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Abstract We present a novel method for recovering the

3D structure and scene flow from calibrated multi-view se-

quences. We propose a 3D point cloud parametrization of

the 3D structure and scene flow that allows us to directly es-

timate the desired unknowns. A unified global energy func-

tional is proposed to incorporate the information from the

available sequences and simultaneously recover both depth

and scene flow. The functional enforces multi-view geomet-

ric consistency and imposes brightness constancy and piece-

wise smoothness assumptions directly on the 3D unknowns.

It inherently handles the challenges of discontinuities, oc-

clusions, and large displacements. The main contribution of

this work is the fusion of a 3D representation and an ad-

vanced variational framework that directly uses the available

multi-view information. This formulation allows us to ad-

vantageously bind the 3D unknowns in time and space. Dif-

ferent from optical flow and disparity, the proposed method

results in a nonlinear mapping between the images’ coor-

dinates, thus giving rise to additional challenges in the op-

timization process. Our experiments on real and synthetic

data demonstrate that the proposed method successfully re-

covers the 3D structure and scene flow despite the compli-

cated nonconvex optimization problem.
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1 Introduction

The structure and motion of objects in a 3D space is an

important characteristic of dynamic scenes. Reliable 3D

motion maps can be utilized in many applications, such

as surveillance, tracking, dynamic 3D scene analysis, au-

tonomous robot navigation, 3D display devices, or virtual

reality. In the last decade, an emerging field of research has

addressed the problem of scene flow computation. Scene

flow is defined as a dense 3D motion field of a nonrigid 3D

scene (Vedula et al. 1999). It follows directly from this def-

inition that 3D surface recovery must be an essential part

of any scene flow algorithm, unless it is given a priori. Our

objective is to simultaneously compute the 3D structure and

scene flow from a multi-camera system. The system consists

of N calibrated and synchronized cameras with overlapping

fields of view. A unified variational framework is proposed

to incorporate the information from the available sequences

and simultaneously recover both depth and scene flow. To

describe our method, we next elaborate on the parametriza-

tion of the problem, the integration of the spatial and tem-

poral information from the set of sequences, and the setting

of a global energy functional together with the variational

framework used for solving it.

Most existing methods for scene flow and surface esti-

mation parameterize the problem in 2D rather than 3D (e.g.,

Zhang and Kambhamettu 2000, 2001; Vedula et al. 2005;

Isard and MacCormick 2006; Min and Sohn 2006; Huguet

and Devernay 2007; Wedel et al. 2008; Li and Sclaroff 2008;

Pock et al. 2008). That is, they compute disparity (stereo),

which is the projection of the desired 3D shape, and the opti-

cal flow, which is the projection of the 3D motion (Fig. 1b).

The relation between the scene flow and its projection is pre-

sented in Fig. 1a. Assuming that reliable and consistent so-

lutions of both stereo and optical flow are given, the scene
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Fig. 1 (a) The point P is

projected to pixels p0 and p1 on

cameras C0 and C1,

respectively. The new 3D

location at t + 1 is given by

P̂ = P + V and it is projected to

p̂0 and p̂1. In this example, V is

the 3D motion while

v = p̂0 − p0 is the optical flow.

(b) The 2D relation between

corresponding points in two

views at two time steps (optical

flow and disparity fields)

flow and the 3D structure can be directly computed. This

can be done, for example, by obtaining the 3D shape from

the stereo in two time steps and deriving the scene flow from

the optical flow in one of the images.

We propose a 3D point cloud parametrization of the 3D

structure and 3D motion, with respect to a reference view

(often referred as 2.5D parameterization). That is, for each

pixel in a reference view, a depth value, P, and a 3D motion

vector, V, are computed (see Fig. 1a). A similar parametriza-

tion for only 3D reconstruction was used by Robert and

Deriche (1996). The advantage of using 3D rather than 2D

parametrization is that it allows primary assumptions to be

imposed on the unknowns prior to their projection. For ex-

ample, a constant 3D motion field of a scene may project

to a discontinuous 2D field (Fig. 2). Hence, in this exam-

ple, smoothness assumptions hold for 3D parametrization

but not for 2D. In addition, 3D parametrization allows direct

extension to multiple views, without changing the problem’s

dimension. That is, the number of unknowns remains mini-

mal, regardless of the number of views. This is in contrast to

2D parameterization where each additional view requires an

additional set of parameters (e.g., disparity or optical flow

maps).

We suggest coupling the spatio-temporal information by

simultaneously recovering the scene flow and 3D structure.

This approach is in contrast with previous approaches that

decouple the scene flow and 3D structure problems (e.g.,

Vedula et al. 1999, 2005; Zhang and Kambhamettu 2000,

2001; Carceroni and Kutulakos 2002; Pons et al. 2007;

Wedel et al. 2008). When the scene flow and 3D structure

are decoupled, the two problems are solved sequentially. As

a result, the spatio-temporal information is not fully utilized.

In Vedula et al. (2005), for example, the optical flow field is

computed independently for each camera without imposing

consistency between the flow fields. Another example of the

limitations of decoupling is the study by Wedel et al. (2008),

where consistency is enforced on the stereo and motion so-

lutions. Since the disparity map is computed separately, the

results are still sensitive to its errors. Previous approaches

for simultaneous recovery of scene flow and 3D structure

help overcome these limitations (e.g., Vedula et al. 2000;

Isard and MacCormick 2006; Min and Sohn 2006; Huguet

and Devernay 2007; Neumann and Aloimonos 2002) but

most rely on and hence suffer from the limitations of 2D

parametrization; in particular, they are limited to two views.

Our method simultaneously utilizes the multi-view informa-

tion using 3D representation to improve the stability of the

results and reduce possible ambiguities. (We extend on other

methods that couple the multi-view information using 3D

representation in Sect. 1.1).

The 3D parametrization and the spatio-temporal informa-

tion from the set of sequences are used to define a global

energy functional. The energy functional incorporates the

multi-view geometry with a brightness constancy (BC) as-

sumption (data term). Regularization is imposed by assum-

ing piecewise smoothness directly on the 3D motion and

depth. We avoid the linearization of the data term constraints

to allow large displacements between frames. Moreover, dis-

continuities in both 3D motion and depth are preserved by

using nonquadratic cost functions. This approach is mo-

tivated by the state-of-the-art optical flow variational ap-

proach of Brox et al. (2004). Our method is the first to extend

it to multiple views and 3D parametrization. The minimiza-

tion of the resulting nonconvex functional is obtained by

solving the associated Euler-Lagrange equations. We follow

a multi-resolution approach coupled with an image-warping

strategy.

We tested our method on challenging real and synthetic

data. When ground truth is available, we propose a new eval-

uation of scene flow based on the 3D errors rather than the

conventional 2D error. We argue that the 2D errors tradition-

ally used for evaluating stereo and optical flow algorithms

do not necessarily correlate with the 3D errors. In partic-

ular, we show that the ranking of stereo algorithms (e.g.,

Scharstein and Szeliski 2002) may change when the 3D er-

rors are considered.

The main contribution of this paper is to combine a novel

3D formulation with an accurate global energy functional

that explicitly describes the desired assumptions on the 3D

structure and scene flow. The functional inherently handles



Int J Comput Vis

the challenges of discontinuities, occlusions, and large dis-

placements. Combining our 3D representation in that vari-

ational framework leads to a better constraint problem that

directly utilizes the information from multi-view sequences.

As demonstrated in our experiments, we successfully re-

cover the 3D structure and scene flow despite the challeng-

ing nonconvex optimization problem.

The rest of the paper is organized as follows. We be-

gin with reviewing related studies in Sect. 1.1. Section 2

describes our method. Section 3 provides insight into our

quantitative 3D evaluation measures. In Sect. 4 we present

the experimental results. We conclude in Sect. 5.

1.1 Related Work

To the best of our knowledge, our view-centered 3D point

cloud representation has not been previously considered for

the scene flow recovery problem. Other 3D parameteriza-

tions, that are not view dependent, were studied: 3D array

of voxels, Vedula et al. (1999), various mesh representations

(Furukawa and Ponce 2008; Courchay et al. 2009; Neumann

and Aloimonos 2002) and dynamic surfels (Carceroni and

Kutulakos 2002). In contrast to our method, each of these 3D

representations can provide a complete, view-independent

3D description of the scene. However, the scene that can

be considered is often limited by the representation (e.g.,

a single moving object) and a large number of cameras is re-

quired in order to benefit from their choice of parametriza-

tion. In addition, in these representations, the discretization

of the 3D space is often independent of the actual 2D reso-

lution of the available information from the images.

The studies most closely related to ours in the sense of

numeric similarity are (Huguet and Devernay 2007; Wedel

et al. 2008). Huguet and Devernay (2007) proposed to simul-

taneously compute the optical flow field and two disparity

maps (in successive time steps), while Wedel et al. (2008)

decoupled the disparity at the first time step from the rest

of the computation. Both extend the variational framework

of Wedel et al. (2008) for solving for scene flow and struc-

ture estimation. In these studies regularization is imposed on

the disparity and optical flow (2D formulation), while our

assumptions refer directly to the 3D unknowns. Nor were

these methods extended to multiple views.

A multi-view energy minimization framework was pre-

sented by Zhang and Kambhamettu (2000). A hierarchical

rule-based stereo algorithm was used for initialization. Their

method imposed optical flow and stereo constraints while

preserving discontinuities using image segmentation infor-

mation. Each view results in an additional set of unknowns,

and the setup is restricted to a parallel camera array. Another

multi-view method was suggested by Pons et al. (2007).

They use a 3D variational formulation in which the predic-

tion error of the shape and motion is minimized by using

Fig. 2 (a) The Middlebury stereo dataset, Cones. The scene flow, V, is

constant for all image points since only the camera translates. (b) The

horizontal component of the projected scene flow, the optical flow. It

depends on the 3D point location

a level-set framework. However, the shape and motion are

sequentially computed.

There are only a few multi-view methods that use 3D

representations and simultaneously solve the 3D surface

and motion. Neumann and Aloimonos (2002) modeled the

object by a time-varying subdivision hierarchy of triangle

meshes, optimizing the position of its control points. How-

ever, their method was applied only to scenes which con-

sist of one connected object. Furukawa and Ponce (2008)

constructed an initial polyhedral mesh at the first frame. It

is tracked assuming locally rigid motion and globally non-

rigid deformation. Courchay et al. (2009) represented the 3D

shape as an animated mesh. The shape and motion are recov-

ered by optimizing the positions of its vertices under the as-

sumption of photo-consistency and smoothness of both the

surface and 3D motion. Nevertheless, both methods Cour-

chay et al. (2009) and Furukawa and Ponce (2008) are lim-

ited due to the fixed mesh topology.

2 The Method

Our goal is to simultaneously reconstruct the 3D surface of

a 3D scene and its scene flow (3D motion) from N static

cameras. The cameras are assumed to be calibrated and syn-

chronized, each providing a pair of successive frames of the

scene. We assume brightness constancy (BC) in both spatial

(different viewpoints) and temporal (3D motion) domains.

We formulate an energy functional which we minimize in

a variational framework by solving the associated Euler-

Lagrange equations.

2.1 System Parameters and Notations

Consider a set of N calibrated and synchronized cameras,

{Ci}N−1
i=0 . Let Ii(x, y, t) : Ω ⊂ R

3 → R
3, be the sequence

taken by camera Ci . Let M i be the 3 × 4 projection ma-

trix of camera Ci . The projection of a 3D surface point
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P = (X,Y,Z)T onto an image of the ith sequence at time

t is given by:

pi =
(

xi

yi

)
= [M i]1,2[P 1]T

[M i]3[P 1]T , (1)

where [M i]1,2 is the 2 × 4 matrix which contains the first

two rows of M i and [M i]3 is the third row of M i .

Let V = (u, v,w)T be the 3D displacement vector of the

3D point P (in our notation bold characters represent vec-

tors). The new location of a 3D point P after the displace-

ment V is denoted by P̂ = P + V. Its projection onto the ith

image at time t + 1 is denoted by p̂i (see Fig. 1a).

Assume without loss of generality that the 3D points are

given in the coordinate system of the reference camera, C0.

In this case, the X and Y coordinates are functions of Z and

are given by the back projection:

(
X

Y

)
= Z

(
x/sx
y/sy

)
− Z

(
ox/sx
oy/sy

)
, (2)

where sx and sy are the scaled focal lengths, (ox, oy) is the

principal point, and (x, y)T are the reference image coor-

dinates. We directly parameterize the 3D surface and scene

flow with respect to (x, y) and t . In particular, given the time

step, t , the surface and scene flow are represented as the 3D

functions, P(x, y, t) : Ω ⊂ R
3 → R

3 and V(x, y, t) : Ω ⊂
R

3 → R
3, respectively. That is,

P(x, y, t) =
(
X(x,y, t), Y (x, y, t), Z(x, y, t)

)T
, (3)

V(x, y, t) =
(
u(x, y, t), v(x, y, t), w(x, y, t)

)T
. (4)

Note that P(x, y, t + 1) is the 3D surface point which is

projected to pixel p = (x, y)T at time t + 1. Obviously, it

is different from P̂, which is projected to a different image

pixel p̂ (unless there is no motion). From this point, we will

refer to P and V at a fixed time step, t . Hence, the temporal

dependency of P and V will be disregarded.

For each image point in the reference camera, (x, y), and

a single time step, there are six unknowns: three for P and

three for V. However, since X and Y can be determined by

Eq. (2) as functions of Z and (x, y), there are only four un-

knowns for each image pixel. In particular, the 3D point P is

given by:

P(x, y) =

⎛
⎝

X

Y

Z

⎞
⎠ = Z(x, y)

⎛
⎝

x/sx − ox/sx
y/sy − oy/sy

1

⎞
⎠ . (5)

We aim to recover Z and V as functions of (x, y), using the

N pairs of images.

In this representation, the number of unknowns is inde-

pendent of the number of cameras. Hence, a multi-view sys-

tem can be efficiently used without changing the dimensions

of the problem. This is in contrast to previous methods that

use 2D parametrization, e.g., Huguet and Devernay (2007),

Wedel et al. (2008), Li and Sclaroff (2008), Strecha et al.

(2003), where additional cameras require additional sets of

unknowns (e.g., optical flow or disparity field). Moreover,

our representation does not require image rectification.

2.2 The Energy Functional

The total energy functional we aim to minimize is a sum of

two terms:

E(Z,V) = EData + αESmooth. (6)

The data term Edata expresses the fidelity of the result to the

model. Recovering the surface and scene flow by the mini-

mization of Edata alone is an ill-posed problem. Hence, reg-

ularization is used, mainly to deal with ambiguities (low tex-

ture regions) and image noise. In addition, the regularization

is used to obtain solutions for occluded pixels (see Sect. 2.4).

The relative impact of each of the terms is controlled by the

regularization parameter α > 0. Next, we elaborate on each

of these terms.

Data Term The data term imposes the brightness con-

stancy assumption in both spatial and temporal domains.

That is, the intensity of a 3D point’s projection onto dif-

ferent images before and after the 3D displacement does not

change. Additionally, our 3D parametrization forces the so-

lution to be consistent with the 3D geometry of the scene

and the camera parameters. In particular, the epipolar con-

straints are satisfied.

The brightness constancy assumption is generalized for

all N cameras and for both time steps. The data term is

obtained by integrating the sum of three penalizers over

the reference image domain. BCm penalizes deviation from

the brightness constancy assumption before and after 3D

displacement; BCs1
and BCs2

penalize deviation from the

brightness constancy assumption between the reference

view and each of the other views at time t and t + 1, re-

spectively. Formally the penalizers for each pixel are defined

by:

BCm(Z,V) =
N−1∑

i=0

ci
mΨ

(∣∣Ii(pi, t) − Ii( p̂i, t + 1)
∣∣2)

,

BCs1
(Z) =

N−1∑

i=1

ci
s1

Ψ
(∣∣I0(p0, t) − Ii(pi, t)

∣∣2)
,

BCs2
(Z,V) =

N−1∑

i=1

ci
s2

Ψ
(∣∣I0( p̂0, t + 1) − Ii( p̂i, t + 1)

∣∣2)
,

(7)
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Fig. 3 Two adjacent pixels in camera C0 correspond to two distance

pixels in camera, C1. Hence, the gradient of pixel p0 in C0 is generally

different from the gradient of its corresponding pixel, p1 in C1

where Ψ (s2) is a chosen cost function and ci
∗ is a binary

mask that omits occluded pixels from the computation, since

they are not expected to satisfy the brightness constancy

assumption (see Sect. 2.4). We use a nonquadratic robust

cost function Ψ (s2) =
√

s2 + ε2 (ε = 0.0001), which is a

smooth approximation of L1 (see Brox et al. 2004), for re-

ducing the influence of outliers on the functional. The out-

liers are pixels that do not comply with the model due to

noise, lighting changes, reflections or occlusions. In this for-

mulation, no linear approximations are made; hence large

displacements between frames are allowed.

The parameterization used by our method (defined in

Sect. 2.1) leads to nonlinear mappings between the images’

coordinate systems to the reference image coordinate sys-

tem. We extend on these mappings in Appendix A. Observe

that when 2D parameterization is considered, namely optical

flow and disparity, the mappings between the images’ coor-

dinates are given by adding to those coordinates the optical

flow and/or the disparity fields to images’ coordinates. This

simple mapping is probably one of the reasons that 2D pa-

rameterization is often chosen to parametrize the scene flow.

In natural scenes the BC assumption does not necessarily

hold for all pixels in all frames, in particular when consider-

ing wide baseline setup. To overcome this problem, previous

studies for estimating optical flow (e.g., Brox et al. 2004) or

scene flow (e.g., Huguet and Devernay 2007) imposed an ad-

ditional gradient constancy assumption in order to allow de-

viation in the gray value. Nevertheless, since the gradient is

viewpoint dependent (due to the foreshortening effect), this

assumption does not hold in the spatial domain (see Fig. 3).

Hence, we chose not to impose the additional gradient con-

stancy assumption. The robustness of our method to devia-

tion from the BC assumption is obtained by using multiple

views. That is, since the data term is given by integrating

the deviation from the BC assumption over all views, each

view has a relative impact on the total deviation from the BC

assumption.

Smoothness Term We assume that both the 3D motion field

and surface are changing piecewise smoothly w.r.t. reference

camera. Deviations from this model are usually penalized

by using a total variation regularizer, which is generally the

L1 norm of the field derivatives. Here we use the same ro-

bust function Ψ (s2) for preserving discontinuities in both

the scene flow and depth. Using the notation, ∇ = (∂x, ∂y)
T ,

this can be expressed as:

Sm(V) = Ψ
(∣∣∇u(x, y)

∣∣2 +
∣∣∇v(x, y)

∣∣2 +
∣∣∇w(x,y)

∣∣2)
,

(8)

Ss(Z) = Ψ
(∣∣∇Z(x, y)

∣∣2)
,

where Sm and Ss are the penalizeres of deviation from the

motion and shape (piecewise) smoothness assumption, re-

spectively. Note that the first order regularizer gives priority

to fronto-parallel solutions. In future work we intend to ex-

plore a general smoothness constraint that is unbiased to a

particular direction. For example, a second order smooth-

ness prior (Woodford et al. 2009) might be more suitable in

our framework. In addition, the current regulazier depends

on the depth range in the scene. Therefore, a normalization

that takes into account the depth values in each pixel may be

desirable.

The total energy function is obtained by integrating the

penalty (Eqs. (7)–(8)) over all pixels in the reference cam-

era, Ω :

E(Z,V) =
∫

Ω

[
BCm + BCs︸ ︷︷ ︸

Data

+α (Sm + μSs)︸ ︷︷ ︸
Smooth

]
dxdy, (9)

where BCs = BCs1
+ BCs2

, and μ > 0 is a parameter used

to balance the motion and the surface smoothness.

2.3 Optimization

We wish to find the functions Z,V that minimize our func-

tional (Eq. (9)) by means of calculus of variations. Calcu-

lus of variations supplies a necessary condition to achieve

a minimum of a given functional, which is essentially the

vanishing of its first variation. This leads to a set of partial

differential equations (PDEs) called Euler-Lagrange equa-

tions. In our case the associated Euler-Lagrange equations

can generally be written as:

(
∂E

∂Z
,
∂E

∂u
,
∂E

∂v
,
∂E

∂w

)T

= 0. (10)

2.3.1 Euler-Lagrange Equations

Consider the points P, P̂, their sets of projected points

{pi}N−1
i=0 , {̂pi}N−1

i=0 , and the sequences {Ii}N−1
i=0 . We use the

following abbreviations for the difference in intensities be-

tween corresponding pixels in time and space:

�i = Ii(pi, t) − I0(p0, t),

�̂i = Ii (̂pi, t + 1) − I0(̂p0, t + 1),

�t
i = Ii (̂pi, t + 1) − Ii(pi, t).

(11)
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We use subscripts to denote the image derivatives. Using

the aforementioned notations, the nonvanishing terms of the

equations with respect to Z and u result in:

0 =
N−1∑

i=0

Ψ ′((�t
i

)2)
�t

i ·
(
�t

i

)
Z

+
N∑

i=1

Ψ ′((�i)
2
)
�i · (�i)Z

+
N−1∑

i=1

Ψ ′((�̂i)
2
)
�̂i · (�̂i)Z

− αμ · div
(
Ψ ′(|∇Z|2

)
∇Z

)
, (12)

0 =
N−1∑

i=0

Ψ ′((�t
i

)2)
�t

i ·
(
�t

i

)
u

+
N∑

i=1

Ψ ′((�̂i)
2
)
�̂i · (�̂i)u

− α · div
(
Ψ ′(|∇u|2 + |∇v|2 + |∇w|2

)
∇u

)
, (13)

with the Neumann boundary condition: ∂nZ = ∂nu = ∂nv =
∂nw = 0, where n is the normal to the image boundary. The

Euler-Lagrange equations with respect to v and w are sim-

ilar to Eq. (13). Observe that the first variation of the func-

tional with respect to Z involves computing the derivatives

of all images (none of them vanish). This enforces the de-

sired synergy of the data from all sequences.

At this point, it is worth noting that the pixels are nonlin-

ear functions of the 3D unknowns due to perspective projec-

tion. As a result, the computation of image derivatives with

respect to Z and V requires using the chain rule, often in a

nontrivial manner (see Appendices A–B).

2.3.2 Numerics

Our parametrization and functional represent precisely the

desired model (no approximations are made), resulting in a

complicated minimization problem. In particular, the use of

nonlinearized data terms and nonquadratic penalizers yields

a nonlinear system in the four unknown functions Z and V

(e.g., Eqs. (12)–(13)). Therefore, one has to deal with the

problem of multiple local minima as a result of the noncon-

vex functional. In our method, the derivation and discretiza-

tion of the equations results in additional complexity since

the perspective projection is nonlinear in the unknowns Z

and V (see Appendices A–B).

We cope with these challenges by using a multi-resolution

warping method coupled with two nested fixed point itera-

tions as previously suggested by Brox et al. (2004). The

multi-resolution approach is employed by downsampling

each input image to an image pyramid with a scale factor η.

The original projection matrices are modified to suit each

level by scaling the intrinsic parameters of the cameras. The

amplitude of our 3D unknowns remains fixed regardless to

the pyramid level used. (Note that the amplitude of the opti-

cal flow and the disparity is scaled according to the pyramid

level.) Starting from the coarsest level, the solution is com-

puted at each level and then utilized to initiate the lower

(finer) level. This justifies the assumption of small changes

in the solution between consecutive levels. Thus, the equa-

tions can be partially linearized by Taylor expansion. Fur-

thermore, the effect of “smoothing” the functional in the

“coarse to fine” approach increases the chance of converg-

ing to the global minimum. We wish to avoid oversmoothing

at the low resolution levels by keeping the relative impact of

the smoothness term the same in all levels. This is obtained

by scaling the smoothness term αℓ = α · ηℓ with respect to

the pyramid level, ℓ. The required resolution of the coars-

est level depends on the quality of the initial depth or flow

maps. However, if the resolution is too low, small objects

might be oversmoothed. We discuss this issue in Sect. 4.

The solution in a given pyramid level is obtained from

two nested fixed point iterations that are responsible for re-

moving the nonlinearity in the equations. The outer iteration

is responsible for the linearizion of the expressions given

in Eq. (11) using the first order Taylor expansion. At each

outer iteration, k, small increments in the solutions, dZk

and dVk = (duk, dvk, dwk)T , are estimated. Next, the to-

tal solution is updated using Zk+1 = Zk + dZk and Vk+1 =
Vk +dVk , the images are rewarped accordingly, and the im-

age derivatives are recomputed (see Appendix B). The in-

ner loop is responsible for removing the nonlinearity that

resulted from the use of the function Ψ . At each inner iter-

ation a final linear system of equations is obtained by keep-

ing Ψ
′

expressions fixed (see Appendix C). The final linear

system is solved by applying the successive overrelaxation

(SOR) method (Young 1954).

2.4 Occlusions

Scene points viewed by the reference camera at time t , may

be occluded in one or more of the other images, taken from

a different viewpoint or at different time steps. Our method

defines the correspondence between pixels in two images

using the projection of a 3D point to each of the images.

Hence, when a point is occluded in one image, its com-

puted correspondence is incorrect. In particular, the bright-

ness constancy assumption is not satisfied in this case.

The use of a multi-view system in our method increases

the chances of a point to be occluded in at least one of the

images, especially those taken from different distant view-

points. Therefore, the occluded pixels cannot be negligible

or treated as outliers. To overcome this problem, the associ-

ated component of occluded pixels should be omitted from
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Algorithm 1 Calculate occlusion map, ci
s1: zero value for

occluded

S ← 0 {S—source map of reference image coordinates}

ci
s1 ← 1 {ci

s1—occlusion map}

{Going over all 3D points w.r.t. the reference view}

for each 3D point P(p0) do

pi = proj(M i,P(p0)) {M i—the projection matrix}

if S(pi) == 0 then

S(pi) = p0 {pi is approached for the first time}

else

q = S(pi)

if ‖P(p0) − P(q)‖ > th then

{p0 and q are different 3D points}

if ‖P(p0) − COPi‖ < ‖P(q) − COPi‖ then

S(pi) = p0 {saving closest point origin}

ci
s1(q) = 0 {pi is the occluded}

else

ci
s1(p0) = 0 {pi is occluded}

end if

end if

end if

end for

the relevant data term. This is accomplished by comput-

ing for each view (other than the reference) three occlusion

maps, ci
∗. Each map corresponds to the relevant penalizer in

the data term (Eq. (7)). The computed maps are used as 2D

binary masks on each of the data term components. Since

we use multiple views, each scene point viewed by the ref-

erence camera is expected to be visible in at least one more

view. If a point is visible only in the reference view, its so-

lution would be determined by the smoothness term.

It is important to consider how the occluded pixels are

determined. One approach can be to directly consider it as a

part of the minimization problem (e.g., Ben-Ari and Sochen

2007; Ayvaci et al. 2010). For example, for computing the

occluded pixels in optical flow, the optimization may in-

clude searching for a minimal sparse set of pixels that do not

satisfy the brightness constancy assumption (Ayvaci et al.

2010). However, such methods do not take into account the

scene geometry. When scene geometry and the camera pa-

rameters are known, the occluded pixels are uniquely de-

termined; hence, the occluded pixels cannot be added as an

additional set of unknowns.

We use the computed 3D shape and motion in a given

iteration for determining the visibility of each 3D surface

point in each of the cameras at each time step. (A similar

approach was used in Huguet and Devernay (2007), Wedel

et al. (2011).) A modified Z-buffering is applied for directly

computing the occlusion maps. These maps are computed

w.r.t. the reference image. For example, the map ci
s1

is com-

puted by testing, for each pixel from camera i at time t , its

origin in the reference image. When two pixels from the ref-

erence image are mapped to the same pixel in frame i, one

of them is occluded. The occluded pixel is determined by the

distances between the associated 3D points from the center

of projection of camera i. The pseudocode of this algorithm

is given in Algorithm 1. The other occlusion maps are com-

puted in a similar manner. The maps are updated at each

outer iteration in order to include the increments of the un-

knowns in the computation.

3 A Note on Error Evaluation

We evaluate scene flow in 3D rather than in 2D. That is, the

error is defined by the deviation of the estimated 3D point,

P(x, y), and 3D motion, V(x,y), from their corresponding

ground truth values, Po(x, y) and Vo(x,y). Various statistics

over these errors can then be chosen. We use the normalized

root mean square (NRMS) error, which is the percentage of

the RMS error from the range of the observed values. The

NRMSP is defined by:

NRMSP =
√

1
N

∑
Ω ‖P(x,y)T −Po(x,y)T ‖2

max(‖Po(x,y)‖)−min(‖Po(x,y)‖) ,
(14)

where Ω denotes the integration domain (e.g., nonoccluded

areas) and N is the number of pixels. Note that this mea-

sure is independent of the units of Z. Similarly, the NRMSV

error is computed for the 3D motion vector V. In addition,

the scene flow angular error is evaluated by computing the

absolute angular error (AAE), for the vector V.

Conventionally, evaluations of stereo, optical flow, and

scene flow algorithms are performed in the image plane.

That is, the computed error is the deviation of the projection

of the erroneous values in 3D from their 2D ground truth

(error of the disparity or the optical flow). The proposed 3D

evaluation is motivated by the observation that the errors in

2D (in the image plane) do not necessarily approximate well

nor correlate with the errors in 3D. In particular, the 2D er-

ror at a given pixel depends not only on the magnitude of

the 3D error but also on the 3D error sign (toward or away

from the camera). A simple example in Fig. 4 demonstrates

how the sign of the 3D error affects the size of the 2D error.

Furthermore, the 3D errors strongly depend on the depth of

the point, Z(x, y), as well as on the location within the im-

age, (x, y). In particular, using Eq. (2) it can be shown that

Eq. (14) can be written as:

NRMSE3D =
√

1
N

∑
Ω (Z(x,y)−Zo(x,y))2·w(x,y)

max(|Z(x,y)·
√

w(x,y)|)−min(|Z(x,y)·
√

w(x,y)|)
,

(15)

where

w(x,y) =
(

x − ox

sx

)2

+
(

y − oy

sy

)2

+ 1. (16)
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Fig. 4 Illustration of the difference between the disparity errors origi-

nating from the opposite sign of the 3D error: the green line represents

the ground truth depth Z; the blue and orange lines represent positive

and negative erroneous depths, respectively; and p1 and q2 are their

projection onto camera C1, which results in different absolute values

of the disparity error

The 3D error’s dependence on w(x,y) and on Z(x, y)

is not taken into account by 2D error evaluation. Hence the

correlation between the two types of evaluation can be weak.

Thus, when comparing the results of 3D reconstruction or

scene flow algorithms, the 3D evaluation may result in dif-

ferent ranking than the 2D.

To practically test this observation, we evaluated the re-

sults of the top ten ranked stereo algorithms in the Middle-

bury stereo evaluation (Scharstein and Szeliski) using 2D

and 3D errors. We chose to compare the ranking using the

RMS measure (since it does not require any error tolerance

setting).

The errors were computed for three of the Middlebury

stereo datasets, Cones, Teddy and Venus (Scharstein and

Szeliski 2003), over three domains: all pixels, nonoccluded

regions, and only discontinuous regions. The intrinsic pa-

rameters of the camera were set as explain in Sect. 4.1.

Figure 5 shows, for each algorithm, the average RMS er-

ror (over the three datasets and the three domains) in 2D,

versus the average RMS error in 3D. As expected, the re-

sults demonstrate that changes in the ranking indeed occur

when RMS is considered. For example, the second and third

ranked algorithm in 3D RMS are ranked as the tenth and the

seventh in 2D RMS.

4 Experimental Results

Our algorithm was implemented in C using the OpenCV

library.1 Like all variational methods, our method requires

initial depth and 3D motion maps. In general, any stereo

algorithm can be used for obtaining an initial depth map.

In all experiments the 3D motion field was simply initiated

1The source code is publicly available.

Fig. 5 Comparison between the ranking order in 2D and 3D: the com-

puted average RMS error of each algorithm (numbered from one to

ten) in 2D vs. 3D. The resulting nonmonotonic graph demonstrates the

changes in the ranking

to zero. It is possible to improve the trivial motion initial-

ization, by first fixing the initial depth at the coarser levels

of the pyramid and optimizing only for U,V and W . The

full optimization on both flow and depth can then start only

from an intermediate level. However, the results next pre-

sented were obtained directly with the trivial motion initial-

ization.

In the first two experiments, where the input images were

rectified, we used the stereo algorithm proposed in Felzen-

szwalb and Huttenlocher (2006). In the third experiment, to

avoid rectification of the input images, we used a naive ini-

tialization of two parallel planes. This initialization is very

far from the real depth and scene flow, but as shown, is

sufficient to converge to the correct solution. Clearly, using

a more sophisticated initialization can improve the conver-

gence time.

The running time of our method is the same order of mag-

nitude as that of Huguet and Devernay (2007). In addition,

one should consider the running time of the chosen stereo

algorithm used for initialization. The code can probably be

significantly accelerated by implementation on parallel ar-

chitecture (e.g., GPU), however, it is not the focus of our

method and is left for future research. We next elaborate on

each of the experiments.

4.1 Egomotion Using Stereo Datasets

This experiment consists of a real 3D rigid translating scene

viewed by two, three and four cameras. This scenario can

also be regarded as a static scene viewed by a translat-

ing “camera array” where our method computes the ego-

motion of the cameras. The Middlebury stereo datasets,

Cones, Teddy and Venus (Scharstein and Szeliski 2003),

were used for generating the data (as in Huguet and Dev-

ernay 2007).
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Each dataset consists of 9 rectified images taken from

equally spaced viewpoints. Eight of the images were con-

sidered as taken by four cameras at two time steps. Due to

the camera setup, both the 2D and the 3D motion are purely

horizontal. Still, while the 3D motion is constant over the

entire scene, the 2D motion is generally different for each

pixel. We do not make use of this knowledge when testing

our algorithm (see Fig. 2).

Our method requires full calibration, which, however, is

not available for these datasets. We set the projection ma-

trix of each camera up to two degrees of freedom by using

the known relative cameras’ positions. One of the cameras is

taken as the reference camera. Accordingly, the others cam-

eras’ extrinsic parameters are set as only translation along

the horizontal axis with respect to the reference camera.

The cameras’ intrinsic parameters are computed by defining

the viewing angle (chosen to be 30◦), and the scaled focal

lengths are uniquely determined by the image size. Note that

this arbitrary choice of parameters may impair the quality of

our results.

For comparison with the results of the scene flow algo-

rithm proposed by Huguet and Devernay (2007), we project

our results for V and Z onto the images. To evaluate the re-

sults, we compute the absolute angular error (AAE) for the

optical flow and the root mean square error (RMS) for the

optical flow and each of the disparity fields at time t and

time t + 1. These measurements are given in Table 1. We

achieved significantly better results for the optical flow and

disparity at time t + 1 and similar results for the disparity at

time t . There is an improvement of 46 %–54 % in the RMS

error of the optical flow and 28 %–58 % in the RMS error

of the disparity t + 1. Furthermore, the advantage of using

more than two views is demonstrated. As expected, the use

of more than two views leads to better results for all the un-

knowns.

4.2 Synthetic Data

4.2.1 Multi-View Rotating Sphere

We tested our method on a challenging synthetic scene

viewed by five calibrated cameras. This sequence was

generated in OpenGL and consists of a rotating sphere

placed in front of a rotating plane. The plane is placed

at Z = 700 (the units are arbitrary) and the center of

the sphere at Z = 500 with radius of 200. Both plane

and sphere are rotated, each around different 3D axes

with different angles (see Fig. 6). Therefore, occlusions

and large discontinuities in both motion and depth must

be dealt with. The accuracy of the computed depth and

3D motion is demonstrated in Fig. 7 by comparing them

with the ground truth. The results are quantitatively eval-

uated by computing the NRMSP , NRMSV errors and the

Table 1 The evaluated errors (w.r.t. the ground truth) of the projection

of our scene flow and structure compared with the 2D results of Huguet

and Devernay (2007). RMS error in the optical flow (O.F.), disparity

at time t , and the disparity at time t + 1. Also shown is the absolute

angular error (AAE) corresponding to the optical flow.

RMS AAE

(deg)O.F. Disp. at t Disp. at t + 1

Cones 4 Views 0.25 2.36 2.36 0.12

2 Views 0.58 2.48 2.49 0.39

Huguet and

Devernay 2007

1.1 2.11 5.24 0.69

Teddy 4 Views 0.51 2.47 2.47 0.22

2 Views 0.57 2.83 2.86 1.01

Huguet and

Devernay 2007

1.25 2.27 6.93 0.51

Venus 4 Views 0.13 0.9 0.9 1.09

2 Views 0.16 1.06 1.06 1.58

Huguet and

Devernay 2007

0.31 0.97 1.48 0.98

AAEV (defined in Sect. 3). Table 2 summarizes the com-

puted errors over three domains: all pixels, nonoccluded

regions, and only continuous regions (namely, removing

regions corresponding to discontinuities of the surface).

An analysis of our results clearly shows that oversmooth-

ing in the discontinuous areas accounts for most of the er-

rors.

4.2.2 Orthographic Rotating Sphere

We tested our method on the Rotating Sphere dataset from

Huguet and Devernay (2007). The scene represents a rotat-

ing textured sphere, where its two hemispheres rotate sepa-

rately in opposite directions (see Fig. 8). The input images

were generated as taken under orthographic projection, by

two cameras related by rotation. However, our method as-

sumes a perspective camera model. Hence, we interpreted

the input images as taken by a parallel pair of cameras un-

der perspective projection. The parameters of the cameras

were chosen arbitrarily to be sx = sy = 200 (scaled fo-

cal length) and T = 20 (baseline). Such interpretation re-

sults in a different 3D scene (a distorted ball) and 3D mo-

tion; this is illustrated in longitudinal sections in Fig. 9.

The background, where the initial disparity was set to zero,

was treated as an occluded region in our implementation

(since otherwise the depth would need to be set to infin-

ity).

Figure 9 shows the recovered depth compared to the

ground truth of the object along longitudinal sections. The

recovered depth is almost perfect except in regions which

have very large depth change (close to the boundaries).

These significantly large gradients in depth are due to
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Fig. 6 (a) Illustration of the

rotation axes. The sphere is

rotating around the green axis

and the plane around the blue

one. (b) With texture. (c) The

reference view before rotation

Fig. 7 The top figure

represents, from left to right, the

ground truth for the depth Z and

the 3D motion u, v and w. The

bottom figure shows these

results computed by our method

Table 2 Multi-View Rotating Sphere: The evaluated errors of our com-

puted scene flow and structure over three domains: the continuous re-

gions, the nonoccluded regions, and over all pixels

% NRMSP % NRMSV AAEV (deg)

w/o Discontinuities 0.65 2.94 1.32

w/o Occlusions 1.99 5.63 2.09

All pixels 4.39 9.71 3.39

our perspective interpretation and correlate with the re-

gions in which the RMS, as we next describe, is relatively

high.

For comparison with the results of the scene flow algo-

rithms proposed by Huguet and Devernay (2007), and Wedel

et al. (2008, 2011), we project our 3D results, Z, and V, to

compute the optical flow and the disparity maps. Despite

the differences in the recovered 3D structure and scene flow,

which depend on the projection model, the projection of our

results should be the same as the given ground truth values

for the orthographic projection. However, it is important to

note that the resulting errors in our computed optical flow

are affected not only by the error in V, but also by the er-

ror in Z. Therefore, this comparison is suboptimal for our

method.

The results of the disparity and the optical flow are com-

pared with the ground truth values in Fig. 8(b). As can be

seen, most of our errors are close to the ball boundary. These

errors are probably due to occlusions, large changes in the

depth range, and several outliers resulting from error projec-

tion.

For quantitative comparisons, we compute the absolute

angular error for the optical flow (AAEOF ), the RMS for

the disparity (RMSd ), the optical flow, (RMSOF ), and for

the optical flow together with the change in the disparity

(RMSOF+d ′ ). The errors were computed over two domains:

the whole sphere and nonoccluded pixels. The computed er-

rors are summarized in Table 3.

The initial disparity map computed by Felzenszwalb

and Huttenlocher (2006) was significantly improved by our

method (RMSd decreased from 3.3 to 1.3). This demon-

strates the advantages of our method in using the full spatio-

temporal information.
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Fig. 8 (a) Illustration of the scene motion on top and the reference

view below. (b) The top figure represents, from left to right, the ground

truth for the disparity at time t , disparity at time t + 1 and the optical

flow, horizontal and vertical components. The bottom figure shows

these results computed by our method

Fig. 9 The blue plots are the ground truth shape along longitudinal sections A and B, marked on the disparity map. The green plots is the results

of the recovered depth along these sections. Note that due to the perspective projection interpretation of the images, the object shape is not a ball

Table 3 The evaluated errors (w.r.t. the ground truth) of the projec-

tion of our scene flow and structure compared with the 2D results of

Huguet and Devernay (2007) and Wedel et al. (2008, 2011) as reported

in Wedel et al. (2011). RMS (pixels) error in the disparity, optical flow

(OF), and optical flow together with the disparity change. Also shown

is the absolute angular error (AAE) for the optical flow

Algorithm RMSd Without occluded regions With occluded regions

RMSOF RMSOF+d ′ AAEOF RMSOF RMSOF+d ′ AAEOF

Huguet and Devernay (2007) 3.8 0.37 0.83 1.24 0.69 2.51 1.75

Wedel et al. (2011) using SGM 2.9 0.34 0.63 1.04 0.66 2.45 1.50

Our method 1.24 0.32 0.55 1.98 0.43 1.44 2.28

To conclude, our results are similar to results obtained by

the state-of-the-art methods on this dataset. Our method is

designed to cope with a larger number of views. The results

of our method would probably improve if additional views

were available.

4.3 Real Data

In this set of experiments we used real-world sequences of

a moving scene. These sequences were captured by three

USB cameras (IDS uEye UI-1545LE-C). The cameras were
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calibrated using the MATLAB Calibration Toolbox. The lo-

cation of the cameras was fixed for all datasets. All test se-

quences were taken with an image size of 1280 × 1024 and

then downsampled by half. In all datasets, the depth was ini-

tialized to two planes that are parallel to the reference view,

located in Z = 2 · 103 mm and 103 mm. We next discuss our

results on three datasets.

The first dataset (Fig. 10) involves the rigid 3D motion

of a small object (car), in a static scene. The second dataset

(Fig. 11) exemplifies a larger motion, mostly in depth direc-

Fig. 10 Cars dataset: (a) the reference view at time t ; (b) the depth

map masked with the computed occlusion maps; (c) the magnitude of

the computed scene flow (mm); (d) zoom in at time t ; (e) the corre-

sponding warped image; and (f) zoom in at time t + 1; (g) the projec-

tion of the computed scene flow. Occluded pixels are colored in red

tion. The object is low in texture and is moving piecewise

rigidly (due to the rotation of the back part of the object).

The third experiment consists of a rotating face (Fig. 12).

In that case, the 3D motion is generally different for each

3D point. In addition, the motion of the hair is nonrigid. In

all three datasets, large occlusions exist due to the notable

dissimilarity between the frames.

We present our results in Figs. 10–12. For each dataset

we display the magnitude of the estimated scene-flow and

the resulting projection of our scene flow onto the reference

view. The motion of pixels that are occluded in at least one

of the images is indicated by red arrows. Note that most of

the errors are found in the computed occluded regions and

in the depth discontinuities. In addition, we present the es-

timated depth masked with the occlusion maps. In order to

visually validate our results, we present images warped to

the reference view. As can be seen in all the experiments,

our method successfully recovers the scene flow and depth.

It can be observed that the warped images are very similar

to the reference view.

5 Discussion and Conclusions

In this paper, we proposed a variational approach for si-

multaneously estimating the scene flow and structure from

multi-view sequences. The novel 3D point cloud represen-

tation, used to directly model the desired 3D unknowns,

allows smoothness assumptions to be imposed directly on

the scene flow and structure. In addition, the desired syn-

ergy between the 3D unknowns is obtained by imposing

the spatio-temporal brightness constancy assumption. Our

energy functional explicitly expresses the smoothness and

brightness constancy assumptions while enforcing geomet-

ric consistency between the views. The redundant informa-

Fig. 11 Cat dataset: (a–c) the three views at time t , where (c) is the

reference; (f–h) the corresponding views at time t + 1; (d) warped

image from h → c; (e) warped image from g → c, where the yellow

regions are the computed occlusions; (i) the magnitude of the resulting

scene flow (mm); (j) the depth map masked by the computed occlusion

maps; and (k) the projection of the computed scene flow. Occluded

pixels are colored in red
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Fig. 12 Maria dataset: (a–c) the three views at time t , where (c) is

the reference; (f–h) the corresponding views at time t + 1; (d) warped

image from h → c; (e) warped image from f → c, where the yellow

regions are the computed occlusions; (i) the magnitude of the resulting

scene flow (mm); (j) the depth map masked by the computed occlusion

maps; and (k) the projection of the computed scene flow. Occluded

pixels are colored in red

tion from multiple views adds supplementary constraints

that reduce ambiguities and improve stability.

The combination of our 3D representation in this multi-

view variational framework results in a challenging noncon-

vex optimization problem. Moreover, due to our 3D repre-

sentation, the relation between the image coordinates and

the unknowns is nonlinear (as opposed to optical flow or dis-

parity). Consequently, the derivation of the associated Euler-

Lagrange equations involves nontrivial computations. In ad-

dition, the use of multiple views requires that occlusions be

properly handled since each view adds more occluded re-

gions. Obviously, the occlusion between the views becomes

more severe when a wide baseline rig is considered. Our

variational framework, which is used for the first time for

multiple views and 3D representation, successfully recov-

ers the 3D structure and scene flow despite these difficulties.

Our accurate and dense results on real and synthetic data

demonstrate the validity of the developed method.

There are several challenges that remain open for future

work. These include dealing with larger non-textured re-

gions. Currently, these regions are handled using the reg-

ularization, since the data term does not provide sufficient

constraints. Another challenge is dealing with occluded re-

gions. Such regions are expected to increase, when the setup

consists of even larger differences in the fields of view of

the cameras than those considered in our experiments. On

the other hand, using more views may provide partial infor-

mation about these regions. As demonstrated in our results,

most of the errors are found in the depth discontinuities and

in the occluded regions.

It is, therefore, worthwhile to further study a method that

will directly cope with such regions, by, for example, im-

proving the smoothness terms near occlusion boundaries.
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Appendix A: Mapping Between Images

Our 3D parameterization in the presented framework intro-

duces a nonlinear transformation of the 3D unknowns, Z

and V, to each of the image’s plane. A notable challenge in

the minimization of the proposed functional arises from the

nontrivial mapping of the images’ coordinates to the refer-

ence camera coordinate system.

Using our parametrization, each pixel in the reference

camera, (x, y), and its corresponding depth, Z(x, y), spec-

ify a 3D point, P (see Eq. (5)). It follows that projecting

P onto the ith camera maps (x, y,Z(x, y)) to the point

pi = (xi, yi)
T . That is,

pi = Proj
(
P,M i

)
= f i

(
x, y,Z(x, y)

)
, (17)

where f i is the mapping to the corresponding ith image.

More precisely, f i is given by substituting Eq. (5) into

Eq. (1). For example, the component xi is given by:

xi = a · Z + b

c · Z + d
. (18)

The coefficients a, b, c and d depend on the reference

camera coordinates, (x, y):

a(x, y) = M i
11 · (x/sx − ox/sx) + M i

12 · (y/sy − oy/sy)

+ M i
13,

b(x, y) = M i
14,

(19)

c(x, y) = M i
31 · (x/sx − ox/sx) + M i

32 · (y/sy − oy/sy)

+ M i
33,

d(x, y) = M i
34,
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where M i is the 3 × 4 projection matrix of the ith camera

(subscripts denote the row and column indices). The expres-

sion for yi is equivalently computed.

Similarly, at time step t + 1, projecting P̂ = P + V maps

(x, y,Z(x, y),V (x, y)) to p̂i , denoted by a mapping, f̂ i :

p̂i = Proj
(

P̂,M i
)
= f̂ i

(
x, y,Z(x, y),V(x, y)

)
. (20)

Analogously to Eq. (18), the component x̂i is given by:

x̂i =
a · Z + M i

11 · u + M i
12 · v + M i

13 · w + b

c · Z + M i
31 · u + M i

32 · v + M i
33 · w + d

, (21)

where the coefficients a, b, c and d are defined in Eq. (19).

Appendix B: Image Derivatives with Respect to the 3D

Unknowns

A first step toward the numerical solution of the resulting

Euler-Lagrange equations (Eq. (12) or Eq. (13)) requires

computing the derivatives of the intensity functions with re-

spect to the 3D unknowns. To produce the final expressions

for these derivatives, the nonlinear relation between the 3D

unknowns and the image plane has to be carefully consid-

ered (see Appendix A). This appendix shows how these

computations are performed. The mathematical analysis is

preformed in the continuous domain. Thus, the frames as

well as the 3D unknowns are regarded as continuous func-

tions. Finally, the resulting equations are discretized by us-

ing standard approximations for the derivatives.

For simplicity, given a time step, t , we use the in-

tensity functions I t
i and I t+1

i to abbreviate Ii(pi, t) and

Ii (̂pi, t + 1), respectively. We next elaborate on the compu-

tation of derivatives of I t
i and I t+1

i with respect to Z and u,

denoted by ∂ZI t
i , ∂ZI t+1

i and ∂uI
t+1
i (the other derivatives

with respect to v and w are similarly computed).

I t
i can be regarded as a function of the reference image

coordinates, (x, y), and the corresponding depth, Z(x, y),

by considering a composition of two functions: the ith in-

tensity function and the mapping transformation, defined in

Appendix A. That is,

I t
i

(
x, y,Z(x, y)

)
= Ii(f

i
(
x, y,Z(x, y), t

)
. (22)

Similarly, I t+1
i can be regarded as a function of (x, y,

Z(x, y)) and V. That is,

I t+1
i (x, y,Z,V) = Ii

(
f̂ i(x, y,Z,V), t + 1

)
. (23)

Considering Eqs. (17)–(20), the chain rule is applied for

computing the partial derivatives:

∂ZI t
i =

(
∇I t

i

)T · ∂Zpi, (24)

∂ZI t+1
i =

(
∇I t+1

i

)T · ∂Zp̂i, (25)

∂uI
t+1
i =

(
∇I t+1

i

)T · ∂up̂i . (26)

The derivatives ∂ZpT
i = (∂Zxi, ∂Zyi)

T are directly com-

puted from Eqs. (18)–(19).

To compute the derivative of I t
i with respect to pi ,

(∇I t
i )

T , we use a warping approach. As discussed in Ap-

pendix A, a nonlinear mapping relates each of the image’s

plane to the reference camera. By warping I t
i toward the ref-

erence image using the estimated Z, the values of I t
i can be

directly related to the reference image values, I t
0 . Specifi-

cally, the required derivatives, ∇I t
i are then computed using

the warped image. Let I t
i,w be the warped image of I t

i . That

is,

I t
i,w(x, y) = Ii(pi, t). (27)

The warped image gradient is related to the original image

by:

(
∇I t

i,w

)T =
(
∂xI

t
i,w, ∂yI

t
i,w

)
=

(
∇I t

i

)T ·
( ∂xi

∂x
∂xi

∂y

∂yi

∂x
∂yi

∂y

)

︸ ︷︷ ︸
J

, (28)

where J is the Jacobian matrix of the change of coordinates,

(xi, yi) → (x, y). Therefore, the original image derivatives

are obtained by multiplying Eq. (28) by J−1, leading to:

(
∇I t

i

)T =
(
∇I t

i,w

)T · J−1. (29)

The Jacobian matrix, J , is obtained by computing the

derivatives of pi with respect to x and y. In particular, J in-

volves the derivatives of Z(x, y), namely ∂xZ and ∂yZ. Fol-

lowing the explanation above, ∇I t+1
i,w is similarly computed.

In this case, the Jacobian matrix, J , additionally involves

the derivatives of u,v and w with respect to the reference

camera coordinates.

Appendix C: Linearizion

This appendix describes the linearizion process of the result-

ing Euler-Lagrange equations and the numerical approxima-

tions used. At each pyramid level, a linear system of equa-

tions is obtained and small increments in the 3D unknowns,

dZ, and dV, are estimated. The total solution, Z + dZ, and

V + dV, is then used to initialize the next finer level (see

Sect. 2.3.2).

Considering equations (12)–(13), there are two sources

of nonlinearity:

1. nonlinearized data term;

2. nonquadratic cost function Ψ .
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Following the numerical approach suggested by Brox et al.

(2004), two nested fixed point iterations are used at each

pyramid level to remove the nonlinearity.

The outer iteration is responsible for removing the non-

linearity resulting from the nonlinear data term, using fixed

point iteration on Z and V. Let k be the outer index itera-

tion. The solution at the (k + 1)th iteration is decomposed

of the previous solution and small, unknown increments.

That is, Zk+1 = Zk + dZk and Vk+1 = Vk + dVk , where

dVk = (duk, dvk, dwk)T .

The first step toward linearizion is approximating the

nonlinear expression given in Eq. (11) using first order Tay-

lor expansion. We use �k
i , �̂k

i and �
t,k
i to denote the ex-

pressions given in Eq. (11) using the fixed values Zk and Vk .

That is,

�k
i = Ii

(
pk

i , t
)
− I0

(
pk

0, t
)
,

�̂k
i = Ii

(
p̂k

i , t + 1
)
− I0

(
p̂k

0, t + 1
)
, (30)

�
t,k
i = Ii

(
p̂k

i , t + 1
)
− Ii

(
pk

i , t
)
,

where pk
i = Proj(Pk,M i) and Pk is given by placing Zk

in Eq. (5). The expressions for p̂k
i and P̂

k
are analogously

given. Using these notations, the first order Taylor expan-

sions for these expressions are given by:

�k+1
i ≈ �k

i + ∂Z�k
i · dZk,

�̂k+1
i ≈ �̂k

i + ∂Z�̂k
i · dZk

+ ∂u�̂
k
i · duk + ∂v�̂

k
i · dvk + ∂w�̂k

i · dwk, (31)

�
t,k+1
i ≈ �t

i + ∂Z�
t,k
i

+ ∂u�
t,k
i · duk + ∂v�

t,k
i · dvk + ∂w�

t,k
i · dwk.

Equation (31) is computed by using the first order Taylor

expansion for the following expressions:

Ii

(
pk+1

i , t
)
= Ii

(
Proj

(
Pk+1,M i

)
, t

)

≈ Ii

(
pk

i , t
)
+ ∂ZIi(pi, t) · dZk, (32)

Ii

(
p̂k+1

i , t + 1
)
= Ii

(
Proj

(
P̂

k+1
,M i

)
, t + 1

)

≈ Ii

(
p̂k

i , t + 1
)
+ ∂ZIi

(
p̂k

i , t + 1
)
· dZk

+ ∂uIi

(
p̂k

i , t + 1
)
· duk

+ ∂vIi

(
p̂k

i , t + 1
)
· dvk

+ ∂wIi

(
p̂k

i , t + 1
)
· dwk, (33)

where Pk+1 = Pk + dPk is given by placing Zk + dZk

(Eq. (5)). Similarly, P̂
k+1 = P̂

k + dP̂
k

where dP̂
k =

dZk + dVk . The computation of the image derivatives with

respect to the 3D unknowns is detailed in Appendix A.

Therefore, deriving the associated Euler-Lagrange equa-

tions with respect to the unknown increments dZk and duk

results in:

0 =
N−1∑

i=0

Ψ ′((�t,k+1
i

)2)
�

t,k+1
i ·

(
�

t,k
i

)
Z

+
N−1∑

i=1

Ψ ′((�k+1
i

)2)
�k+1

i ·
(
�k

i

)
Z

+
N−1∑

i=1

Ψ ′((�̂k+1
i

)2)
�̂k+1

i ·
(
�̂k

i

)
Z

− αμ · div
(
Ψ ′(∣∣∇Zk+1

∣∣2)∇Zk+1
)
, (34)

0 =
N−1∑

i=0

Ψ ′((�t,k+1
i

)2)
�

t,k+1
i ·

(
�

t,k
i

)
u

+
N−1∑

i=1

Ψ ′((�̂ik+1)
2
)
�̂k+1

i ·
(
�̂k

i

)
u

− α · div
(
Ψ ′(∣∣∇uk+1

∣∣2 +
∣∣∇vk+1

∣∣2

+
∣∣∇wk+1

∣∣2)∇uk+1
)
. (35)

The dependency of the above two equations in the incre-

ments, dZk and duk , is obtained by substituting Eq. (31)

into �k+1
i ,�

t,k+1
i , and, �̂k+1

i . The equations for dvk and

dwk are similar to Eq. (35).

Applying the above approximations (Eq. (31)), the re-

sulting Euler-Lagrange equations are a nonlinear system

of equations in the unknowns dZk and dVk . The remain-

ing nonlinearity is originated by Ψ
′
. Therefore, an addi-

tional fixed point iterations loop for Ψ
′

expressions is pre-

formed. Finally, after standard discretization of the deriva-

tives, a linear system of equations is introduced. The solu-

tion is obtained by applying the successive overrelaxation

(SOR) method.
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