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Abstract

We present a multi-view stereo algorithm that addresses

the extreme changes in lighting, scale, clutter, and other

effects in large online community photo collections. Our

idea is to intelligently choose images to match, both at a

per-view and per-pixel level. We show that such adaptive

view selection enables robust performance even with dra-

matic appearance variability. The stereo matching tech-

nique takes as input sparse 3D points reconstructed from

structure-from-motion methods and iteratively grows sur-

faces from these points. Optimizing for surface normals

within a photoconsistency measure significantly improves

the matching results. While the focus of our approach is to

estimate high-quality depth maps, we also show examples

of merging the resulting depth maps into compelling scene

reconstructions. We demonstrate our algorithm on standard

multi-view stereo datasets and on casually acquired photo

collections of famous scenes gathered from the Internet.

1 Introduction

With the recent rise in popularity of Internet photo shar-

ing sites like Flickr and Google, community photo collec-

tions (CPCs) have emerged as a powerful new type of image

dataset. For example, a search for “Notre Dame Paris” on

Flickr yields more than 50,000 images showing the cathe-

dral from myriad viewpoints and appearance conditions.

This kind of data presents a singular opportunity: to recon-

struct the world’s geometry using the largest known, most

diverse, and largely untapped, multi-view stereo dataset

ever assembled. What makes the dataset unusual is not only

its size, but the fact that it has been captured “in the wild”—

not in the laboratory—leading to a set of fundamental new

challenges in multi-view stereo research.

In particular, CPCs exhibit tremendous variation in ap-

pearance and viewing parameters, as they are acquired by

an assortment of cameras at different times of day and in

various weather. As illustrated in Figures 1 and 2, light-

ing, foreground clutter, and scale can differ substantially

from image to image. Traditionally, multi-view stereo al-

gorithms have considered images with far less appearance

variation, where computing correspondence is significantly

easier, and have operated on somewhat regular distributions

of viewpoints (e.g., photographs regularly spaced around an

object, or video streams with spatiotemporal coherence). In

Figure 1. CPC consisting of images of the Trevi Fountain collected

from the Internet. Varying illumination and camera response yield

strong appearance variations. In addition, images often contain

clutter, such as the tourist in the rightmost image, that varies sig-

nificantly from image to image.

Figure 2. Images of Notre Dame with drastically different sam-

pling rates. All images are shown at native resolution, cropped to

a size of 200×200 pixels to demonstrate a variation in sampling

rate of more than three orders of magnitude.

this paper we present a stereo matching approach that starts

from irregular distributions of viewpoints, and produces ro-

bust high-quality depth maps in the presence of extreme ap-

pearance variations.

Our approach is based on the following observation:

given the massive numbers of images available online, there

should be large subsets of images of any particular site that

are captured under compatible lighting, weather, and expo-

sure conditions, as well as sufficiently similar resolutions

and wide enough baselines. By automatically identifying

such subsets, we can dramatically simplify the problem,

matching images that are similar in appearance and scale

while providing enough parallax for accurate reconstruc-

tion. While this idea is conceptually simple, its effective

execution requires reasoning both (1) at the image level, to

approximately match scale and appearance and to ensure

wide-enough camera baseline, and (2) at the pixel level,

to handle clutter, occlusions, and local lighting variations

and to encourage matching with both horizontal and vertical

parallax. Our main contribution is the design and analysis

of such an adaptive view selection process. We have found

the approach to be effective over a wide range of scenes and

CPCs. In fact, our experiments indicate that simple match-

ing metrics tolerate a surprisingly wide range of lighting

variation over significant portions of many scenes. While

we hope that future work will extend this operating range



and even exploit large changes in appearance, we believe

that view selection combined with simple metrics is an ef-

fective tool, and an important first step in the reconstruction

of scenes from Internet-derived collections.

Motivated by the specific challenges in CPCs, we also

present a new multi-view stereo matching algorithm that

uses a surface growing approach to iteratively reconstruct

robust and accurate depth maps. This surface growing ap-

proach takes as input sparse feature points, leveraging the

success of structure-from-motion techniques [2, 23] which

produce such output and have recently been demonstrated to

operate effectively on CPCs. Instead of obtaining a discrete

depth map, as is common in many stereo methods [21], we

opt instead to reconstruct a sub-pixel-accurate continuous

depth map. To greatly improve resilience to appearance dif-

ferences in the source views, we use a photometric window

matching approach in which both surface depth and normal

are optimized together, and we adaptively discard views that

do not reinforce cross-correlation of the matched windows.

Used in conjunction with a depth-merging approach, the re-

sulting approach is shown to be competitive with the cur-

rent top-performing multi-view stereo reconstruction meth-

ods on the Middlebury benchmarks [22].

2 Previous Work

Here we describe the most closely related work in multi-

view stereo (MVS), focusing on view selection, matching

with appearance variations, region growing, and normal

optimization. We refer the reader to [22] for a detailed

overview of the state-of-the-art in MVS.

Many MVS methods employ some form of global view

selection to identify nearby views, motivated by efficiency

and the desire to minimize occlusions. Commonly, MVS

methods assume a relatively uniform viewpoint distribution

and simply choose the k nearest images for each reference

view [19, 4, 6]. CPC datasets are more challenging in that

they are non-uniformly distributed in a 7D viewpoint space

of camera pose and focal length, thus representing an ex-

treme case of unorganized image sets [12]. Furthermore,

choosing the nearest views is often undesirable, since many

images are nearly identical and thus offer little parallax.

Local view selection has also been used before in MVS

techniques to achieve robustness to occlusions. Kang et

al. [13] exploit the assumption that the temporal order of

images matches the spatial order, and use shiftable windows

in time to adaptively choose frames to match. A number of

recent stereo matching methods have used outlier rejection

techniques to identify occlusions in the matching step [4, 6].

We further develop this kind of approach and demonstrate

that it can be generalized to handle many kinds of appear-

ance variations beyond occlusions.

A parallel thread of research in the stereo commu-

nity is developing robust matching metrics that enable

matching with variable lighting [10], non-Lambertian re-

flectance [11], and large appearance changes [15]. While

we have found normalized cross correlation (NCC) to be

surprisingly robust to appearance changes, use of more so-

phisticated techniques may further broaden the range of

views that can be compared, and is thus complementary to

the problem of view selection. We note, however, that in-

creased invariance can potentially lead to reduced discrimi-

natory power and should be used with care.

In its use of region-growing and normal optimization,

our MVS approach builds on previous work in the computer

vision and photogrammetry communities. Notably, Zhang

et al. [24] present a binocular stereo method that employs

normal optimization to obtain high quality results with

structured lighting. Hornung and Kobbelt [10] propose a

sample-and-fit approach to estimate planes and higher-order

surfaces for photo-consistency computations. Concurrent

with our work, Habbecke and Kobbelt [9] and Furukawa

and Ponce [5] introduced region growing approaches for

multi-view stereo that propagate a surface out from initial

seed points. These two approaches use careful modeling

of visibility to minimize the effects of outliers, whereas we

rely solely on robust statistics and adaptive view selection

to achieve reconstruction results of similar quality.

Our work builds on the framework of multiphoto ge-

ometrically constrained least squares matching (MPGC)

from the photogrammetry literature [8, 1]. In particular, it

extends the MPGC-based region-growing MVS algorithm

by Otto and Chau [20] by imposing consistent surface nor-

mals between multiple views. In a related region-growing

paper, Lhuillier and Quan [17] acknowledge the accuracy

of [20] but point out two major drawbacks: the inability

of an MPGC approach to define a uniqueness constraint

to avoid bad matches, and the need for large patch sizes

to achieve a stable match. In contrast, we show that even

small patch sizes are sufficient for high quality reconstruc-

tion if we use a good view selection process and a suitable

matching model. Other notable region-growing approaches

include Zhang and Shan [25], who cast the problem in a

probabilistic framework.

Our work is closely related to Kamberov et al.’s auto-

matic geometry reconstruction pipeline for unstructured im-

age sets [12]. The key algorithmic differences are our use

of MVS instead of binocular stereo for each reference view

and our view selection approach, which accounts for varia-

tions in image resolution and avoids matching narrow base-

lines. In addition, we demonstrate results on large CPCs

with considerably more variation in scene content and cap-

ture conditions.

3 Algorithm Overview

Our approach to reconstructing geometry from Internet

collections consists of several stages. First, we calibrate



the cameras geometrically and radiometrically (Section 4).

Next, we estimate a depth map for each input image — each

image serves as a reference view exactly once. In order to

find good matches, we apply a two-level view selection al-

gorithm. At the image level, global view selection (Sec-

tion 5.1) identifies for each reference view a set of good

neighborhood images to use for stereo matching. Then, at

the pixel level, local view selection (Section 5.2) determines

a subset of these images that yields a stable stereo match.

This subset generally varies from pixel to pixel.

Stereo matching is performed at each pixel (Section 6)

by optimizing for both depth and normal, starting from an

initial estimate provided by SIFT feature points or copied

from previously computed neighbors. During the stereo op-

timization, poorly matching views may be discarded and

new ones added according to the local view selection cri-

teria. The traversal of pixels is prioritized by their esti-

mated matching confidence. Pixels may be revisited and

their depths updated if a higher-confidence match is found.

4 Calibrating Internet Photos

Because our input images are harvested from community

photo collections, the camera poses, intrinsics, and sensor

response characteristics are generally not provided. There-

fore we must first calibrate the set of images both geometri-

cally and radiometrically.

First, when feasible, we remove radial distortion from

the images using PTLens, a commercially available tool that

extracts camera and lens information from the image meta-

data (EXIF tags) and corrects for radial distortion based on

a database of camera and lens properties. Images that can-

not be corrected are automatically removed from the CPC

unless we know that they contain no significant lens distor-

tion (e.g., in the case of the MVS evaluation datasets [22]).

Next, the remaining images are entered into a robust, met-

ric structure-from-motion (SfM) system [2, 23] (based on

the SIFT feature detector [18]), which yields extrinsic and

intrinsic calibration (position, orientation, focal length) for

all successfully registered images. It also generates a sparse

scene reconstruction from the matched features, and for

each feature a list of images in which it was detected.

In order to model radiometric distortions, we attempt

to convert all input images into a linear radiometric space.

Unless the exact response curve of the capture system is

known, we assume that the images are in standard sRGB

color space and apply the inverse sRGB mapping.

5 View Selection

5.1 Global View Selection

For each reference view R, global view selection seeks a set

N of neighboring views that are good candidates for stereo

matching in terms of scene content, appearance, and scale.

In addition, the neighboring views should provide sufficient

parallax with respect to R and each other in order to enable a

stable match. Here we describe a scoring function designed

to measure the quality of each candidate neighboring view

based on these desiderata.

To first order, the number of shared feature points recon-

structed in the SfM phase is a good indicator of the com-

patibility of a given view V with the reference view R. In-

deed, images with many shared features generally cover a

similar portion of the scene. Moreover, success in SIFT

matching is a good predictor that pixel-level matching will

also succeed across much of the image. In particular, SIFT

selects features with similar appearance, and thus images

with many shared features tend to have similar appearance

to each other, overall.

However, the number of shared feature points is not suf-

ficient to ensure good reconstructions. First, the views with

the most shared feature points tend to be nearly collocated

and as such do not provide a large enough baseline for ac-

curate reconstruction. Second, the scale invariance of the

SIFT feature detector causes images of substantially dif-

ferent resolutions to match well, but such resolution differ-

ences are problematic for stereo matching.

Thus, we compute a global score gR for each view V
within a candidate neighborhood N (which includes R) as

a weighted sum over features shared with R:

gR(V ) =
∑

f∈FV ∩FR

wN(f) · ws(f), (1)

where FX is the set of feature points observed in view X ,

and the weight functions are described below.

To encourage a good range of parallax within a neigh-

borhood, the weight function wN(f) is defined as a product

over all pairs of views in N:

wN(f) =
∏

Vi,Vj∈N

s.t. i 6=j, f∈FVi
∩FVj

wα(f, Vi, Vj), (2)

where wα(f, Vi, Vj) = min((α/αmax)
2, 1) and α is the an-

gle between the lines of sight from Vi and Vj to f . The func-

tion wα(f, Vi, Vj) downweights triangulation angles below

αmax, which we set to 10 degrees in all of our experiments.

The quadratic weight function serves to counteract the trend

of greater numbers of features in common with decreas-

ing angle. At the same time, excessively large triangula-

tion angles are automatically discouraged by the associated

scarcity of shared SIFT features.

The weighting function ws(f) measures similarity in

resolution of images R and V at feature f . To estimate

the 3D sampling rate of V in the vicinity of the feature f ,

we compute the diameter sV (f) of a sphere centered at f
whose projected diameter in V equals the pixel spacing in

V . We similarly compute sR(f) for R and define the scale



weight ws based on the ratio r = sR(f)/sV (f) using

ws(f) =







2/r 2 ≤ r

1 1 ≤ r < 2

r r < 1 .

(3)

This weight function favors views with equal or higher res-

olution than the reference view.

Having defined the global score for a view V and neigh-

borhood N, we could now find the best N of a given size

(usually |N| = 10), in terms of the sum of view scores
∑

V ∈N
gR(v). For efficiency, we take a greedy approach

and grow the neighborhood incrementally by iteratively

adding to N the highest scoring view given the current N

(which initially contains only R).

Rescaling Views Although global view selection tries

to select neighboring views with compatible scale, some

amount of scale mismatch is unavoidable due to variability

in resolution within CPCs, and can adversely affect stereo

matching. We therefore seek to adapt, through proper filter-

ing, the scale of all views to a common, narrow range either

globally or on a per-pixel basis. We chose the former to

avoid varying the size of the matching window in different

areas of the depth map and to improve efficiency. Our ap-

proach is to find the lowest-resolution view Vmin ∈ N rel-

ative to R, resample R to approximately match that lower

resolution, and then resample images of higher resolution

to match R.

Specifically, we estimate the resolution scale of a view

V relative to R based on their shared features:

scaleR(V ) =
1

|FV ∩ FR|

∑

f∈FV ∩FR

sR(f)

sV (f)
. (4)

Vmin is then simply equal to arg minV ∈N scaleR(V ). If

scaleR(Vmin) is smaller than a threshold t (in our case

t = 0.6 which corresponds to mapping a 5×5 reference

window on a 3×3 window in the neighboring view with

the lowest relative scale), we rescale the reference view so

that, after rescaling, scaleR(Vmin) = t. We then rescale

all neighboring views with scaleR(V ) > 1.2 to match the

scale of the reference view (which has possibly itself been

rescaled in the previous step). Note that all rescaled ver-

sions of images are discarded when moving on to compute

a depth map for the next reference view.

5.2 Local View Selection

Global view selection determines a set N of good match-

ing candidates for a reference view and matches their scale.

Instead of using all of these views for stereo matching at a

particular location in the reference view, we select a smaller

set A ⊂ N of active views (typically |A|=4). Using such a

subset naturally speeds up the depth computation.

During stereo matching we iteratively update A using a

set of local view selection criteria designed to prefer views

that, given a current estimate of depth and normal at a pixel,

are photometrically consistent and provide a sufficiently

wide range of observation directions. To measure photo-

metric consistency, we employ mean-removed normalized

cross correlation (NCC) between pixels within a window

about the given pixel in R and the corresponding window

in V (Section 6). If the NCC score is above a conservative

threshold, then V is a candidate for being added to A.

In addition, we aim for a useful range of parallax be-

tween all views in A. Viewpoints in a typical CPC are

not equally distributed in 3D space. Most images are taken

from the ground plane, along a path, or from a limited num-

ber of vantage points. At a minimum, as we did during

global view selection, we need to avoid computing stereo

with small triangulation angles. In addition, we would like

to observe points from directions that are not coplanar. This

is particularly important for images containing many line

features such as architectural scenes, where matching can

be difficult if views are distributed along similar directions.

For example, a horizontal line feature yields indeterminate

matches for a set of viewpoints along a line parallel to that

line feature.

We can measure the angular distribution by looking at

the span of directions from which a given scene point (based

on the current depth estimate for the reference pixel) is ob-

served. In practice, we instead consider the angular spread

of epipolar lines obtained by projecting each viewing ray

passing through the scene point into the reference view.

When deciding whether to add a view V to the active set

A, we compute the local score

lR(V ) = gR(V ) ·
∏

V ′∈A

we(V, V ′), (5)

where we(V, V ′) = min(γ/γmax, 1) and γ is the acute an-

gle between the pair of epipolar lines in the reference view

as described above. We always set γmax = 10 degrees.

The local view selection algorithm then proceeds as fol-

lows. Given an initial depth estimate at the pixel, we find

the view V with the highest score lR(V ). If this view has

a sufficiently high NCC score (we use a threshold of 0.3),

it is added to A; otherwise it is rejected. We repeat the

process, selecting from among the remaining non-rejected

views, until either the set A reaches the desired size or no

non-rejected views remain. During stereo matching, the

depth (and normal) are optimized, and a view may be dis-

carded (and labeled as rejected) as described in Section 6.

We then attempt to add a replacement view, proceeding as

before. It is easy to see that the algorithm terminates, since

rejected views are never reconsidered.

6 Multi-View Stereo Reconstruction

Our MVS algorithm has two parts. A region-growing

framework maintains a prioritized queue Q of matching



candidates (pixel locations in R plus initial values for depth

and normals) [20]. And, a matching system takes a match-

ing candidate as input and computes depth, normal, and a

matching confidence using neighboring views supplied by

local view selection. If the match is successful, the data is

stored in depth, normal, and confidence maps and the neigh-

boring pixels in R are added as new candidates to Q.

6.1 Region Growing

The idea behind the region growing approach is that a suc-

cessfully matched depth sample provides a good initial es-

timate for depth, normal, and matching confidence for the

neighboring pixel locations in R. The optimization process

is nonlinear with numerous local minima, making good ini-

tialization critical, and it is usually the case that the depth

and normal at a given pixel is similar to one of its neigh-

bors. This heuristic may fail for non-smooth surfaces or at

silhouettes.

Region growing thus needs to be combined with a robust

matching process and the ability to revisit the same pixel lo-

cation multiple times with different initializations. Prioritiz-

ing the candidates is important in order to consider matches

with higher expected matching confidence first. This avoids

growing into unreliable regions which in turn could provide

bad matching candidates. We therefore store all candidates

in a priority queue Q and always select the candidate with

highest expected matching confidence for stereo matching.

In some cases, a new match is computed for a pixel that

has previously been processed. If the new confidence is

higher than the previous one, then the new match informa-

tion overwrites the old. In addition, each of the pixel’s 4-

neighbors are inserted in the queue with the same match

information, if that neighboring pixel has not already been

processed and determined to have a higher confidence. Note

that, when revisiting a pixel, the set of active views A is re-

set and allowed to draw from the entire neighborhood set N

using the local view selection criteria.

Initializing the Priority Queue The SfM features visi-

ble in R provide a robust but sparse estimate of the scene

geometry and are therefore well suited to initialize Q. We

augment this set with additional feature points visible in all

the neighboring views in N, projecting them into R to de-

termine their pixel locations. Note that this additional set

can include points that are not actually visible in R; these

bad initializations are likely to be over-written later.

Then, for each of the features points, we run the stereo

matching procedure, initialized with the feature’s depth and

a fronto-parallel normal, to compute a depth, normal, and

confidence. The results comprise the initial contents of Q.

6.2 Stereo Matching as Optimization

We interpret an n × n pixel window centered on a pixel

in the reference view R as the projection of a small pla-

nar patch in the scene. Our goal in the matching phase is

Figure 3. Parametrization for stereo matching. Left: The win-

dow centered at pixel (s, t) in the reference view corresponds to a

point xR(s, t) at a distance h(s, t) along the viewing ray ~rR(s, t).

Right: Cross-section through the window to show parametrization

of the window orientation as depth offset hs(s, t).

then to optimize over the depth and orientation of this patch

to maximize photometric consistency with its projections

into the neighboring views. Some of these views might not

match, e.g., due to occlusion or other issues. Such views

are rejected as invalid for that patch and replaced with other

neighboring views provided by the local view selection step.

Scene Geometry Model We assume that scene geometry

visible in the n × n pixel window centered at a pixel loca-

tion (s, t) in the reference view is well modeled by a planar,

oriented window at depth h(s, t) (see Figure 3). The 3D

position xR(s, t) of the point projecting to the central pixel

is then

xR(s, t) = oR + h(s, t) · ~rR(s, t) (6)

where oR is the center of projection of view R and ~rR(s, t)
is the normalized ray direction through the pixel. We en-

code the window orientation using per-pixel distance offsets

hs(s, t) and ht(s, t), corresponding to the per-pixel rate of

change of depth in the s and t directions, respectively. The

3D position of a point projecting to a pixel inside the match-

ing window is then

xR(s + i, t + j) = oR+ (7)

[h(s, t) + ihs(s, t) + jht(s, t)] · ~rR(s + i, t + j)

with i, j = −n−1

2
. . . n−1

2
. Note that this only approximates

a planar window but we assume that the error is negligible

for small n, i.e., when ~rR(s + i, t + j) ≈ ~rR(s, t). We can

now determine the corresponding locations in a neighbor-

ing view k with sub-pixel accuracy using that view’s pro-

jection Pk(xR(s + i, t + j)). This formulation replaces the

commonly used per-view window-shaping parameters (see

e.g., [8]) with an explicit representation of surface orienta-

tion that is consistent between all views, thus eliminating

excess degrees of freedom.

Photometric Model While we could in principle model a

large number of reflectance effects to increase the ability to

match images taken under varying conditions, this comes at

the cost of adding more parameters. Doing so increases not

only the computational effort but also decreases the stabil-

ity of the optimization. We instead use a simple model for

reflectance effects—a color scale factor ck for each patch



projected into the k-th neighboring view. Given constant il-

lumination over the patch area in a view (but different from

view to view) and a planar surface, this perfectly models

Lambertian reflectance. The model fails for example when

the illumination changes within the patch (e.g., at shadow

boundaries or caustics) or when the patch contains a spec-

ular highlight. It also fails when the local contrast changes

between views, e.g., for bumpy surfaces viewed under dif-

ferent directional illumination or for surfaces that are wet in

some views but not others [16].

In practice, this model provides sufficient invariance to

yield good results on a wide range of scenes, when used in

combination with view selection. Furthermore, the range of

views reliably matched with this model is well-correlated to

images that match well using the SIFT detector.

MPGC Matching with Outlier Rejection Given the

models in the previous section we can now relate the pixel

intensities within a patch in R to the intensities in the k-th

neighboring view:

IR(s + i, t + j) = ck(s, t) · Ik(Pk(xR(s + i, t + j))) (8)

with i, j = −n−1

2
. . . n−1

2
, k = 1 . . . m where m = |A|

is the number of neighboring views under consideration.

Omitting the pixel coordinates (s, t) and substituting in

Equation 7, we get

IR(i, j) = ck ·Ik(Pk(oR+~rR(i, j)·(h+ihs+jht))). (9)

In the case of a 3-channel color image, Equation 9 repre-

sents three equations, one per color channel. Thus, consid-

ering all pixels in the window and all neighboring views,

we have 3n2m equations to solve for 3 + 3m unknowns: h,

hs, ht, and the per-view color scale ck. (In all of our exper-

iments, we set n = 5 and m = 4.) To solve this overde-

termined nonlinear system we follow the standard MPGC

approach [8, 1] and linearize Equation 9:

IR(i, j) = ck · Ik(Pk(oR + ~rR(i, j) · (h + ihs + jht)))

+
∂Ik(i, j)

∂h
· (dh + i · dhs + j · dht). (10)

Given an initial value for h, hs, and ht (which we then hold

fixed), we can solve for dh, dhs, dht, and the ck using linear

least squares. Then we update h, hs, and ht by adding to

them dh, dhs, and dht, respectively, and iterate.

In this optimization we are essentially solving for the

parameters that minimize the sum of squared differences

(SSD) between pixels in the reference window and pixels

in the neighboring views. We could have instead optimized

with respect to sums of NCC’s. The behaviors of these met-

rics are somewhat different, however. Consider the case

of a linear gradient in intensity across a planar portion of

the scene. After removing the mean and normalizing, NCC

would permit shifted windows to match equally well, re-

sulting in an unwanted depth ambiguity. Now consider the

case of an unshadowed planar region with constant albedo.

The SSD optimization, after estimating the scale factor, will

converge to a minimum with nearly zero error, essentially

fitting to the noise. By contrast, after removing the mean,

NCC is essentially measuring the correlation of the noise

between two views, which will be low. In this case, NCC

provides a good measure of how (un-)confident we are in

the solution. As described below, we have opted to use SSD

for the parameter estimation, while using NCC to measure

confidence, as well as convergence.

While the iterative optimization approach described

above tends to converge quickly (i.e., within a couple of it-

erations given good initial values), matching problems will

yield slow convergence, oscillation, or convergence to the

wrong answer [7]. We therefore include specific mecha-

nisms into the optimization to prevent these effects.

We first perform 5 iterations to allow the system to settle.

After each subsequent iteration, we compute the NCC score

between the patch in the reference view and each neighbor-

ing view. We then reject all views with an NCC score be-

low an acceptance threshold (typically κ = 0.4). If no view

was rejected and all NCC scores changed by no more than

ǫ = 0.001 compared to the previous iteration, we assume

that the iteration has converged. Otherwise, we add missing

views to the active set and continue to iterate. The iteration

fails if we do not reach convergence after 20 iterations or the

active set contains less than the required number of views.

In practice, we modify the above procedure in two ways

to improve its behavior significantly. First, we update the

normal and color scale factors only every fifth iteration or

when the active set of neighboring views has changed. This

improves performance and reduces the likelihood of oscil-

lation. Second, after the 14th iteration (i.e., just before an

update to the color scale factors and normal), we reject all

views whose NCC score changed by more than ǫ to stop a

possible oscillation.

If the optimization converges and the dot product be-

tween normal and the viewing ray ~rR(s, t) is above 0.1, we

compute a confidence score C as the average NCC score be-

tween the patch in the reference view and all active neigh-

boring views, normalized from [κ . . . 1] to [0 . . . 1]. We use

this score to determine how to update the depth, normal, and

confidence maps and Q, as described in Section 6.1.

7 Results and Conclusion

We computed MVS reconstructions for several Internet

CPCs gathered from Flickr varying widely in terms of size,

number of photographers, and scale (see Table 1). Ad-

ditional reconstructions are provided on the project web

page [3]. Figure 4 shows for each site a sample view, the

corresponding depth map, and a shaded rendering of the

depth map. These results demonstrate that the MVS sys-

tem can reconstruct detailed and high quality depth maps



Dataset Images Photographers Scale range

Pisa Duomo 56 8 7.3

Trevi Fountain 106 51 29.0

Statue of Liberty 72 29 14.2

Notre Dame 206 92 290.2

St. Peter (Rome) 151 50 29.5

Table 1. Overview of the CPCs used in this paper.

Figure 4. Individual views from the Trevi, Statue of Liberty, St.

Peter cathedral, and Pisa Duomo dataset, corresponding depth

maps, and shaded renderings of each depth map.

for widely varying input data. The computation time varies

with the number of reconstructed depth samples and the

speed of convergence of the optimization. The depth map of

St. Peter in Fig. 4, for example, contains 320K valid depth

samples, and was reconstructed in 1.7 hours of CPU time

(3.2 GHz Xeon).

Figure 5 uses the nskulla data set to demonstrate the ef-

fectiveness of two key ingredients of our approach—local

view selection and optimization of normals. Local view se-

lection enables more matches and improves completeness,

even for datasets such as this one taken under laboratory

conditions. Optimization of normals reduces noise as the

patch better models the underlying surface geometry.

The individual depth maps can be combined into a sin-

gle surface mesh using a variety of techniques. Figure 6

LVS+ON ON only LVS only neither

Figure 5. Effect of local view selection (LVS) and optimization of

normals (ON) on a depth map from the nskulla model. The lower

row shows an enlarged version of the marked area of the model.

Figure 6. Left and center: Full merged model of 72 depth maps of

the Statue of Liberty and close-up view. Right: Merged model of

the central portal of Notre Dame cathedral (206 depth maps).

shows merged results for two CPCs using a Poisson surface

reconstruction approach [14]. Note that this surface recon-

struction approach performs fair hole-filling where no scene

geometry is estimated. For objects only partially observed

(e.g., only the front side), the hole-fill can extend well be-

yond the boundary of the observations. As a post-process,

we automatically remove these spurious extensions using

standard mesh filtering operations.

To compare the performance of our MVS approach with

other state-of-the-art methods, we reconstructed two bench-

mark datasets from the MVS evaluation [22]. As the in-

put images were captured using constant illumination, we

fixed the color scale factor ck = 1, excluding it from the

optimization. The templeFull model achieved an accuracy

of 0.42 mm at 98.2 % completeness. The dinoFull model

achieved an accuracy of 0.46 mm at 96.7 % completeness.

Both reconstructions are accurate to within a few hun-

dredths of a millimeter of the top reported results, demon-

strating that our approach is competitive with the current

state-of-the-art for images captured under lab conditions.

To evaluate the quality of our reconstructions from CPC

datasets, we created a merged surface model from the 56

depth maps in the Pisa Duomo dataset and compared it to a

partial model of the Duomo acquired with a time-of-flight

laser scanning system. Figure 7 shows both models and

an overlaid comparison. Using the same accuracy metric

described in [22], modified to avoid portions of the model

not captured by the laser scanner, we found that 90% of



Figure 7. Comparison of the merged Pisa (top) model with a laser

scanned model (bottom left). The false color rendering on the right

shows the registered models overlaid on top of each other.

the reconstructed samples are within 0.128 m of the laser

scanned model of this 51 m high building.

In conclusion, we have presented a multi-view stereo al-

gorithm capable of computing high quality reconstructions

of a wide range of scenes from large, shared, multi-user

photo collections available on the Internet. With the ex-

plosion of imagery available online, this capability opens

up the exciting possibility of computing accurate geometric

models of the world’s sites, cities, and landscapes.
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