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ABSTRACT

We present a new dense multi-view registration technique for
wide-baseline video/images that integrates a parametric optical flow-
based approach with a sparse set of feature correspondences, based
on a locally planar approximation of a nonplanar scene. The pro-
posed method can deal with illuminance variations between the views,
which is critically important for wide-baseline applications. It dif-
fers from existing work on wide-baseline image registration in that it
requires only image information and provides dense matching with-
out computing any camera calibration matrices or performing any
prior scene segmentation. These characteristics render the method
suitable for practical deployment in visual sensor networks, towards
which the current work is directed. We demonstrate the performance
of the proposed method on simulated multi-view images of a virtual
3D world composed of piece-wise smooth textured surfaces, as well
as real wide-baseline images of nonplanar textured surfaces.

Index Terms— Local image registration, wide-baseline, Wiener-
based affine model estimation

1. INTRODUCTION

Multi-view image registration is an important step in many computer
vision and video processing applications such as camera calibration,
3D scene reconstruction and creation of panaromic views, etc. Nu-
merous methods have been proposed to solve this problem for dif-
ferent ranges of baselines (i.e., separations) between the cameras.

In the literature, there has been more emphasis on small-baseline
applications. Multi-view image registration techniques for the case
of small-baseline usually assume that a single homography (pro-
jective transformation) or lower order parametric models such as
pseudo-perspective and affine, can effectively model the spatial trans-
formation between the multiple views. These techniques [1] [2] [3]
[4], which are classified as either intensity-based or feature-based
methods, become insufficient to solve the problem of wide-baseline
image registration due to several critical issues that arise with wide-
baseline, including non-negligible parallax, depth discontinuities,
and occlusions.

In wide-baseline scenarios, the focus has been on the establish-
ment of a set of view-invariant feature correspondences across the
multiple views for the end goal of camera calibration and 3D scene
reconstruction [5] [6]. Most of these techniques aim to first com-
pute camera matrices (i.e., camera external and internal parameters)
from feature correspondences and then provide the dense matching
of multi-view images using the calibration information. In a recent
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work [7], an initial set of feature correspondences is expanded for
dense matching of rectified wide-baseline images. In addition, use
of prior scene data in the form of an image sequence has also been
proposed to register uncalibrated wide-baseline images [8] [9].

In this paper, we propose a new multi-view image registration
method for wide-baseline applications. The main contributions of
this paper are: i) we employ a locally planarized scene model; hence,
alocally-varying affine disparity field model; ii) we develop a locally-
varying affine parameter estimation technique, which integrates opti-
cal flow-based methods with sparse feature correspondences, where
the feature correspondences enable coarse-level registration, and the
locally-varying affine model provides fine-level dense registration;
and iii) the method can deal with illuminance variations between
the views, which is critical for wide-baseline applications. Another
feature of the proposed method is that it is computationally simpler
and more robust than existing wide-baseline dense matching tech-
niques, since it does not require pre-processing of the input images
for camera calibration or scene segmentation. These features make
the method well-suited for practical use in visual sensor networks.

2. THEORY OF THE PROPOSED METHOD

This section first presents the scene and disparity field models, which
form the basis of the proposed locally varying affine registration
method; then, the proposed algorithm to compute the model param-
eters recursively at each pixel is presented.

2.1. Locally Planar Scene Model

We assume a locally planarized scene model, which is analogous to
linearization of a non-linear function. As a result, the 2D displace-
ment/disparity field between the corresponding planes in the mul-
tiple views can be modeled as a homography. This can be further
approximated by a simpler locally varying affine model [5], that is
computationally advantageous due to fewer number of parameters.

To overcome the aperture problem, the affine model parameters
at each pixel are estimated over a block of pixels. Naturally, the size
of the block at a given pixel relates to the size of the planar patch
that is tangent to the actual surface for that location. Small block
sizes are required to track variations in the surface normal, while
large block sizes are required to ensure consistency of the affine pa-
rameter estimates. Experimental results indicate that the parameter
estimation method developed in the following provides successful
results with block sizes as small as 3 x 3; hence the ability to track
surface nonlinearities. Note that our scene model is different from
the common approach, where the input scene is modeled as a union
of a small number of planes, which typically requires scene segmen-
tation before plane-by-plane image registration [8].
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2.2. Computation of Locally Varying Affine Model Parameters

The well-known optical flow constraint uses the linearized (first-
order) Taylor Series expansion, where the range of displacement to
be computed is limited. However, when the displacements among
the two images are large, this constraint cannot be used to com-
pute the displacements accurately, unless a multi-scale (pyramid) ap-
proach is followed. In order to compute larger displacements without
the computational complexity of the multi-scale approaches, we fol-
low the Wiener-estimation based solution [10]. We extend the trans-
lational motion model presented therein to an affine motion model
and also compensate for the local illumination changes by subtract-
ing the local means. In the following, we give the recursive formula-
tions for the locally varying affine model, where the displaced frame
difference, df d(), at a location, X is defined as follows:

dfd(Xe, A(X.), t(Xe)) = (1)

(L (A(Xe) Xe + H(X0)) = pie) = (1e(Xe) = pe)
where 1. and I denote the current and the source images, i.e., the
motion field is estimated from the current image towards the source
image. p. and ps denote the local (gray-level) mean at X, in the
current image and at its corresponding location in the source image,
respectively. A(X.) and ¢(X.) are rotation/scale/skew matrix and

translational vector of the affine model, respectively, at the pixel lo-
cation, X., where

_ [ A A _ [ te
AXe) = < Az1 Az ) ’ and HXe) = ( ty )
For concise notation, we abbreviate A(X.) and t(X.) as A and ¢,
respectively. Under the assumption that the affine model parameters
at the current pixel are obtained as updates of parameters from the
previous pixel, we can rewrite Eqn. (1) as:
dfd(Xc,A,t) = @)
(Is((A" + a") Xe + (8 +u')) = ) — (Le(Xe) — pae)
where A° and t! are the initial affine model parameters at location
X,, and o' and u* are the corresponding updates on A* and ¢*, re-
spectively. Expanding the the first term on the right side of Eqn. (2)
into a Taylor series about (A’ X, + t*), we obtain:
dfd(Xe, A t) = 3)
(Is(A' X 4+ t) + (a' X + u') VI (A X, + 1Y)
+h.ot. — ps) — (Ie(Xe) — fie)
where ‘h.o.t.” denotes the higher order terms in the Taylor series
expansion, i.e., linearization error. By denoting the displaced frame
difference due_to _the it" iteration of the affine model, at location X,
by dfd(X., A*,t"), Eqn. (3) can be written as:
dfd(Xc, A,t) = ©
dfd(Xe, A',t") = pis + pre
+(a'Xe + u)VI(A' Xe + 1) + hoo.t.
In order to compute the update parameters, (ai, ui) in Eqn. (4), we
impose a uniform affine motion model constraint over a block, B,

of pixels around the current pixel, X., and set dfd(X., A, t) to zero
within that neighborhood. This results in a set of equations:

7(dfd(X(])’ Aivti) — s + /140) = (5)
(@' X(§) + u)VI, (A X(§) +t*) + h.ot.,VX(j) € B
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where X (j) = [z1(4), z2(j)] denotes location of the j** pixel in
block, B. Grouping these into matrix/vector format yields

z=G.upd(Xc)+n (6)

where n is the vector of linearization error terms, z and G are defined
as in Eqn. (8) and upd(X.) = [a11,a12,a21, a2z, u1,uz] is the
vector of update terms on the affine model parameters. Making some
simplifying assumptions on the covariance matrices of upd(X.) and
n (see [10, Chap. 7]), the minimum mean square solution of Eqn.
(6) is

upd(X.) = (GG + pl)'G" 2 (7)

where I is the identity matrix, and p is a damping factor.

2.3. Combining Optical Flow-based Affine Parameter Estima-
tion with Feature Correspondences

Wide-baseline imaging scenarios result in greater disparity between
the images, which optical flow-based approaches become inadequate
to handle without appropriate initialization [8]. To solve this prob-
lem and still have the merits of gradient-based approaches (i.e., dense
matching and sub-pixel precision in the matching accuracy), we uti-
lize a feature-based correspondence estimation method [11]. We in-
tegrate a set of sparse feature correspondences with the optical flow-
based approach presented in Section 2.2, such that appropriate ini-
tialization, (Ai,ti), for the local affine model parameters is provided
by the feature correspondences.

Figure 1 shows a flow diagram of the integration of feature corre-
spondences with the optical flow-based affine parameter estimation.
We commence the scan of the image from the feature point closest
to the top-left corner. For the first pixel in the image scan order,
(A%, %) are initialized using this feature correspondence by setting
t* to the displacement between the correspondent feature points, and
A" to the identity matrix. Locally varying affine parameters at each
pixel on the scan order are then updated recursively using Eqn. (7).
Appropriate re-initialization with the feature correspondences is per-
formed when required, as shown in Figure 1. The complete image
region is scanned by beginning with this first corresponding feature
point and proceeding in the first image along a Hilbert curve [12]
in either direction (toward top-left and bottom-right corners, respec-
tively). The corresponding locations in the second image are deter-
mined by transforming these using the current affine transformation
estimates. The use of the Hilbert curves helps better preserve conti-
guity and locality [13].

3. EXPERIMENTAL RESULTS

We apply the proposed wide-baseline image registration technique
to register multi-view images captured in two different scenarios, i)
in a virtual 3D world and ii) in a real world. In the implementation of
the proposed method, we set the damping factor (i.e., i) to 10 in the
minimum mean square solution. In both experiments, the best block
size for the uniform affine model constraint has been determined by
search over a discrete set of candidate block sizes.

In the simulation experiment, we utilize a 3D object composed
of multiple piece-wise smooth planar surfaces, as shown in Figure 2.
Note that we have chosen textured surfaces to ensure that local vari-
ations in registration can be estimated reliably. In the absence of
such texture, correspondences cannot be unambiguously determined
(generalized aperture problem). Figures 3 and 4 show the multi-
view images captured from two different viewing angles, where the
camera motion is composed of 3D rotation and translation. Plane
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Fig. 1. Image registration combining affine parameter estimation
with feature correspondences. Affine model parameters are esti-
mated recursively for each pixel on the image scan order.

boundaries are drawn on Figures 3 and 4 for clarification. We ap-
ply the proposed registration method by imposing the uniform affine
model constraint over a block of size (11x11) throughout the image.
Figures 5-(a) shows the registration error image. In addition to the
high pSNR (37.75 dB) of the resulting error image, the estimated
motion field can be observed to be consistently varying, in Figure 5-
(®).

For the real experiment, we apply the proposed registration method
to two wide-baseline images captured from a non-planar surface
of a couch by a digital camera. Figures 7-(a) and 7-(b) show the
source and current images, respectively, where the motion field is
estimated from the current image towards the source image. We ap-
ply the proposed registration method by imposing the uniform affine
model constraint over a block of size (3x3) throughout the image.
We present the preliminary results for the registration error image,
and the estimated motion field in Figure 7-(c) and Figure 6, respec-
tively. The pSNR value of the registration error image is computed
to be 33.44 dB. From Figure 6, the estimated motion field can be ob-
served to be consistently varying everywhere, except the locations
where an accurate registration cannot be achieved due to lack of ad-
equate texture.

4. CONCLUSION

We propose a new method for wide-baseline image registration, by
combining optical flow-based motion estimation with feature cor-
respondences. We model the 3D world locally as planar and ap-
ply a recursive algorithm to update the affine model parameters for
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Fig. 3. Simulated view 1 (Source Fig. 4. Simulated view 2 (Cur-
image). rent image).

each planar patch on a local basis. Feature correspondences are uti-
lized to initialize the affine model in order to track the large distor-
tions in the wide-baseline imaging scenarios. The method has ad-
vantages over other wide-baseline registration techniques, such that
it does not require any pre-processing of the scene or the cameras
(i.e., scene segmentation and/or camera calibration). Experimental
results show that by choosing an appropriate block size for the uni-
form motion model constraint and suitably integrating the feature
correspondences, wide-baseline images can be registered with high
accuracy. Both the registration error image and the estimated motion
field validate the performance of the method. Future work includes
using a spatially adaptive window size for the uniform affine model
constraint and increasing robustness of the technique to the possible

(b)

(2)

Fig. 5. Virtual 3D world (a) Error image after registration; (b) Esti-
mated motion field using the proposed method.
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Fig. 6. Real nonplanar scene: Estimated motion field (scaled) using
the proposed method.

occlusions in the scene.
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Fig. 7. Real nonplanar scene (a) View 1 (Source image); (b) View
2 (Current image); (¢) Error image after registration using the pro-
posed method.



