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Abstract— This paper presents a self-reconfigurable camera
array system that captures and renders 3D virtual scenes
interactively. It is composed of an array of 48 cameras mounted
on mobile platforms. We propose an efficient algorithm that is
capable of rendering high-quality novel views from the captured
images. The algorithm reconstructs a view-dependent multi-
resolution 2D mesh model of the scene geometry on the fly
and uses it for rendering. The algorithm combines region of
interest (ROI) identification, JPEG image decompression, lens
distortion correction, scene geometry reconstruction and novel
view synthesis seamlessly on a single Intel Xeon 2.4 GHz
processor, which is capable of generating novel views at 4–10
frames per second (fps). In addition, we present a view-dependent
adaptive capturing scheme that moves the cameras in order to
show even better rendering results. Such camera reconfiguration
naturally leads to a nonuniform arrangement of the cameras
on the camera plane, which is both view-dependent and scene-
dependent.

I. INTRODUCTION

Multi-view imaging, in particular, image-based rendering

(IBR), has received a lot of interest recently [1], [2]. A number

of camera arrays has been built for multi-view imaging in

literature. For instance, Matusik et al. [3] used 4 cameras

for rendering using image-based visual hull (IBVH). Yang

et al. [4] had a 5-camera system for real-time rendering

with the help of modern graphics hardware; Schirmacher et

al. [5] built a 6-camera system for on-the-fly processing of

generalized Lumigraphs; Naemura et al. [6] constructed a

system of 16 cameras for real-time rendering. Several large

arrays consisting of tens of cameras have also been built, such

as the Stanford multi-camera array [7], the MIT distributed

light field camera [8] and the CMU 3D room [9]. These three

systems have 128, 64 and 49 cameras, respectively.

In the above camera arrays, those with a small number of

cameras can usually achieve real-time rendering [3], [4]. On-

the-fly geometry reconstruction is widely adopted to compen-

sate for the lack of cameras, and the viewpoint is often limited.

Large camera arrays, despite their increased viewpoint ranges,

often have difficulty in achieving satisfactory rendering speed

due to the large amount of data to be handled. The Stanford

system focused on grabbing synchronized video sequences

onto hard drives. It certainly can be used for real-time ren-

dering but no such results have been reported in literature.

The CMU 3D room was able to generate good-quality novel

views both spatially and temporarily [10]. It utilized the scene

Fig. 1. Our self-reconfigurable camera array system with 48 cameras.

geometry reconstructed from a scene flow algorithm that took

several minutes to run. While this is affordable for off-line

processing, it cannot be used to render scenes on-the-fly. The

MIT system did render live views at a high frame rate. Their

method assumed constant depth of the scene, however, and

suffered from severe ghosting artifacts due to the lack of

scene geometry. Such artifacts are unavoidable according to

plenoptic sampling analysis [11], [12].

In this paper, we present a large self-reconfigurable camera

array consisting of 48 cameras, as shown in Figure 1. We first

propose an efficient rendering algorithm that generates high-

quality virtual views by reconstructing the scene geometry

on-the-fly. Differing from previous work [4], [5], the geo-

metric representation we adopted is a view-dependent multi-

resolution 2D mesh with depth information on its vertices.

This representation greatly reduces the computational cost of

geometry reconstruction, making it possible to be performed

on-the-fly during rendering.

Compared with existing camera arrays, our system has a

unique characteristic—the cameras are reconfigurable. They

can both sidestep and pan during the capturing and rendering

process. This capability makes it possible to reconfigure the

arrangement of the cameras in order to achieve better rendering

results. This paper also presents an algorithm that automati-

cally moves the cameras based on the rendering quality of the

synthesized virtual view. Such camera reconfiguration leads

to a nonuniform arrangement of the cameras on the camera

plane, which is both view-dependent and scene-dependent.

The paper is organized as follows. Related work is reviewed

in Section II. Section III presents an overview of our camera



array system. The calibration issue is discussed in Section

IV. The real-time rendering algorithm is presented in detail in

Section V. The self-reconfiguration of the camera positions is

discussed in Section VI. We present our conclusions in Section

VII.

II. RELATED WORK

In IBR, when the number of captured images for a scene

is limited, adding geometric information can significantly im-

prove the rendering quality. In fact, there is a geometry-image

continuum which covers a wide range of IBR techniques,

as is surveyed in [1]. In practice, an accurate geometric

model is often difficult to attain, because it requires much

human labor. Many approaches in literature assume a known

geometry, or acquire the geometry via manual assistance or

a 3D scanner. Recently, there has been increasing interest in

on-the-fly geometry reconstruction for IBR [5], [3], [4] .

Depth from stereo is an attractive candidate for geometry

reconstruction in real-time. Schirmacher et al. [5] built a 6-

camera system which was composed of 3 stereo pairs and

claimed that the depth could be recovered on-the-fly. However,

each stereo pair needed a dedicated computer for the depth

reconstruction, which is expensive to scale when the number

of input cameras increases. Naemura et al. [6] constructed

a camera array system consisting of 16 cameras. A single

depth map was reconstructed from 9 of the 16 images using

a stereo matching PCI board. Such a depth map is computed

with respect to a fixed viewpoint; thus the synthesized view is

sensitive to geometry reconstruction errors. Another constraint

of stereo based algorithms is that the input images need to be

pair-wise positioned or rectified, which is not convenient in

practice.

Matusik et al. [3] proposed image-based visual hull (IBVH),

which rendered dynamic scenes in real-time from 4 cameras.

IBVH is a clever algorithm which computes and shades the

visual hull of the scene without having an explicit visual hull

model. The computational cost is low thanks to an efficient

pixel traversing scheme, which can be implemented with

software only. Another similar work is the polyhedral visual

hull [13], which computes an exact polyhedral representation

of the visual hull directly from the silhouettes. Lok [14] and

Li et al. [15] reconstructed the visual hull on modern graphics

hardware with volumetric and image-based representations.

One common issue of visual hull based rendering algorithms

is that they cannot handle concave objects, which makes some

close-up views of concave objects unsatisfactory.

An improvement over the IBVH approach is the image-

based photo hull (IBPH) [16]. IBPH utilizes the color infor-

mation of the images to identify scene geometry, which results

in more accurately reconstructed geometry. Visibility was

considered in IBPH by intersecting the visual hull geometry

with the projected line segment of the considered light ray in

a view. Similar to IBVH, IBPH requires the scene objects’

silhouettes to provide the initial geometric information; thus,

it is not applicable to general scenes (where extracting the

silhouettes could be difficult) or mobile cameras.

Recently, Yang et al. [4] proposed a real-time consensus-

based scene reconstruction method using commodity graphics

hardware. Their algorithm utilized the Register Combiner for

color consistency verification (CCV) with a sum-of-square-

difference (SSD) measure, and obtained a per-pixel depth

map in real-time. Both concave and convex objects of general

scenes could be rendered with their algorithm. However, their

recovered depth map could be very noisy due to the absence

of a convolution filter in commodity graphics hardware.

As modern computer graphics hardware becomes more and

more programmable and powerful, the migration to hardware

geometry reconstruction (HGR) algorithms is foreseeable.

However, at the current stage, HGR still has many limitations.

For example, the hardware specification may limit the maxi-

mum number of input images during the rendering [15], [4].

Algorithms that can be used on hardware are constrained. For

instance, it is not easy to change the CCV in [4] from SSD to

some more robust ones such as pixel correlations. When the

input images have severe lens distortions, the distortions must

be corrected using dedicated computers before the images are

sent to the graphics hardware.

Self-reconfiguration of the cameras is a form of non-uniform

sampling (or adaptive capturing) of IBR scenes. In [17],

Zhang and Chen proposed a general non-uniform sampling

framework called the Position-Interval-Error (PIE) function.

The PIE function led to two practical algorithms for capturing

IBR scenes: progressive capturing (PCAP) and rearranged

capturing (RCAP). PCAP captures the scene by progressively

adding cameras at the places where the PIE values are maxi-

mal. RCAP, on the other hand, assumes that the overall number

of cameras is fixed and tries to rearrange the cameras such

that rendering quality estimated through the PIE function is

the worst. A small scale system was developed in [18] to

demonstrate the PCAP approach. The work by Schirmacher

et al. [19] shared similar ideas with PCAP, but they only

showed results on synthetic scenes.

One limitation about the above mentioned work is that the

adaptive capturing process tries to minimize the rendering

error everywhere as a whole. Therefore for a specific virtual

viewpoint, the above work does not guarantee better rendering

quality. Furthermore, since different viewpoints may require

different camera configurations to achieve the best rendering

quality, the final arrangement of the cameras is a tradeoff of

all the possible virtual viewpoints, and the improvement over

uniform sampling was not easy to show.

We recently proposed the view-dependent non-uniform sam-

pling of IBR scenes [20]. Given a set of virtual views, the

positions of the capturing cameras are rearranged in order

to obtain the optimal rendering quality. The problem is for-

mulated as a recursive weighted vector quantization problem,

which can be solved efficiently. In that work we assume that all

the capturing cameras can move freely on the camera plane.

Such assumption is very difficult to implement in practical

systems. This paper proposes a new algorithm for the self-

reconfiguration of the cameras, given that they are constrained

on the linear guides.



Fig. 2. The mobile camera unit.

III. OVERVIEW OF THE CAMERA ARRAY SYSTEM

A. Hardware

Our camera array system (as shown in Figure 1) is com-

posed of inexpensive off-the-shelf components. There are 48

(8×6) Axis 205 network cameras placed on 6 linear guides.

The linear guides are 1600 mm in length, thus the average

distance between cameras is about 200 mm. Vertically the

cameras are 150 mm apart. They can capture at a rate of

up to 640 × 480 × 30fps. The cameras have built-in HTTP

servers, which respond to HTTP requests and send out motion

JPEG sequences. The JPEG image quality is controllable. The

cameras are connected to a central computer through 100Mbps

Ethernet cables.

The cameras are mounted on a mobile platform, as shown

in Figure 2. Each camera is attached to a pan servo, which

is a standard servo capable of rotating 90 degrees. They

are mounted on a platform, which is equipped with another

sidestep servo. The sidestep servo is hacked so that it can

rotate continuously. A gear wheel is attached to the sidestep

servo, which allows the platform to move horizontally with

respect to the linear guide. The gear rack is added to avoid

slipping. The two servos on each camera unit allow the camera

to have two degrees of freedom – pan and sidestep. However,

the 12 cameras at the leftmost and rightmost columns have

fixed positions and can only pan.

The servos are controlled by the Mini SSC II servo con-

troller [21]. Each controller is in charge of no more than

8 servos (either standard servos or hacked ones). Multiple

controllers can be chained; thus, up to 255 servos can be

controlled simultaneously through a single serial connection

to a computer. In the current system, we use altogether 11

Mini SSC II controllers to control 84 servos (48 pan servos,

36 sidestep servos).

Unlike any of the existing camera array systems described

in Section I, our system uses only one computer. The computer

is an Intel Xeon 2.4 GHz dual processor machine with 1GB

of memory and a 32 MB NVIDIA Quadro2 EX graphics card.

As will be detailed in Section V, our rendering algorithm is so

efficient that the ROI identification, JPEG image decompres-

sion and camera lens distortion correction, which were usually

performed with dedicated computers in previous systems, can

all be conducted during the rendering process for a camera

array at our scale. On the other hand, it is not difficult to

modify our system and attribute ROI identification and image

Fig. 3. Images captured by our camera array. (a) All the images. (b)(c)(d)(e)
Sample images from selected cameras.

decoding to dedicated computers, as was done in the MIT

distributed light field camera [8].

Figure 3 (a) shows a set of images for a static scene

captured by our camera array. The images are acquired at

320×240 pixel. The JPEG compression quality factor is set

to be 30 (0 being the best quality and 100 being the worst

quality, according to the Axis camera’s specification). Each

compressed image is about 12-18 Kbytes. In a 100 Mbps

Ethernet connection, 48 cameras can send such JPEG image

sequences to the computer simultaneously at 15-20 fps, which

is satisfactory. Several problems can be spotted from these

images. First, the cameras have severe lens distortions, which

has to be corrected during the rendering. Second, the colors

of the captured images have large variations. The Axis 205

camera does not have flexible lighting control settings. We use

the ”fixed indoor” white balance and ”automatic” exposure

control in our system. Third, the disparity between cameras

is large. As will be shown later, using a constant depth

assumption to render the scene will generate images with

severe ghosting artifacts. Finally, the captured images are noisy

(Figure 3 (b)–(e)). This noise comes from both the CCD

sensors of the cameras and the JPEG image compression. This

noise brings an additional challenge to the scene geometry

reconstruction.

The Axis 205 cameras cannot be easily synchronized. We



Fig. 4. Locate the features of the calibration pattern.

make sure that the rendering process will always use the

most recently arrived images at the computer for synthesis.

Currently we ignore the synchronization problem during the

geometry reconstruction and rendering, though it does cause

problems when rendering fast moving objects, as might have

been observed in the submitted companion video files.

B. Software architecture

The system software runs as two processes, one for cap-

turing and the other for rendering. The capturing process

is responsible for sending requests to and receiving data

from the cameras. The received images (in JPEG compressed

format) are directly copied to some shared memory that both

processes can access. The capturing process is very light-

weight, consuming about 20% of the CPU time of one of the

processors in the computer. When the cameras start to move,

their external calibration parameters need to be calculated

in real-time. Camera calibration is also performed by the

capturing process. As will be described in the next section,

calibration of the external parameters generally runs fast (150–

180 fps).

The rendering process runs on the other processor. It is

responsible for ROI identification, JPEG decoding, lens dis-

tortion correction, scene geometry reconstruction and novel

view synthesis. Details about the rendering process will be

described in Section V.

IV. CAMERA CALIBRATION

Since our cameras are designed to be mobile, calibration

must be performed in real-time. Fortunately, the internal

parameters of the cameras do not change during their motion,

and can be calibrated offline. We use a large planar calibra-

tion pattern for the calibration process (Figure 3). Bouguet’s

calibration toolbox [22] is used to obtain the internal camera

parameters.

To calibrate the external parameters, we first extract the

feature positions on the checkerboard using two simple linear

filters. The positions are then refined to sub-pixel accuracy by

finding the saddle points, as in [22]. The results of feature

extraction is shown in Figure 4. Notice that due to occlusions,

not all the corners on the checkerboard can be extracted.

However, calibration can still be performed using the extracted

corners.

To obtain the 6 external parameters (3 for rotation and 3 for

translation) of the cameras, we use the algorithm proposed by

Fig. 5. The multi-resolution 2D mesh with depth information on its vertices.

Fig. 6. The flow chart of the rendering algorithm.

Zhang [23]. The Levenberg-Marquardt method implemented

in MinPack [24] is used for the nonlinear optimization. The

above calibration process runs very fast on our processor

(150–180 fps at full speed). As long as there are not too

many cameras moving around simultaneously, we can perform

calibration on-the-fly during the camera movement. In the

current implementation, we impose the constraint that at any

instance at most one camera on each row can sidestep. After

a camera has sidestepped, it will pan if necessary in order to

keep the calibration board in the middle of the captured image.

V. REAL TIME RENDERING

A. Flow of the rendering algorithm

In this paper, we propose to reconstruct the geometry of the

scene as a 2D multi-resolution mesh (MRM) with depths on

its vertices, as shown in Figure 5. The 2D mesh is positioned

on the imaging plane of the virtual view; thus, the geometry is

view-dependent (similar to that in [4], [16], [3]). The MRM

solution significantly reduces the amount of computation spent

on depth reconstruction, making it possible to be implemented

efficiently in software.

The flow chart of the rendering algorithm is shown in Figure

6. A novel view is rendered when there is an idle callback

or the user moves the viewpoint. We first construct an initial

sparse and regular 2D mesh on the imaging plane of the virtual

view, as shown in Figure 7. This sparse mesh is used to obtain

an initial estimate of the scene geometry. For each vertex of

the 2D mesh, we first look for a subset of images that will

be used to interpolate its intensity during the rendering. This



Fig. 7. Locate the neighboring images for interpolation and depth recon-
struction through plane sweeping.

step has two purposes. First, we may use such information

to identify the ROIs of the captured images and decode them

when necessary, as is done in the next step. Second, only

the neighboring images will be used for color consistency

verification during the depth reconstruction, which is termed

local color consistency verification (detailed in Section V-D).

We then obtain the depths of the vertices in the initial 2D

mesh through a plane-sweeping algorithm. At this stage, the

2D mesh can be used for rendering already; however, it may

not have enough resolution along the object boundaries. We

next perform a subdivision of the mesh in order to avoid the

resolution problem at object boundaries. If a certain triangle in

the mesh bears large depth variation, which implies a possible

depth error or object boundary, subdivision is performed

to obtain more detailed depth information. Afterwards, the

novel view can be synthesized through multi-texture blending,

similar to the unstructured Lumigraph rendering (ULR) [25].

Lens distortion is corrected in the last stage, although we

also compensate the distortion during the depth reconstruction

stage. Details of the proposed algorithm will be presented next.

B. Finding close-by images for the mesh vertices

Each vertex on the 2D mesh corresponds to a light ray

that starts from the virtual viewpoint and passes through the

vertex on the imaging plane. During the rendering, it will

be interpolated from several light rays from nearby captured

images. We need to identify these nearby images for selective

JPEG decoding and the scene geometry reconstruction. Unlike

the ULR [25] and the MIT distributed light field camera [8]

where the scene depth is known, we do not have such

information at this stage, and cannot locate the neighboring

images by angular differences of the light rays1. Instead, we

adopted the distance from the cameras’ center of projection to

the considered light ray as the criterion. As shown in Figure

7, the capturing cameras C2, C3 and C4 have the smallest

distances, and will be selected as the 3 closest images. As

our cameras are roughly arranged on a plane and all point in

roughly the same direction, when the scene is reasonably far

1Although it is possible to find the neighboring images of the light rays for
each hypothesis depth plane, we found such an approach too time-consuming.

from the capturing cameras, this distance measure is a good

approximation of the angular difference used in the literature,

yet it does not require the scene depth information.

C. ROI Identification and JPEG decoding

On the initial coarsely-spaced regular 2D mesh, if a triangle

has a vertex that selects input image #n from one of the nearby

cameras, the rendering of that triangle will need image #n.

In other words, once all the vertices have found their nearby

images, we will know which triangles require which images.

This information is used to identify the ROIs of the images

that need to be decoded.

We back-project the triangles that need image #n for render-

ing from the virtual imaging plane to the minimum depth plane

and the maximum depth plane, and then project the resulting

regions to image #n. The ROI of image #n is the smallest

rectangular region that includes both of the projected regions.

Afterwards, the input images that do not have an empty ROI

will be JPEG decoded (partially).

D. Scene depth reconstruction

We reconstruct the scene depth of the light rays passing

through the vertices of the 2D mesh using a plane sweeping

method. Similar methods have been used in a number of pre-

vious algorithms [26], [27], [8], although they all reconstruct

a dense depth map of the scene. As illustrated in Figure 7, we

divide the world space into multiple testing depth planes. For

each light ray, we assume the scene is on a certain depth plane,

and project the scene to the nearby input images obtained

in Section 3.3. If the assumed depth is correct, we expect

to see consistent colors among the projections. The plane

sweeping method sweeps through all the testing depth planes,

and obtains the scene depth as the one that gives the highest

color consistency.

There is an important difference between our method and

previous plane sweeping schemes [26], [27], [8]. In our

method, the CCV is carried out only among the nearby input

images, not all the input images. We term this local color

consistency verification. As the light ray is interpolated from

only the nearby images, local CCV is a natural approach. In

addition, it has some benefits over the traditional one. First, it

is fast because we perform many fewer projections for each

light ray. Second, it enables us to reconstruct geometry for

non-diffuse scenes to some extent, because within a certain

neighborhood, color consistency may still be valid even in

non-diffuse scenes. Third, when CCV is performed only

locally, problems caused by object occlusions during geometry

reconstruction become less severe.

Care must be taken in applying the above method. First, the

location of the depth planes should be equally spaced in the

disparity space instead of in depth. This is a direct result from

the sampling theory by Chai et al. [11]. In the same paper they

also develop a sampling theory on the relationship between

the number of depth planes and the number of captured

images, which is helpful in selecting the number of depth

planes. Second, when projecting the test depth planes to the



neighboring images, lens distortion must be corrected. Third,

to improve the robustness of the color consistency matching

among the noisy input images, a patch on each nearby image

is taken for comparison. The patch window size relies heavily

on the noise level in the input images. In our current system,

the input images are very noisy. We have to use a large

patch window to compensate for the noise. The patch is first

down-sampled horizontally and vertically by a factor of 2 to

reduce some of the computational burden. Different patches in

different input images are then compared to generate an overall

CCV score. Fourth, as our cameras have large color variations,

color consistency measures such as SSD do not perform very

well. We applied mean-removed correlation coefficient for the

CCV. The correlation coefficients for all pairs of nearby input

images are first obtained. The overall CCV score of the nearby

input images is one minus the average correlation coefficient

of all the image pairs. The depth plane resulting in the lowest

CCV score is then selected as the scene depth.

The depth recovery process starts with an initial regular

and sparse 2D mesh, as was shown in Figure 7. The depths of

its vertices are obtained with the mentioned described above.

The sparse mesh with depth can serve well during rendering

if the depth of the scene does not vary much. However, if the

scene depth does change, a dense depth map is needed around

those regions for satisfactory rendering results. We subdivide

a triangle in the initial mesh if its three vertices have large

depth variation. For example, let the depths of a triangle’s

three vertices be dm1
, dm2

and dm3
, where m1, m2, m3 are

the indices of the depth planes. We subdivide this triangle if:

max
p,q∈{1,2,3},p 6=q

|mp − mq| > T (1)

where T is a threshold set equal to 1 in the current imple-

mentation. During the subdivision, the midpoint of each edge

of the triangle is selected as a new vertice, and the triangle

is subdivided into 4 smaller ones. The depths of the new

vertices are reconstructed under the constraints that they have

to use the neighboring images of the three original vertices,

and their depth search range is limited to the minimum and

maximum depth of the original vertices. Other than Equation

1, the subdivision may also stop if the subdivision level reaches

a certain preset limit.

Real-time, adaptive conversion from dense depth map or

height field to a mesh representation has been studied in

literature [28]. However, these algorithms assumed that a

dense depth map or height field was available before hand.

In contrast, our algorithm computes a multi-resolution mesh

model directly during the rendering. The size of each triangles

in the initial regular 2D mesh cannot be too large, since

otherwise we may miss certain depth variations in the scene.

A rule of thumb is that the size of the initial triangles/grids

should match that of the object features in the scene. In the

current system, the initial grid size is about 1/25 of the width

of the input images. Triangle subdivision is limited to no more

2 levels.

E. Novel view synthesis

After the multi-resolution 2D mesh with depth information

on its vertices has been obtained, novel view synthesis is

easy. Our rendering algorithm is very similar to the one in

ULR [25], except that our imaging plane has already been

triangulated. Only the ROIs of the input images will be used

to update the texture memory when a novel view is rendered.

As the input images of our system have severe lens distortions,

we cannot use the 3D coordinates of the mesh vertices and

the texture matrix in graphics hardware to specify the texture

coordinates. Instead, we perform the projection with lens dis-

tortion correction ourselves and provide 2D texture coordinates

to the rendering pipeline. Fortunately, such projections to the

nearby images have already been calculated during the depth

reconstruction stage and can simply be reused.

F. Rendering results

We have used our camera array system to capture a variety

of scenes, both static and dynamic. The speed of rendering

process is about 4-10 fps, depending on many factors such as

the number of testing depth planes used for plane sweeping,

the patch window size for CCV, the initial coarse regular 2D

mesh grid size, the number of subdivision levels used during

geometry reconstruction and the scene content. For the scenes

we have tested, the above parameters can be set to fixed values.

For instance, our default setting is 12 testing depth planes for

depth sweeping, 15×15 patch window size, 1/25 of the width

of the input images as initial grid size, and maximally 2 level

of subdivision.

The time spent on each step of the rendering process under

the above default settings is as follows. Finding neighboring

images and their ROI’s takes less than 10 ms. JPEG decoding

takes 15-40 ms. Geometry reconstruction takes about 80-120

ms. New view synthesis takes about 20 ms.

The rendering results of some static scenes are shown in

Figure 9. In these results the cameras are evenly spaced on

the linear guide. Figure 9(a)(b)(c) are results rendered with

the constant depth assumption. The ghosting artifacts are very

severe, because the spacing between our cameras is larger than

most previous systems [8], [6]. Figure 9(d) is the result from

the proposed algorithm. The improvement is significant. Figure

9(e) shows the reconstructed 2D mesh with depth information

on its vertices. The grayscale intensity represents the depth –

the brighter the intensity, the closer the vertex. Like many other

geometry reconstruction algorithms, the geometry we obtained

contains some errors. For example, in the background region

of the toys scene, the depth should be flat and far, but our

results have many small ”bumps”. This is because part of the

background region has no texture, and thus is prone to error for

depth recovery. However, the rendered results are not affected

by these errors because we use view-dependent geometry and

the local color consistency always holds at the viewpoint.

The performance of our camera array system on dynamic

scenes is demonstrated in the companion video sequences. In

general the scenes are rendered at high quality. The user is free



to move the viewpoint and the view-direction when the scene

object is also moving, which brings very rich new experiences.

G. Discussions

Our current system has certain hardware limitations. For

example, the images captured by the cameras are at 320×240

pixel and the image quality is not very high. This is mainly

constrained by the throughput of the Ethernet cable. Upgrading

the system to Gigabit Ethernet or using more computers to

handle the data could solve this problem. For dynamic scenes,

we notice that our system cannot catch up with very fast

moving objects. This is due to the fact that the cameras are

not synchronized.

We find that when the virtual viewpoint moves out of the

range of the input cameras, the rendering quality degrades

quickly. A similar effect was reported in [8], [29]. The poor

extrapolation results are due to the lack of scene information

in the input images during the geometry reconstruction.

Since our geometry reconstruction algorithm resembles the

traditional window-based stereo algorithms, it shares some

of the same limitations. For instance, when the scene has

a large depth discontinuity, our algorithm does not perform

very well along the object boundary (especially when both

foreground and background objects have strong textures). In

the current implementation, our correlation window is very

large in order to handle the noisy input images. Such a big

correlation window tends to smooth the depth map. Figure

10 (i-d) and (iii-d) shows the rendering results of two scenes

with large depth discontinuities. Notice the artifacts around

the boundaries of the objects. To solve this problem, one

may borrow ideas from the stereo literature [30], [31], which

will be our future work. Alternatively, since we have built a

mobile camera array, we may reconfigure the arrangement of

the cameras, as will be described in the next section.

VI. SELF-RECONFIGURATION OF THE CAMERA POSITIONS

A. The proposed algorithm

Figure 10 (i-c) and (iii-c) shows the CCV score obtained

while reconstructing the scene depth (Section V-D). It is obvi-

ous that if the consistency is bad (high score), the reconstructed

depth tends to be wrong, and the rendered scene tends to have

low quality. Our camera self-reconfiguration (CSR) algorithm

thus tries to move the cameras to places where the CCV score

is high.

Our CSR algorithm contains the following steps:

1. Locate the camera plane and the linear guides (as line

segments on the camera plane). The camera positions in

world coordinates are obtained through the calibration process.

Although they are not strictly on the same plane, we use an

approximated one which is parallel to the checkerboard. The

linear guides are located by averaging the vertical positions of

each row of cameras on the camera plane. As shown in Figure

8, we denote the vertical coordinates of the linear guides on

the camera plane as Yj , j = 1, · · · , 6.

2. Back-project the vertices of the mesh model to the camera

plane. Although during depth reconstruction the mesh can be

Fig. 8. Self-reconfiguration of the cameras.

subdivided, during this process we only make use of the initial

sparse mesh (Figure 7). In Figure 8, one mesh vertex was back-

projected as (xi, yi) on the camera plane. Notice that such

back-projection can be performed even if there are multiple

virtual views to be rendered; thus, the proposed CSR algorithm

is applicable to situations where there exist multiple virtual

viewpoints.

3. Collect the CCV score for each pair of neighboring

cameras on the linear guides. The capturing cameras on each

linear guide naturally divide the guide into 7 segments. Let

them be Bjk, where j is the row index of the linear guide and

k is the index of bins on that guide, 1 ≤ j ≤ 6, 1 ≤ k ≤ 7. If

a back-projected vertex (xi, yi) satisfies

Yj−1 < yi < Yj+1 and xi ∈ Bjk, (2)

the CCV score of the vertex is added to the bin Bjk. After

all the vertices have been back-projected, we obtain a set of

accumulated CCV scores for each linear guide, denoted as

Sjk, where j is the row index of the linear guide and k is the

index of bins on that guide.

5. Determine which camera to move on each linear guide.

Given a linear guide j, we look for the largest Sjk, 1 ≤ k ≤ 7.

Let it be SjK . If the two cameras forming the corresponding

bin BjK are not too close to each other, one of them will

be moved towards the other (thus reducing their distance).

Notice each camera is associated with two bins. To determine

which one of the two cameras should move, we check their

other associated bin and move the camera with a smaller

accumulated CCV score in its other associated bin.

6. Move the cameras. Once the moving cameras have

been decided, we issue them commands such as ”move left”

or ”move right”2. The positions of the cameras during the

movement are constantly monitored by the calibration process.

After a fixed time period (400 ms), a ”stop” command will be

issued to stop the camera motion.

7. End of epoch. Jump back to step 1.

2We can only send such commands to the sidestep servos, because the
servos were hacked for continuous rotation. The positions of the cameras after
movement is unpredictable, and can only be obtained through the calibration
process.



B. Results

We show results of the proposed CSR algorithm in Figure

10. In Figure 10 (i) and (iii), the capturing cameras are evenly

spaced on the linear guide. Figure 10(i) is rendered behind the

camera plane, and Figure 10(iii) is rendered in front of the

camera plane. Due to depth discontinuities, some artifacts can

be observed in the rendered images (Figure 10 (i-d) and (iii-d))

along the object boundaries. Figure 10(b) is the reconstructed

depth of the scene at the virtual viewpoint. Figure 10(c) is

the CCV score obtained during the depth reconstruction. It

is obvious that along the object boundaries, the CCV score

is high, which usually means wrong/uncertain reconstructed

depth, or bad rendering quality. The red dots in Figure 10(c)

are the projections of the capturing camera positions to the

virtual imaging plane.

Figure 10 (ii) and (iv) shows the rendering result after CSR.

Figure 10 (ii) is the result after 6 epochs of camera movement,

and Figure 10 (iv) is after 20 epochs. It can be seen from the

CCV score map (Figure 10(c) that after the camera movement,

the consistency generally gets better. The cameras have been

moved, which is reflected as the red dots in 10(c). The cameras

move toward the regions where the CCV score is high, which

effectively increases the sampling rate for the rendering of

those regions. Figure 10 (ii-d) and (iv-d) shows the rendering

results after self-reconfiguration, which is much better than 10

(i-d) and (iii-d).

VII. CONCLUSIONS

We have presented a self-reconfigurable camera array in this

paper. Our system is large scale (48 cameras), and has the

unique characteristic that the cameras are mounted on mobile

platforms. A real-time rendering algorithm was proposed,

which is highly efficient and can be flexibly implemented

in software. We also proposed a novel self-reconfiguration

algorithm to move the cameras, and achieve better rendering

quality than static camera arrays.
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Fig. 9. Scenes captured and rendered with our camera array (no camera motion). (i) Toys scene. (ii) Train scene. (iii) Girl and checkerboard scene. (iv)
girl and flowers scene. (a) Rendering with a constant depth at the background. (b) Rendering with a constant depth at the middle object. (c) Rendering with
a constant depth at the closest object. (d) Rendering with the proposed method. (e) Multi-resolution 2D mesh with depth reconstructed on-the-fly. Brighter
intensity means smaller depth.



Fig. 10. Scenes rendered by reconfiguring our camera array. (i) Flower scene, cameras are evenly spaced. (ii) Flower scene, cameras are self-reconfigured
(6 epochs). (iii) Santa scene, cameras are evenly spaced. (iv) Santa scene, cameras are self-reconfigured (20 epochs). (a) The camera arrangement. (b)
Reconstructed depth map. Brighter intensity means smaller depth. (c) The CCV score of the mesh vertices and the projection of the camera positions to the
virtual imaging plane (red dots). Darker intensity means better consistency. (d) Rendered image.


