
Chapter 8

Multi-view Object Categorization and Pose
Estimation

Silvio Savarese and Li Fei-Fei

Abstract. Object and scene categorization has been a central topic of computer vi-

sion research in recent years. The problem is a highly challenging one. A single

object may show tremendous variability in appearance and structure under vari-

ous photometric and geometric conditions. In addition, members of the same class

may differ from each other due to various degrees of intra-class variability. Re-

cently, researchers have proposed new models towards the goal of: i) finding a suit-

able representation that can efficiently capture the intrinsic three-dimensional and

multi-view nature of object categories; ii) taking advantage of this representation to

help the recognition and categorization task. In this Chapter we will review recent

approaches aimed at tackling this challenging problem and focus on the work by

Savarese & Fei-Fei [54, 55]. In [54, 55] multi-view object models are obtained by

linking together diagnostic parts of the objects from different viewing point. Instead

of recovering a full 3D geometry, parts are connected through their mutual homo-

graphic transformation. The resulting model is a compact summarization of both

the appearance and geometry information of the object class. We show that such a

model can be learnt via minimal supervision compared to competitive techniques.

The model can be used to detect objects under arbitrary and/or unseen poses by

means of a two-step algorithm. This algorithm, inspired by works in single object

view synthesis (e.g., Seitz & Dyer [57]), has the ability to synthesize object ap-

pearance and shape properties at recognition time, and in turn estimate the object

pose that best matches the observations. We conclude this Chapter by presenting ex-

periments on detection, recognition and pose estimation results with respect to two

datasets in [54,55] as well as to PASCAL Visual Object Classes (VOC) dataset [15].

Experiments indicate that representation and algorithms presented in [54,55] can be

successfully employed in a number of generic object recognition tasks.
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car:
azimuth = 200 deg; zenith = 30 deg.

stapler:
azimuth = 75 deg; zenith = 50 deg.

mouse: 
azimuth = 60 deg; zenith = 70 deg.

Fig. 8.1 Categorize an Object Given An Unseen View. azimuth: [front,right,back,left]=

[0,90,180,270]o ; zenith: [low, med., high]= [0,45,90]o

8.1 Introduction

The ability to interpret a scene, recognize the objects within, estimate their location

and pose is crucial for a robust, intelligent visual recognition system. In robotic ma-

nipulation, a robotic arm may need to detect and grasps objects in the scene such

as a cup or book; in autonomous navigation, an unmanned vehicle may need to

recognize and interpret the behavior of pedestrians and other vehicles in the envi-

ronment. Critically, accurate pose recovery is not only important if one wants to

interact with the objects in the environment (if a robotic arms wishes to grasp a

mug, the system must estimate mug’s pose with high degree of accuracy); it is also

a key ingredient that enables the visual system to perform higher level tasks such

activity or action recognition. Despite recent successful efforts in the vision com-

munity toward the goal of designing systems for object recognition, a number of

challenges still remain: not only does one need to cope with traditional nuisances

in object categorization problems (objects appearance variability due to intra-class

changes, occlusions and lighting conditions), but also to handle view-point variabil-

ity and propose representations that capture the intrinsic multi-view nature of object

categories.

In this Chapter we describe a recent recognition paradigm for discovering ob-

ject semantics under arbitrary viewing conditions as well as recovering the basic

geometrical attributes of object categories and their relationships with the observer.

Figure 8.1 illustrates more precisely the problem we would like to solve. Given an

image containing some object(s), we would like to learn object category models that

allow us to: i) detect and categorize the object as a car (or a stapler, or a computer

mouse), and ii) estimate the pose (or view point) of the car. Here by ‘pose’, we refer

to the 3D information of the object that is defined by the viewing angle and scale of

the object (i.e., a particular point on the viewing sphere represented in Figure 8.2).

Most of the recent advances in object categorization have focused on modeling

the appearance and shape variability of objects viewed from a limited number of

poses [66,19,18,35,17,23], or a mixture of poses [56,67,48,72]. In these methods,

different poses of the same object category result in completely independent models,

wherein neither features nor parts are shared across views. These methods typically

ignore the problem of recovering the object pose altogether. We refer to such models
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Fig. 8.2 Left: An object pose is represented by a pair of azimuth and zenith angles. Right:

Some of the unseen poses tested during our recognition experiments (Figure 8.12).

as single-view 2D models. At the opposite end of the spectrum, several works have

addressed the issue of single object recognition by modeling different degree of 3D

information [40,50,6,20]. Since these methods achieve recognition by matching lo-

cal features under rigid geometrical transformations, they are successful in recover-

ing the object pose, but they are difficult to extend to handle object classes. We refer

to such models as single instance 3D models. Similar limitations are suffered by

representations based on aspect graphs [31, 32, 59, 58, 13, 47, 5, 12, 10]. A small but

growing number of recent studies have begun to address the problem of object clas-

sification in a true multi-view setting [63,33,27,70,9,54,55,37,49,71,2,16,61,60,

43]. Since in these methods object elements (features, parts, contours) are connected

across views so as to form an unique and coherent model for the object category

(e.g., Figure 8.4), we refer to such models as multi-view models. These techniques

bridge the gap between single view 2D models and single instance 3D object mod-

els. In this book Chapter we will focus on the framework introduced by [54, 55],

which represents one of the first attempts to model the multi-view nature of 3D ob-

ject categories. In particular we will discuss some of the critical contributions of

such multi-view model [54, 55]:

• A part-based 3D model of an object class is proposed by encoding both the ap-

pearance and 3D geometric shape information (see Figure 8.3). Stable parts of

objects from one class are linked together to capture both the appearance and

shape properties of the object class. This model produces a compact yet power

representation of an object class, differing from most of the previous works which

store various image exemplars or model exemplars of different viewing angles.

• Toward the goal of learning the multi-view model of an object class, the algo-

rithm demands less supervision in the learning process compared to previous

works (i.e., [63]). The method is designed to handle either segmented or un-

segmented objects in training. Most importantly, the method does not require

view point labels or to have training images sorted in any particular order. A

key assumption, however, is that multiple views of the same object instance are

assumed to be available.
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Fig. 8.3 Schematic illustration of the 3D object category model. (a) We illustrate our model

by using a hypothetical 3D object category. Three instances of the hypothetical objects are

shown here as sample training images. The colored regions of each instance are “canonical

parts” of the objects that will be put together to form the final model. These “canonical parts”

are made of patches usually provided by feature detectors (see also Figure 8.4). When parts

across different instances share the same color code, it indicates that the model has learnt the

correspondences among these regions based on the appearance and geometric consistency.

(b) The final model of the 3D object category can be viewed as a connected graph of the

object canonical parts (colored regions, Pi), canonical part relations (H), and the encoded

variabilities of the appearances and geometric structure (visualized by the dashed ellipses

surrounding each part). (c) A more intuitive visualization of the model puts together the

canonical parts in a 3D graph based of the learned geometric relations (H). This figure is best

viewed under color.

• The algorithm has the ability to represent and synthesize views of object classes

that are not present in training. The view-synthesis approach is inspired by pre-

vious research on view morphing and image synthesis from multiple views. The

main contribution of [54, 55] is that the synthesis takes place at the categorical

level as opposed to the single object level (as previously explored).

• Given a novel testing image containing an object class, not only does the algo-

rithm classifies the object, but it also infers the pose and scale and localizes the

object in the image. Furthermore, the algorithm takes advantage of our view-

synthesis machinery for recognizing objects seen under arbitrary views. As op-

posed to [9] where training views are augmented by using synthetic data, we

synthesize the views at recognition time.

• Extensive experimental validation is provided. Competitive categorization, local-

ization and pose estimation performances are observed with respect to the dataset

in [63] as well as the challenging 3D object datasets introduced in [54, 55].



8 Multi-view Object Categorization and Pose Estimation 209

8.2 Literature Review

Interest in solving the 3D/multi-view object recognition as well as pose estimation

problem starts with a number of seminal work [3,24,39,41,46,51,65] in the 80s and

early 90s, which form the foundation of modern object recognition. Beginning from

the late 90s, researchers start proposing a new generation of techniques for solving

single object recognition using single instance 3D models. In [38, 42, 44], objects

are represented by highly discriminative and local invariant features related by lo-

cal geometric constrains. Methods by [50, 6, 20] follow the idea of enforcing global

geometric constraints and/or achieve 3D affine or Euclidean object reconstruction

from multiple (often) unregistered views for recognizing single objects in cluttered

scenes. These methods are successful thanks to their ability to identify strong ge-

ometrical constraints and highly discriminative features. However, such constraints

are not adequate in object categorization problems in which shape and appearance

variability of each object class must be accounted for. Another large body of lit-

erature on object recognition introduces the concept of Aspect Graph (AG). AGs

represent 3D objects as a set of topologically distinct views based on visibility con-

straints. Starting from seminal works of [31,32], different AG representations are in-

troduced during the 80s and 90s [59,58,13,47,5,14] until recent extensions [12,10].

Similarly to single instance 3D models, AG methods lack of generalization power

in representing object categories, and have shown limited success in modeling intra-

class variability. Also, most of AGs poorly handle nuisances such as occlusions and

background clutter. A natural step forward to the categorization problem is offered

by 3D object category classification methods such as [52,28,26,22,30,62,36]. These

methods focus on classifying objects that are expressed as collections of 3D points,

3D meshes or 3D synthetic cad models. Often 3D shape databases are used [1].

Due to their limited ability to coherently integrate real-world object albedo infor-

mation with the underlying 3D structure, these methods are hardly used to identify

real world objects in cluttered scenes from still images or videos. A recent survey

summarizes relevant literature [62]. Partially to accommodate intra-class variability,

researchers have proposed to leverage on the large literature on single 2D view ob-

ject categorization and represent 3D object categories as a mixture of 2D single view

object category models [56,67,7,64,4]. In mixture models, single view object mod-

els are completely independent, wherein neither features or parts are linked across

views. An exception is the work by [64] where an efficient multi-class boosting pro-

cedure is introduced to limit the computational overload. The consequence is that

mixture models fail to form a coherent and compact multi-view representation of

an object category. Methods based on mixture models are costly to train and prone

to false alarm, if several views need to be encoded. Finally, only few methods [67]

have attempted to solve the pose estimation problem as we will discuss later in more

details.

Recently, a new class of methods have tried to bridge the gap between single

view 2D models and single instance 3D object models, and have begun to address

the problem of object classification in a true multi-view setting (multi-view mod-

els). In these methods, object elements (features, parts, contours) are connected



210 S. Savarese and L. Fei-Fei

across views so as to form an unique and coherent model for the object category

(e.g., Figure 8.4). Pioneering multi-view techniques are introduced in the specific

domain of face detection [48, 72]. Methods in [63, 33] extend single view models

into the multi-view setting by linking relevant features across views. Alternative

techniques [27, 70, 37, 69] represent an object category by using synthetic or recon-

structed 3D models on top of which the typical distribution of appearance element

is learned. Authors in [9] build an object representation upon a 3D skeleton model

of predefined parts from 2D images. Very recent examples of multi-view represen-

tations are [61,60,49,71,2,16]. The work by [54,55] proposes a new representation

where object categories are modeled as a collection of view point invariant parts

connected by relative view point transformations. [54, 55] stand among the pio-

neering contributions on multi-view representation and are among the first methods

that have addressed the issue of view point estimation for generic object categories.

In the remainder of this book Chapter we discuss in details the representation in-

troduced in [54, 55]. In Section 8.3.2 we explain the multi-view model based on

canonical parts and linkage structure. Then we describe how to learn such multi-

view model in Section 8.4. In Section 8.5 we present the machinery for synthesiz-

ing novel views in the viewing sphere. In Section 8.6 we demonstrate how a novel

instance of an object category is recognized, localized and its pose inferred. Finally,

we show experimental results in Section 8.7.

8.3 The Part-Based Multi-view Model

8.3.1 Overview

In [54, 55] models of an object category are obtained by linking together diagnostic

parts (also called canonical parts) of the objects from different viewing points. As

previous research has demonstrated, a part-based representation [34] is more stable

for capturing appearance variability of object categories across instances and views.

Canonical parts are discriminative and view invariant representations of local planar

regions attached to the object physical surface. Such parts are modeled by distri-

butions of vector quantized features [11]. Instead of expressing part relationships

by recovering the full 3D geometry of the object, [50, 6, 20], canonical parts are

connected through their mutual homographic transformations and positions. The re-

sulting model is a compact summarization of both the appearance and geometrical

information of the object categories across views (rather than being just a collection

of single view models). Effectively, the linkage structure can be interpreted as the

generalization to the multi-view case of single 2D constellation or pictorial structure

models [68, 19, 18]) where parts or features are connected by a mere 2D transla-

tional relationship. [54, 55]’s framework requires less supervision than competing

techniques ( [63, 33, 27, 70, 37, 69]) (where often pose labels are required). Simi-

larly to other constellation methods, [54, 55]’s model enables a recognition system

that is robust to occlusions and background clutter. Finally, and most importantly,

by introducing the view morphing constraints, [55] has demonstrated the ability to
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Fig. 8.4 Canonical parts and linkage structure. (a): A car within the viewing sphere. As

the observer moves on the viewing sphere the same part produces different appearances.

The location on the viewing sphere where the part is viewed the most frontally gives rise

to a canonical part. The appearance of such canonical part is highlighted in green. (b): Col-

ored markers indicate locations of other canonical parts. (c): Canonical parts are connected

together in a linkage structure (see also Figure 8.3). The linkage indicates the relative posi-

tion and change of pose of a canonical part given the other (if they are both visible at the

same time). This change of location and pose is represented by a translation vector and a

homographic transformation respectively. The homographic transformation between canon-

ical parts is illustrated by showing that some canonical parts are slanted with respected to

others. A collection of canonical parts that share the same view defines a canonical view (for

instance, see the canonical parts enclosed in the dashed rectangle.

predict appearance and location of parts that are not necessarily canonical. This is

useful for recognizing objects observed from arbitrary viewing conditions (that is,

from views that are not seen in learning) and critical for improving the false alarm

rate (a consequence of single view object representations). [54,55]’s framework for

recognizing poses of generic object categories is among the earliest attempts of this

kind (along with [48, 72, 67]).

8.3.2 Canonical Parts and Linkage Structure

In this Section we describe in details the concept of canonical parts and linkage

structures. The central ideas are summarized in Figure 8.3 and Figure 8.4. They

offer a schematic view of the core components of the model through a hypothetical

3D object category.

The appearance information is captured in the diagnostic parts of the objects in

one class, denoted as Pi. Each “part” is a region of an object that tends to appear

consistently throughout different instances of the same category (shown in colored

patches in Figure 8.3(a)). It is a collection of a number of smaller image patches

usually provided by the feature detectors, constraint by some geometric consistency.
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Readers familiar with the current object recognition literature are reminded that our

“part” is not a single detected region such as Harris corner or DoG detection, but

rather a larger structure that contains many detected local regions. Given Pi, our

model also encodes the appearance variations observed in training in the form of

distributions of descriptors. In our model, we call such diagnostic parts canonical

parts as they are representative of parts viewed in their most frontal position. For

example, the canonical part representation of the car rear bumper is the one that is

viewed the most frontally (Figure8.3(b) and 8.4(a)).

Given an assortment of canonical parts (e.g., the colored patches in Figure

8.4(b)), a linkage structure connects each pair of canonical parts {Pj,Pi} if they

can be both visible at the same time (Figure 8.3(b) and 8.4(c)). The linkage cap-

tures the relative position (represented by the 2× 1 vector ti j) and change of pose

of a canonical part given the other (represented by a 2×2 homographic transforma-

tion Ai j). If the two canonical parts share the same pose, then the linkage is simply

the translation vector ti j (since Ai j = I). For example, given that part Pi (left rear

light) is canonical, the pose (and appearance) of all connected canonical parts must

change according to the transformation imposed by Ai j for j = 1 · · ·N, j �= i, where

N is the total number of parts connected to Pi. This transformation is depicted in

Figure 8.4(c) by showing a slanted version of each canonical part.

We define a canonical view V as the collection of canonical parts that share the

same view V (Figure 8.4(c)). Thus, each pair of canonical parts {Pi,Pj} within V

is connected by Ai j = I and a translation vector ti j. We can interpret a canonical

view V as a subset of the overall linkage structure of the object category. Notice

that by construction a canonical view may coincide with one of the object category

poses used in learning. However, not all the poses used in learning will be associ-

ated to a canonical view V . The reason is that a canonical view is a collection of

canonical parts and each canonical part summarizes the appearance variability of an

object category part under different poses. The relationship of parts within the same

canonical view is what previous literature have extensively used for representing

2D object categories from single 2D views (e.g., the constellation models [68, 19]).

The linkage structure can be interpreted as its generalization to the multi-view case.

Similarly to other methods based on constellations of features or parts, the linkage

structure of canonical parts is robust to occlusions and background clutter.

8.4 Building the Model

We detail here the algorithm for building a 3D object class model from a set of train-

ing images. We assume that each training image contains one instance of the target

object class. We do not, however, have information about the instance membership

or pose of the object. The task of learning is to start with this set of raw images,

extract features to form parts, obtain a set of canonical parts and finally form the

object class model by connecting these canonical parts across views.



8 Multi-view Object Categorization and Pose Estimation 213

Fig. 8.5 Detected features using the scaled invariant saliency detector [29]. All interest points

are indicated by blue dots. The boxed regions in each image denote the learnt parts for this

pair. When two parts across images share the same color (i.e., red boxes), they are connected

by the algorithm. This figure should be viewed in color.

8.4.1 Extract Features

Local image patches are the basic building blocks of an object image. The algo-

rithm, however, works independently of any particular choice of feature detectors or

descriptors [44,38]). In practice, we choose the Saliency detector [29] and the SIFT

descriptor [38] to characterize local features. An image i therefore contains hundreds

of detected patches, each represented as fi = (ai,xi), where ai is the appearance of

the patch, described by a 128-dimension SIFT vector, and xi is the location of the

feature on the 2D image. Figure 8.5 shows two examples of cellphone images and

their detected patches.

8.4.2 Form Parts

The 3D object category model is represented in a hierarchical way. Local image

features are first grouped into larger regions (called “parts”). A selected subset of

these parts (according to appearance and geometric consistency) are then linked

together as a full 3D model. This choice stems from the observation that larger

regions of objects often carry more discriminative information in appearance and

are more stable in their geometric relationships with other parts of the object [34].

The goal of this step is to group local image features into “parts” that are consis-

tent in appearance and geometry across images. A global geometrical constraint is

obtained by imposing that feature match candidates (belonging to different views)

are related by the fundamental matrix F . A local geometrical constraint is enforced

by imposing that features belonging to a neighborhood are related by homographic

transformation H induced by F [25]. We use a scheme based on RANSAC [21] to

enforce such constraints while the optimal F and H are estimated. Below is a brief

sketch of the algorithm.

1. Obtain a set of M candidate features based on appearance similarity measured by

d(ai −aj) across 2 training images.

2. Run RANSAC algorithm on M to obtain a new (and smaller) set of matches

MF ∈ M based on xiFxj = 0, where F denotes the fundamental matrix.
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3. Further refine the matches using RANSAC to obtain a set of MH matches such

that xi −Hx j = 0, where MH ∈ MF ∈ M.

Step 2 and Step 3 can be iterated until the residual error computed on the inliers

stops decreasing. Step 3 returns a pair of local neighborhood regions across the 2

training images in which all features fi ∈ M
(i, j)
H satisfy a vicinity constraint. We call

them a matched “part”. We follow this procedure for every pair of training images.

Figure 8.5 shows example parts indicated by boxes on these two cellphone images.

Note that there is no presumed shape or size of these parts.

Implementation Details. On average parts contain 50− 200 features, sufficient to

effectively represent the local structure of the object from a particular view. We

obtain on average 700−1000 matched parts within a training set of 48 images. We

use a mask to remove spurious matches coming from the background. This is not

a requirement for the algorithm to work. [6] shows that spurious matches can be

effectively removed by enforcing global constraints across all the views. Finally,

even if matched parts can be obtained from pairs of images belonging to different

instances of a given category, we have noticed that the algorithm in 8.4.2 mostly

produces matched parts from images belonging to the same object instance. This is

due to the inherent lack of flexibility of RANSAC to handle intra-class variability.

In fact, this is an advantage because it guarantees robustness and stability in the part

matching process. Actual matching of corresponding parts belonging to different

object instances is achieved in the optimization process detailed in 8.4.4.

8.4.2.1 Representing Canonical Parts

Each canonical part is represented by a distribution of feature descriptors along with

their x,y location within the part. Specifically, we describe a canonical part P by a

convex quadrangle B (e.g., the bounding box) enclosing the set of features. The

appearance of this part is then characterized by a bag of codewords model [11] -

that is, a normalized histogram h of vector quantized descriptors contained in B. A

standard K-means algorithm can be used for extracting the codewords. B is a 2×4

vector encoding the b = [x,y]T coordinates of the four corners of the quadrangle,

i.e., B =
[

b1 . . . b4

]

; h is a M × 1 vector, where M is the size of the vocabulary

of the vector quantized descriptors. Given a linked pair of canonical parts {Pi,Pj}
and their corresponding {Bi,B j}, relative position of the parts {Pi,Pj} is defined by

ti j = ci−c j, where the centroid ci =
1
4 ∑k bk; the relative change of pose is defined by

Ai j which encodes the homographic transformation acting on the coordinates of Bi.

This simplification is crucial for allowing more flexibility in handling the synthesis

of novel non- canonical views at the categorical level.

8.4.3 Find Canonical Parts Candidates

Our goal is to represent the final object category with “canonical parts” and their

mutual geometric relations. To do so, we need to first propose a set of canonical part
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Fig. 8.6 Illustration of linked parts for proposing one canonical part of the cellphone model

using directed graph. The boxes indicate parts associated with this canonical part. The blue

dots indicate detected local features within the parts. The yellow box is the proposed canoni-

cal part by summarizing all factors of compression (indicated by the numerical value adjacent

to each arrow) given all the connected paths.

candidates based on a view-point criteria. What we have from the training images

is a large set of “parts” that are paired across different images, each part consisting

of a number of local features. Many of these parts linked across different images

correspond to one actual part of the object (e.g., LCD screen of a cellphone). Fig-

ure 8.6 is a illustration of the connected parts estimated from Step 8.4.2. The most

possible front view of an actual object part defines a canonical part candidate. This

will be by definition the canonical pose attached to the canonical part candidate. A

canonical part candidate can be computed from the set of linked parts as follows.

Between every connected pair of parts, we associate them with a factor of com-

pression cost Ki j . Ki j is a function of Ai j in the homographic relationship Hi j be-

tween these two parts. Hi j is provided by the algorithm in section 8.4.2. Specifically,

Ki j =
(

λ
i j
1 λ

i j
2 −1

)

, where λ
i j
1,2 are the two singular values of Ai j. Ki j is greater than

0 when Pi is a less compressed version than Pj under affine transformation. Using

the sign of Ki j, we assign the direction between two parts. The full set of parts and

their directed connections weighted by Ki j form a weighted directed graph (Fig-

ure 8.6). It is easy to show that the path associated to highest value of the total factor

of compression cost
(

∑(i, j)∈pathKi j

)

gives rise to a canonical part candidate for it

can be identified as the part P attached to the terminal node of such maximum cost

path. The intuition here is that the maximum cost path is the one that leads to the

part with smallest compression, thus the canonical one. The maximum cost path can

be found with a simple greedy algorithm.

Implementation Details. The graph structure is on average composed of 10− 15

parts but can go as low as 2, if a part is shared by only two views. For that reason,

the greedy algorithm finds the optimal solution very quickly. Special care, however,

needs to be taken if the graph contains loops. This may occur when the orientation of

a part is estimated with low accuracy from the previous step. Typically the number

of canonical part candidates is one third of the initial set of part candidates.
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Fig. 8.7 Illustration of the canonical parts and their geometric relations for three views of

the same object. The yellow box indicates the canonical part of interest that is viewed given

its canonical pose (i.e., most frontal view by definition). The examples of canonical regions

extracted from these three views are shown in the box on the right. The dashed cyan boxes

indicate parts that do not share the same pose with the yellow canonical part. The cyan parts

have a canonical counter part in a different pose. In this example we use the symbol ”c” to

differentiate a canonical part from its ”non-canonical” counterpart. For instance, there exists

a linkage structure between canonical parts Pc
1 and Pc

2 . The H12 denotes the transformation

to observe Pc
2 when Pc

1 is viewed in its canonical position (thus, generating cyan P2). In the

right most pose, two canonical parts Pc
3 and Pc

4 share the same canonical pose. In this case,

the transformation H34 is just a translation because Pc
3 and Pc

4 are canonical at the same time.

8.4.4 Create the Model

Section 8.4.3 has proposed a number of canonical part candidates from the train-

ing images. So far, we have only utilized local appearance or pair-wise geometry

information to find correspondences between parts and find the canonical part can-

didates. Now we are ready to take all these candidates to obtain a canonical part at

the categorical level. This allows propose a 3D object category model by finding a

globally consistent and optimal combination of canonical parts.

We use the same notation (Pi) to indicate a canonical part of a given category. The

context can help differentiate the categorical case from the single instance case. As

anticipated in Section 8.3.2, given two different canonical part Pi and Pj, there are

two ways that they are placed with respect to each other onto the 3D object model.

In the first case, when Pi is viewed frontally, Pj is also viewed frontally (Figure 8.7,

right panel). In this case the homographic linkage between these two canonical parts

is Hi j =

[

I ti j

0 1

]

, where I is the identity matrix. In the second case, Pi and Pj are not

viewed frontally simultaneously. They are, therefore, related by a full homographic

Hi j =

[

Ai j ti j

0 1

]

. Hi j denotes the transformation to observe Pj when Pi is viewed in

its most front view position. Parts P1 when P2 in Figure 8.7 have this type of linkage.
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Ai j captures both the 2D relationship (e.g., position) between canonical parts as well

as a soft 3D relationship which provided by the affinity transformation Ai j between

parts. Canonical parts that are not connected correspond to sides of the object that

can never be seen at the same time. As introduced in Section 8.3.2, we define a

canonical view V as the collection of canonical parts that share the same view V

(Figure 8.4(c)). Thus, each pair of canonical parts {Pi,Pj} within V is connected by

Ai j = I and a translation vector ti j.

Given the pool of candidate canonical parts from all the instances of a given cat-

egory, we wish to calculate the set of canonical parts at the categorical level. This

can be done by matching corresponding candidate canonical parts across all the in-

stances. This correspondence problem can be solved by means of an optimization

process that jointly minimizes the appearance difference between matching candi-

dates and their corresponding linkage structure Ai j.

The 1st row of Figure 8.14 (2nd and 3rd columns) shows an illustration of the

learnt cellphone model. The model obtained thus far provides a compact represen-

tation of object parts from all the views.

Implementation Details. The optimization is carried out by exploiting similarity of

appearance and the estimated linkage structure between canonical part candidates

belonging to different object instances. The appearance similarity is computed as

a chi-square distance between the histograms representing the canonical region ap-

pearances. Similarity of linkage structure is computed by comparing Ai j for every

pairs of canonical parts candidates Pi,Pj. Notice that this optimization step greatly

benefits from the fact that parts-to-be-matched are canonical. This means that all

the parts are already normalized in term of their viewing angle and scale. Further-

more, the number of canonical part candidates is a small subset the initial number of

parts. All this greatly simplifies the matching process which could have been hardly

feasible otherwise.

8.5 View Synthesis

8.5.1 Representing an Unseen View

The critical question is: how can we represent (synthesize) a novel non-canonical

view from the set of canonical views contained in the linkage structure? As we will

show in Section 8.6, this ability becomes crucial if we want to recognize an object

category seen under an arbitrary pose. The approach is inspired by previous research

on view morphing and image synthesis from multiple views. We show that it is

possible to use a similar machinery for synthesizing appearance, pose and position

of canonical parts from two or more canonical views. Notice that the output of this

representation (synthesis) is a novel view of the object category, not just a novel

view of a single object instance, whereas all previous morphing techniques are used

for synthesizing novel views of single objects.
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Fig. 8.8 View Synthesis. Left: If the views are in a neighborhood on the viewing sphere,

the cameras can be approximated as being parallel, enabling a linear interpolation scheme.

Middle: 2-view synthesis: A pair of linked parts {Ps
i ,Ps

j} ∈ V s is synthesized from the pair

Pn
i ∈V n, and Pm

j ∈V m if and only if Pn
i and Pm

j are linked by the homographic transformation

Ai j �= I. Right: 3-view synthesis can take place anywhere within the triangular area defined

by the 3 views.

8.5.1.1 View Morphing

Given two views of a 3D object it is possible to synthesize a novel view by us-

ing view-interpolating techniques without reconstructing the 3D object shape. It has

been shown that a simple linear image interpolation (or appearance-morphing) be-

tween views do not convey correct 3D rigid shape transformation, unless the views

are parallel (that is, the camera moves parallel to the image planes) [8]. Moreover,

Seitz & Dyer [57] have shown that if the camera projection matrices are known,

then a geometrical-morphing technique can be used to synthesize a new view even

without having parallel views. However, estimating the camera projection matrices

for the object category may be very difficult in practice. We notice that under the

assumption of having the views in a neighborhood on the viewing sphere, the cam-

eras can be approximated as being parallel, enabling a simple linear interpolation

scheme (Figure8.8). Next we show that by combining appearance and geometrical

morphing it is possible to synthesize a novel view (meant as a collection of parts

along with their linkage) from two or more canonical views.

8.5.1.2 Two-View Synthesis

We start by the simpler case of synthesizing from two canonical views V n and V m.

A synthesized view V s can be expressed as a collection of linked parts morphed

from the corresponding canonical parts belonging to V n and V m. Specifically, a pair

of linked parts {Ps
i ,P

s
j} ∈ V s can be synthesized from the pair {Pn

i ∈V n
,Pm

j ∈V m}
if and only if Pn

i and Pm
j are linked by the homographic transformation Ai j �= I

(Figure8.8). If we represent {Ps
i ,P

s
j} by the quadrangles {Bs

i ,B
s
j} and the histograms

{hs
i ,h

s
j} respectively, a new view is expressed by:

Bs
i = (1− s)Bn

i + sAi jB
n
i ; Bs

j = sBm
j +(1− s)A jiB

m
j ; (8.1)

hs
i = (1− s)hn

i + shm
i ; hs

j = shn
j +(1− s)hm

j ; (8.2)
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The relative position between {Ps
i ,P

s
j} is represented as the difference ts

i j of the

centroids of Bs
i and Bs

j. ts
i j may be synthesized as follows:

ts
i j = (1− s)tn

i j + stm
i j (8.3)

In summary, Equation 8.1 and 8.3 regulate the synthesis of the linkage structure

between the pair {Ps
i ,P

s
j}; whereas Equation 8.2 regulate the synthesis of their ap-

pearance components. By synthesizing parts for all possible values of i and j we

can obtain a set of linked parts which give rise to a new view V s between the two

canonical views V n and V m. Since all canonical parts in V n and V m (and their link-

age structures) are represented at the categorical level, this property is inherited to

the new parts {Ps
i ,P

s
j}, thus to V s.

8.5.1.3 Three-View Synthesis

One limitation of the interpolation scheme described in Section 8.5.1.2 is that a new

view can be synthesized only if it belongs to the linear camera trajectory from one

view to the other. By using a bi-linear interpolation we can extend this to a novel

view from 3 canonical views. The synthesis can take place anywhere within the tri-

angular area defined by the 3 views (Figure8.8) and is regulated by two interpolating

parameters s and t. Similarly to the 2-view case, 3-view synthesis can be carried out

if and only if there exist 3 canonical parts Pn
i ∈V n, Pm

j ∈V m, and P
q
k ∈V q which are

pairwise linked by the homographic transformations Ai j �= I, Aik �= I and A jk �= I.

The relevant quantities can be synthesized as follows:

Bst
i = [ (s−1)I sI ]

(

Bn
i AikBn

i

Ai jB
n
i AikAi jB

n
i

)

[

(1− t)I
t I

]

(8.4)

hst
i = [ (s−1)I sI ]

(

hn
i h

q
i

hm
i h

p
i

)

[

(1− t)I
t I

]

(8.5)

tst
i j = [ (s−1)I sI ]

(

tn
i j t

q
ik

tm
i j tm

i j + t
q
ik
− tn

i j

)[

(1− t)I
t I

]

(8.6)

Analogous equations can be written for the remaining indexes.

8.6 Recognizing Object Class in Unseen Views

Section 8.5.1 has outlined all the critical ingredients of the model for representing

and synthesizing new views. We discuss here an algorithm for recognizing pose

and categorical membership of a query object seen under arbitrary view point. We

consider a two-step recognition procedure. Similarly to the training procedure, we

first extract image features and use these to propose candidate canonical parts. This

provides the input for the first step of the algorithm whose output is a short list of
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Algorithm step 1

1. I ← list of parts extracted from test image

2. for each model C

3. for each canonical view V ∈C

4. [R(n),V ∗(n)] ← MatchView(V,C, I); % return similarity R

5. n ++;

6. L ← KMinIndex(R) % return shortlist L

MatchView(V,C, I)
1. for each canonical part P ∈V

2. M(p) ← MatchKPart (P, I)); % return K best matches

3. p ++;

4. for each canonical part P̄ ∈C linked to V

5. M̄(q) ← MatchKPart (P̄, I); % return K best matches

6. q ++;

7. [M∗
,M̄∗] ← Optimize(V,M,M̄);

8. V ∗ ← GenerateTestView(M∗
,M̄∗

, I);
9. R ← Distance(V,V ∗);
10. Return R, V ∗;

Fig. 8.9 Pseudocode of the step 1 algorithm. MatchView(V,C, I) returns the similarity score

between V and I. KminIndex() returns pointers to the the K smallest values of the input

list. MatchKPart (P, I) returns the best K candidate matches between P and I. A match is

computed by taking into account the appearance similarity Sa between two parts. Sa is com-

puted as the distance between the histograms of vector quantized features contained in the

corresponding part’s quadrangles B. Optimize(V,M,M̄) optimizes over all the matches and

returns the best set of matches M∗
,M̄∗ from the candidate matches in M,M̄. The selection

is carried out by jointly minimizing the overall appearance similarity Sa (computed over

the candidate matches) and the geometrical similarity Sg (computed over pairs of candidate

matches). Sg is computed by measuring the distance between the relative positions ti j , t̄i j.

GenerateTestView(M∗
,M̄∗

, I) returns a linkage structure of parts (B, appearances h and rel-

ative positions t) given M∗
,M̄∗. This gives rise to the estimated matched view V ∗ in the test

image. Distance(Vi,V j) returns an estimate of the overall combined appearance and geomet-

rical similarity Sa +Sg between the linkage structures associated to Vi,V j . Sa is computed as

in MatchKPart over all the parts. Sg is computed as the geometric distortion between the two

corresponding linkage structures.

the K best model views across all views and all categories. The second step refines

the error scores of the short list by using the view-synthesis scheme.

8.6.1 Extract Features and Get Part Candidates

We follow the same procedure as in learning to find local interest points by us-

ing the Saliency detector [29]. Each detected patch is then characterized by a 128-

dimension SIFT vector [38]. Given an object model, say the “cellphone” model,
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Algorithm step 2

1. for each canonical view V ∈ L

2. V ∗ ← L(l)
3. V ′ ← FindClosestView(V,C);
4. V ′′ ← FindSecondClosestView(V,C);
5. for each 2-view synthesis parameter s

6. V s ← 2-ViewSynthesis(V,V ′
,s);

7. R(s) ← Distance(V s
,V ∗);

8. for each 3-view synthesis parameters s and t

9. V s,t ← 3-ViewSynthesis(V,V ′
,V ′′

,s,t);
10. R(s,t) ← Distance(V s,t

,V ∗);
11. L(l) ← Min(R);
12. l ++;

13. [CwVw] ← MinIndex(L);

Fig. 8.10 Pseudocode of the step 2 algorithm. FindClosestView(V,C)
(FindSecondClosestView(V,C)) returns the closest (second closest) canonical pose on

the viewing sphere. 2-ViewSynthesis(V,V ′
,s) returns a synthesized view between the two

views V,V ′ based on the interpolating parameters s. 3-ViewSynthesis(V,V ′
,s,t) is the

equivalent function for three view synthesis. Cw and Vw are the winning categories and poses

respectively.

we first find a list of canonical part candidates by the following procedure. For each

canonical part of the model, we greedily search through the test image by a scanning

window across pixel locations, scales and orientations. Canonical parts and test parts

are matched by comparing the distributions of features belonging to the relevant re-

gions. The most probably N firings (typically 5) are retained as the N candidates for

a canonical part Pi. This provides hypotheses of canonical parts consistent with a

certain canonical view of an object model.

8.6.2 Recognition Procedure: First Step

In the first step (Figure 8.9), we want to match the query image with the best ob-

ject class model and pose. Given hypotheses of canonical parts consistent with a

certain canonical view of an object model, we infer the appearance, pose and posi-

tion of other parts that are not seen in their canonical view (MatchView function).

This information is encoded in the object class linkage structure. An optimization

process finds the best combination of hypothesis over appearance and geometrical

similarity (Optimize). The optimization process is very similar to the one introduced

in learning when different constellations of canonical parts are matched. The output

is a similarity score as well as a set of matched parts and their linkage structure

(the estimated matched view V ∗) in the test image. The operation is repeated for all

possible canonical views and for all object class models. Finally, we create a short

list of the N best canonical views across all the model categories ranked according
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to their similarity (error) scores. Each canonical view is associated to its own class

model label. The complexity of step-1 is O(N2NvNc), where N is the total number

of canonical parts (typically, 200− 500); Nv = number of views per model; Nc =

number of models.

8.6.3 Recognition Procedure: Second Step

In the second step (Figure 8.10), we use the view synthesis scheme (Section 8.5.1)

to select the final winning category and pose from the short list. The idea is to

consider a canonical view from the short list, pick up the nearest (or two nearest)

canonical pose(s) on the corresponding model viewing sphere (FindClosestView and

FindSecondClosestView), and synthesize the intermediate views according to the 2-

view-synthesis (or 3-view-synthesis) procedure for a number of values of s (s,t)

(2-ViewSynthesis and 3-ViewSynthesis). For each synthesized view, the similarity

score is recomputed and the minimum value is retained. We repeat this procedure

for each canonical view in the short list. The canonical view associated with the

lowest score gives the winning pose and class label. The complexity of step-2 is just

O(NlNs), where Nl is the size of the short list and Ns is the number of interpolating

steps (typically, 5−20).

8.7 Experiments and Results

In this section we show that the multi-view model introduced so far is able to

successfully detect object categories and estimate objects pose. Furthermore, we

demonstrate that the view synthesis machinery does improve detection and pose es-

timation accuracy when compared to the model that does not take advantage of the

synthesis abilities. We collect our results in three set of experiments as described

below.

8.7.1 Experiment I: Comparison with Thomas et al. [63]

We first conduct experiments on two known 3D object class datasets: the motorbikes

and sport shoes used by Thomas et al. [63], provided by PASCAL Visual Object

Classes (VOC) Challenge [15]. For fair comparison, we use the same testing images

in both these classes as in [63]. Specifically, 179 images from the ‘motorbikes-test2’

set and 101 images from the sport shoes testing set are used. The models are learnt

by using the provided image set of 16 motorbike instances and 16 shoe instances

(each instance has 12-16 poses). We evaluate the categorization and localization

performance by using precision-recall curves, under exactly the same conditions as

stated by [63]. Figure 8.11 illustrates our results. In both the motorbike and shoe

classes, the proposed algorithm significantly outperforms [63].
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Fig. 8.11 Localization experiment compared with [63]. The precision-recall curves are gen-

erated under the PASCAL VOC protocol. Example detections are shown for both the motor-

bike and shoe datasets.
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Fig. 8.12 Left: Performances of the model with (red) and without (blue) view synthesis as a

function of the number of views used in training. Note that the performances shown here are

testing performances, obtained by an average over all 24 testing poses. Middle: Confusion

table results obtained by the model without view synthesis for 8 object classes on a sample

of 8 unseen views only (dataset [54]). Right: Confusion table results obtained by the model

with view synthesis under the same conditions.

8.7.2 Experiment II: Detection and Pose Estimation Results on

the Dataset in [54]

Next, we compare the performances of multi-view model algorithm with and with-

out view-synthesis capabilities. The comparison is performed on the dataset pre-

sented in [54]. This dataset comprises images of 8 different object categories (car,

stapler, iron, shoe, monitor, computer mouse, head, bicycle, toaster and cellphone),

each containing 10 different instances. Each of these are photographed under a range

of poses, described by a pair of azimuth and zenith angles (i.e., the angular coordi-

nates of the observer on the viewing sphere, Figure 8.2) and distance (or scale). The

total number of angular poses in this dataset is 24: 8 azimuth angles and 3 zenith

angles. Each pose coordinate is kept identical across instances and categories. Thus,
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Fig. 8.13 Left: Confusion table results obtained by the model without view synthesis for

8 object classes (dataset [55]). Middle: Confusion table results obtained by the model with

view synthesis under the same conditions. Right: Performance improvement achieved by the

model with view synthesis for each category.

the number and type of poses in the test set are the same as in the training set. To

learn each category, we randomly select 7 object instances to build the model, and 3

novel object instances. The farthermost scale is not considered in the current results.

Figure 8.14 is a summary of learnt models for 8 object categories. The 3rd column

of Figure 8.14 visualizes the learnt model of each object category. We show in this

panel a single object instance from the training images. Each dashed box indicate a

particular view of the object instance. A subset of the learnt canonical parts is pre-

sented for each view. Across from different views, the canonical parts relationships

are denoted by the arrows. Note that for clarity, we only visualize a small num-

ber of canonical parts as well as their H. To illustrate the appearance variability,

we show in the 4th column different examples of a given canonical part. For each

object model, 3 or 4 canonical parts are shown, indicated by the boxes. For each

canonical part (i.e., within each box), we show a number of examples that belong

to the same part. Note that these parts not only share a similar appearance, but also

similar locations with respect to the object. The 1st column of Figure 8.14 presents

two correctly identified sample testing images. The red bounding box on each im-

age indicates the best combination of canonical parts (i.e., that of the smallest error

function), whereas the thin green boxes inside the red box correspond to the canon-

ical parts of detected on the object. Using the pose estimation scheme, we are able

to predict which pose this particular instance of the model comes from. Finally we

present the binary detection result in ROC curves in the 2nd column.

To assess the ability of the view-synthesis algorithm to improve detection and

pose estimation in presence of views that have not been seen in training, we tested

the algorithm using a reduced set of poses in training. The reduced set is obtained by

randomly removing poses from the original training set. This was done by making

sure that no more than one view is removed from any quadruplet of adjacent poses

in the viewing sphere1. The number of poses used in testing is kept constant (to be

more specific, all 24 views are used in this case). This means some of the views in

1 We have found experimentally that this condition is required to guarantee there are suffi-

cient views for successfully constructing the linkage structure for each class.
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Fig. 8.14 Summary of the learnt 3D object category models, sample test images and binary

detection results (ROC). Details of the figure is explained in Section8.7.2.
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Fig. 8.15 Estimated pose for each object that was correctly classified by the algorithm. Each

row shows two test examples (the colored images in column 3 and column 6) from the same

object category. For each test image, we report the estimated location of the object (red bound-

ing box) and the estimated view-synthesis parameter s. s gives an estimate of the pose as it

describes the interpolating factor between the two closest model (canonical) views selected

by the recognition algorithm. For visualization purposes we illustrate these model views by

showing the corresponding training images (columns 1-2 and 4-5). Images belong to the

dataset in [55].
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testing have not been presented during training. Figure 8.12 illustrates the perfor-

mances of the two models (with and without view-synthesis) as a function of the

number of views used in training. The plots shows that method which uses the two-

step algorithm systematically outperforms the one that does only uses the first step.

However, notice that the added accuracy becomes negligible as the number of views

in training approaches 24. In other words, when no views are missing in training, the

performance of two methods become similar. For a baseline comparison with a pure

bag-of-world model the reader can refer to [54]. Figure 8.12(middle, right) compare

the confusion table results obtained by the models with and without view-synthesis

for 8 object classes on a sample of 8 unseen views only.

8.7.3 Experiment III: Detection and Pose Estimation Results on

the Dataset in [55]

In this experiment we test the algorithm on a more challenging dataset [55]. While

in [54] view points in testing and training are very similar, the dataset in [55] com-

prises objects portrayed under generic uncontrolled view points. Specifically, in [55]

7 (out of 8) classes of images (cellphone, bike, iron, shoe, stapler, mouse, toaster) are

collected from the Internet (mostly Google and Flickr) by using an automatic image

crawler. The initial images are then filtered to remove outliers by a paid undergrad-

uate with no knowledge of the work so as to obtain a set of 60 images for each

category. The 8th class (i.e., car) is from the LabelMe dataset [53]. A sample of the

dataset is available at [55]. As in the previous experiment, we compare the perfor-

mances of the algorithm with or without view-synthesis. Results by both models are

reported in Figure 8.13. Again, the method that uses the two-step algorithm achieves

better overall results. Figure 8.13 (right panel) shows the performance comparison

broken down by each category. Notice that for some categories such as cellphone or

bikes, the increment is less significant. All the experiments presented in this section

use the 2-view synthesis scheme. The 3-view scheme, along with the introduction

of a more sophisticated probabilistic model, has been recently employed in [61,60].

Figure 8.15 illustrates a range of pose estimation results on the new dataset. See

Figure 8.15 caption for details.

8.8 Conclusion

Recognizing objects in 3D space is an important problem in computer vision. Many

works recently have been devoted to this problem. But beyond the possibility of

semantic labeling of objects seen under specific views, it is often crucial to recog-

nize the pose of the objects in the 3D space, along with their categorical identity.

In this Chapter we have introduced a new recognition paradigm for tackling these

challenging problems which consists of linking together diagnostic parts or features

of the object from different viewing points. We focused on recent work by [54, 55]

and presented the details of the multi-view part-based model in [54, 55], relevant

learning and recognition algorithms, as well as practical implementation details. We
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have shown that such as a model can be learnt via minimal supervision and used to

detect objects under arbitrary and/or unseen poses by means of a two-step algorithm.

Experimental validation aimed at demonstrating the ability of the algorithm to rec-

ognize objects and estimate their pose have produced promising results. A number

of open issues remain. The presented algorithms still require large number of views

in training in order to generalize. More analysis needs to be done to make this as

minimal as possible. Further research is also needed to explore to what degree the

inherent nuisances in category-level recognition (lighting variability, occlusions and

background clutter) affect the view synthesis formulation. Finally, new solutions are

required for incorporating the ability to model non-rigid objects.
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