, due to their forms given in table 4. Ex-

periments with the essential matrix for non-central cameras

were successful, as also reported in [19], and experiments

with intermediate camera types are ongoing.

Finally, we would like to note that, although motivated

by the generic imaging model associating rays to pixels,

the multi-view relations derived here hold naturally for any

camera model that allows to attribute projection rays to im-

age points with sub-pixel precision.
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