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Abstract

We study the notion of consistency between a 3D shape

and a 2D observation and propose a differentiable formu-

lation which allows computing gradients of the 3D shape

given an observation from an arbitrary view. We do so by

reformulating view consistency using a differentiable ray

consistency (DRC) term. We show that this formulation

can be incorporated in a learning framework to leverage

different types of multi-view observations e.g. foreground

masks, depth, color images, semantics etc. as supervision

for learning single-view 3D prediction. We present empir-

ical analysis of our technique in a controlled setting. We

also show that this approach allows us to improve over ex-

isting techniques for single-view reconstruction of objects

from the PASCAL VOC dataset.

1. Introduction

When is a solid 3D shape consistent with a 2D image? If

it is not, how do we change it to make it more so? One way

this problem has been traditionally addressed is by space

carving [21]. Rays are projected out from pixels into the

3D space and each ray that is known not to intersect the

object removes the volume in its path, thereby making the

carved-out shape consistent with the observed image.

But what if we want to extend this notion of consis-

tency to the differential setting? That is, instead of delet-

ing chunks of volume all at once, we would like to com-

pute incremental changes to the 3D shape that make it more

consistent with the 2D image. In this paper, we present a

differentiable ray consistency formulation that allows com-

puting the gradient of a predicted 3D shape of an object,

given an observation (depth image, foreground mask, color

image etc.) from an arbitrary view.

The question of finding a differential formulation for ray

consistency is mathematically interesting in and of itself.

Project website with code: https://shubhtuls.github.io/

drc/

Luckily, it is also extremely useful as it allows us to connect

the concepts in 3D geometry with the latest developments in

machine learning. While classic 3D reconstruction methods

require large number of 2D views of the same physical 3D

object, learning-based methods are able to take advantage

of their past experience and thus only require a small num-

ber of views for each physical object being trained. Finally,

when the system is done learning, it is able to give an esti-

mate of the 3D shape of a novel object from only a single

image, something that classic methods are incapable of do-

ing. The differentiability of our consistency formulation is

what allows its use in a learning framework, such as a neu-

ral network. Every new piece of evidence gives gradients

for the predicted shape, which, in turn, yields incremental

updates for the underlying prediction model. Since this pre-

diction model is shared across object instances, it is able to

find and learn from the commonalities across different 3D

shapes, requiring only sparse per-instance supervision.

2. Related Work

Object Reconstruction from Image-based Annotations.

Blanz and Vetter [2] demonstrated the use of a morphable

model to capture 3D shapes. Cashman and Fitzgibbon [4]

learned these models for complex categories like dolphins

using object silhouettes and keypoint annotations for train-

ing and inference. Tulsiani et al. [33] extended similar ideas

to more general categories and leveraged recognition sys-

tems [15, 18, 34] to automate test-time inference. Wu et

al. [37], using similar annotations, learned a system to pre-

dict sparse 3D by inferring parameters of a shape skeleton.

However, since the use of such low-dimensional models

restricts expressivity, Vicente et al. [36] proposed a non-

parametric method by leveraging surrogate instances – but

at the cost of requiring annotations at test time. We leverage

similar training data but using a CNN-based voxel predic-

tion framework allows test time inference without manual

annotations and allows handling large shape variations.

Object Reconstruction from 3D Supervision. The advent

of deep learning along with availability of large-scale syn-
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Figure 1: Visualization of various aspects of our Differentiable Ray Consistency formulation. a) Predicted 3D shape represented as

probabilistic occupancies and the observation image where we consider consistency between the predicted shape and the ray corresponding

to the highlighted pixel. b) Ray termination events (Section 3.2) – the random variable zr = i corresponds to the event where the ray

terminates at the i
th voxel on its path, zr = Nr + 1 represents the scenario where the ray escapes the grid. c) Depiction of event

probabilities (Section 3.2) where red indicates a high probability of the ray terminating at the corresponding voxel. d) Given the ray

observation, we define event costs (Section 3.3). In the example shown, the costs are low (white color) for events where ray terminates

in voxels near the observed termination point and high (red color) otherwise. e) The ray consistency loss (Section 3.4) is defined as the

expected event cost and our formulation allows us to obtain gradients for occupancies (red indicates that loss decreases if occupancy value

increases, blue indicates the opposite). While in this example we consider a depth observation, our formulation allows incorporating diverse

kinds of observations by defining the corresponding event cost function as discussed in Section 3.3 and Section 3.5. Best viewed in color.

thetic training data has resulted in applications for object

reconstruction. Choy et al. [6] learned a CNN to predict a

voxel representation using a single (or multiple) input im-

age(s). Girdhar et al. [14] also presented similar results for

single-view object reconstruction, while also demonstrat-

ing some results on real images by using realistic render-

ing techniques [31] for generating training data. A crucial

assumption in the procedure of training these models, how-

ever, is that full 3D supervision is available. As a result,

these methods primarily train using synthetically rendered

data where the underlying 3D shape is available.

While the progress demonstrated by these methods is

encouraging and supports the claim for using CNN based

learning techniques for reconstruction, the requirement of

explicit 3D supervision for training is potentially restrictive.

We relax this assumption and show that alternate sources of

supervision can be leveraged. It allows us to go beyond re-

constructing objects in a synthetic setting, to extend to real

datasets which do not have 3D supervision.

Multi-view Instance Reconstruction. Perhaps most

closely related to our work in terms of the proposed formu-

lation is the line of work in geometry-based techniques for

reconstructing a single instance given multiple views. Vi-

sual hull [22] formalizes the notion of consistency between

a 3D shape and observed object masks. Techniques based

on this concept [3, 25] can obtain reconstructions of objects

by space carving using multiple available views. It is also

possible, by jointly modeling appearance and occupancy,

to recover 3D structure of objects/scenes from multiple im-

ages via ray-potential based optimization [8, 24] or infer-

ence in a generative model [13]. Ulusoy et al. [35] propose

a probabilistic framework where marginal distributions can

be efficiently computed. More detailed reconstructions can

be obtained by incorporating additional signals e.g. depth or

semantics [20, 29, 30].

The main goal in these prior works is to reconstruct a

specific scene/object from multiple observations and they

typically infer a discrete assignment of variables such that

it is maximally consistent with the available views. Our

insight is that similar cost functions which measure con-

sistency, adapted to treat variables as continuous probabili-

ties, can be used in a learning framework to obtain gradients

for the current prediction. Crucially, the multi-view recon-

struction approaches typically solve a (large) optimization

to reconstruct a particular scene/object instance and require

a large number of views. In contrast, we only need to per-

form a single gradient computation to obtain a learning sig-

nal for the CNN and can even work with sparse set of views

(possibly even just one view) per instance.

Multi-view Supervision for Single-view Depth Predic-

tion. While single-view depth prediction had been dom-

inated by approaches with direct supervision [9], recent

approaches based on multi-view supervision have shown

promise in achieving similar (and sometimes even better)

performance. Garg et al. [12] and Godard et al. [16] used

stereo images to learn a single image depth prediction sys-

tem by minimizing the inconsistency as measured by pixel-

wise reprojection error. Zhou et al. [41] further relax the

constraint of having calibrated stereo images, and learn a

single-view depth model from monocular videos. The mo-

tivation of these multi-view supervised depth prediction ap-

proaches is similar to ours, but we aim for 3D instead of

2.5D predictions and address the related technical chal-

lenges in this work.

3. Formulation

In this section, we formulate a differentiable ‘view con-

sistency’ loss function which measures the inconsistency

between a (predicted) 3D shape and a corresponding ob-
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servation image. We first formally define our problem setup

by instantiating the representation of the 3D shape and the

observation image with which the consistency is measured.

Shape Representation. Our 3D shape representation is

parametrized as occupancy probabilities of cells in a di-

cretized 3D voxel grid, denoted by the variable x. We use

the convention that xi represents the probability of the ith

voxel being empty (we use the term ‘occupancy probability’

for simplicity even though it is a misnomer as the variable

x is actually ‘emptiness probability’). Note that the choice

of discretization of the 3D space into voxels need not be a

uniform grid – the only assumption we make is that it is

possible to trace rays across the voxel grid and compute in-

tersections with cell boundaries.

Observation. We aim for the shape to be consistent with

some available observation O. This ‘observation’ can take

various forms e.g. a depth image, or an object foreground

mask – these are treated similarly in our framework. Con-

cretely, we have a observation-camera pair (O,C) where

the ‘observation’ O is from a view defined by camera C.

Our view consistency loss, using the notations men-

tioned above, is of the form L(x; (O,C)). In Section 3.1,

we reduce the notion of consistency between the 3D shape

and an observation image to consistency between the 3D

shape and a ray with associated observations. We then pro-

ceed to present a differentiable formulation for ray consis-

tency, the various aspects of which are visualized in Fig-

ure 1. In Section 3.2, we examine the case of a ray travelling

though a probabilistically occupied grid and in Section 3.3,

we instantiate costs for each probabilistic ray-termination

event. We then combine these to define the consistency cost

function in Section 3.4. While we initially only consider the

case of the shape being represented by voxel occupancies x,

we show in Section 3.5 that it can be extended to incorporate

optional per-voxel predictions p. This generalization allows

us to incorporate other kinds of observation e.g. color im-

ages, pixel-wise semantics etc. The generalized consistency

loss function is then of the form L(x, [p]; (O,C)) where [p]
denotes an optional argument.

3.1. View Consistency as Ray Consistency

Every pixel in the observation image O corresponds to a

ray with a recorded observation (depth/color/foreground la-

bel/semantic label). Assuming known camera intrinsic pa-

rameters (fu, fv, u0, v0), the image pixel (u, v) corresponds

to a ray r originating from the camera centre travelling in

direction (u−u0

fu
, v−v0

fv
, 1) in the camera coordinate frame.

Given the camera extrinsics, the origin and direction of the

ray r can also be inferred in the world frame.

Therefore, the available observation-camera pair (O,C)
is equivalently a collection of arbitrary rays R where each

r ∈ R has a known origin point, direction and an associ-

ated observation or e.g. depth images indicate the distance

travelled before hitting a surface, foreground masks inform

whether the ray hit the object, semantic labels correspond

to observing category of the object the ray terminates in.

We can therefore formulate the view consistency loss

L(x; (O,C)) using per-ray based consistency terms Lr(x).
Here, Lr(x) captures if the inferred 3D model x correctly

explains the observations associated with the specific ray r.

Our view consistency loss is then just the sum of the con-

sistency terms across the rays:

L(x; (O,C)) ≡
∑

r∈R

Lr(x) (1)

Our task for formulating the view consistency loss is simpli-

fied to defining a differentiable ray consistency loss Lr(x).

3.2. Ray­tracing in a Probabilistic Occupancy Grid

With the goal of defining the consistency cost Lr(x), we

examine the ray r as it travels across the voxel grid with oc-

cupancy probabilities x. The motivation is that a probabilis-

tic occupancy model (instantiated by the shape parameters

x) induces a distribution of events that can occur to ray r

and we can define Lr(x) by seeing the incompatibility of

these events with available observations or.

Ray Termination Events. Since we know the origin and

direction for the ray r, we can trace it through the voxel

grid - let us assume it passes though Nr voxels. The events

associated with this ray correspond to it either terminating

at one of these Nr voxels or passing through. We use a

random variable zr to correspond to the voxel in which the

ray (probabilistically) terminates - with zr = Nr + 1 to

represent the case where the ray does not terminate. These

events are shown in Figure 1.

Event Probabilities. Given the occupancy probabilities x,

we want to infer the probability p(zr = i). The event zr = i

occurs iff the previous voxels in the path are all unoccupied

and the ith voxel is occupied. Assuming an independent

distribution of occupancies where the prediction xri corre-

spnds to the probability of the ith voxel on the path of the

ray r as being empty, we can compute the probability distri-

bution for zr.

p(zr = i) =



























(1− xri )

i−1
∏

j=1

xrj , if i ≤ Nr

Nr
∏

j=1

xrj , if i = Nr + 1

(2)

3.3. Event Cost Functions

Note that each event (zr = i), induces a prediction e.g.

if zr = i, we can geometrically compute the distance dri the
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ray travels before terminating. We can define a cost function

between the induced prediction under the event (zr = i)
and the available associated observations for ray or. We de-

note this cost function as ψr(i) and it assigns a cost to event

(zr = i) based on whether it induces predictions inconsis-

tent with or. We now show some examples of event cost

functions that can incorporate diverse observations or and

used in various scenarios.

Object Reconstruction from Depth Observations. In this

scenario, the available observation or corresponds to the ob-

served distance the ray travels dr. We use a simple distance

measure between observed distance and event-induced dis-

tance to define ψr(i).

ψdepth
r (i) = |dri − dr| (3)

Object Reconstruction from Foreground Masks. We ex-

amine the case where we only know the object masks from

various views. In this scenario, let sr ∈ {0, 1} denote the

known information regarding each ray - sr = 0 implies the

ray r intersects the object i.e. corresponds to an image pixel

within the mask, sr = 1 indicates otherwise. We can cap-

ture this by defining the corresponding cost terms.

ψmask
r (i) =

{

sr, if i ≤ Nr

1− sr, if i = Nr + 1
(4)

We note that some concurrent approaches [26, 39] have also

been proposed to specifically address the case of learning

object reconstruction from foreground masks. These ap-

proaches, either though a learned [26] or fixed [39] repro-

jection function, minimize the discrepancy between the ob-

served mask and the reprojected predictions. We show in

the appendix [1] that our ray consistency based approach ef-

fectively minimizes a similar loss using a geometrically de-

rived re-projection function, while also allowing us to han-

dle more general observations.

3.4. Ray­Consistency Loss

We have examined the case of a ray traversing through

the probabilistically occupied voxel grid and defined possi-

ble ray-termination events occurring with probability distri-

bution specified by p(zr). For each of these events, we incur

a corresponding cost ψr(i) which penalizes inconsistency

between the event-induced predictions and available obser-

vations or. The per-ray consistency loss function Lr(x) is

simply the expected cost incurred.

Lr(x) = Ezr [ψr(zr)] (5)

Lr(x) =

Nr+1
∑

i=1

ψr(i) p(zr = i) (6)

Recall that the event probabilities p(zr = i) were defined

in terms of the voxel occupancies x predicted by the CNN

(Eq. 2). Using this, we can compute the derivatives of

the loss function Lr(x) w.r.t the CNN predictions (see Ap-

pendix for derivation).

∂ Lr(x)

∂ xrk
=

Nr
∑

i=k

(ψr(i+ 1)− ψr(i))
∏

1≤j≤i,j 6=k

xrj (7)

The ray-consisteny lossLr(x) completes our formulation of

view consistency loss as the overall loss is defined in terms

of Lr(x) as in Eq. 1. The gradients derived from the view

consistency loss simply try to adjust the voxel occupancy

predictions x, such that events which are inconsistent with

the observations occur with lower probabilities.

3.5. Incorporating Additional Labels

We have developed a view consistency formulation for

the setting where the shape representation is described as

occupancy probabilities x. In the scenario where alternate

per-pixel observations (e.g. semantics or color) are avail-

able, we can modify consistency formulation to account for

per-voxel predictions p in the 3D representation. In this sce-

nario, the observation or associated with the ray r includes

the corresponding pixel label and similarly, the induced pre-

diction under event (zr = i) includes the auxiliary predic-

tion for the ith voxel on the ray’s path – pri .

To incorporate consistency between these, we can extend

Lr(x) to Lr(x, [p]) by using a generalized event-cost term

ψr(i, [p
r
i ]) in Eq. 5 and Eq. 6. Examples of the general-

ized cost term for two scenarios are presented in Eq. 9 and

Eq. 10. The gradients for occupancy predictions xri are as

previously defined in Eq. 7, but using the generalized cost

term ψr(i, [p
r
i ]) instead. The additional per-voxel predic-

tions can also be trained using the derivatives below.

∂ Lr(x, [p])

∂ pir
= p(zr = i)

∂ ψr(i, [p
i
r])

∂ pir
(8)

Note that we can define any event cost function ψ(i, [pri ])
as long as it is differentiable w.r.t pri . We can interpret Eq. 8

as the additional per-voxel predictions p being updated to

match the observed pixel-wise labels, with the gradient be-

ing weighted by the probability of the corresponding event.

Scene Reconstruction from Depth and Semantics. In

this setting, the observations associated with each ray cor-

respond to an observed depth dr as well as semantic class

labels cr. The event-induced prediction, if zr = i, cor-

responds to depth dri and class distribution pri and we can

define an event cost penalizing the discrepancy in dispar-

ity (since absolute depth can have a large variation) and the

negative log likelihood of the observed class.

ψsem
r (i, pri ) = |

1

dri
−

1

dr
| − log(pri (cr)) (9)
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Object Reconstruction from Color Images. In this sce-

nario, the observations cr associated with each ray corre-

sponds to the RGB color values for the corresponding pixel.

Assuming additional per voxel color prediction p, the event-

induced prediction, if zr = i, yields the color at the corre-

sponding voxel i.e. pri . We can define an event cost penaliz-

ing the squared error.

ψcolor
r (i, pri ) =

1

2
‖pri − cr‖

2 (10)

In addition to defining the event cost functions, we also need

to instantiate the induced observations for the event of ray

escaping. We define drNr+1
in Eq. 3 and Eq. 9 to be a fixed

large value, and prNr+1
in Eq. 9 and Eq. 10 to be uniform

distribution and white color respectively. We discuss this

further in the appendix [1].

4. Learning Single-view Reconstruction

We aim to learn a function f modeled as a parameterized

CNN fθ, which given a single image I corresponding to a

novel object, predicts its shape as a voxel occupancy grid.

A straightforward learning-based approach would require a

training dataset {(Ii, x̄i)} where the target voxel represen-

tation x̄i is known for each training image Ii. However, we

are interested in a scenario where the ground-truth 3D mod-

els {x̄i} are not available for training fθ directly, as is often

the case for real-world objects/scenes. While collecting the

ground-truth 3D is not feasible, it is relatively easy to obtain

2D or 2.5D observations (e.g. depth maps) of the underly-

ing 3D model from other viewpoints. In this scenario we

can leverage the ‘view consistency’ loss function described

in Section 3 to train fθ .

Training Data. As our training data, corresponding to each

training (RGB) image Ii in the training set, we also have

access to one or more additional observations of the same

instance from other views. The observations, as described

in Section 3, can be of varying forms. Concretely, corre-

sponding to image Ii, we have one or more observation-

camera pairs {Oi
k, C

i
k} where the ‘observation’ Oi

k is from

a view defined by camera Ci
k. Note that these observations

are required only for training; at test time, the learned CNN

fθ predicts a 3D shape from only a single 2D image.

Predicted 3D Representation. The output of our single-

view 3D prediction CNN is fθ(I) ≡ (x, [p]) where x de-

notes voxel occupancy probabilities and [p] indicates op-

tional per-voxel predictions (used if corresponding training

observations e.g. color, semantics are leveraged).

To learn the parameters θ of the single-view 3D predic-

tion CNN, for each training image Ii we train the CNN to

minimize the inconsistency between the prediction fθ(Ii)
and the one or more observation(s) {(Oi

k, C
i
k)} correspond-

ing to Ii. This optimization is the same as minimizing the

(differentiable) loss function
∑

i

∑

k

L(fθ(Ii); (O
i
k, C

i
k)) i.e.

the sum of view consistency losses (Eq. 1) for observations

across the training set. To allow for faster training, instead

of using all rays as defined in Eq. 1, we randomly sample a

few rays (about 1000) per view every SGD iteration.

5. Experiments

We consider various scenarios where we can learn

single-view reconstruction using our differentiable ray

consistency (DRC) formulation. First, we examine the

ShapeNet dataset where we use synthetically generated im-

ages and corresponding multi-view observations to study

our framework. We then demonstrate applications on the

PASCAL VOC dataset where we train a single-view 3D

prediction system using only one observation per training

instance. We then explore the application of our framework

for scene reconstruction using short driving sequences as

supervision. Finally, we show qualitative results for using

multiple color image observations as supervision for single-

view reconstruction.

5.1. Empirical Analysis on ShapeNet

We study the framework presented and demonstrate its

applicability with different types of multi-view observations

and also analyze the susceptibility to noise in the learning

signal. We perform experiments in a controlled setting us-

ing synthetically rendered data where the ground-truth 3D

information is available for benchmarking.

Setup. The ShapeNet dataset [5] has a collection of tex-

tured CAD models and we examine 3 representative cate-

gories with large sets of available models : airplanes, cars,

and chairs . We create random train/val/test splits and use

rendered images with randomly sampled views as input to

the single-view 3D prediction CNNs.

Our CNN model is a simple encoder-decoder which pre-

dicts occupancies in a voxel grid from the input RGB image

(see appendix [1] for details). To perform control exper-

iments, we vary the sources of information available (and

correspondingly, different loss functions) for training the

CNN. The various control settings are briefly described be-

low (and explained in detail in the appendix [1]) :

Ground-truth 3D. We assume that the ground-truth 3D

model is available and use a simple cross-entropy loss for

training. This provides an upper bound for the performance

of a multi-view consistency method.

DRC (Mask/Depth). In this scenario, we assume that (pos-

sibly noisy) depth images (or object masks) from 5 random

views are available for each training CAD model and mini-

mize the view consistency loss.

Depth Fusion. As an alternate way of using multi-view in-

formation, we preprocess the 5 available depth images per
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Figure 2: Reconstructions on the ShapeNet dataset visualized using two representative views. Left to Right : Input, Ground-truth, 3D

Training, Ours (Mask), Fusion (Depth), DRC (Depth), Fusion (Noisy Depth), DRC (Noisy Depth).

(a) Number of training views (b) Amount of noise

Figure 3: Analysis of the per-category reconstruction perfor-

mance. a) As we increase the number of views available per in-

stance for training, the performance initially increases and satu-

rates after few available views. b) As the amount of noise in depth

observations used for training increases, the performance of our

approach remains relatively consistent.

Training Data 3D Mask Depth Depth (Noisy)

class Fusion DRC Fusion DRC Fusion DRC

aero 0.57 - 0.50 0.54 0.49 0.46 0.51

car 0.76 - 0.73 0.71 0.74 0.71 0.74

chair 0.47 - 0.43 0.47 0.44 0.39 0.45

Table 1: Analysis of our method using mean IoU on ShapeNet.

CAD model to compute a pseudo-ground-truth 3D model.

We then train the CNN with a cross-entropy loss, restricted

to voxels where the views provided any information. Note

that unlike our method, this is applicable only if depth im-

ages are available and is more susceptible to noise in obser-

vations. See appendix [1] for further details and discussion.

Evaluation Metric. We use the mean intersection over

union (IoU) between the ground-truth 3D occupancies and

the predicted 3D occupancies. Since different losses lead

to the learned models being calibrated differently, we report

mean IoU at the optimal discretization threshold for each

method (the threshold is searched at a category level).

Results. We present the results of the experiments in Ta-

ble 1 and visualize sample predictions in Figure 2. In gen-

eral, the qualitative and quantitative results in our setting of

using only a small set of multi-view observations are en-

couragingly close to the upper bound of using ground-truth

3D as supervision. While our approach and the alternative

way of depth fusion are comparable in the case of perfect

depth information, our approach is much more robust to

noisy training signal. This is because of the use of a ray

potential where the noisy signal only adds a small penalty

to the true shape unlike in the case of depth fusion where

the noisy signal is used to compute independent unary terms

(see appendix [1] for detailed discussion). We observe that

even using only object masks leads to comparable perfor-

mance to using depth but is worse when fewer views are

available (Figure 3) and has some systematic errors e.g. the

chair models cannot learn the concavities present in the seat

using foreground mask information.

Ablations. When using muti-view supervision, it is infor-

mative to look at the change in performance as the number

of available training views is increased. We show this re-

sult in Figure 3 and observe a performance gain as number

of views initially increase but see the performance saturate

after few views. We also note that depth observations are

more informative than masks when very small number of

views are used. Another aspect studied is the reconstruction

performance when varying the amount of noise in depth ob-

servations. We observe that our approach is fairly robust to

noise unlike the fusion approach. See appendix [1] for fur-

ther details, discussion and explanations of the trends.

5.2. Object Reconstruction on PASCAL VOC

We demonstrate the application of our DRC formula-

tion on the PASCAL VOC dataset [10] where previous 3D

supervised single-view reconstruction methods cannot be

used due to lack of ground-truth training data. However,

available annotations for segmentation masks and camera

pose allow application of our framework.

Training Data. We use annotated pose (in PASCAL

3D [38]) and segmentation masks (from PASCAL VOC)

as training signal for object reconstruction. To augment
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Figure 4: PASCAL VOC reconstructions visualized using two representative views. Left to Right : Input, Ground-truth (as annotated in

PASCAL 3D), Deformable Models [33], DRC (Pascal), Shapenet 3D, DRC (Joint).

training data, we also use the Imagenet [28] objects from

PASCAL 3D (using an off-the shelf instance segmentation

method [23] to compute foreground masks on these). These

annotations effectively provide an orthographic camera Ci

for each training instance. Additionally, the annotated seg-

mentation mask provides us with the observation Oi. We

use the proposed view consistency loss on objects from the

training set in PASCAL3D – the loss measures consistency

of the predicted 3D shape given training RGB image Ii with

the single observation-camera pair (Oi, Ci). Despite only

one observation per instance, the shared prediction model

can learn to predict complete 3D shapes.

Benchmark. PASCAL3D also provides annotations for

(approximate) 3D shape of objects using a small set of CAD

models (about 10 per category). Similar to previous ap-

proaches [6, 33], we use these annotations on the test set

for benchmarking purposes. Note that since the same small

set of models is shared across training and test objects, us-

ing the PASCAL3D models for training is likely to bias the

evaluation. This makes our results incomparable to those

reported in [6] where a model pretrained on ShapeNet data

is fine-tuned on PASCAL3D using shapes from this small

set of models as ground-truth. See appendix [1] for further

discussion.

Setup. The various baselines/variants studied are described

below. Note that for all the learning based methods, we train

a single category-agnostic CNN.

Category-Specific Deformable Models (CSDM). We com-

pare to [33] in a setting where, unlike other methods, it uses

ground-truth mask, keypoints to fit deformable 3D models.

ShapeNet 3D (with Realistic Rendering). To emulate the

setup used by previous approaches e.g. [6, 14], we train a

CNN on rendered ShapeNet images using cross entropy loss

with the ground-truth CAD model. We attempt to bridge the

domain gap by using more realistic renderings via random

Method aero car chair mean

CSDM 0.40 0.60 0.29 0.43

DRC (PASCAL) 0.42 0.67 0.25 0.44

Shapenet 3D 0.53 0.67 0.33 0.51

DRC (Joint) 0.55 0.72 0.34 0.54

Table 2: Mean IoU on PASCAL VOC.

background/lighting variations [31] and initializing the con-

volution layers with a pretrained ResNet-18 model [19].

DRC (Pascal). We only use the PASCAL3D instances with

pose, object mask annotations to train the CNN with the

proposed view consistency loss.

DRC (Joint : ShapeNet 3D + Pascal). We pre-train a model

on ShapeNet 3D data as above and finetune it using PAS-

CAL3D using our view consistency loss.

Results. We present the comparisons of our approach to the

baselines in Table 2 and visualize sample predictions in Fig-

ure 4. We observe that our model when trained using only

PASCAL3D data, while being category agnostic and not us-

ing ground-truth annotations for testing, performs compara-

bly to [33] which also uses similar training data. We observe

that using the PASCAL data via the view consistency loss in

addition to the ShapeNet 3D training data allows us to im-

prove across categories as using real images for training re-

moves some error modes that the CNN trained on synthetic

data exhibits on real images. Note that the learning signals

used in this setup were only approximate – the annotated

pose, segmentation masks computed by [23] are not perfect

and our method results in improvements despite these.

5.3. 3D Scene Reconstruction from Ego­motion

The problem of scene reconstruction is an extremely

challenging one. While previous approaches, using di-
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Figure 5: Sample results on Cityscapes using ego-motion sequences for learning single image 3D reconstruction. Given a single input

image (left), our model predicts voxel occupancy probabilities and per-voxel semantic class distribution. We use this prediction to render,

in the top row, estimated disparity and semantics for a camera moving forward by 3, 6, 9, 12 metres respectively. The bottom row renders

similar output but using a 2.5D representation of ground-truth pixel-wise disparity and pixel-wise semantic labels inferred by [40].

rect [9], multi-view [12, 16] or even no supervision [11] pre-

dict detailed 2.5D representations (pixelwise depth and/or

surface normals), the task of single image 3D prediction

has been largely unexplored for scenes. A prominent rea-

son for this is the lack of supervisory data. Even though

obtaining full 3D supervision might be difficult, obtaining

multi-view observations may be more feasible. We present

some preliminary explorations and apply our framework to

learn single image 3D reconstruction for scenes by using

driving sequences as supervision.

We use the cityscapes dataset [7] which has numerous

30-frame driving sequences with associated disparity im-

ages, ego-motion information and semantic labels1. We

train a CNN to predict, from a single scene image, occupan-

cies and per-voxel semantic labels for a coarse voxel grid.

We minimize the consistency loss function corresponding

to the event cost in Eq. 9. To account for the large scale

of scenes, our voxel grid does not have uniform cells, in-

stead the size of the cells grows as we move away from the

camera. See appendix [1] for details, CNN architecture etc.

We show qualitative results in Figure 5 and compare

the coarse 3D representation inferred by our method with

a detailed 2.5D representation by rendering inferred dispar-

ity and semantic segmentation images under simulated for-

ward motion. The 3D representation, while coarse, is able

to capture structure not visible in the original image (e.g.

cars occluding other cars). While this is an encouraging re-

sult that demonstrates the possibility of going beyond 2.5D

for scenes, there are several challenges that remain e.g. the

pedestrians/moving cars violate the implicit static scene as-

sumption, the scope of 3D data captured from the multiple

views is limited in context of the whole scene and finally,

one may never get observations for some aspects e.g. multi-

view supervision cannot inform us that there is road below

the cars parked on the side.

5.4. Object Reconstruction from RGB Supervision

We study the setting where only 2D color images of

ShapeNet models are available as supervisory signal. In this

scenario, our CNN predicts a per-voxel occupancy as well

as a color value. We use the generalized event cost function

from Eq. 10 to define the training loss. Some qualitative

1while only sparse frames are annotated, we use a semantic segmenta-

tion system [40] trained on these to obtain labels for other frames

Figure 6: Sample results on ShapeNet dataset using multiple RGB

images as supervision for training. We show the input image (left)

and the visualize 3D shape predicted using our learned model from

two novel views. Best viewed in color.

results are shown in Figure 6. We see the learned model

can infer the correct shape as well as color, including the

concavities in chairs, shading for hidden parts etc. See ap-

pendix [1] for more details and discussion on error modes

e.g. artifacts below cars.

6. Discussion

We have presented a differentiable formulation for con-

sistency between a 3D shape and a 2D observation and

demonstrated its applications for learning single-view re-

construction in various scenarios. These are, however, only

the initial steps and a number of challenges are yet to be ad-

dressed. Our formulation is applicable to voxel-occupancy

based representations and an interesting direction is to ex-

tend these ideas to alternate representations which allow

finer predictions e.g. [17, 27, 32]. Additionally, we assume

a known camera transformation across views. While this is

a realistic assumption from the perspective of agents, relax-

ing this might further allow learning from web-scale data.

Finally, while our approach allows us to bypass the avail-

ability of ground-truth 3D information for training, a bench-

mark dataset is still required for evaluation which may be

challenging for scenarios like scene reconstruction.
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