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Abstract

We address the problem of estimating the three-dimensional shape and complex appearance of a scene

from a calibrated set of views under fixed illumination. Our approach relies on a rank condition that must

be satisfied when the scene exhibits “specular + diffuse” reflectance characteristics. This constraint is

used to define a cost functional for the discrepancy between the measured images and those generated

by the estimate of the scene, rather than attempting to match image-to-image directly. Minimizing such

a functional yields the optimal estimate of the shape of the scene, represented by a dense surface, as well

as its radiance, represented by four functions defined on such a surface. These can be used to generate

novel views that capture the non-Lambertian appearance of the scene.

1 Introduction

Multi-frame stereo consists of reconstructing the three-dimensional (3-D) shape of a scene from a col-

lection of images taken from different vantage points. This is one of the classical problems of computer

vision, where significant progress has been made in the last decade. In the early days of stereo, it was

common to decompose the problem into two steps: establishing correspondence between points in dif-

ferent views, and then triangulating their position in space. Points in different images are said to be in

correspondence when they are images of the same physical point in space via perspective projection.

Once correspondence is established, the position of the points as well as the relative pose of the cameras

can be determined using well-established procedures that are now the subject of textbooks [7, 10, 22].

Unfortunately the first step, establishing correspondence, is far less amenable to a clean and simple

solution. First of all, point correspondence can only be reliably established for a very small subset of the

scene. For instance, given a scene that contains a white wall, we cannot say which point on one image of

the wall corresponds to in another image, since the local appearance is the same for every neighborhood

of a point. Therefore, after establishing correspondence and reconstructing the 3-D position of relatively

few “feature” points,1 one would have to “densify” the reconstruction by filling in points that cannot be

1Even a few thousand feature points are far fewer than the millions of pixels in an image
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matched from image to image.

Second, and more important, correspondence cannot be established by just comparing local image

statistics unless the scene has the property that its appearance does not change with the viewpoint.

Materials that exhibit this property are called Lambertian, or diffuse, and they include matte surfaces

such as chalk, rough stone and certain fabrics2. However, most of the materials that populate our daily

scenes such as plastic, polished stone, skin, glass, metal, etc. do not enjoy this property. Indeed, one

can make an object that deviates severely from the ideal Lambertian model, for instance a car, appear

arbitrarily different from image to image by changing the viewpoint and the illumination.

In this paper the first issue is addressed at the outset by modeling the shape of the scene as a collection

of smooth surfaces: Like many recent works in multi-view stereo, we do not seek to establish corre-

spondence among a sparse set of feature points and then fill in the rest. Rather, we start with a generic

surface, say a large sphere or a smoothed cube, and evolve it, possibly via changes of topology, to best

approximate the shape of the scene. We do so by numerically integrating systems of partial differential

equations using the level set method. The second issue is addressed by bypassing the direct comparison

of local image intensity, and instead comparing all images to the underlying model of the scene, which

necessarily includes the current estimate of its shape as well as its radiance. Our model of the radiance is

not in an explicit functional form; instead, it accounts for deviations from Lambertian reflection through

a constraint on the rank of the radiance tensor field, which we will define shortly3.

The result is an algorithm that takes as input a sequence of images of a scene with complex appearance,

such as those in Figure 1 and, with no intermediate steps, returns an estimate of its shape, described by

one or more “dense” surfaces, and an estimate of its appearance, described by the radiance tensor field.

Such a description can be used to render the scene from novel viewpoints, assuming a static illumination,

in ways that preserve the complex appearance of the original scene.

2Most feature correspondence algorithms implicitly assume that the scene is “almost” Lambertian, in the sense that the

deviation from an ideal Lambertian model is small, not modeled explicitly, and instead lumped together with other factors as

“noise.”
3Incidentally, as shown in [28], the distinction of comparing all images to an underlying model, as opposed to matching

image-to-image, is relevant only in the presence of non-Lambertian scenes, or other constraints on the diffuse albedo, as we

will discuss shortly and as shown in [28].
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Since a general scene cannot be reconstructed under varying and unknown illumination, we must make

assumptions about the imaging process. Specifically, we assume that illumination is fixed but otherwise

arbitrary, except for being “far enough” from the scene in a way that we will make precise in Section

2.1. Furthermore, we assume that the scene is a collection of smooth or piecewise smooth surfaces, and

that its reflectance can be modeled by the linear combination of an ideal Lambertian component and a

specular component, or what is known in computer graphics as a “diffuse + specular” reflectance model.

In the next subsection we will briefly review the state of the art as it relates to our contribution. Before

we formally introduce the quantities at play in Section 2.1 we use the terms “photometry,” “radiance,”

“reflectance” and “appearance” interchangeably, and similarly for “shape,” “structure” and “geometry.”

1.1 Relation to prior work

In order for any 3-D reconstruction to be possible, some assumption must be made on the photometry

of the scene4. The most common assumption is that the light is fixed and the scene is Lambertian,

i.e., the energy radiated from any point in the scene does not depend on the outgoing direction, so that

correspondence can be easily established by comparing individual images. Indeed, as we have shown in

[28], under the assumption of Lambertian reflection and in the absence of any additional information or

constraint on the diffuse albedo, there is no difference between comparing all images to an underlying

model of the scene as opposed to matching image-to-image directly. The situation is quite different, as

we discuss in [28], when the scene deviates from ideal Lambertian reflection. In this case, reflection

is most often described by an explicit model, a bidirectional reflectance distribution function (BRDF),

chosen among a parametric class derived by physical or empirical considerations5.

Most often, however, deviations from Lambertian reflection are modeled as “noise” or “outliers” and

either minimized by choice of a suitable cost functional (such as photo-consistency [21]), or rejected

4It is straightforward to show that if a scene has arbitrary reflectance properties and one can change the light distribution

from frame to frame, correspondence cannot be established [32].
5For instance, [23] and [33] exploit the reciprocity condition of the BRDF to perform reconstruction using a particular

imaging setup where multiple images are obtained by swapping a point light source and the camera. We do not impose

constraints on the viewpoint, and do not restrict the illumination to be a point source. Indeed, we do not model illumination

explicitly in our approach.
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Figure 1: Scenes with strong specularities are a challenge to algorithms relying on image-to-image

matching.

using robust statistical methods. For instance, one can select candidates for correspondence in each

image by looking at image statistics integrated over a region, compute the cross-correlation or other

score among putative correspondences, and then test whether they are consistent with a common epipolar

geometry. This works well when the scene is composed mostly of matte surfaces with few specular

highlights. However, for objects that are shiny and concentrated light distributions (see Figure1), this

approach shows limitations. Alternatively, one can set up a global cost functional obtained by integrating

on the entire scene a local consistency measure (e.g. normalized cross-correlation) computed on the

images, and minimize it with respect to the unknown shape using variational techniques, an approach

pioneered by [8] in stereo reconstruction. Our approach is based on a similar philosophy, and we also

use level set methods [27] to numerically solve the variational problem. However, while Faugeras and

Keriven estimate geometry alone, we estimate both geometry and photometry (radiance) and forego the

Lambertian assumption that is latent in the cost functional used in [8]. [16] have modified the cost

functional to minimize the effects of isolated specularities.

This work also relates to a series of works where the same computational framework is used in esti-

mating the shape and radiance for scenes of increasing complexity: from constant diffuse albedo [31] to

smooth diffuse albedo [18], to piecewise constant and piecewise smooth diffuse albedo [17], to arbitrary

diffuse and constant specular albedo, to arbitrary diffuse and specular albedos.
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In addressing non-Lambertian reflection, our work relates to several studies on specular reflections in

stereo matching and reconstruction. [1] consider the likelihood of correct stereo matching by analyzing

the relationship between stereo vergence and surface roughness, and propose a trinocular system where

only two images are used at a time in the computation of depth at a point. [2, 3] excise specularities as a

pre-processing step, similarly to [26], while [24] do so using polarized filters.

Non-Lambertian reflection has also been addressed in the context of photometric stereo, for instance

by [13]. In this case, the viewpoint is fixed while the illumination changes. In this respect, this is quite

different from our approach, that is more in line with traditional multi-view stereo in assuming that the

viewpoint, and not the illumination, moves. Other approaches [11] compare the observed images with

that of objects with known shape to obtain surface normals and hence shape.

This work also relates to the general problem of estimating reflectance properties as well as shape from

sequences of images. For instance [32] use known shape to estimate global illumination [32]; in light

field rendering [5, 9, 25] there is no explicit reconstruction of shape, and the radiance tensor, extended

to the volume, is sampled directly. Indeed, the rank constraint on the radiance tensor field is often used

in light field rendering, albeit not for inferring properties of the scene but, rather, for computational

efficiency.

This work addresses the problem of multi-view stereo with fixed illumination and arbitrarily changing

viewpoint. To the best of our knowledge, we are the first to propose a multi-view stereo algorithm that

can provide an estimate of both dense shape and non-Lambertian reflection. Our algorithm is based on

a constraint on the rank of the radiance tensor field (Section 2.1), which we show to imply (and hence

be more general than) a “diffuse + specular” reflection models commonly used in Computer Graphics

(Proposition 1).

2 Local modeling of radiance and image discrepancy

In this section we introduce the model of photometry, based on the radiance tensor field, and the measure

of discrepancy between model and images that is the basis of our approach.
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Figure 2: The local coordinate frame on the tangent plane, the discretization of the local neighborhood,

and the projection onto an image.

2.1 The radiance tensor field

Let S be a (smooth) surface embedded in R
3 and P be the generic point on S, with coordinates X =

[X1, X2, X3] ∈ R
3 with respect to a fixed world reference frame. We denote with TPS the tangent plane

to the surface at the point P . The generic vector in the tangent plane (embedded in Euclidean space) has

coordinates v ∈ R
3. Let an ideal perspective camera be characterized by a Euclidean reference frame

g ∈ SE(3), that describes the change of coordinates between the world reference frame and the frame

attached to the optical center of the camera, represented by a rotation matrix and a translation vector6.

Therefore, if π : R
3 −→ R

2 denotes the canonical perspective projection7, the point P projects onto

each image in the coordinates x = π(gP ).

For each point P ∈ S we consider a discretization of a small neighborhood ΩP ⊂ TPS around

it. This discretization is usually done with a tessellation of TPS, which we represent via the vec-

6 g acts on a point P with coordinates X via gP , which has coordinates RX + T where R ∈ SO(3) is an orthonormal

matrix with positive determinant and T ∈ R
3. The push-forward action of g on vectors v ∈ TR

3 with coordinates V is given

by g∗v, which has coordinates RV.
7π(X) = [X1/X3, X2/X3].
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tors v1, v2, . . . , vm, where m is the number of points in ΩP , as shown in Figure 2. We assume to be

able to measure the amount of light leaving these points toward a discrete number n of camera poses,

g1, g2, . . . , gn. Therefore, to each point P we can associate an array of m × n ideal measurements, one

column for each camera view and one row for each point in ΩP , as

R(P ) =













ρ(v1, g1) . . . ρ(v1, gn)

...
. . .

...

ρ(vm, g1) . . . ρ(vm, gn)













(1)

where ρ(vi, gj) can be thought of as an approximate measurement of the radiance of the surface at a

point. Notice that Rij
.
= ρ(vi, gj) relates to the ideal image Ij with an explicit dependence on P via the

irradiance equation [12, page 208], assuming a pin-hole projection:

Rij = Ij(π(gj(P + vi))) ∀ vi ∈ ΩP (2)

for all j = 1, 2, . . . , n. The map S → R
m×n; P 7→ R(P ) thus defines a tensor field on S, R(·) which,

for any fixed P , is an m × n matrix, called the radiance tensor, or simply “radiance”. In practice, the

images Ij are measured only up to noise, so what is available is

Ĩj(x) = Ij(x) + wj(x); R̃ij = Rij + wij (3)

where wj(x) measures the discrepancy of the data from the model and can be considered as the real-

ization of a random process (and therefore assumed to have a distribution associated to it), or simply

as an unknown matrix whose norm we wish to minimize. We call R̃ the measured radiance tensor field

obtained by substituting the noisy images Ĩ in equation (2).

In general, the radiance tensor depends on the material properties of the surface and the lighting

8



conditions. For instance, for the simplest case of Lambertian reflection,

R(P ) = R1(P ) · 1T
n (4)

where Rj(P ) denotes the j-th column of R(P ) and 1n denotes an n-dimensional vector with all the

elements equal to 1. It is because, by the Lambertian assumption, the radiance is independent of the

viewpoint, and therefore all the columns of R(P ) are identical. In fact, we can replace R1(P ) in equa-

tion (4) with any other column of R(P ). For more complex materials, R(P ) has more structure but

is, in general, not arbitrary. Proposition 1 shows that for ideal surfaces that obey a “diffuse+specular”

reflection model, the (point-wise) rank of the radiance tensor is two. In order to set up the notation to

state the proposition, we choose a reference frame 〈e1, e2〉 for the tangent plane TPS with the origin

at P :〈e1, e1〉 = 1, 〈e2, e2〉 = 1, 〈e1, e2〉 = 0. Let NPS be the outward unit normal to S at P , so that

e1 × e2 = NPS. Then 〈e1, e2, N〉 forms a Euclidean reference frame for R
3 around P , where we have

indicated the normal vector with N as a short-hand for NPS. We denote with gP the change of coordi-

nates between the world reference frame and 〈e1, e2, N〉 (see Figure 2). We can parameterize each unit

vector λ in the upper hemisphere at P , H2
P , with polar coordinates (θλ, φλ) ∈ [0, π/2] × [0, 2π], i.e., θλ

is the angle between λ and N and φλ is the angle between λ and e1, for all λ ∈ H2
P .

The interaction of light with the surface S can be expressed, for most materials that we are going

to deal with, by the bidirectional reflectance distribution function (BRDF8). This is a function of two

directions in H2
P , the incident direction λi, parameterized by (θi, φi) and the reflected direction λo,

parameterized by (θo, φo), as well as the wavelength and polarization of the incident radiation, which we

will ignore (see Figure 3). Ward’s (anisotropic) elliptical Gaussian model [30] approximates the BRDF

β with a linear combination of a diffuse term and a specular term:

β(θi, φi, θo, φo) =
ρd

π
+
ρs exp(− tan2 δ(cos2 γ/α2

x + sin2 γ/α2
y))

4παxαy

√
cos θi cos θo

(5)

8The BRDF is a simplified description of the radiometry of purely reflective (ideal) materials that yields an approximation

of the radiance commonly used in computer graphics. It measures the ratio between the reflected energy along the direction

(θo, φo) due to the energy coming from the direction (θi, φi) and the incoming energy.
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Figure 3: Illustration of the light interaction with the surface. H2
P is the unit hemisphere at a point P .

λi ∈ H2
P is the incoming light direction and λo ∈ H2

P is the outgoing light direction. h ∈ H2
P is the

halfway vector between λi and λo. δ is the angle between h and N . Surface reflectance is described by

the bidirectional reflectance distribution function β that measures the ratio between the reflected energy

along the direction λo due to the energy coming from the direction λi and the incoming energy.

where ρd is the diffuse reflectance coefficient (commonly referred to as the albedo) and ρs is the specular

reflectance coefficient; αx and αy are the standard deviations of the microscopic surface slope (surface

roughness) in the direction of e1 and e2 respectively. The roughness coefficients are related to the

properties of the material and we will consider them to be constant in a neighborhood of P . We note that

constant surface roughness in a neighborhood does not imply that either diffuse reflectance coefficient

(albedo) or specular reflectance coefficient is constant in that neighborhood. Let h be the halfway vector

between the directions λi and λo: h
.
= λi+λo

‖λi+λo‖
; (δ, γ) are the polar coordinates for h and are therefore

functions of (θi, φi, θo, φo). The radiance in the direction determined by the point xj = π(gjP ) in the j-th

camera view is given by integrating the BRDF against the light distribution L in all directions (θi, φi):

ρ(0, gj) =

∫ 2π

0

∫ π/2

0

β(θi, φi, θo, φo)L(θi, φi) cos θi sin θidθidφi (6)

where the direction from P to cj , the j-th camera center, in the frame of the point P , i.e., gP
−1
∗

(

cj−P

‖cj−P‖

)

(see Footnote 6), is represented in polar coordinates as (θo, φo).

Proposition 1 (radiance tensor rank). Let S be made of a material that obeys the reflectance model (5).
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Furthermore, consider a surface patch ΩP ⊂ TPS that is small compared to the distance of P from the

light sources and from the cameras. Then, if R(P ) is computed for vi ∈ ΩP as in equation (1), we have

that ∀P ∈ S

rank(R(P )) ≤ 2. (7)

Proof. To facilitate computing the radiance ρ(vi, gj) for each vi ∈ ΩP ⊂ TPS; i = 1, 2, . . . ,m, in the

direction of the origin of the reference frame of camera j = 1, 2, . . . , n, we will denote with g̃j(vi) the

direction g(P+vi)
−1
∗

(

cj−(P+vi)

‖cj−(P+vi)‖

)

from P + vi to cj in the frame at the point P + vi : 〈e1(vi), e2(vi), N〉.

Since TPS is a plane, we can choose 〈e1(vi), e2(vi), N〉 to coincide with the reference frame at P :

〈e1, e2, N〉. Under the assumption that ΩP is small, we can approximate g̃j(vi) with g̃j(0)9. Again,

(θo, φo) are the polar coordinates of g̃j(0). Under the same assumption, we can also approximate the

incoming light distribution at the point P + vi with L(θi, φi). If we denote with ρ(vi|w) the radiance of

point vi along the direction λ, by equation (6), the radiance in the direction toward cj is given by

ρ(vi, gj) = ρ (vi|g̃j(vi)) ≅ ρ (vi|g̃j(0))

=

∫

β(vi, θi, φi, θo, φo)L(θi, φi) cos θi sin θidθidφi

=

∫ 2π

0

∫ π/2

0

ρd(vi)

π
L(θi, φi) cos θi sin θidθidφi

+

∫

ρs(vi) exp(− tan2 δ(cos2 γ/α2
x + sin2 γ/α2

y))

4παxαy

√
cos θi cos θo

L(θi, φi) cos θi sin θidθidφi

= ρd(vi)s0 + ρs(vi)s1(gj)

where

s0
.
=

∫ 2π

0

∫ π/2

0

1

π
L(θi, φi) cos θi sin θidθidφi

s1(gj)
.
= s1(θo, φo) =

∫ 2π

0

∫ π/2

0

exp(− tan2 δ(cos2 γ/α2
x + sin2 γ/α2

y))

4παxαy

√
cos θi cos θo

L(θi, φi) cos θi sin θidθidφi.

9The meaning of approximation goes as follows: ∀ǫ > 0, we can choose the size of ΩP small such that ‖g̃j(vi)−g̃j(0)‖ <
ǫ.
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This concludes the proof.

Remark 1. ρd, s0, ρs and s1 are all functions of P . We do not assume that either the albedo or the light

distribution is the same for every P , but only that the surface roughness is locally constant in ΩP .

Remark 2. Using g̃j(vi) to approximate g̃j(v0) is equivalent to using a scaled orthographic projection

for the imaging model in ΩP . However, when P moves over the surface, the parameters for the scaled

orthographic projection are allowed to change. Therefore, we are not enforcing a scaled orthographic

projection for the entire scene. The imaging model is still the perspective projection we put up at the

beginning. In other words, we do not assume the overall size of the scene is small with respect to the

distances to light sources or cameras.

The intuition behind this proposition is that, in the limit where the light sources are far, and the patch

ΩP is small, the specular component of the radiance of ΩP is modulated by a scalar function that depends

on the viewpoint 10. Of course, these conditions are a mathematical idealization. In practice, we verify

experimentally that the singular values of R(P ) decrease sharply and are negligible beyond the second.

In the experimental section (Section 4) we will report how the size of the neighborhood affects the

performance of the algorithm and we will also discuss the range of applicability of this constraint on

realistic imaging conditions.

Regardless of the actual numerical rank for R(P ), a limitation on the rank can be exploited to set up a

discrepancy function for stereo reconstruction, as we do in the next section. In view of the claim above,

one can then express the radiance tensor as the sum of two rank-one matrices with certain orthogonal

properties. The relevance of Proposition 1 will be further discussed in Section 5.

Corollary 1 (local radiance model). At each point P of an ideal surface S that obeys the conditions

of Proposition 1, the radiance tensor field can be represented with four vectors d1(v), d2(v) ∈ R
m and

s1(g), s2(g) ∈ R
n as:

R(P ) = d1(v)s
T
1 (g) + d2(v)s

T
2 (g), (8)

10Also note that the limit where the area of ΩP goes to zero does not cause the rank to go to zero because the matrix R(P )
becomes smaller, since one can resize the tessellation of the tangent plane so as to keep the number of rows of R(P ) constant.
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such that

〈d1(v), d2(v)〉 = 0 and 〈s1(g), s2(g)〉 = 0. (9)

As we have pointed out in Remark 1, the reader should notice that d1(v), d2(v), s1(g) and s2(g) are

all functions of the point P on the surface. Note that s1 and s2 depend on the viewing directions, a

necessary element in modeling non-Lambertian reflection.

2.2 A discrepancy measure for non-Lambertian scenes

Naturally, due to image noise and deviation from the “diffuse+specular” reflectance model, the measured

tensor R̃(P ) has rank greater than 2, most often full. The key idea here is to use this rank discrepancy

to set up a matching criterion for stereo reconstruction. This is done by setting up an error function

between the measured radiance tensor R̃(P ) and the model R(P ) at each point P (see equation (3)):

Φ(P )
.
= ‖R̃(P ) − d1(v)s

T
1 (g) − d2(v)s

T
2 (g)‖2

F (10)

where we have chosen the squared Frobenius norm to compare radiance tensors. Clearly Φ(P ) will

depend on the coordinates of P . In addition, Φ(P ) will also depend on the normal at P , since vi lives in

TPS: Φ(P ) = Φ(X, N). If we define

φij = R̃ij − d1(vi)s
T
1 (gj) − d2(vi)s

T
2 (gj), (11)

where R̃ij is the (i, j)-th element of R̃(P ), dk(vi) and sk(gj) are the i-th and j-th components of dk(v)

and sk(g) respectively for k = 1, 2, then the squared Frobenius norm is the sum of the square of each

element φij . The surface S can then be found as the minimizer of the energy E
.
=
∫

S
Φ(P )dA:

Ŝ
.
= arg min

S

∫

S

Φ(P )dA (12)

where dA is the area measure on S.
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As we have noted, since the actual measured tensor R̃ will in general have full rank, we can write it,

for each P , using the singular value decomposition (SVD) as

R̃(P ) =
r
∑

i=1

d̃i(v)s̃
T
i (g) (13)

where r is the rank of R̃(P )11. The singular values are sorted in a decreasing order with respect to k.

Since, from the rank constraint of Proposition 1, we can choose the basis of R arbitrarily, we can have

di(v) = d̃k(v), and sk(g) = s̃k(g), k = 1, 2 (14)

and R(P ) = d̃1(v)s̃
T
1 (g) + d̃2(v)s̃

T
2 (g). The function Φ can therefore be written as

Φ(P ) = ‖d̃3(v)s̃
T
3 (g) + d̃4(v)s̃

T
4 (g) + · · · + d̃r(v)s̃

T
r (g)‖2

F . (15)

By the properties of the SVD, we have that

〈d̃i(v), d̃j(v)〉 = ‖d̃i(v)‖2δij and 〈s̃i(g), s̃j(g)〉 = ‖s̃i(g)‖2δij (16)

where δij is the Kronecker delta function, i.e., δij = 1, if i = j; δij = 0, otherwise. This is consistent

with Corollary 1.

3 Estimation of shape and radiance for non-Lambertian scenes

In this section we present our algorithm to recover the representation of shape and radiance described in

the previous section from a collection of images.

11The usual SVD yields unit-norm vectors d̃i(v), s̃i(g) and additional singular values σi. In this paper, what we are really

interested is the fixed rank approximation of R̃(P ) via SVD. Therefore, once SVD is computed, one can lump σi into either

d̃i(v) or s̃i(g) or even divide d̃i(v) and multiply s̃i(g) by some constant simultaneously without changing the decomposition,

since d̃i(v) and s̃i(g) appear together in a product in the decomposition.
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3.1 Shape estimation

Shape, in our context, is described by a representation of the surface S relative to any Euclidean reference

frame. When S is represented explicitly, one can look for the solution Ŝ via a local descent along the

gradient of the cost (12). The analysis for this type of cost functional, which has X and N in the

integrand, was first done by Faugeras and Keriven in [8] and can be found in [19] (in French). In

particular, Faugeras and Keriven derived the Euler-Lagrange equations for the cost functional and then

designed a flow based on it to find the optimal shape. However, in their derivation it is not immediate

to see whether the resulting flow minimizes the cost functional. In his Ph.D. thesis [14] and [15], Jin et.

al. presented an alternative proof which directly minimizes the cost functional and showed that the flow

considered by Faugeras and Keriven in [8] is indeed the gradient descent for the cost (12). In this paper,

we will present the optimality result and refer the interested reader to [19, 14, 15] for details.

Theorem 1 (optimality condition). Let ΦX,ΦN be the first-order derivatives of Φ with respect to X

and N and ΦXN ,ΦNN be the second-order derivatives. We assume that ΦNN can be decomposed as:

ΦNN =
∑k

i=1 λipip
T
i where λi ∈ R and pi ∈ R

3 (note that this decomposition is always possible since

ΦNN is real and symmetric). We have that the following partial differential equation is the gradient

descent flow for the cost (12):

St =
(

2HΦ − 〈ΦX, N〉 − 2H 〈ΦN , N〉 − trace(ΦXN) +NT ΦXNN +
k
∑

i=1

λiII(P
⊥
N pi)

)

N. (17)

where P⊥
N is the projection from R

3 to TP (S), i.e., P⊥
N = I −NNT , H is the mean curvature and II(v)

is the second fundamental form of a vector v ∈ TP (S).

Note that equation (17) involves second-order derivatives: ΦXN and ΦNN and no higher-order deriv-

atives. This should not be surprising because the cost functional involves N in the integrand, which is

the first-order variation of the surface S. In practice the following flow based on the first-order deriva-

tives in equation (17) yields similar results to that of the flow (17), while saving a significant amount of
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computations.

St =
(

2HΦ − 〈ΦX, N〉 − 2H 〈ΦN , N〉
)

N. (18)

The calculation of the flow above reveals some interesting structure, as major simplification occur after

equations (16).

We will prove a stronger result than needed to compute the flow (18). In particular, we will show that

even if the modeled rank of R(P ) is higher than 2, the resulting flow still takes a simple expression. Let

r be the measured rank the radiance tensor R̃(P ). Suppose that the ideal R(P ) satisfies a rank constraint

of r0 and thus we take r0 terms from the SVD of R̃(P ) (equation (13)). Therefore, the function Φ takes

the expression

Φ(P ) = ‖d̃r0+1(v)s̃
T
r0+1(g) + d̃r0+2(v)s̃

T
r0+2(g) + · · · + d̃r(v)s̃

T
r (g)‖2

F . (19)

Let φij be the (i, j)-th element of Φ(P ).

Theorem 2 (differentiation of the score). Let ξ indicate the arguments of Φ, i.e., ξ is one of X1, X2, X3,

N1, N2, N3. Then

Φ̇ =

m,n
∑

i,j=1

2φij
˙̃Rij (20)

where the dot indicates differentiation with respect to ξ.

Proof. We define

φi .
= R̃i −

r0
∑

k=1

d̃k(vi)s̃k(g), i = 1, 2, . . . ,m, (21)

φj
.
= R̃j −

r0
∑

k=1

d̃k(v)s̃k(gj), j = 1, 2, . . . , n, (22)

where R̃i is the i-th row of R̃ and R̃j is the j-th column of R̃, i.e., R̃i = [R̃i1, R̃i2, . . . , R̃in]T and
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R̃j = [R̃1j, R̃2j, . . . , R̃mj]
T . Expanding the derivative we get

Φ̇ =

n,m
∑

i,j=1

φ̇2
ij =

n,m
∑

i,j=1

2φij

(

˙̃Rij −
r0
∑

k=1

˙̃dk(vi)s̃k(gj) −
r0
∑

k=1

d̃k(vi) ˙̃sk(gj)
)

=

n,m
∑

i,j=1

2φij
˙̃Rij −

n
∑

i=1

〈

φi,

r0
∑

k=1

˙̃dk(vi)s̃k(g)

〉

−
m
∑

j=1

〈

φj,

r0
∑

k=1

˙̃sk(gj)d̃k(v)

〉

.

However, from equations (21) and (22) we see that φi is in the span of s̃r0+1(g), s̃r0+2(g), . . . , s̃r(g) and

φj is in the span of d̃r0+1(v), d̃r0+2(v), . . . , d̃r(v). Therefore, from equations (16), we can conclude the

proof by noting that the only term that contributes to the derivative is
∑n,m

i,j=1 2φij
˙̃Rij .

As a consequence of the previous result, flow (18) for arbitrary rank in an explicit form read as:

St =

(

2HΦ −
m,n
∑

i,j=1

2φij

〈

∂R̃ij

∂X
+ 2H

∂R̃ij

∂N
,N

〉)

N. (23)

We implement the flow (23) using level set methods [27]. Naturally, as with most of these variational

techniques, one can only hope to achieve convergence to a local extremum of the original cost functional,

since the flow is based on the gradient descent principle, and existence and uniqueness results are not

available for this class of flows. In the experimental section we will give empirical validation to this

approach by testing the flow above on real image data starting from generic initial conditions.

3.2 Radiance estimation

Once the surface Ŝ has been found, one can use the representation of the radiance to generate images by

“radiance-mapping” the tensor R(P ) onto the surface S. Naturally, the visualization of S in this case is

view-dependent, since different columns ofR(P ) contribute to the image of the same point P depending

on the viewpoint gi.

The radiance map is provided by the functions d1(v), d2(v) s1(g) and s2(g), estimated at each point

of the surface, P , using the singular value decomposition of the measured radiance tensor R̃, according

to Corollary 1 and equation (14). Given a novel vantage point g′, the corresponding functions s1(g
′) and
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s2(g
′) can be interpolated from the existing s1(gj) and s2(gj). One simple way of doing so is to find the

three views closest to g′, and then to use linear interpolation to obtain si(g
′) from si(gj), for i = 1, 2.

This technique also allows extrapolating the radiance; as we show in the experimental section, one can

notice artifacts when comparing the results to actual images obtained from a novel viewpoint. However,

such artifacts are only noticeable by direct comparison. Notice that d1(v) and d2(v) do not depend on the

viewpoint, and therefore do not need to be interpolated. Since s1(g
′) and s2(g

′) are linearly interpolated

from s1(gj) and s2(gj), this new radiance component does not increase the rank of the radiance tensor

and therefore is consistent with the rank constraint (Proposition 1).

Notice that the images generated from the radiance map are significantly different than those generated

by “texture mapping” the images Ĩ onto the surface S. In fact, the functions s1(g) and s2(g) depend

directly on the viewpoint, and therefore when the viewpoint moves, the highlights move on the estimated

surface, giving an overall result that is visually comparable with image-based rendering techniques that

assume true surface shapes [9, 5].

4 Experiments

In this section we report the experimental results of our algorithm tested on three datasets: “Van Gogh”,

“Buddha” and “elephant”. The first two datasets (shown in Figure 1) are courtesy of Jean-Yves Bouguet

and Radek Grzeszczuk (Intel Corp.). The third dataset (shown in the top row of Figure 10) is courtesy of

Daniel Wood (University of Washington). The Van Gogh statue is made of polished metal, and is highly

specular. There is a total of 339 images in the dataset. Pseudo-ground truth has been generated by laser

or shadow scanning followed by mesh polishing (Figure 4). Buddha is a synthetic scene. There is a total

of 281 images in the dataset. Ground truth is available (Figure 7). In Figure 4 we show the estimates of

shape produced by the algorithm described in Section 3.1, together with the estimates obtained with the

algorithm of [16], both compared with pseudo ground truth. In both algorithms, the numerical grids we

use are of size 128 × 128 × 128. Our estimate is obviously not as crisp as the ground truth, but it does

capture important details on the face. Figure 8 shows the evolution of the estimate of shape. In Figure 9
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Figure 4: Estimated shape (top), compared with pseudo-ground truth (bottom), obtained with a 3D laser

scanner and mesh polishing. Our results improve those obtained with the algorithm of [16] (middle).

we show synthetic images generated using the radiance map, as described in Section 3.2. Note that the

specularities move with the viewpoint. In Figure 5 we show a few synthetic images compared with the

real images from the same vantage point. In Figure 7 we show the estimated shape for the Buddha in

Figure 1. The numerical grid size is 128 × 128 × 128. In this case, ground truth is available since the

images are synthetic. We also show the results obtained with the algorithm of [16]. In Figure 6 we show

images synthesized from the model, compared with corresponding true images. In Figure 8 we show

the evolution of shape, and in Figure 9 we show several novel views. In Figure 10 (top row) we show

several views of an elephant made of polished marble. There is a total of 397 images in the dataset. The

numerical grid size we used is again 128×128×128. The estimated shape of our algorithms is reported

in Figure 11 compared with pseudo-ground truth and that obtained using [16]. In the bottom row of

Figure 10 we show images synthesized from the model, whose viewing positions and directions are the

same as those in the top row.
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Figure 5: Synthetic images using the estimated radiance tensor (top) compared with the true images

taken from the same vantage point. Note that one can actually read the text at the base of the bust. This

is obtained from the radiance estimate, not from texture mapping.

In Table 1 we summarize the shape error for different approximations of surface reflectance. The

error is measured by the ratio between the volume of the symmetric difference between the estimated

shape and the true shape (or the pseudo-ground truth) and the volume of the true shape (or of the pseudo-

ground truth). Let ψ be the level set function for surface S. Suppose ψ is negative inside S and positive

outside S. Then the volume contained by S, defined as Sin, can be measured as

Vol(Sin) =

∫

R3

(1 −H(ψ))dxdydz (24)

where H(x) : R → {0, 1} is the Heaviside function: H(x) = 1 if x ≥ 0; H(x) = 0 otherwise. In

practice, one can mollify the Heaviside function with a smooth approximation [4]. The volume of the
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Reflectance models Van Gogh Buddha elephant

Lambertian (the algorithm presented in [16]) 6.9% 5.5% 24.3%
Rank-2 (the proposed algorithm) 5.7% 3.5% 7.3%
Rank-3 (a modified version of the proposed al-

gorithm by using 3 SVD components in approx-

imating R̃(P ) in equation (13))

5.6% 3.4% 7.2%

Table 1: Shape error comparison chart for different reflectance approximations. The error is measured

by the ratio between the volume of the symmetric difference between the estimated shape and the true

shape (or the pseudo-ground truth) and the volume of the true shape (or the pseudo-ground truth). We

observe that using the proposed rank-2 constraint for the radiance tensor, we can reduce the shape error

by a factor of 2 in average, while using higher ranks does not improve the results much.

symmetric difference between Sin and Tin can be calculated by:

Vol(Sin∆Tin) = Vol(Sin) + Vol(Tin) − 2Vol(Sin ∩ Tin). (25)

We observe that using the proposed rank-2 constraint for the radiance tensor, we can reduce the shape

error by a factor of 2 in average, while using higher ranks does not improve the results as much. In

Table 2 we show the degradation of the reconstruction as a function of the size of the patch ΩP for the

Van Gogh dataset. We tested neighborhood sizes from 3 × 3 to 19 × 19. We use odd sizes to have

the neighborhoods symmetric around the center point. The unit of the neighborhood size is chosen to

be corresponding to the actual pixel size in the best view, for instance 5 × 5 means that the projected

neighborhood in the best view occupies an approximate 5×5 region in image pixels. We observe that the

proposed algorithm is robust with respect to the neighborhood size in the sense that the reconstruction

errors are almost the same from 7 × 7 to 15 × 15 neighborhoods. When the neighborhood is too small,

the algorithm is sensitive to image noise and therefore has trouble converging. When the neighborhood

is too large, the algorithm has trouble capturing sharp features present in the object shape.

Occlusions are handled by computing visibility at each step of the iteration. Therefore, the technique

we present is computationally intensive and processing an entire dataset takes several hours. On the

other hand, the algorithm requires no manual intervention, no intermediate step, no mesh polishing

and no texture mapping after reconstruction. Therefore, its computational cost should be compared to
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Size of ΩP 3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15 17 × 17 19 × 19

Shape error 14.8% 7.6% 6.3% 6.0% 5.7% 5.8% 6.1% 6.4% 6.6%

Table 2: Shape error comparison chart for different sizes of ΩP for the Vangogh dataset. The error is

measured by the ratio between the volume of the symmetric difference between the estimated shape and

the pseudo-ground truth and the volume of the pseudo-ground truth. The unit of the neighborhood size

is chosen to be corresponding to the actual pixel size in the best view, for instance 5 × 5 means that the

projected neighborhood in the best view will occupy an approximate 5 × 5 region in image pixels.

implementing the entire pipeline from images to rendering.

Figure 6: Synthetic images obtained with the estimated radiance tensor field (top) compared with the

true images taken from the same vantage point.

5 Discussion

We have presented a novel algorithm for estimating dense shape and non-Lambertian photometry from a

collection of images. Our algorithm relies on a constraint on the rank of the radiance tensor field, which

is derived from the diffuse+specular reflection model commonly used in Computer Graphics, in the sense

elucidated in Proposition 1. While one could dismiss the analysis and just introduce the cost function

(10) point-blank without detracting from the algorithm proposed (which is validated experimentally),

the proposition indicates precisely under what conditions the rank constraint is satisfied, i.e., what the
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Figure 7: Estimated shape (top), compared with ground truth (bottom), also compared with the results

obtained by the algorithm of [16] (middle).

underlying mathematical model is. Naturally, the closest the scene is to satisfying the assumptions (i.e.

the closest it is to smooth shape, diffuse+specular reflection, fixed distant illumination) the smaller the

rank R̃(P ) is. However, even though only ideal scenes viewed from noiseless images will satisfy the

assumptions exactly, we can still exploit the discrepancy derived from the idealized model to define a

constraint that can be used to reconstruct the scene from real images.

Those that object to the restrictiveness of the model laid out in Proposition 1 will be relieved to know

that extension to higher ranks is conceptually and computationally trivial. One will need to take more

terms from the SVD, but Theorem 1 assures that the gradient flow can be computed essentially in the

same way. However, it can be verified experimentally that, for most scenes, an increase in the rank of the

model does not yield a significant improvement in the reconstruction, further validating the mathematical

model proposed (see Table 1). Indeed, it is possible to explore further reduction in the complexity of
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Figure 8: Shape evolution for Van Gogh (top) and Buddha (bottom).

the model to obtain more robust and computationally efficient algorithms which are the subject of our

current investigation.

Our algorithm can handle sharp changes of the radiance profile: In Figure 5, one can actually read the

text at the base of the bust from the reconstructed radiance. Note that there is no restriction whatsoever

imposed on the variation of the diffuse and specular components of the radiance, and nowhere it is

assumed that it be constant or smooth. What is assumed to be constant is the surface roughness, not the

albedo, so we can handle heavily textured objects. On the other hand, our algorithm does not require

strong texture or point features to be visible, and returns a dense estimate of shape, with no need to

interpolate or triangulate a surface from sparse points.

Note also that, although the measured radiance tensor at a given point P is assembled using a local

approximation of the surface with the tangent plane TPS, this does not mean that our algorithm only

works for planar surfaces: In fact, the radiance tensor at a nearby point Q is computed using the tangent

plane TQS that is not constrained to be similar to TPS. If one thinks of R(P ) as a “signature” attached

to P ∈ S, the model imposes no constraint that nearby points should have similar signatures.
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Figure 9: Synthetic images obtained from the estimated radiance. As it can be seen, the appearance

changes significantly with the vantage point.

Figure 10: Top row: three images from the elephant dataset (courtesy of Daniel Wood, University

of Washington). Bottom row: synthetic views generated using the estimated radiance. The structure

and position of specular highlights is correctly captured; there are some visualization artifacts at the

boundaries, but note that even the text on the small label is visible on the left image. Note that this is an

estimate of the radiance, not a texture map.

for providing us testing data.
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Figure 11: Estimated shape (top row) of the scene in Figure 10, compared with pseudo-ground truth

(bottom row), obtained with a 3D laser scanner and mesh polishing. Our results improve those obtained

with [16] (middle row). The ear is not clear in the reconstruction, although it is well captured as radiance

(Figure 10).
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