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Abstract

This paper presents a new approach for multi-view ob-

ject class detection. Appearance and geometry are treated

as separate learning tasks with different training data.

Our approach uses a part model which discriminatively

learns the object appearance with spatial pyramids from a

database of real images, and encodes the 3D geometry of

the object class with a generative representation built from

a database of synthetic models. The geometric information

is linked to the 2D training data and allows to perform an

approximate 3D pose estimation for generic object classes.

The pose estimation provides an efficient method to evaluate

the likelihood of groups of 2D part detections with respect

to a full 3D geometry model in order to disambiguate and

prune 2D detections and to handle occlusions. In contrast

to other methods, neither tedious manual part annotation of

training images nor explicit appearance matching between

synthetic and real training data is required, which results in

high geometric fidelity and in increased flexibility. On the

3D Object Category datasets CAR and BICYCLE [15], the

current state-of-the-art benchmark for 3D object detection,

our approach outperforms previously published results for

viewpoint estimation.

1. Introduction

In recent years, multi-view generic object class detection

has received increasing attention [3, 5, 12, 15, 16, 19]. Most

approaches address the task by extrapolating known strate-

gies from 2D single-view object class detection, notably by

combining classifiers for separate viewpoints. Some au-

thors have proposed to include weak geometric informa-

tion into the learning process, mostly by applying locally

deformable 2D models for discrete viewpoints [3, 5, 7].

Learning a generic representation of the 3D geometry of

an object class, on the other hand, is challenging. While

numerous 2D detection approaches have been developed

which are capable of handling noise and large variation in

intra-class appearance, the task of learning a robust 3D geo-

metric model for an object class remains an active research

topic [1, 15, 16].

The advantages of a 3D representation for multi-view

object class detection are obvious: 2D part detections can

be disambiguated and pruned with respect to their consis-

tency with the object class geometry under full perspective

projection, and detection confidence can be computed per-

object instead of combining per-classifier scores. Further-

more, such a representation allows an approximate estima-

tion of the pose. However, these advantages often come

with an increased training complexity such as manual per-

label annotations. More importantly, they usually cannot

be flexibly integrated into existing 2D detectors. In con-

trast, this paper shows that a joint model for geometry and

appearance can be avoided by learning separate models for

both and combining them at a later stage. As a result, one

can use better adapted, leaner representations and separate

training sources and exploit the ubiquitous availability of

geometrically faithful synthetic 3D CAD models for object

detection tasks, while circumventing the gap between syn-

thetic textures and real object appearance [12].

The paper is structured as follows. Section 2 summa-

rizes previous work on multi-view object class detection.

In section 3, an overview of the training approach is given.

Details on the appearance model for hierarchical part-based

detection on 2D training images are presented in section 4.

The geometric representation of the object classes, which is

built from synthetic 3D models, is described in section 5.

Section 6 describes the combined detection process. Exper-

imental results and a comparision with the state of the art

are given in section 7 for the 3D Object Category datasets

CAR and BICYCLE [15].

2. Related work

A survey of related work on multi-view object class de-

tection shows three predominant approaches which differ

in their choice of the geometric representation. 2D detec-

tors can be combined by linking them over multiple view-

points [17] and modeling flexible spatial layouts of part de-

tectors [3, 5, 7]. Other methods have been proposed which

build 3D representations of the object class from 2D train-
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Figure 1. Overview of the two training steps. (Top) Mixture models are learnt from synthetic 3D models to describe the class geometry.

(Bottom) Full object and part appearance are learnt from a 2D image database. See text for details. The figure is best viewed in color.

ing data based on initial viewpoint annotations [1, 9, 15, 16].

As a third approach, the use of existing 3D models has been

suggested in the past [6] and more recently in [8, 12, 19].

The combination of 2D detectors to cover a multi-view

sphere has been the initial step towards a more comprehen-

sive use of geometry for object class detection [17]. In or-

der to increase robustness towards pose changes, additional

probabilistic layout models [3] as well as local 2D geomet-

ric constraints have been introduced in combination with

increasingly powerful object part representations and learn-

ing procedures [5]. In [13], additional classifiers on spatial

pyramids are learnt to obtain orientation estimates. How-

ever, these approaches are inherently limited to a few dis-

crete viewpoints as detection output.

Alternatively, viewpoint-annotated training data can be

used to dynamically build 3D representations to better ad-

dress the possible viewpoint variations of object classes.

In [15], homographic constraints between groups of object

parts are combined to form a piecewise planar 3D approx-

imation of object classes which also allows to interpolate

unseen instances within the chosen parameterization. More

recently, [16] introduced a probabilistic approach to learn-

ing affine constraints between object parts; during testing,

they rely on a complex sequence of random forest clas-

sifiers, Hough voting and linear SVM classifiers. In [1],

sparsely annotated 2D feature positions are factorized to ob-

tain a 3D implicit shape model. Although these methods

perform well, their training process is elaborate and they

rely on relatively sparse object part representations which

may impact their robustness for unseen objects.

The third category of multi-view object class detection

approaches resorts to existing 3D models of varying level

of detail. Initially suggested for example by [6] in the con-

text of relational graphs, the idea has since been extended.

Khan et al. [19] collect patches from viewpoint-annotated

2D training images and map them onto an existing 3D CAD

model. Liebelt et al. [12] introduce a filtering step to build

a 3D representation of both geometry and local feature ap-

pearance from a database of synthetic models. Heisele et

al. [8] generate difficult training sets from synthetic 3D

models for an active learning algorithm. While being signif-

icantly simpler to train, these methods suffer from rendering

artifacts and a reduced similarity between synthetic models

and real images.

In contrast, this paper presents a combination of the in-

dividual strengths of the above mentioned ideas, while cir-

cumventing their respective shortcomings. Based on dis-

criminative part-based 2D detectors which are both robust

and straightforward to train, only a few synthetic 3D models

for each object class are used to learn a generative 3D rep-

resentation of the object class geometry without relying on

the presence of synthetic textures. In particular, no manual

annotation of individual part locations is necessary. More-

over, a probabilistic pose estimation allows to obtain an ap-

proximate 3D object pose alongside a precise and robust 2D

detection. This estimation step provides an effective evalu-

ation measure to assess the consistency of the 2D part de-

tections with respect to the full 3D geometry of the object

class.

3. Overview

Figure 1 illustrates the approach presented in this paper,

which is based on combining a 2D appearance model with

an external 3D geometry.

The object class appearance is learnt from a database

of 2D images, showing the objects from different view-

points (figure 1, 2D.1); each image is annotated with the 2D

bounding box and the viewpoint of the object, but neither

manual part annotations nor segmentations are necessary.

Each annotated bounding box is subdivided (2D.2) into a

regular grid where each grid block represents a part of the

object. A single spatial pyramid detector is used for the

full object regions of interest (2D.3 top), while for each part

region under each viewpoint, several smaller, overlapping



spatial pyramid detectors are trained (2D.3 bottom).

The 3D geometry is learnt from one or several synthetic

3D CAD models representative of the object class geome-

try. The models are rendered from many viewpoints (fig-

ure 1, 3D.1); the rendered images are subdivided (3D.2)

into the same regular grid as in (2D.2). For each rendered

pixel inside a part region, its original position on the CAD

model surface is known; thus the image pixels belonging to

the same part can be backprojected onto the surface (3D.3),

sampled into discrete 3D points (3D.4) and the distribution

of all 3D points belonging to one object part can be modeled

by a mixture of Gaussians (3D.5).

The resulting object class representation now consists of

a 2D pre-detector of regions of interest, dense 2D part de-

tectors per viewpoint, and an approximate representation of

the 3D geometry of the object class (figure 1, 2D+3D). To

summarize, by subdividing both the annotated real training

bounding boxes (figure 1, bottom) and the rendered images

of the 3D models (figure 1, top) into the same regular grid

of parts (figure 1, 2D.2 and 3D.2), the link between local

3D geometry and local 2D image appearance is established.

Note that this requires bounding box annotations as well as

approximative viewpoint annotations in the 2D training im-

ages.

4. Part-based Appearance Model

Learning the appearance of an object class needs to take

into account large intra-class and viewpoint variations in

addition to significant background clutter and partial occlu-

sions. Moreover, when dealing with part-based object class

detection, one aims at learning sufficiently powerful part de-

scriptors for relatively small image patches. These patches

do not always contain sufficient structure to be suitable for

discriminative classifiers. In addition, manually including

detailed annotations on the location of each object part is

tedious. Consequently, some authors have suggested using

fixed part layouts for 2D detection [2, 7, 14] where each

detector is associated with an object part depending on its

location inside the grid. More recently, the use of hierar-

chical structures as a representation for both the entire ob-

ject and its subparts has been advocated [3, 5]. This work

builds on these ideas in relying on spatial pyramids [11]

both for the global object and the local parts. It extends be-

yond previous, sparse part-based approaches [14] by using

both densely computed local features and spatial pyramids

densely covering the image space. Learning the appearance

of an object class consists of a two-fold supervised training

process which is both efficient and robust; figure 1, 2D.3 il-

lustrates the two detection components which are described

in the following paragraphs.

4.1. Detector Layout

Both detection steps build on densely computed local

features as their basic building blocks. The DAISY de-

scriptor [18] was chosen because of its efficient implemen-

tation. Initially, from all positive and negative training im-

ages, DAISY descriptors are randomly sampled and clus-

tered into a small codebook of fixed size C using a standard

k-means algorithm with random initialization. The code-

book size can be adapted to the complexity of the object

class; see section 7 for details on the chosen parameters.

Given each positive training annotation, DAISY features are

then computed densely within the annotated training region

and assigned to their respectively closest codewords to build

localized occurrence histograms.

A single detector is trained on entire objects to identify

regions which have a higher likelihood of containing an en-

tire object instance; figure 1, 2D.3 top, shows an example

layout. The dimensions and aspect ratio of the training an-

notations determine the dimension of the detector used dur-

ing testing.

For the part-based detectors, instead of manually select-

ing semantic parts, the training annotations are further sub-

divided into a regular grid of V ×W regions, assuming that

the densely sampled detectors whose centers fall into the

same region can be considered to share some common char-

acteristics of this part of the entire object under this view-

point; see figure 1, 2D.3 bottom. Consequently, V × W

groups of detectors are obtained, each representing the ap-

pearance of a part of the entire object under the current view.

These part detectors have to deal less with background vari-

ation, but focus primarily on differentiating between the ap-

pearance of areas of an object under changing viewpoints.

The negative training examples for object parts and full

objects are initially chosen randomly on the background of

the training images; the detector layouts which were used

for the positive training instances are re-used to determine

the layout of the negative samples.

4.2. Appearance Representation

Following [11], the localized occurrence histograms are

combined into spatial pyramids. For the full object pre-

detector, a single spatial pyramid is built to represent the

appearance of the entire object under the current view; see

figure 1, 2D.3 top. For the part-based detectors, V × W

groups of spatial pyramids are obtained, each representing

the appearance of a part of the entire object under the cur-

rent view. The spatial pyramids of each part are densely

sampled and allowed to overlap in order to completely cover

the part area as shown in figure 1, 2D.3 bottom.

Given positive and negative training examples, separate

SVM classifiers are now trained, one for the entire object

under all viewpoints and one for each of the V × W object



parts under each of the weakly-annotated views as provided

by the training database. In the case of the 3D Object Cat-

egory datasets CAR and BICYCLE, annotations are given

for discrete distances and elevation and azimuth angles (also

see section 7). As illustrated in figure 2, the proposed ap-

proach parameterizes the viewpoints in spherical coordi-

nates of υ = ( r , a , b ) where r is radius, a azimuth and

b elevation, assuming a simplified camera which is always

oriented at the centroid of the object. A part is assigned

to one block of the fixed grid when its center falls into the

block, thereby allowing for some overlap between the parts

(see figure 1, 2D.3 bottom). All views having azimuth an-

gles within a given range together with all distances and el-

evation angles associated with this azimuth angle are com-

bined to train V × W part detectors for this particular base

viewpoint; see section 7 for details on the chosen parame-

ters. To compensate for the random choice of initial nega-

tive training instances, a standard bootstrapping procedure

is used to iteratively select the most difficult false positives

and false negatives for each part classifier. The SVMs are

learned on a pyramid intersection distance kernel with the

per-level weighting scheme suggested in [11].

Figure 2. Discretization of the viewpoints for initial classification

into “base viewpoints” in discrete azimuth steps, each combining

multiple elevations and distances.

5. Geometry Model

The following section outlines how the model of the ob-

ject class geometry is built to represent the 3D distribution

of the centers for each of the V × W parts per object class

and for each discretized camera viewpoint (figure 2).

Recently, some publications have proposed methods for

building a 3D representation from trainingdata to be used

for detection tasks. In most cases, groups of consistently

deforming image regions are promoted to a higher geome-

try model to reflect their co-occurrence [1, 15, 16]. In [12],

synthetic models with reduced textural similarity to real im-

ages have been used to compute filtered local features and

to project their locations in rendered images into a common

3D coordinate system.

In this paper, a different approach is proposed which re-

lies on commercially available synthetic 3D models; see fig-

ure 3 for some examples. However, unlike all previous ap-

proaches, the geometric learning task is separated from the

appearance component. No explicit matching between syn-

thetic textures and real images is required; still the precise

geometry of synthetic models can be used in an extremely

flexible way to learn the 3D distribution of parts of an ob-

ject class, as long as the models represent characteristic ob-

ject class geometries. In particular, no manual annotation

of part locations is required. By limiting the contribution

of the synthetic models to their geometry, far fewer mod-

els are needed to represent the geometry of an object class

rather than all possible textural appearance variations.

5.1. 3D Training Data

Figure 3. Synthetic 3D models used for the geometry training.

The use of synthetic models as training sources for the

geometry allows to densely sample the space of possible

viewpoints and to choose the models such that the train-

ing database includes representative object surface geome-

tries. The approach follows the pose space parameterization

of [15] as defined by their test database; the parameteriza-

tion is based on a spherical coordinate system as illustrated

in figure 2; a simplified camera model is assumed where

rotations around the camera view axis are not part of the

parameter space.

For each object class, all its 3D models are rendered

into images of fixed dimensions, along with their automat-

ically generated bounding boxes. Each model is rendered

from the same viewpoints that are present in the real im-

age database (termed “base viewpoints”) as well as from

additional densely sampled viewpoints, reflecting interme-

diate distances and object orientations. By using synthetic

models, viewpoints can be more densely sampled from the

space of all relevant poses to account for the typical visi-

bility of the parts under perspective projection, depending

on 3D surface structure and local self-occlusions. For each

rendered view, the bounding box is subdivided into a reg-

ular grid of V × W parts (see figure 1, 3D.2) in the same

way as for the appearance training (see figure 1, 2D.2). The

assignment of 3D surface locations to parts does not require

any annotation, since for synthetically rendered images, the

actual 2D bounding boxes are known; their automatic sub-

division into the same regular grid that was used for the



real training images directly establishes the link between

appearance parts and 3D geometry.

5.2. Mixture Models

After perspective projection of a synthetic model, for

each image pixel its 3D position on the original 3D model

surface is known; as a consequence, the 3D points belong-

ing to each part under each of the specified viewpoints can

be determined and projected into a common object coordi-

nate system as shown in figure 1 (3D.3). Training objects

can have any surface structure, since pixels not belonging

to rendered surface patches are discarded. Figure 4, left and

center, displays the 3D point clouds for one car base view-

point and four parts; different colors indicate different parts.

This representation now allows to associate regions of the

3D object surfaces under perspective projection to the cor-

responding appearance parts, since for the rendered as well

as the real images the same regular grid of V ×W parts was

used. This link holds true independently of the real image

training data on which the appearance has been trained, as

long as the same regular grid has been used to determine the

part regions in synthetically rendered images and annotated

real training images.

Once all available models of one object class have

been processed under all discretely sampled viewpoints,

Gaussian mixtures are fitted to the point clouds of each

part per base viewpoint, using the standard Expectation-

Maximization procedure. The choice of Gaussian mixtures

reflects a trade-off between a faithful representation of the

3D geometry and a conveniently parameterized formulation

which later allows to efficiently evaluate the probability of

co-occurrence of parts, given the geometry model. This

trade-off is reflected in the number of mixtures to repre-

sent each parts’ geometry: more mixtures will allow to bet-

ter represent the geometry, while at the same time increas-

ing computational cost during pose estimation. In this ap-

proach, the number of mixtures per part is iteratively chosen

according to the MDL criterion. Assuming that each part

obeys a multivariate multimodal Gaussian distribution with

parameterset θk∈{1...K} = (µk, Rk, wk) in 3D (where µk is

the centroid of each mixture component, Rk its covariance

and wk the weight of the mixture component), for each part

distribution X the likelihood

p(X |K, θ) =
N
∏

n=1

K
∑

k=1

p(x(n,3D)|θk) (1)

of each of the N 3D points’ x(n,3D) ∈ X belonging to mix-

ture k is maximized, while accounting for the MDL penalty

term. Figure 4, right, shows the fitted mixture models for

the 3D point distribution of the parts of a car from base

viewpoint “rear”. For each part under each base viewpoint,

such a representation of its originating 3D surface positions

is built.

6. Detection

This section outlines the detection steps, starting with

the initial 2D predetection of the entire object, the detection

of pose-specific 2D parts for the most probable base view-

point, and the maximum-likelihood optimization process to

estimate the remaining pose parameters.

6.1. 2D Detection

Figure 5. Initial detections with a full object spatial pyramid clas-

sifer; note the frequent underestimation of object scale due to the

lack of object pose information.

6.1.1 Pre-Detection

The 2D detection process starts with an initial pre-detection

to identify regions of interest potentially containing fully

or partially visible objects. This method follows the work

of [4] in using a sliding-window detection and a subsequent

mean-shift mode estimation to merge and localize these re-

gions of interest in image and scale space. This detection

step alone is usually unable to generate a reliable localiza-

tion, since it does not deal with occlusion and is sensitive

to the detector window dimensions chosen. In addition, no

sliding-window approach can sample all possible window

layouts on all possible scales; consequently, additional ver-

ification steps are necessary. Figure 5 shows some example

detections for the full object pre-detector; note that the pre-

detector frequently underestimates the actual scale of the

object which is due to its lacking information on the full

object pose. In the following steps, knowledge on the full

3D geometry of the object class allows to accurately choose

the entire image region containing the object, thereby sig-

nificantly improving this initial detection and providing an

evaluation score which measures the consistency of the de-

tected parts with the learnt geometry model.

6.1.2 Pose-Specific Parts Detection

The part detection forms the fundament which the 3D pose

estimation will rely on. Section 4 described how classifiers

for different regions of an object under each base viewpoint

are computed. Typically trained on much smaller image

parts, the discriminativity of these part detectors is reduced;

however, by computing them only on the previously iden-

tified regions of interest in the test images, much of the

background variability is removed which allows to focus



Figure 4. 3D point distributions and fitted mixtures for four parts of the car class from base viewpoint “rear” (left: projection from actual

viewpoint, center: rotated, right: estimated mixtures).

the training process on differentiating between base view-

points and parts on the objects. In addition, these parts can

be densely computed on every pixel within the region of in-

terest. The large number of resulting detections increases

robustness of the following pose estimation step. A sim-

ple voting procedure is used to determine the most likely

azimuth-only base viewpoint υi = (1, ai, 0), given all the

N detected parts x(n,2D) with their detection probability

p(x(n,2D)) in the region of interest:

p(υi) =

N
∑

n=1

p(υi|x(n,2D))p(x(n,2D)). (2)

Note that this voting does not yet take the distribution of

parts into consideration; it only selects the most promising

base viewpoints to evaluate in the subsequent pose estima-

tion. Some part detection results are visualized in figure 6,

along with the most likely base viewpoint votes illustrated

as histograms.

6.2. 3D Pose Estimation

For all detected parts x(n,2D) of a base viewpoint hy-

pothesis υi, an iterative pose estimation now provides

an evaluation of the probability of occurrence of the re-

fined viewpoint in simplified spherical camera parame-

ters υ = ( r , a , b ) as illustrated in figure 2. The required

camera parameters are those which maximize the likelihood

of the detected 2D parts after perspective projection Φυ of

the K 3D Gaussian mixtures of this base viewpoint into the

image space:

argmax
υ∈Υi

N
∏

n=1

p(x(n,2D)|υ) = (3)

argmax
υ∈Υi

N
∏

n=1

K
∑

k=1

wk N
(

x(n,2D)|Φυ(µ(k,3D)), Φυ(R(k,3D))
)

To simplify the computation of the likelihood under the per-

spective projection Φυ of the per-part covariances R(k,3D)

into image space, Φυ is approximated by the Taylor expan-

sion localized at the mixture centroids µ(k,3D), assuming

the projection to be locally affine:

Φυ(x(n,3D)) ≈ Φυ(µ(k,3D))+JΦυ
(x(n,3D)−µ(k,3D)) (4)

which allows to compute the approximate covariance of the

projected 3D mixtures Φυ(R(k,3D)) from the original co-

variances R(k,3D) using the Jacobian JΦυ
of the projection

Φυ evaluated at the 3D centroids µ(k,3D):

Φυ(R(k,3D)) ≈ JΦυ
(µ(k,3D))·R(k,3D) ·J

t
Φυ

(µ(k,3D)). (5)

The optimization problem is again solved iteratively in

an EM-like fashion under the constraints Υi given in sec-

tion 7 which reflect the discretization used during training;

the EM update step is done using a genetic algorithm [10],

since it performed best in the experiments due to its robust-

ness towards local optima.

The resulting detection now allows to evaluate the prob-

ability of occurence of an object of the searched-for class

under a consistent 3D pose. Moreover, the 3D bounding-

box backprojected into the image can be used to determine

the smallest circumscribed 2D rectangle which significantly

improves the 2D scale estimates of the initial detection step.

Note, however, that the 3D pose estimation obtained is rel-

ative to the virtual camera parameters used to generate the

geometry training data from the synthetic model database.

Without information on the real camera used to take the spe-

cific test image, the computed virtual 3D pose does not re-

late to the actual metric 3D pose of the object, but provides

only orientations and relative distances. Still, if metric cali-

bration data of the camera used to take each test image was

available, the virtual camera pose could be promoted to an

actual 3D measurement.

7. Experimental Results

On the publicly available 3D Object Category datasets

CAR and BICYCLE [15], our approach was evaluated on

two tasks. Object detection in 2D was used to assess the

contribution of the geometric model with respect to object

localization in image and scale space. The accuracy of our

approximate pose estimation in addition to the 2D detec-

tion was evaluated with respect to groundtruth orientation

annotations.

7.1. Dataset

The approach relies on training data from two separate

sources. The 3D geometric representation is built from



Figure 6. Some results illustrating the complete detection process on the 3D Object Category datasets CAR and BICYCLE [15]. For each

result, the predetection density, the detected parts, the base viewpoint votes and the final pose estimation are visualized.

3D models available from the commercial distributors tur-

bosquid.com and doschdesign.com. We used two car and

two bicycle models shown in figure 3 which are represen-

tative of the object class geometries contained in the test

database. For training, the 3D models are normalized to

unit scale in the virtual camera coordinate system and ren-

dered from distances r ∈ {1 · · · 5} (in multiples of 3D

model radius), six elevation angles in steps of 10◦ and all

azimuth angles in 22.5◦ steps. Consequently, given an ini-

tial hypothesis υi, the pose estimation step is constraint to

Υi = {r ∈ {1 · · ·5}, a ∈ {ai
+

−

22.5◦}, b ∈ {0 · · ·60◦}}
where ai is the azimuth angle associated with the base view-

point hypothesis.

Appearance training relies on the annotated images

available in the 3D Object Category datasets CAR and BI-

CYCLE [15]. For each object class, the dataset contains im-

ages of 10 different object instances from 42 different view-

points. We follow the evaluation protocol described in [15],

using the images of 7 randomly selected object instances

per class for training and those of 3 unseen instances for

testing. Unlike [15] who chose to omit the farthest distance,

this approach is trained and evaluated on all viewpoints in

the database. 2D training bounding boxes are computed

from the provided groundtruth segmentation masks and the

base viewpoint classifiers are trained on the available ap-

proximate viewpoint annotations, consisting of three dis-

tance units (near, medium, far), three elevation units (low,

medium, high) and 8 azimuth steps of approximatively 45◦.

Codebook sizes of 2048 codewords for the full detector on 3

pyramid levels and 1024 codewords on two pyramid levels

for the part detector performed best in our experiments.

7.2. Experiments

The 2D localization task is evaluated with the standard

50% VOC Challenge overlap criterion on the axis-aligned

rectangular 2D bounding boxes obtained from backproject-

ing the 3D bounding boxes generated by the pose estima-

tion. To handle rare cases where the pose estimation does

not converge, the 2D predetection result serves as a fallback

if the overlap between predetection and backprojected pose

estimation is below 30%. The precision/recall curve ob-

tained with our 2D detection approach on the CAR dataset

is given in figure 7 (AP 76.7%). We compare to the best

currently reported pure 2D approach [7] (AP 72.6%) and

the most recent 3D approach of [16] (AP 55.3%). As can be

seen, our detection approach outperforms the state of the art

on the CAR dataset. On the BICYCLE dataset, our method

achieves an AP of 69.8% which is slightly below the 2D re-

sults reported by [7], probably because on the narrow image

regions of bicycle frontal and rear views, the 3D backpro-

jections into 2D image space used by the present approach

tend to overestimate relative to the provided groundtruth an-

notations.

To demonstrate the contribution of our pose estima-

tion component to the 2D detection, we again evaluated

the detection task on the same datasets, this time omit-

ting the pose estimation. Instead, the detected 2D parts

cast votes for their potential parent objects, similar to an

implicit shape model [17]. The scores for both classes,

bicycles (AP 63.7%) and cars (AP 59.9%), are signifi-

cantly below those obtained with our combined detection

and pose estimation approach (bicycles (AP 69.8%) and

cars (AP 76.7%), see above). By including a pose estima-

tion into the detection process, the detection precision can

thus be substantially increased.

In order to benchmark the 3D pose estimation, only the

orientation estimations can be compared against the anno-

tated orientations, since the provided elevation and distance

groundtruth of the test datasets is too approximate. We

bin the continuous orientation estimates in 45◦ steps to be

comparable to the groundtruth annotations. The confusion

matrices obtained on the CAR and BICYCLE datasets are

shown in figure 8; for cars, the diagonal views suffer from

multiple symmetries; for bicycles, front and rear views are

more difficult to estimate correctly. On the car dataset,

the achieved AP of 70% compares favourably to [16] (ap-

prox. 67%); no published pose estimation results on the BI-

CYCLE dataset are currently available for comparison.

Figure 6 shows some examples of the full detection pro-

cess. In each result window, the predetection density is vi-



sualized in the top left area, the detected parts which con-

tributed to the best base viewpoint are plotted in the top

right area. The votes cast for each base viewpoint bin are

visualized as histograms in the lower left area. In the bot-

tom right, the pose estimation along with the backprojected

covariance ellipses of the parts is given; note that no addi-

tional priors on viewpoints or ground planes are used.

Figure 7. Precision/Recall curves on the 3D Object Category

dataset CAR [15].

Figure 8. Confusion matrices (rows: groundtruth, columns: es-

timates) for orientation estimates on the 3D Object Category

datasets CAR and BICYCLE [15].

8. Conclusion

This paper has introduced a method for including exter-

nal 3D geometry from synthetic CAD models into a 2D

part-based appearance detection method, yielding an ap-

proximate 3D pose estimation and an evaluation score for

3D geometric consistency of 2D part detections. Future

work will focus on evaluating the contribution of the pose

estimation for large-scale object detection tasks and extend-

ing the method to more object classes.
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