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(a) First drawing. (b) Second viewpoint. (c) Second drawing. (d) Final 3D arrow. (e) Final 3D arrow. (f) Final 3D arrow.

Figure 1: Our system enables users to annotate wide-area reconstructed environments using interactive disambiguation of 2D drawing
gestures. After drawing the initial annotation (a), the user is shown a second viewpoint with a semi-transparent helper ray indicating the set
of 3D positions along which the annotation might be placed in 3D (b). The user draws a second annotation to disambiguate it (c), resulting
in a final 3D annotation as shown from various viewpoints in (d-f). This figure shows the Piazza del Popolo in Rome, Italy (336 photos and
34,715 reconstructed 3D points) [Wilson and Snavely 2014]; original images courtesy of Flickr users rizziemelb, Kurt Eddy, and Graeme O.
Churchard.

Abstract

We present a novel 2D gesture annotation method for use in image-
based 3D reconstructed scenes with applications in collaborative
virtual and augmented reality. Image-based reconstructions allow
users to virtually explore a remote environment using image-based
rendering techniques. To collaborate with other users, either syn-
chronously or asynchronously, simple 2D gesture annotations can
be used to convey spatial information to another user. Unfortu-
nately, prior methods are either unable to disambiguate such 2D
annotations in 3D from novel viewpoints or require relatively dense
reconstructions of the environment.

In this paper, we propose a simple multi-view annotation method
that is useful in a variety of scenarios and applicable to both very
sparse and dense 3D reconstructions. Specifically, we employ in-
teractive disambiguation of the 2D gestures via a second annota-
tion drawn from another viewpoint, triangulating two drawings to
achieve a 3D result. Our method automatically chooses an ap-
propriate second viewpoint and uses image-based rendering tran-
sitions to keep the user oriented while moving to the second view-
point. User experiments in an asynchronous collaboration scenario
demonstrate the usability of the method and its superiority over a
baseline method. In addition, we showcase our method running on
a variety of image-based reconstruction datasets and highlight its
use in a synchronous local-remote user collaboration system.

Keywords: Annotations, interactive disambiguation, image-based
reconstruction, 3D reconstruction, collaboration, augmented real-
ity, virtual reality, virtual navigation, image-based rendering
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1 Introduction

Using multiple images of a physical environment to create a com-
puter model of that scene is useful in many applications, includ-
ing virtual navigation, remote collaboration, and augmented re-
ality (AR). Typically, images of the scene are first acquired and
then fused together to create a model of the scene using vari-
ous computer vision techniques, such as structure from motion
(SfM) [Snavely et al. 2006; Fuhrmann et al. 2015; Sweeney et al.
2015]. While most prior work has focused on creating such mod-
els, in this paper we are interested in how to annotate the models for
a variety of applications, including synchronous and asynchronous
remote collaboration.

We take the approach of using simple 2D gesture annotations,
which have been successfully used in the past for collaboration in
both virtual and augmented reality [Jung et al. 2002; Gauglitz et al.
2014b; Kasahara et al. 2012; Kasahara and Rekimoto 2014; Kim
et al. 2014; Kim et al. 2015; Nuernberger et al. 2016; Fakourfar
et al. 2016; Lien et al. 2016]. The inherent challenge with this ap-
proach is how to disambiguate a 2D annotation in a 3D world; from
a single viewpoint, a back-projected 2D point corresponds to a 3D
ray in the world and thus is inherently ambiguous in its 3D posi-
tion. In synthetic virtual reality scenes, automatic disambiguation
can be readily achieved since all the scene geometry and semantics
are known a priori [Jung et al. 2002]. However, in image-based
reconstructions (including ones used for augmented reality), scene
geometry and semantics are typically not fully known. As a result,
automated approaches to disambiguating 2D gesture annotations re-
sort to trying to infer as much as possible from the drawings and
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the reconstruction in order to place the annotation in 3D [Gauglitz
et al. 2014a; Nuernberger et al. 2016; Lien et al. 2016]. Unfortu-
nately, these automated disambiguation approaches fail when their
inferences are incorrect or the scene geometry becomes too sparse.
For example, if geometry corresponding to a particular part of an
image does not exist, automatic disambiguation methods based on
ray-casting will fail; an example where this is the case is shown in
Figure 2.

(a) RGB image. (b) Underlying semi-dense model.

Figure 2: In this semi-dense reconstruction, the trees are only par-
tially modeled and thus ray-casting will not work for automatic
disambiguation of 2D annotations. This model was created using
MVE [Fuhrmann et al. 2015] and contains 993,506 points; it cor-
responds to the sparse Campus2 dataset in Table 1.

Interactive disambiguation, on the other hand, allows users to ac-
tively contribute to the disambiguation process. While approaches
to interactive disambiguation exist for simple point annotations in
augmented reality [Polvi et al. 2016], to our knowledge no such
method yet exists for 2D gesture annotations in image-based recon-
structions (for the purpose of either virtual or augmented reality).
In this paper, we present our method to fill in this gap.

Our method works as follows. A remote user is able to explore an
existing 3D model of the scene created via structure from motion.
Two modes of virtual navigation are supported — free-flight navi-
gation and navigation constrained to the high resolution input pho-
tographs, using image-based rendering to transition between pho-
tos. The remote user can draw simple 2D arrow and circle anno-
tations. To interactively disambiguate the annotations, the remote
user is shown a second viewpoint to re-draw the annotation, which
is chosen to effectively disambiguate the annotation using triangu-
lation. We take special care to appropriately transition from the first
drawing viewpoint to the second drawing viewpoint so that the user
does not become disoriented.

1.1 Motivating Scenarios

Annotating image-based reconstructed models is important in many
collaboration scenarios. This includes both asynchronous and syn-
chronous collaboration in remote-remote configurations (i.e., two
remote users not physically present at the scene represented by
the image-based model) and remote-local configurations (i.e., only
the local user is physically present at the scene represented by the
image-based model).

For example, imagine a construction manager remotely viewing
photos of a construction site, wishing to asynchronously collabo-
rate with others. He or she can draw annotations which are placed
in 3D using a reconstructed model of the scene. Later, another re-
mote worker or an on-site worker can then view those annotations
from novel viewpoints using the image-based model or in 3D aug-
mented reality.

As another example, imagine an emergency response situation
where expert responders are en route to the scene and want to obtain
specific visual information of the situation before arrival. A remote

expert structural engineer may desire to have certain close-up pho-
tos of specific parts of a building to determine if it may collapse.
Rather than verbally describing where to go, the expert can draw
annotations that are placed in 3D using a reconstructed model of
the scene. As a result, local responders see the annotations in 3D
augmented reality and thus can be guided directly to capture the
viewpoints desired by the remote expert.

This last example highlights situations where an image-based re-
construction is not yet dense enough for use with other annotation
authoring methods; this could either be due to a limited number of
input photos or limited time available for creating the reconstruc-
tion. This last example also illustrates cases where specific high
resolution photographs of particular parts of a model need to be
made available; thus, rather than using automatic approaches to im-
proving the model (e.g., “next-best-view” approaches [Mauro et al.
2014]), our method can be used for remote expert users to guide
local users or drones to capture specific images of the scene.

1.2 Contributions

We demonstrate the applicability of our method in a user experi-
ment using an asynchronous collaboration task between two remote
users. Furthermore, we present a prototype synchronous collabo-
ration system for a remote-local user collaboration scenario. Our
method is applicable both to small area (e.g., indoor) scenes and
wide-area (e.g., outdoor) scenes, and both sparse and dense recon-
structions. As such, it is a general approach for disambiguating 2D
annotations in image-based 3D models. Our main contributions in
this paper are:

1. A novel method for authoring 2D arrow and circle drawing
annotations with interactive disambiguation in image-based
3D reconstructions.

2. A user experiment demonstrating the usability and applicabil-
ity of our method in an asynchronous collaboration scenario
between two remote users. Our method was shown to be in-
tuitive, easy to use, and useful overall; furthermore, it enables
faster understanding of annotations in 3D compared to a base-
line approach.

3. A prototype system demonstrating our method running in a
real-time remote-local user collaboration scenario.

2 Related Work

The related work for our method mainly falls into two categories:
(1) annotation authoring in image-based reconstructed scenes, and
(2) remote collaboration in AR.

2.1 Annotation Authoring in Image-based Recon-

structed Scenes

Image-based reconstructions can be used for both virtual and aug-
mented reality annotation authoring. Wither et al. give a detailed
overview and taxonomy of AR annotations, specifically noting
the lack of interfaces for authoring (i.e., creating) annotations in
AR [Wither et al. 2009]. While many types of annotations ex-
ist, our work falls under the category of 2D annotations for 3D
scenes [Pierce et al. 1997; Bourguignon et al. 2001; Jung et al.
2002; Nuernberger et al. 2016; Polvi et al. 2016; Lien et al. 2016].

As mentioned previously, the main challenge for 2D annotation au-
thoring for 3D scenes is that 2D drawings are inherently ambiguous
in 3D. Automated methods exist for disambiguating 2D gesture an-
notations in 3D [Gauglitz et al. 2014a; Nuernberger et al. 2016;
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Lien et al. 2016]; however, while such methods work for densely
reconstructed models (e.g., small indoor scenes with diffuse sur-
faces), they can fail when their automatic inferences are incorrect
and for non-densely reconstructed models (e.g., outdoor, wide-area
scenes; see Figure 2).

Interactive disambiguation is another approach for resolving the
2D-3D ambiguity. The work most related to ours is Polvi et al.’s
method, SlidAR, that allows users to interactively disambiguate a
2D point annotation in 3D AR [Polvi et al. 2016]. SlidAR provides
interactive disambiguation of the depth of a ray-casted 3D point
annotation by using triangulation via a manually assumed second
viewpoint. Our method takes this a step further, handling 2D arrow
and circle annotations rather than simple point annotations. In ad-
dition, while SlidAR was designed to work in small scenes for AR,
our method is agnostic of the scene size and can be used in both a
fully virtual image-based reconstructed environment and for AR as
well. Finally, while SlidAR requires the user to manually and phys-
ically choose a second viewpoint for annotation disambiguation in
AR, we provide an automatic method to determine a best second
viewpoint to use in virtual image-based reconstructions.

2.2 Remote Collaboration in AR

Enhancing remote collaboration with augmented reality is an active
area of research [Sodhi et al. 2013; Gauglitz et al. 2014b; Kasa-
hara and Rekimoto 2014; Amores et al. 2015; Tait and Billinghurst
2015; Nuernberger et al. 2016; Fakourfar et al. 2016; Lien et al.
2016]. Typically, a remote user is helping a local user who is phys-
ically present in some environment; in the case of synchronous col-
laboration, both users are connected via a network connection (e.g.,
for streaming video or a 3D model of the local user’s environment).

While one annotation approach is to enhance collaboration by di-
rectly relaying hand gestures from the remote user to the local
user [Sodhi et al. 2013; Amores et al. 2015], our work lies in the
category of using drawing annotations to enhance the collabora-
tion [Gauglitz et al. 2014b; Kasahara and Rekimoto 2014; Kim
et al. 2014; Kim et al. 2015; Nuernberger et al. 2016; Fakourfar
et al. 2016; Lien et al. 2016]. It has been shown that circle and ar-
row gesture annotations are the most common gestures in a remote
collaboration scenario [Nuernberger et al. 2016], and this motivates
our method of handling these two gesture types. We note that draw-
ing annotations may be considered more useful due to arm fatigue
with hand gestures [Hincapié-Ramos et al. 2014], asynchronous
collaboration scenarios, and situations where view independence
is used [Gauglitz et al. 2014b; Tait and Billinghurst 2015; Nuern-
berger et al. 2016; Lien et al. 2016].

View independence refers to the ability for the remote user to take
on a viewpoint independent of the local user’s current viewpoint;
this has recently been achieved via image-based reconstructions of
the local user’s environment [Gauglitz et al. 2014b; Kasahara and
Rekimoto 2014; Tait and Billinghurst 2015]. Typically, some form
of image-based rendering is used to render the scene for the remote
user. Recently it was confirmed that having view independence in
remote collaboration speeds up task and user performance in col-
laboration [Tait and Billinghurst 2015]. Our method lies in this
same category of view independent systems for remote collabora-
tion, not only in AR but also in virtual image-based reconstructions
as well. Section 3 describes how a remote user can navigate in the
reconstructed scene in our method.

Finally, our method is also applicable to remote collaboration be-
tween two remote users, in either asynchronous or synchronous col-
laboration scenarios.

3 Virtual Navigation Interface

We have implemented two forms of virtual navigation — free-flight
and constrained-to-photos. Users can either freely fly throughout
the environment similar to common unconstrained 3D navigation
interfaces, or navigate throughout the environment while being con-
strained to stay at the input photos1; in the latter case, image-based
rendering techniques are used for transitioning between photos.
Note that the constrained navigation interface may have an advan-
tage over free-flight in the sense that the images may give the user
a better sense of the scene than the reconstructed model, especially
if the model is not dense.

In the following, we assume there is an existing set of cameras C,
each with an associated RGB image I ∈ I. A bold c ∈ C represents
the 3D position of the camera C.

3.1 Free-flight Navigation

Free-flight navigation uses a standard computer mouse. Holding
left-click while dragging causes side-to-side translation, parallel
to the image plane. Holding right-click while dragging causes
rotation-only movement. Finally, the scroll wheel causes trans-
lation along the optical axis, either forward or backward motion.
Users can furthermore click onto camera frusta, representing the
set of reconstructed cameras C, to assume the position of that cam-
era; the associated image I ∈ I for that camera is then shown in the
view. To avoid unnecessary visual clutter, users are able to toggle
whether the camera frusta are visible at any given time.

3.2 Constrained-to-Photos Navigation

This navigation interface is inspired by Photo Tourism [Snavely
et al. 2006] and Microsoft’s Photosynth. Rather than giving the
user full freedom of movement, constraining the user’s travel can
help with the usability of the interface. Such constrained travel is
also very important when there is a sparsity of scene data, in which
case image-based rendering can provide a better sense of the scene
compared to a sparse point cloud. We have implemented two travel
techniques: straight (forward/backward) movement and rotation.

Straight movement (forward/backward) is performed via the mouse
scroll wheel. We first filter out any cameras whose viewing di-
rections are not within 30◦ of the ray r determined by the (x, y)
location where the mouse scroll was performed. Furthermore, we
make sure that the cameras we consider are in front or behind the
current camera C1 and at least a 0.1m away. This leaves us with a
set of cameras C′ which we further analyze for deciding where to

move to. Specifically, we choose the camera Ĉ with the lowest cost
as follows:

(1)Ĉ = argmin
C∈C′

((0.5 · (1−Dir(C, r)) + 0.5) · ||c1 − c||2)

Where Dir(C, r) gives the dot product between the viewing direc-
tion of C and r. This function gives an increasing cost to further
away cameras and penalizes cameras whose viewing directions are
far away from the input ray r.

Rotation movement is performed by right-clicking and dragging the
mouse. We first filter out any cameras that have viewing directions
greater than 45◦ away from the current viewing direction. We then

1This kind of interface is very popular today in many interfaces for virtu-

ally navigating captured scenes, including Google Street View, Matterport,

Mapillary, etc.
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search the remaining cameras C′ and choose the one with lowest
cost via:

(2)Ĉ = argmin
C∈C′

((1−Dir(Clive, C)) · ||c1 − c||2)

Where Clive represents the current, live virtual camera viewpoint.

The image Î of the camera Ĉ with the lowest cost is then shown

using a proxy plane blending the current camera’s image I1 with Î .

During all transitions between cameras, the two images used in
the transition are projected onto a proxy plane and alpha blended
together according to the distance between each camera [Snavely
et al. 2006]. If the two cameras do not share common points, a sim-
ple pairwise blending of the images occurs instead. Interpolated
projection matrices and camera positions use linear interpolation,
while interpolated orientation uses spherical linear interpolation;
we use a “smoothstep” function as input to the interpolation.

4 Annotation Authoring Interface

Our system supports two types of drawing gestures — arrows and
circles2. We use the $1 recognizer [Wobbrock et al. 2007] to detect
which type the user drew.

Annotations are authored in a two step process (hence the name
“multi-view”). First, the user draws the annotation from an initial
camera viewpoint C1. Upon completion of the first drawing, the
system automatically determines a good second camera viewpoint

Ĉ from which the user can then perform disambiguation via tri-
angulation by drawing a second time. We now first describe how
the second viewpoint is determined, provide specifics for arrow and
circle gestures, describe how the image-based rendering transition
to the second viewpoint is achieved, and finally present some im-
plementation timing results.

4.1 Determining the Second Viewpoint

Since our method is agnostic to the density of the image-based re-
construction, we prefer showing a high resolution photo I ∈ I for

the second viewpoint. Thus, we must choose a viewpoint Ĉ from
the set of input cameras C. Having a view too close (i.e., with-
out enough parallax) to the original viewpoint C1 or too far away
from it will not be useful for interactive disambiguation via trian-
gulation, and thus we must be very careful in how we choose the
second viewpoint.

The second viewpoint is determined as follows (see Figure 3). We
determine a 3D line segment l to go from the current camera’s posi-
tion c1 through either the 2D arrow head or the average point of the
circle gesture to a 3D point b. This point b is either the intersection
of the ray with the scene geometry, if it exists, or the 3D point along
the ray at the distance of the average scene depth in C1 in a win-
dow around the 2D arrow head point or average point of the circle
gesture (we use a 100px window in our implementation). We then
filter out cameras by making sure that at least part of l is seen in
that camera. Finally, we search through all the remaining cameras

C′ for the camera Ĉ that has the best vantage point to disambiguate
the annotation; specifically, we use a cost function in the following

2Arrows and circles were shown to be the most common gestures in

a remote collaboration scenario [Nuernberger et al. 2016]; however, other

2D gestures could also be handled using an approach similar to what is

described here.

formulation:

(3)Ĉ = argmin
C∈C′

(−α · β · InV iew(l, C) · FillingV iew(l, C)

+ γ ·AbsDir(l, C))

where InV iew(l, C) = ||b′−c1
′||

||b−c1||
calculates the percentage of l

that is seen in C, where b
′ and c

′
1 are the 3D points on l that

are closest to b and c1, respectively, and still inside the viewing
frustum of C; this term favors views that can see more of the line

l. FillingV iew(l, C) =
||b′−c′

1
||

diag(C)
calculates how much l fills up

the view, where b′ and c′1 are the projections of b
′ and c

′
1 into

C; diag(C) is the length of the image diagonal. The last term
AbsDir(l, C) = |Dir(l, C)| calculates the absolute value of the
dot product between the line direction l and the optical axis of C;
this term penalizes views that have directions more similar to l. Fi-
nally, α and γ are weight terms (set to 1 and 0.3 in our implemen-
tation) and β is a term that penalizes not seeing b (set to 1 when
seeing b and 0.5 otherwise).

Figure 3: Illustration of finding the best second viewpoint to dis-
ambiguate a 2D drawn arrow in viewpoint C1. Here, the line l is
defined by the ray cast from C1 through the 2D arrow head and in-
tersecting with the scene geometry at a 3D point b. C2 and C3 are
candidate second viewpoints. In this illustration C2 is favored over
C3 since more of the line segment l is seen in its view and the line
segment l fills up more of its view.

Once the second viewpoint is determined, we draw the line l as a
semi-transparent helper line (e.g., see Figures 1b and 1c) to help
guide the user to disambiguate the annotation by drawing it a sec-
ond time from the second viewpoint. Figure 4 shows an example
bird’s eye view of an actual image-based reconstruction after Equa-

tion 3 has been evaluated; in this case, Ĉ was the bright green cam-
era frustum in the top-left of the figure.

4.2 Arrow Gesture Specifics

To disambiguate arrow gestures, we apply Equation 3 using the 2D
arrow head point to calculate the line l; the arrow head point is cal-
culated via analyzing changes in the drawing direction [Ou et al.
2003]. Once the second viewpoint is shown, the user draws a sec-
ond arrow. Midpoint triangulation is used to determine the disam-
biguated 3D head and tail of the arrow. If the 3D ray cast through
the 2D head of the second drawn arrow intersects with scene geom-
etry, we use this intersection point instead; if l also intersected with
scene geometry, we use the average of the two intersection points.
An illustration of this process is shown in Figure 5.

Arrows are rendered in 3D with their heads oriented towards the
user’s view. Transitions between views are stabilized by adjusting
pairwise proxy planes to pass through the arrow head.
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Figure 4: Example of candidate second viewpoints from a bird’s
eye view of an outdoor courtyard scene, with sparse reconstructed
3D points shown alongside camera frusta. Colors of camera frusta:
red, line l is not in view; brighter green, higher score in Equation 3;
darker green, lower score in Equation 3; light blue, original draw-
ing viewpoint C1. The semi-transparent red line l can be seen in
the middle of the figure. [Best viewed in color]

Figure 5: Illustration of arrow disambiguation via triangulation of
two user-drawn arrows. C1 is the original drawing viewpoint and

Ĉ is the second drawing viewpoint found via Equation 3. The blue
arrow is the final 3D arrow.

4.3 Circle Gesture Specifics

To disambiguate circle gestures, we apply Equation 3 using the av-
erage point of the circle gesture to calculate the line l. Once the
second viewpoint is shown, the user draws a second circle. The
center of the 3D circle is determined via midpoint triangulation us-
ing the average point of the second circle gesture to determine the
triangulating ray.

To determine the 3D circle’s radius, we find 3D rays corresponding
to the top, left, center, right, and bottom points of the 2D circles.
We then perform midpoint triangulation with the following pairs
of rays: (center1, left2), (center1, right2), (right1, center2),
(left1, center2), (top1, top2), (bottom1, bottom2). The radius is
then the average distance between each of these triangulated points
and the midpoint triangulation for (center1, center2).

Circles are rendered oriented towards the user’s view. We stabilize
transitions by adjusting pairwise proxy planes to pass through the
circle’s center point.

4.4 Transitioning to the Second Viewpoint

A naı̈ve approach to moving the user to the second viewpoint de-
termined by Equation 3 is to teleport there immediately. This ap-
proach, however, has long been known to increase spatial disori-
entation [Bowman et al. 1997]. Therefore, to help users stay ori-
ented while transitioning to the second viewpoint, we implemented
a modified version of the path planning algorithm described by
Snavely et al. [Snavely et al. 2008].

The transition algorithm precomputes image-based rendering pair-
wise transition costs between all cameras and uses Dijkstra’s algo-
rithm [Dijkstra 1959] to determine an optimal path between two
cameras. We precompute the pairwise transition costs and run Di-
jkstra’s algorithm in real-time after Equation 3 has determined the
second viewpoint. To help further maintain spatial orientation for
the user, we force Dijkstra’s algorithm to only consider cameras
that can see the line l.

We compiled videos of several transitions with different transition
times and numbers of cameras per transition, and we showed these
to a group of researchers well versed in visualization and virtual
reality. Overall, most found that limiting the number of cameras
per transition makes the transition fast enough yet still usable for
maintaining orientation. Thus, after some final empirical testing,
we settled on using one second as the transition time between each
pair of images and a maximum path length of three cameras per
transition. Please see the supplemental video3 for examples of these
transitions.

4.5 Implementation Results

We have tested the remote user interface using various datasets, in-
cluding reconstructions with sparse sets of cameras and ones with
dense sets of cameras from online community photos [Wilson and
Snavely 2014; Sweeney et al. 2015]. On average, evaluating Equa-
tion 3 took 18ms (min. 2ms; max 44ms) and the path planning
algorithm 27ms (min. 0.3ms; max 105ms). Total average time for
circle gestures was 59ms for the system to determine the second
viewpoint (min. 4ms; max 148ms) and 0.7 ms to perform disam-
biguation via triangulation (min. 0.3ms; max 3ms). Total aver-
age time for arrow gestures was 39ms for the system to determine
the second viewpoint (min. 4ms; max 126ms) and 0.6 ms to per-
form disambiguation via triangulation (min. 0.04ms; max 6ms).
We used an Intel Core i7-4790 3.6GHz CPU with 16GB of RAM
and an NVIDIA GeForce GTX 980 Ti GPU while obtaining these
timing results. Datasets ranged from 30 cameras to 730 cameras,
from 8,003 3D points to 334,622 3D points. Figures 1 and 10 show
examples using reconstructions with dense sets of cameras. Please
see the supplemental video for more results.

5 Annotation Authoring User Experiments

In order to evaluate the annotation authoring method, we conducted
a user experiment using an asynchronous collaboration scenario be-
tween two remote users (i.e., both users are not physically present in
the scene represented by the image-based model). We used this sce-
nario since it enabled us to use four very different image-based re-
constructions in our evaluation; nevertheless, we also demonstrate
our method working in a synchronous remote-local collaboration
scenario in Section 6. Statistics of the four different models used in
the experiment are detailed in Table 1. Figure 11 shows an example
of the Campus1 dataset.

The experiment was divided into two parts, Part A and Part B. The

3https://youtu.be/phPAk7JnBG8

133

https://youtu.be/phPAk7JnBG8


Reconstruction # Points # Cameras
Campus1 8,003 67
Campus2 15,872 136
Castle-P30 24,968 30
NYC Library 70,167 340

Table 1: Statistics of the reconstructions used in the annotation
authoring user experiment. Campus1 and Campus2 are datasets
we created at a university campus; Castle-P30 is from [Strecha
et al. 2008] and NYC Library is from [Wilson and Snavely
2014]; all datasets used the Theia SfM Library for the reconstruc-
tions [Sweeney et al. 2015].

task in Part A was to draw circle or arrow gesture annotations to
convey information to a future collaborator, while the task in Part B
was to use the annotations from Part A to answer simple questions
corresponding to the information conveyed from the annotations in
Part A, such as “Which tree?” Participants either completed Part
A only, or completed both Part B and then Part A (in that order,
since completing Part A first would bias the results in Part B). In
Part A, for each dataset participants drew two arrows and two circle
annotations, making a total of 16 drawing annotations overall.

Participants in Part B were paired with a single participant from
Part A. To further confirm the effectiveness of using 3D annota-
tions, we compared showing participants in Part B our method’s
final 3D annotations in the field of view or showing a baseline ap-
proach of a screenshot on the side of the first drawn annotation by
the participant in Part A (i.e., the drawing before disambiguation).
Participants in Part B were shown 3D annotations for the first two
datasets and screenshots on the side for the last two datasets (or
vice versa to balance the conditions); as a result, two participants
completed Part B for each participant who only completed Part A.

5.1 Procedure

Participants first completed a pre-study questionnaire (mostly for
gathering information on demographics), completed the tasks, and
finally completed a post-study questionnaire that addressed the us-
ability of the interface; participants in Part B also completed a sep-
arate Part B questionnaire. For Part A, participants were trained on
both the navigation and annotation interfaces (because this study
was mainly focused on evaluating the annotation authoring method,
we only let participants use the constrained-to-photos navigation;
see Section 7 for discussion on this choice). In both Part A and B,
a set of practice tasks were used to familiarize participants with the
actual task; the order of the tasks were balanced using a 4x4 Latin
Square design. The actual tasks’ procedures were as follows.

In Part A, participants clicked on a “Start Task” button, after which
they saw a statement indicating which object to circle or point to.
The experimenter told them to draw the annotations as fast as pos-
sible accurately. Once they completed the annotation process, par-
ticipants could either repeat the task by pressing a button, if not
satisfied with the annotation result, or stop the task by pressing a
different button. Participants were required to begin drawing from
a specific viewpoint C1, while in the disambiguation process they
were allowed to virtually navigate if they so desired.

In Part B, participants clicked on a “Start Task” button, after which
they were shown 3D annotations in the field of view or screenshots
on the side. In either case, for each task, the main viewpoint for
Part B showed a large difference in perspective from that of the Part
A’s first viewpoint C1. A simple question was shown asking the
participants to identify what the annotation was referring to. Once
confident of their answer, they clicked on a “Stop Task” button and

then let the experimenter know their answer.

5.2 Results

12 participants completed the study (ages 19-22, avg. 20.25; 5
male), 4 completing only Part A, while 8 completing both Parts
A and B. 11 participants were barely or not familiar with interac-
tive 3D software; 10 used a computer mouse at least several days a
week. All participants were relatively familiar with the two campus
datasets and not familiar with the other two.

In Part A, participants took on average 5.28 seconds to draw the
second annotation during the disambiguation phase (median 4.38;
stdev. 4.06). On average, they repeated each task 0.21 times and
used 1.18 views; hence, in most cases participants did not need to
repeat the task and did not need to virtually navigate to a better
view (i.e., they typically only used the second viewpoint chosen by
Equation 3).

In Part B, the average time it took users to answer a question was
2.64 seconds with 3D annotations in the view (median 2.20; stdev.
1.70) and 7.92 seconds with annotations in screenshots on the side
(median 7.17; stdev. 4.82). A factorial ANOVA (with factors an-
notation condition, task, and dataset) confirmed a statistically sig-
nificant difference between the two annotation conditions (p-value
≪ 0.001), using the Tukey HSD post-hoc test. There was only 1
incorrect answer (1.56%) using 3D annotations in the view, while
18 incorrect answers (28.13%) using annotations in screenshots on
the side (11 of these were in the campus datasets with which all
participants said they were relatively familiar).

Questionnaire results are shown in Figures 6 and 7. As can be seen
from the figures, participants generally agreed that the various as-
pects of the system and method were intuitive, easy to use, and
useful overall. Finally, some comments from the questionnaire in-
clude:

“For the screenshot on the side you have to mentally change your
perceived field of view to really understand the area.”

“The annotation interface was easy to use and was useful because
it was straightforward and did not require any previous knowledge
to utilize.”

“The 2nd view is helpful in that it allows you to view the designated
area or object from a different perspective which helps create a
mental map of the object and surrounding.”

“I imagine that such a system would be used for virtual reality nav-
igation as well as helping someone form a mental image/map of a
place before they go there.”

6 Synchronous Local-Remote Collaboration

System

To demonstrate our annotation authoring method in a synchronous
collaboration scenario, we built a prototype system for local-remote
user collaboration.

6.1 System Overview

Our system consists of two major components, a remote user com-
ponent and a local user component (see Figure 8). The remote
user utilizes an existing reconstructed model of a physical space
in which the local user currently is situated. The Theia SfM Li-
brary [Sweeney et al. 2015] is used to obtain sparse point cloud re-
constructions, which are optionally fed into MVE [Fuhrmann et al.
2015] to obtain dense polygon mesh reconstructions. The remote
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The annotation interface was intuitive overall.

. . . useful overall.
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The navigation interface was intuitive overall.
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Figure 6: Questionnaire results for Part A (12 participants). [Best viewed in color]
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. . . easy to use overall.

The [3D] annotations I saw were intuitive overall.

Strongly Agree Agree Somewhat Agree Neutral Somewhat Disagree Disagree Strongly Disagree

Figure 7: Questionnaire results for Part B (8 participants). [Best viewed in color]

Figure 8: Overview diagram for our prototype synchronous local-
remote collaboration system.

user is able to virtually navigate through and annotate the recon-
structed model, using the interface described in Sections 3 and 4.
Such annotations are then sent to the local user through a network
connection.

The local user has a handheld augmented reality device; in our im-
plementation, we chose to use the Google Project Tango tablet,
featuring built-in visual tracking capabilities. The Tango tablet is
linked to the remote user’s system via a network connection (TCP
in our implementation). H.264 encoded video and the 6 degree-of-
freedom (DoF) device pose (position and orientation) is streamed
to the remote user. The remote user then has the ability to follow
the local user’s device pose or to virtually navigate independently
of the local user’s view. The local user can also send back photos
to the remote user which are then displayed in their correct 6-DoF
pose in the remote user’s view. Audio is streamed using a separate

off-the-shelf solution.

To localize the Tango tablet to the model, the local user presses a
“Localize” button on the tablet which sends a JPEG compressed
video frame and the current 6-DoF pose over the network to the
remote user’s system. SIFT [Lowe 2004] and FLANN [Muja and
Lowe 2009] are used to find 2D-3D correspondences to the sparse
reconstruction; this is followed by P3P absolute pose estimation
inside a RANSAC loop to localize the video frame [Kneip et al.
2011]. The reconstruction is manually scaled so that one unit equals
one meter, to coincide with Tango’s coordinate system scale. Note
that our system allows the local user to continue to move through-
out the physical environment while the localization process is being
performed remotely. Localization accuracy is visually verified by
showing the sparse point cloud in AR on the Tango device.

6.2 Results

The remote user’s system runs with an average frame rate of 58Hz
when not connected to the local user and 14.2Hz when connected
to the local user, on an Intel Core i7-4790 3.6GHz CPU with 16GB
of RAM and an NVIDIA Quadro K5000. The local user’s system,
a Google Project Tango tablet, runs with an average frame rate of
30Hz. In our experiments, it takes an average of 3.8 seconds to
perform localization with an average round trip time of 4.4 seconds
between pressing the “Localize” button and receiving the localized
pose from the remote user’s system; it takes on average 88.2ms to
compress the frame and send it along with the pose on the Tango
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tablet side. All experiments were performed using a shared campus
WiFi network. Figure 9 shows an example of the collaboration.
Please see the supplemental video for more results.

7 Discussion

While automatic methods for disambiguating 2D gesture annota-
tions in 3D work nicely for densely reconstructed scenes, they may
not always work for semi-dense scenes and will usually fail in very
sparse scenes (for an example semi-dense scene where this is the
case, see Figure 2). Our method is agnostic to the density of the
reconstructions. On the one hand, as sensors and image-based re-
construction algorithms improve, the availability of dense recon-
structions will only increase. On the other hand, sparse reconstruc-
tions will always be quicker to produce (especially for reconstruct-
ing wide-area, outdoor unstructured sets of photos) and more ef-
ficient in terms of computer memory storage; sparse models can
also be produced more easily with sparse sets of photos compared
to dense models. Finally, while many outdoor scenes are able to
be reconstructed densely to a certain extent, many fine scene de-
tails are still extremely difficult for computer vision algorithms to
reconstruct at all (e.g., small objects, non-diffuse surfaces, etc.; see
Figure 2). For these reasons we chose a rather simple baseline ap-
proach to compare against in Section 5. One downside for using
sparse reconstructions is that any method will not be able to easily
determine if the line l is occluded from a second viewpoint; for this
special case, our method allows users to simply virtually navigate
to a better viewpoint.

In this paper, we focused specifically on evaluating the multi-view
gesture annotation authoring method. For this we chose to use
an asynchronous collaboration task, allowing us to evaluate our
method across four different image-based reconstructions. Previ-
ous work has focused more on experimenting with synchronous
collaboration scenarios. In this work we were mainly concerned
with the usability of the annotation authoring method and thus
both synchronous and asynchronous scenarios are applicable. We
note that both scenarios include view independent situations which
demonstrate the importance of correctly placing 2D annotations in
3D [Gauglitz et al. 2014b; Kasahara and Rekimoto 2014; Tait and
Billinghurst 2015; Nuernberger et al. 2016]. One downside of inter-
active disambiguation methods in synchronous collaboration sce-
narios is that they generally take longer than automatic approaches;
future work should explore first employing an automatic disam-
biguation method followed by interactive correction by the user as
needed.

If the viewpoint chosen by Equation 3 is not satisfactory, the user
has the option to virtually navigate to a better view to perform the
disambiguation. A possible failure case with our method is that no

good second viewpoint Ĉ may exist for disambiguating 2D ges-
ture annotations. In this case, free-flight navigation along with
semi-dense models will help in the disambiguation. Other types
of 3D annotation authoring methods may also be explored in this
case [Wither et al. 2009].

Future work should explore adjusting Equation 3 to incorporate the
path planning algorithm presented in Section 4.4. For example,
a candidate viewpoint Cn may have a lower image-based render-
ing transition cost compared to another candidate viewpoint Cm.
By incorporating this into Equation 3, the transition to the second
viewpoint should maintain higher spatial orientation as a result of
having better image-based rendering transitions.

Finally, it should be re-emphasized that since our method is ag-
nostic to the density of reconstructions, it is extremely useful in
outdoor image-based reconstructions, which tend to be built using

structure from motion. The impact of this includes both virtual and
augmented reality applications. While much previous AR work fo-
cuses on indoor and small scene reconstructions (e.g., [Klein and
Murray 2007; Newcombe et al. 2011]), less work has explored out-
door, wide-area AR scenes under a variety of scene conditions. Our
method is especially useful in this latter case.

8 Conclusion

We presented a novel annotation authoring method for use in
image-based 3D reconstructed scenes. A remote user is able to vir-
tually navigate through the scene with free-flight or constrained-to-
photos navigation and can also annotate the scene using 2D arrow
and circle gestures. To disambiguate the drawing gestures in 3D,
we show users a second viewpoint from which they can then draw
the gesture a second time to achieve disambiguation via triangula-
tion. We introduced an automatic way to determine such a second
viewpoint and transition the user there in such a way to keep the
user spatially oriented. A user experiment with an asynchronous
remote-remote user collaboration task demonstrated the usability
of our method and its superiority over a baseline method. Finally, a
prototype synchronous local-remote user collaboration system was
demonstrated as well as the annotation authoring method being
used in many wide-area image-based 3D reconstructions.
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HINCAPIÉ-RAMOS, J. D., GUO, X., MOGHADASIAN, P., AND

IRANI, P. 2014. Consumed Endurance: A Metric to Quan-
tify Arm Fatigue of Mid-air Interactions. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems,
ACM, New York, NY, USA, CHI ’14, 1063–1072.

JUNG, T., GROSS, M. D., AND DO, E. Y.-L. 2002. Annotating
and Sketching on 3D Web Models. In Proceedings of the 7th
International Conference on Intelligent User Interfaces, ACM,
New York, NY, USA, IUI ’02, 95–102.

KASAHARA, S., AND REKIMOTO, J. 2014. Jackin: Integrating
first-person view with out-of-body vision generation for human-
human augmentation. In Proceedings of the 5th Augmented Hu-
man International Conference, ACM, New York, NY, USA, AH
’14, 46:1–46:8.

KASAHARA, S., HEUN, V., LEE, A. S., AND ISHII, H. 2012. Sec-
ond Surface: Multi-user Spatial Collaboration System Based on
Augmented Reality. In SIGGRAPH Asia 2012 Emerging Tech-
nologies, ACM, New York, NY, USA, SA ’12, 20:1–20:4.

KIM, S., LEE, G., SAKATA, N., AND BILLINGHURST, M. 2014.
Improving co-presence with augmented visual communication
cues for sharing experience through video conference. In Pro-
ceedings of the 2014 IEEE International Symposium on Mixed
and Augmented Reality (ISMAR), 83–92.

KIM, S., LEE, G. A., HA, S., SAKATA, N., AND BILLINGHURST,
M. 2015. Automatically freezing live video for annotation dur-
ing remote collaboration. In Proceedings of the 33rd Annual
ACM Conference Extended Abstracts on Human Factors in Com-
puting Systems, ACM, New York, NY, USA, CHI EA ’15, 1669–
1674.

KLEIN, G., AND MURRAY, D. 2007. Parallel tracking and map-
ping for small ar workspaces. In Proceedings of the 2007 6th
IEEE and ACM International Symposium on Mixed and Aug-
mented Reality, IEEE Computer Society, Washington, DC, USA,
ISMAR ’07, 1–10.

KNEIP, L., SCARAMUZZA, D., AND SIEGWART, R. 2011. A novel
parametrization of the perspective-three-point problem for a di-
rect computation of absolute camera position and orientation. In
Proceedings of the 2011 IEEE Conference on Computer Vision
and Pattern Recognition, IEEE Computer Society, Washington,
DC, USA, CVPR ’11, 2969–2976.

LIEN, K.-C., NUERNBERGER, B., HÖLLERER, T., AND TURK,
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