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Abstract Several applications require information about street

furniture. Part of the task is to survey all traffic signs. This

has to be done for millions of km of road, and the exercise

needs to be repeated every so often. We used a van with

8 roof-mounted cameras to drive through the streets and

took images every meter. The paper proposes a pipeline for

the efficient detection and recognition of traffic signs from

such images. The task is challenging, as illumination con-

ditions change regularly, occlusions are frequent, sign posi-

tions and orientations vary substantially, and the actual signs

are far less similar among equal types than one might ex-

pect. We combine 2D and 3D techniques to improve results

beyond the state-of-the-art, which is still very much preoc-

cupied with single view analysis. For the initial detection

in single frames, we use a set of colour- and shape-based

criteria. They yield a set of candidate sign patterns. The se-

lection of such candidates allows for a significant speed up

over a sliding window approach while keeping similar per-

formance. A speedup is also achieved through a proposed

efficient bounded evaluation of AdaBoost detectors. The 2D

detections in multiple views are subsequently combined to

generate 3D hypotheses. A Minimum Description Length

formulation yields the set of 3D traffic signs that best ex-
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Fig. 1 3D mapped traffic signs in a reconstructed scene.

plains the 2D detections. The paper comes with a publicly

available database, with more than 13 000 traffic signs an-

notations.
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1 Introduction

Mobile mapping is used ever more often, e.g. for the creation

of 3D city models for navigation, or to turn old paper maps
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a) Within-class variability:

b) Bad standardisation:

c) Among-class similarity:

Fig. 2 The within-class variability and between-class similarity of

traffic signs are high. The five first rows show instances of the same

class. The last two rows show traffic signs from two distinct classes

(first 3 columns vs. last 2 columns).

into digital databases. Several of those applications need the

locations and types of the traffic signs along the roads, see

Fig. 1. The paper describes an efficient pipeline for the de-

tection and recognition of such signs, from mobile mapping

data.

Over the last decade, the computer vision community

has largely turned towards the recognition of object classes,

rather than specific patterns like traffic signs. However, it

would be a mistake to believe that their recognition is not

extremely challenging. To be useful, both false positive and

false negative rates have to be very low. That is why cur-

rently much of this work is still carried out by human op-

erators. There are all the traditional problems of variations

in lighting, background, pose, and of occlusions by other

objects, see Fig. 2a. In addition, these signs are often not

as precisely standardized as one would expect (this also de-

pends on the country; our dataset was acquired in Belgium),

see Fig. 2b.

The traffic sign detection problem is traditionally solved

by one of the following approaches:

(i) the selective extraction of windows of interest, followed

by their classification [14,17,19,3].

(ii) exhaustive sliding window based classification [22,21,

1].

Approach (i) exploits the saliency traffic signs exhibit

by design. A small number of interest regions is selected in

the images, through fast and cheap methods. These interest

regions are then subjected to a more sophisticated classifica-

tion. Unfortunately, such approach risks to overlook traffic

signs if their assumed saliency has been compromised. See

Fig. 12 for some examples.

Approach (ii) considers all regions or ‘windows’ in the

image. As the number of candidate windows is huge, the

classification process easily becomes intractable [22]. Ad-

ditional constraints like minimum and maximum window

sizes help to prune that number, at the expense of the num-

ber of times the same sign can be detected in image sets

of the type we use. Typically, a cascaded classification is ap-

plied [1], such that more time is invested in the more promis-

ing windows and the vast majority can again be discarded

quickly. A single sign often results in multiple detections in

overlapping windows, such that a non-maximum suppres-

sion is needed as a post-processing step.

In this paper, we contribute to the traffic sign detection

problem in the following ways:

Contribution 1: Observing that approaches (i) and (ii)

have complementary strengths, we propose their combined

use.

Contribution 2: The candidate window selection in ap-

proach (i) is usually rather ad-hoc, with thresholds manually

chosen. We propose an off-line learning process which au-

tomatically selects features and corresponding thresholds.

Contribution 3: We do not stop at single view detection

and recognition, but add multi-view 3D localisation. Apart

from the value of 3D localisation per se, the 3D analysis

assists in weeding out false detections while keeping their

subset that jointly best explain the observations in the differ-

ent views.

Contribution 4: An efficient bounded evaluation for lin-

ear Discrete AdaBoost-like classifiers [26] is proposed with-

out trading off the performance.

Contribution 5: Since there has been no publicly avail-

able database which could serve as a statistically relevant

benchmark, we make available such database, as described

in Section 7.1 and found at http://homes.esat.kuleuven.

be/˜rtimofte/traffic_signs/. It contains over 13

000 traffic sign annotations, for more than 145000 images

taken on Belgian roads. The image resolution is 1628 ×

1236 pixels.
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2 State-of-the-art

2.1 Single view detection

The results of traffic sign detection and recognition thus far

– often obtained under simpler conditions than in our exper-

iments – testify to the high difficulty of the task.

Lafuente et al. [14] had 26% of false negatives for 3

false positives per image. Maldonado et al. [17] used image

thresholding followed by SVM classification. They mention

that every traffic sign has been detected at least twice in a

total of 5000 video frames, with 22 false alarms. Detection

rates per view are not given. In both these methods, thresh-

olds are manually selected. Nunn et al. [21] showed that

constraining the search to road borders and an overhang-

ing strip significantly reduces the number of false positives,

while false negatives are at 3.8%. In this preselection step,

they still found 16494 false positives per image on average

using that geometric restriction. All these systems were only

tested on highways.

The following systems have also been demonstrated off

the highway. Pettersson et al. [22] restricted the detection to

speed signs, stop signs and give-way signs. They got 10−4−

10−5 false positive rates for 1% false negatives, but fail to

mention the number of sub-windows per image. Moutarde

et al. [19] reported no false positives at all in a 150 min-

utes long video, but with 11% of all traffic signs left un-

detected. Ruta et al. [24] combine image colour threshold-

ing and shape detection, achieving 6.2% false negatives. The

number of false positives is not mentioned. Broggi et al. [3]

proposed a system similar to [17] where the SVM is replaced

by a neural network. No quantitative results are presented.

Although some papers mention the possibility to track

the traffic signs, the actual analysis reported in all these pa-

pers is based on per-image detection. This is different for the

following papers, which consider fused recognition based on

multiple detections, as in our case.

In [1] a real-time system for circular traffic signs is pro-

posed that uses a sliding window method. A cascaded Ad-

aBoost detector is trained over Haar-like features defined for

each colour channel. The detections are tracked and fused

for recognition. A 85% recognition rate is reported for one

false positive in every 600 frames (640 × 480 pixel resolu-

tion). Ruta et al. in [25] propose a real-time circular traf-

fic sign recognition system that employs colour filtering for

red and blue, quad-tree based region of interest extraction,

a Hough transform detector with confidence-weighted mean

shift refinement, regression tracking based on learning affine

distortions over time for specific sign instances, and an Ad-

aBoost variant (SimBoost) for classification. For 720 × 540

pixels videos, they report 12 missclassified signs out of 85

correct detected/tracked traffic signs while not detecting 14

signs and having 10 false detections.

Results so far are not good enough to roll out such meth-

ods at a large, urban scale. Both the numbers of false posi-

tives and false negatives are too high, or methods are based

on assumptions that no longer hold.

Whereas the majority of the previous contributions work

with a rather small subset of sign types, our system handles

62 different types of signs. Moreover, the authors usually fo-

cus on highway images, whereas our dataset mainly contains

images from smaller roads and streets. This poses a more

challenging problem as signs tend to be smaller, have more

often been smeared with graffiti or stickers, suffer more from

occlusions, are often older, and are visible in fewer images.

Also, several sign types never appear along highways.

2.2 Multi-view detection

Given the aforementioned limitations with single view meth-

ods, it stands to reason to exploit the fact that, typically, a

traffic sign is visible in more than one image. Indeed, with

the usual mobile mapping vans, multiple, synchronised im-

ages are taken a few times per second. This delivers such

redundancy and, also, 3D information.

In mainstream computer vision, approaches have recently

emerged that try to exploit contextual information. A good

example is to use the estimated position of the ground plane,

thereby introducing a weak notion of 3D scene layout [11].

This was found to be very beneficial. In a similar vein, Wo-

jek and Schiele [31] went further in coupling object detec-

tion and scene labeling approaches. Yet, these approaches

still work from a single image. In a mobile mapping setting,

a multi-view approach comes natural and can ease such con-

textual analysis through the explicit 3D information it pro-

vides.

As a second strand of relevant research, some recent

techniques have focused on detecting and recognizing object

related subsets of 3D point clouds [4,20,10]. 3D informa-

tion is combined with motion, colour, and other data. These

systems, which have also been mainly targeting urban scene

segmentation and labeling, show remarkable performance.

Yet, smaller objects like road signs are among the more dif-

ficult ones to handle.

It thus stands to reason to exploit information coming

from multiple images. Both the high resolution available in

each of those images and the 3D information that can be ex-

tracted from them, seem vital inputs. Our method is based

on the combination and final selection of detections in a

single 3D space. Some earlier traffic sign detection meth-

ods may have been aggregating detections from multiple

views as well, but in different and less exacting ways. e.g.

through tracking [1,25,23,27], grouping using GPS infor-

mation, consistency checks in stereo camera imagery, and/or

active vision with high-res regions of interest detected within
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a low-res camera image [12]. The redundant information

coming from the different views is not compiled into a single

3D space, obtained from all views as in our approach.

As a matter of fact, this begs the question what adding

additional sensors like laser scanners could do. In [13] such

an integrated mobile mapping system is described, but in the

automatic mode, the false detection rate is still high and the

localisation precision is not better than sub-meter. Adding

laser scanning is no miracle cure per se. Before we describe

our system in more detail, it is useful to also review litera-

ture on the combination of multi-view based detection and

tracking.

Fleuret et al. [9] use a multi-view probabilistic occu-

pancy map for people detection and tracking. They globally

optimize each individual trajectory separately over long se-

quences. In contrast, Leibe et al. [15] employ a globally op-

timal solution for all detections and trajectories at once. The

solution is given by a Minimum Description Length (MDL)

formulation that inspired also our 3D solution. An impor-

tant difference lies in the added value of ground plane and

space occupancy constraints in their system, however. Nei-

ther are of such great help in our traffic sign application. The

signs are positioned at varying positions and their volumes

are negligible.

Similar challenges are faced by the mobile mapping sys-

tem in [5], which was designed to find streetlights. Like

ours, this system employs multiple cameras mounted on a

van, where 2D detections are used to generate 3D hypothe-

ses and their validation is based on back-projection into the

images. These authors did use a ground plane constraint and

an occupancy map, but at the cost of making strong assump-

tions about the height above ground and the presence of

rather thick poles on which the lamps are fixed. The recent

work from [28] uses the same settings as we do, for the 3D

mapping of manhole covers. The main assumption is that the

manholes are lying on the ground and, thus, the images are

projected onto the ground plane and the problem thereby is

greatly simplified.

We have to cover cases with signs also fixed to structures

like walls or bridges, at rather unpredictable heights. For the

aforementioned reasons, we do not make use of these con-

straints. Also, we formulate criteria for the optimal selection

of the basic features (used for detection) and the resulting

3D hypotheses. Moreover, our problem setting imposes the

detection of far more object classes, which are typically of a

smaller size.

This paper is an extension to our previous work [29].

It contains a more detailed description of the ideas and al-

gorithms, a comparison with a standard sliding window ap-

proach as well as with a state-of-the-art part-based approach [8],

additional justifications of the design choices made, improved

results, as well as the link to the published training and test-

ing datasets.

The structure of the remainder of the paper is as follows.

Section 3 first gives an overview of the different steps taken

by the system. Then, we focus on the most innovative as-

pects. Section 4 explains the initial selection of good candi-

dates within the individual images. Section 5 introduces an

efficient bounded evaluation of linear AdaBoost-like clas-

sifiers, which speeds up the system. Section 6 explains the

MDL formulation for 3D traffic sign localisation. Section 7

describes the experimental setup and the results. Section 8

discusses practical issues and comments on the generality

of the system. Section 9 draws conclusions.

3 Overview of the system

Before starting with the description of how the traffic signs

are detected in the data, it is useful to give a bit more in-

formation about our data capturing procedure. Like for most

large-scale surveying applications, a van with sensors is driven

through the streets. In our case, it had 8 cameras on its roof:

two looking ahead, two looking back, two looking to the left,

and two to the right. There was an overlap between the fields

of view of neighbouring cameras. About every meter, each

of the cameras simultaneously takes a 1628 × 1236 image.

The average speed of the van is ∼ 35km/h. The cameras

are internally calibrated and also their relative positions are

known. Structure-from-motion combined with GPS yields

the ego-motion of the van.

We do not propose on-line driver assistance but an off-

line traffic sign mapping system, performing optimization

over the captured views. Only traffic signs captured at a dis-

tance of less than 50 meters are considered. The proposed

system first processes single images independently, keeping

the number of false negatives (FN - the number of missed

traffic signs) very low and the number of false positives (FP

- the number of accepted background regions) reasonable.

Single-view traffic sign detections in conjunction with the

multi-view scene geometry subsequently allows for a global

optimization. This optimization simultaneously performs a

3D localisation and refinement. Since we deal with hundreds

of thousands of high-resolution images the approach is to

quickly throw out most of the background, and to then in-

vest increasing amounts of time on whatever patterns sur-

vive previous steps.

We now sketch the different steps of the single-view and

multi-view processing pipelines. The next two sections then

give a more detailed account of these pipelines, resp.

The single-view detection phase consists of the follow-

ing steps:

1) Candidate extraction - very fast preprocessing step, where

an optimized combination of simple (i.e. computationally

cheap), adjustable extraction methods selects bounding boxes
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Fig. 3 Haar-like features used in our implementation.

with possible traffic signs. This step requires an automatic

off-line learning stage, where an appropriate subset of fea-

tures and corresponding decision rules is selected. They should

yield very high detection rate (FN very low), while keep-

ing the number of false positives in check. This part of the

pipeline is described in more detail in Section 4.

2) Detection - Extracted candidates are verified further by a

binary classifier which filters out remaining background re-

gions. It is based on the well known Viola and Jones [30]

Discrete AdaBoost classifier [26]. The 6 Haar-like patterns

used are shown in Fig. 3. Detection is performed by cas-

cades of AdaBoost classifiers, followed by an SVM operat-

ing on normalized RGB channels, pyramids of Histogram

of Oriented Gradients(HOGs) [2] and AdaBoost-selected

Haar-like features. The detection time is reduced by using

an efficient bounded evaluation of the AdaBoost classifiers,

further explained in Section 5.

3) Recognition - Six one-against-all SVM classifiers se-

lect one of the six basic traffic sign subclasses (triangle-

up, triangle-down, circle-blue, circle-red, rectangle and dia-

mond) for the different candidate traffic signs. They work on

the RGB colour channels normalized by the intensity vari-

ance.

The multi-view phase consists of the following steps:

4) Multi-view hypothesis generation - We search for possi-

ble correspondences among the final, single-view candidates

in the different views. The search is restricted to a volume

with a predefined radius in 3D space. Every geometrically

and visually consistent pair is used to create a 3D hypothe-

sis. Geometric consistency amounts to checking the position

of the back-projected 3D hypothesis against the 2D image

candidates. Visual consistency gives a higher weight to pairs

which are more probable to be of the same basic shape.

5) Multi-view MDL hypothesis pruning - The Minimum

Description Length principle is used to select the subset of

3D hypotheses which best explains the overall set of 2D

(i.e. single-view) candidates. A by-product of the MDL opti-

mization is quite a clean set of 2D candidates corresponding

to each particular 3D hypothesis. These candidates allow for

3D hypothesis position refinement. Usually, steps 4) and 5)

are iterated. More details are given in Section 6.

6) Multi-view sign type recognition - The collected set of

2D candidates for each 3D hypothesis is classified by an

SVM classifier. These classifications then jointly vote on the

final type assigned to the hypothesis.

Original Thresholded Connected Extracted

image image I(T ) components bound. boxes

Fig. 4 Colour-based extraction method for threshold T =
(0.5, 0.2,−0.4, 1.0)⊤

Occlusion Occlusion Peeled Dirty

Fig. 5 Not threshold separable traffic signs. There are still traffic

signs which are not well locally separable from background; therefore

shape-based extraction is used.

4 Single-view candidate extraction

The simplest extraction method often used for traffic sign

detection is extraction of connected components from a thresh-

olded image, an idea already used in [17,3]. The principle is

outlined in Fig. 4. The thresholded image is obtained from a

colour image, with colour channels (IR, IG, IB), by appli-

cation of a colour threshold T = (t, a, b, c)⊤:

I(T ) =

{

1 a · IR + b · IG + c · IB ≥ t

0 otherwise
(1)

Authors often manually select two to five thresholds,

which are expected to extract all traffic signs. However, we

experimentally observed that under variable illumination con-

ditions and in the presence of a complex background such

extraction method is insufficient.

Since there typically is no single threshold performing

well by itself, it is necessary to combine regions selected

by different thresholds T = {T1, T2, . . . }, in the sense of

adding regions (OR-ing operation). Then, regions passed on

by any threshold are going to the next stage, i.e. detection.

The more thresholds are used the lower FN can be made but

the higher FP risks to get, and the higher the computational

cost will be.

Partially occluded, peeled or dirty traffic signs also should

pass the colour test. Therefore, this cannot be made too re-

strictive. Examples are shown in Fig. 5. That is why we also

employ shape information to further refine the candidates.

Section 4.1 explains how the set of colour thresholds

are learned and how, starting from those, the colour-based

candidates are extracted. Section 4.2 then describes a shape-

based Hough transform. This takes the borders of the colour-

based candidates as input.
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Original Extracted Bounding Rescaled

image region box bound. box

Fig. 6 Demonstration of the extended threshold. The object is not

well locally separable from the background, because bricks have a

colour similar to that of the red boundary. Therefore the inner white

part is extracted and the resulting bounding box is rescaled T =
(0.1,−0.433,−0.250, 0.866, 1.6, 1.6)⊤.

4.1 Colour-based candidate extraction

Given thousands of possible colour thresholds, we search for

the optimal subset T of such thresholds, given some crite-

rion. Since for most interesting such criteria the problem is

NP-complete, we formulate our search as an Integer Linear

Programming problem. We have experimentally found that

finding the real optimum takes several hours, but that ILP,

due to the sparsity of the constraints, yields a viable solution

within minutes.

The most straightforward criterion is to search for a trade-

off between FP and FN.

T ∗ = arg min
T

(FP(T ) + κ1 · FN(T )), (2)

where FP(T ) stands for the number of false positives and

FN(T ) for the number of false negatives, resp., of the se-

lected subset of thresholding operations T measured on a

training set. The real number κ1 is a relative weighting fac-

tor. In order to avoid overfitting and also to keep the method

sufficiently fast, we introduce an additional constraint on the

cardinality card(T ) of the set of selected thresholds. This

can be either a hard constraint card(T ) < ω0 or a soft con-

straint as in:

T ∗ = arg min
T

(FP(T ) + κ1 · FN(T ) + κ2 · card(T )) (3)

We achieved better results with the soft constraint, but im-

posing a hard constraint may be necessary if the running

time is an issue. Since accuracy, defined as the average over-

lap between ground truth bounding boxes with extracted bound-

ing boxes, is important, we also add a term which increases

the penalty for inaccurate extractions:

T ∗ = arg min
T

(FP(T ) + κ1 · FN(T )

+κ2 · card(T ) − κ3 · accuracy(T )) (4)

Scalars κ1, κ2 and κ3 are learned parameters which we esti-

mate by cross-validation. Reformulations of problems (2,3,4)

into the Integer Linear Programming form are described in

the Appendix.

Original Extracted Hough Refined

image region accumulator bound. box

Fig. 7 Shape-based extraction principle. The border of the colour-

based extracted region (blue) votes for different shapes in a Hough

accumulator. The green bounding box corresponds to the maximum.

Occasionally it happens that the contour of the traffic

sign cannot be separated from the background due to colour

similarity. See for example Fig. 6, where the rim of the sign

is too similar in colour to the background. Fortunately, many

traffic signs have also some inner contours (e.g. the white

inner part of the sign in Fig. 6, can be separated rather eas-

ily). This inner part can often define the traffic sign’s out-

line with sufficient accuracy. We therefore introduce the ex-

tended threshold

T = (t, a, b, c
︸ ︷︷ ︸

T

, sr, sc)
⊤ (5)

which consists of the original threshold T and vertical resp.

horizontal scaling factors (sr, sc) to be applied to the bound-

ing box which is extracted with the original threshold. Such

extended threshold - in the sequel simply referred to as thresh-

old - can reveal a traffic sign, even if its rim poses problems.

Changing illumination poses another problem to thresh-

olding. One could try to adapt the set of thresholds to the

illumination conditions, but it is better to add robustness to

the thresholding method itself. We adjust the threshold to be

locally stable in the sense of Maximally Stable Extremal Re-

gions (MSER) [18]. Instead of directly using the bounding

box as extracted by the learned threshold (t, a, b, c, sr, sc),

we use bounding boxes from MSERs detected within the

range [(t − ǫ, a, b, c, sr, sc); (t + ǫ, a, b, c, sr, sc)], where ǫ

is a parameter of the method. Since MSERs themselves are

defined by a stability parameter ∆, this ‘TMSER’ method is

parametrized by two parameters (ǫ, ∆).

4.2 Shape-based candidate extraction

Traffic signs are meant to be well distinguishable by both

their colour and shape. Each of the above thresholds (with

scaling and TMSER extensions) let pass a series of con-

nected components, i.e. regions (usually thousands per im-

age). To these regions we now apply an additional shape-

filter, akin to the generalized Hough transformation. The

principle is outlined in Fig. 7.

In general the image shapes of the signs will be affinely

transformed versions of the actual shapes. Using the gener-
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Fig. 8 Threshold-specific fuzzy templates. Selected subset

{23, 12, 28, 32} from 44 fuzzy-templates.

alized Hough transformation in its traditional form would re-

quire to detect every single shape in 5D (or even 6D) Hough

accumulator spaces. Apart from the computational load in-

volved, working in such vast spaces is almost guaranteed

to fail. Instead, we learn fuzzy templates which incorporate

small affine transformations and shape variations and we de-

termine explicitly only the position and scale in a 3D Hough

accumulator.

The most straightforward fuzzy templates could be learned

as a probability distribution of boundaries of colour-based

extracted regions for specific signs. Such approach, how-

ever, would require as many templates as there are differ-

ent shapes. A more parsimonious use of templates is pos-

sible, however. Since the learned thresholds (Eq. (5)) are

usually specialized for some specific basic shapes of traffic

signs, we learn threshold-specific fuzzy templates, which al-

low the system to try only one template per extracted bound-

ary. Fig. 8 gives examples. For each threshold, we first col-

lect boundaries of extracted regions which yield correct bound-

ing boxes. Then the scale is normalized (aspect ratio is pre-

served) and the probability distribution of the shapes ex-

tracted by the threshold is computed. Eventually, the fuzzy

template is estimated as the point reflection of the probabil-

ity distribution, because voting in the Hough accumulator

requires the point-reflected shape. For example, the second

fuzzy template in Fig. 8 corresponds mainly to traffic signs

which are circular or upward-pointing triangular, whence

the downward-pointing triangular part of the template (in

addition to the circular part).

When a boundary is extracted by a threshold, the threshold-

specific fuzzy template is used to compute its generalized

Hough transformation. A bounding box corresponding to

the maximum in the three dimensional Hough accumulator

(2 positions and 1 scale) is reported if the maximum is suf-

ficiently high. The role of the shape selection step mainly

consists of selecting a sub-window from a colour-defined

bounding box, with the right shape enclosed. In order to

avoid replacement of correctly extracted bounding by a bound-

ing box corresponding to a small sub-boundary which has

more exact shape than the original one, the original bound-

ing box is also kept.

Fig. 9 Shape-based extractable but colour threshold inseparable

traffic signs - the ground truth is delineated by a red rectangle, the best

shape-based detection is shown in yellow and the best colour-based

one in green.

5 Efficient bounded evaluation of AdaBoost classifiers

Here we show a simple way to speed up the evaluation of lin-

ear combinations of the form used in our Discrete AdaBoost

classifier implementation.

The result of the AdaBoost algorithm is a ‘strong’ clas-

sifier constructed as a linear combination

f(x) =
L∑

t=1

αtht(x) (6)

of L ‘simple’‘weak’ binary classifiers/features ht(x) : X →
{−1,+1}, where αt are the weights and X is the space (im-

age) from where x is sampled. The thresholded decision of

the final classifier is

H(x) = sign{f(x) − θ} (7)

where θ is the threshold.

Since the values of ht have upper and lower bounds, the

partial sums of terms in Eq. (6) are also bounded. Let ht =
+1 and ht = −1 be the upper and lower bounds for ht. We

observe that in order to evaluate H(x), we do not have to

compute all ht, but we can stop after computing s terms if

s∑

t=1

αtht(x) +

L∑

t=s+1

αtht(x) < θ (8)

implying that f(x) lies below the threshold θ even if all the

remaining terms (s + 1, . . . , L) are at their upper bounds.

Also, we can stop after s terms if

s∑

t=1

αtht(x) +
L∑

t=s+1

αtht(x) > θ (9)

in which case f(x) would be above the threshold θ even

if all the remaining terms (s + 1, . . . , L) are at their lower

bounds.

The sums for upper and lower bounds do not depend on

the actual value of ht(x) and are precomputed.
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By dropping the evaluation of the whole linear combina-

tion and considering the bounded intervals we already get a

decrease in computation time for our AdaBoost cascades of

20% up to 30%.

If we first evaluate the terms that contribute the most

we get a further computation time reduction. The terms that

have the strongest influence on f(x) are those with the largest

values for αt(ht(x) − ht(x)).

Since the weights, the upper and lower bounds are known

and fixed in our case, we can first sort the terms in descend-

ing order according to their αt(ht(x) − ht(x)) values (or

just αt values in our case), and afterwards compute the par-

tial sums for the worst and most favorable cases. By sorting

first, we experimentally obtain a decrease in computation

time of up to 40%.

Another way of exploiting the linear combinational na-

ture of our classifiers is to employ the training material and

to extract frequencies for each term for each particular value

or value interval. Thus, the evaluation order will be given by

using these frequencies coming from the training material,

and the computation time reduction would be obtained along

with an estimated probability. This idea is not explored here.

Note that the methods applied here have no impact on

the decision values of the considered classifiers but only

(in general) improve the computational time. Also, similar

methods are applicable to other classifiers based on a linear

combination of local, weak decisions.

6 Multiple-view MDL 3D optimization

Single-view detection and recognition is just a preprocess-

ing stage, and the final decision results from global opti-

mization over multiple views, based on the Minimum De-

scription Length principle (MDL). Given the set of images,

single-view detections, camera positions and calibrations,

MDL searches for the smallest possible set of 3D hypothe-

ses which sufficiently explains all detected bounding boxes.

In other words, if a set of detected bounding boxes satisfies

some geometrical and visual constraints, then all of these

bounding boxes are explainable by one 3D traffic sign. Next,

we explain how MDL is used for that purpose.

We start by generating an overcomplete set of hypothe-

ses: For every single 2D detection we collect every geo-

metrically and visually consistent correspondence in another

image and use this pair to generate a 3D hypothesis, see Fig-

ure 10. Geometrical consistency means that the correspond-

ing detection lies on the epipolar line for the camera pair. Vi-

sual consistency means that their recognized subclass types

are the same. This step, of course, generates a high num-

ber of 3D hypotheses, including false positives and mul-

tiple, close but seemingly different 3D reconstructions for

the same sign (3D reconstructions are generated from image

Fig. 10 MDL principle - the corresponding pairs generate 3D hy-

potheses, from which can be picked up (green) a subset (left) or the

best/smallest subset (right) in the MDL sense that explains the 2D de-

tections.

pairs). The following MDL optimization selects the simplest

subset which best explains the 2D detections. For some fur-

ther explanation, see Fig. 10, right.

For each 3D hypothesis we will have a 3D position of

the centre of the traffic sign, its fitted plane and thus an ori-

entation (and sense), and estimated probabilities to belong to

each of basic shapes. For a specific hypothesis h we gather

the set of supporting 2D candidates which have a coverage1

with the 2D projection of h above 0.05 and for which the

candidate camera and the hypothesis are facing each other

(rather than the camera observing the backside of the sign),

at less than 50 meters. Let the set of 2D candidates be Ch.

In order to define the MDL optimization problem, we

first compute savings (in coding length) for every single 3D

hypothesis h as follows:

Sh ∼ Sd − k1Sm − k2Se (10)

where Sd is the part of the hypothesis which is explained by

the supporting candidates (Eq. (12)), i.e. a weighted sum of

coverages as explained shortly. Sm is the cost of coding the

model itself (a constant penalty in our case), while Se repre-

sents those parts that are not explaining the given hypothesis

(Eq. (13)), and k1, k2 are weights (as in [15]). For each can-

didate c we have a 2D projection of h, whence the coverage

Oc,h of the projected h and the candidate c. The coverage as-

sures independence of the size of supporting candidates. The

estimated probability that the candidate explains the hypoth-

esis is taken as the maximum of the probabilities of them

sharing a specific basic shape:

p(c, h) = max
t∈{△,▽,◦,�,♦}

pt(c)pt(h) (11)

Sd =
∑

c∈Ch

Oc,hp(c, h) (12)

Se =
∑

c∈Ch

(1 − Oc,h)p(c, h) (13)

1 Coverage is the ratio between the intersection and the union of

areas.



Multi-view traffic sign detection, recognition, and 3D localisation 9

Table 1 Belgian Traffic Signs Dataset (BelgiumTS). To the traffic

sign (TS) annotations corresponds a number of physically distinct TS.

On average we have 3 views/annotations for each physical TS. 3D Test-

ing contains the TS annotations along with the image/frame sequences

where those appeared, and each image is provided with camera param-

eters and pose. The TS annotations from 3D Testing form a subset of

2D Testing. non-TS stands for images without traffic sign annotations.

BelgiumTS TS annot. Distinct TSs other images

Training 8851 3020 16045 non-TSs

2D Testing 4593 1545 583 non-TSs

3D Testing 1625 552 121632
Total 13444 4565 16628 non-TSs

We assume that one candidate can explain only one hypoth-

esis. Interaction between any two hypotheses hi and hj that

get support from shared candidates C = Chi

⋂
Chj

should

be subtracted and is given by

Shi,hj
=

∑

c∈C

min
t∈{i,j}

(Sdt
(c) − k2Set

(c)) (14)

where Sdt
(c) and Set

(c) are constrained to the contribution

of c for ht

Leonardis et al. [16] have shown that if only pairwise in-

teractions are considered, then the Integer Quadratic Prob-

lem (IQP) formulation gives the optimal set of models:

max
n

nT Sn, S =






s11 · · · s1M

...
. . .

...

sM1 · · · sMM




 (15)

Here, n = [n1, n2, · · · , nM ]T is a vector of indicator vari-

ables, 1 for accepted and 0 otherwise. S is the interaction

matrix with sii being the savings, sii = Shi
, while the oth-

ers are representing the interaction costs between two hy-

potheses hi and hj , sij = sji = −0.5Shi,hj
. The restriction

to pairwise interactions does not fully cater for situations

where more than 2 hypotheses affect the same image area.

7 Experiments

7.1 Ground truth data

We have collected ground truth data used for this paper. This

database, the Belgian Traffic Signs Dataset (BelgiumTS), is

publicly available at: http://homes.esat.kuleuven.

be/˜rtimofte/traffic_signs/. The dataset contains

13444 traffic sign annotations in 9006 still images corre-

sponding to 4565 physically distinct traffic signs visible at

less than 50 meters from the camera. The dataset includes

challenging samples as shown in Fig. 2.

Table 1 summarises the most important information about

this dataset. It is split into different subsets, corresponding

to the rows in the table. For each subset, we indicate the

number of traffic sign annotations (2nd column), the num-

ber of different signs these correspond to (3rd column), and

the number of number of ‘background’ images without traf-

fic signs (4th column).

The first row describes the Training subset. The annota-

tions therein have been used to train for traffic sign detec-

tion, segmentation, and recognition. As negative examples,

we use 16045 ‘background’ images, which contain no traffic

signs. The 2D Testing subset was used for the validation of

the detection. Images were handpicked, so that the majority

contains traffic signs. Again, a number of background im-

ages without any signs were added. The 3D Testing subset

contains continuous sequences of images (8 camera images

per meter of road), i.e. with lots more images in between

those where traffic signs are visible. This dataset was used

for the full pipeline of detection, recognition, and localisa-

tion. The 3D Testing traffic sign annotations form a subset

to those for 2D Testing. Yet, in total it contains many more

images than 2D Testing, i.e. 121632 images from the 8 cam-

eras. All of these come with camera poses and internal cali-

brations.

To ease the use of the dataset for classification bench-

marking, we provide a subset called BelgiumTSC (Belgium

TS for Classification) with 4591 cropped training samples

and 2534 cropped testing samples. These correspond to the

original BelgiumTS Training and 2D Testing parts but re-

stricted to only 62 traffic sign types as used also in this work.

7.2 Single-view evaluation

The Training part of BelgiumTS (Table 1) is used for learn-

ing the suitable candidate extraction methods as well as for

training the AdaBoost cascades and the SVM classifiers.

To learn the SVM classifier, Statistical Pattern Recognition

Toolbox2 is used. The 2D Testing part is used for assessing

the performance. Our current method has only been trained

for 62 traffic signs classes. As a result, the number of used

annotations in testing drops to 2571, corresponding to 859
physically distinct traffic signs.

The detection and extraction errors (Table 2) are eval-

uated according to two criteria: either demanding detection

every time a sign appears (FN-BB), or only demanding it is

detected at least once (FN-TS). On average, a sign is visi-

ble in about 3 views. When False Negatives are mentioned

in the literature, it is usually FN-TS which is meant, where

the number of views per sign is often even higher (high-

way conditions). We considered a detection to be successful

if the coverage ≥ 0.65, which approximately corresponds

to the shift of a 20 × 20 bounding box by 2 pixels in both

directions. Note that some of our detected signs are quite

2 http://cmp.felk.cvut.cz/cmp/software/

stprtool/
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Table 2 Summary of achieved results in single-view detection. Meaning of the above used abbreviations is the following colour means method

described in Section 4.1, TMSER stands for TMSER(ǫ, ∆) = TMSER(0.1, 0.2), shape is Section 4.2. FN-BB means false negative with

respect to bounding boxes, FN-TS means false negative with respect to traffic signs. The graph depicts the detection performance for 2 candidate

extraction settings: Extr1 and Extr4.

FN-TS FN-BB FP per

[%] #/859 [%] #/2571 2MP img

Extr1 (colour) 0.7% 6 1.1% 29 3 281.8
Extr2 (colour+TMSER) 0.7% 6 1.1% 28 3 741.7
Extr3 (colour+shape) 0.5% 4 0.7% 17 5 206.2
Extr4 (colour+TMSER+shape) 0.5% 4 0.7% 17 5 822.0
Det + Extr1 2.3% 20 4.0% 103 2
Det + Extr4 1.9% 16 3.2% 82 2
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small, with the smallest 11×10. Approximately 25% of non-

extracted bounding boxes were smaller than 17 × 17, most

of the others were either taken under oblique angles and/or

were visually corrupted (e.g. covered by a sticker, heavily

occluded, etc.).

Table 2 shows results of both the candidate extraction

(still with an appreciable number of FP, see first four rows)

and the final detection (i.e. candidate extraction followed

by AdaBoost detector and SVM, see last two rows). The

ROC curve in Table 2 compares the FN-BB/FN-TS achiev-

able with our pure colour-based extraction method to that

with our combined (colour+TMSER+shape)-based extrac-

tion method. The shape extraction significantly increases the

number of false positives (see for example 4th row in the ta-

ble). The reason for is that we keep both the original colour

bounding boxes and add all bounding boxes that reflect a

good shape match. Combined extraction lowers FN, how-

ever. Fig. 9 shows traffic signs that could not be detected

completely with the colour thresholds, but which could then

still be extracted based on their shape.

7.3 Sliding window comparison

We compare the pipeline outlined so far with a sliding win-

dow approach. For the latter, we train Discrete AdaBoost

cascades directly on sampled subwindows from the Training

data (see Table 1). The parameters for sliding window are:

350 pixels minimum window size, 4 aspect ratios - (0.5,0.75,1.0,1.25),

6.67% shift and 1.15 scaling factor. Under these conditions

the number of processed windows per 1628 × 1236 image

is higher than 12 million. For testing we use the same 2D

Testing dataset (Table 1). For the features, Haar-like masks

are computed on HSI channels, as before.

The Matlab/C++ scripts ran weeks for training all the

cascades for the sliding window approach. Compared to this,

the days of training for the original pipeline looks mod-

est. We trained cascades for each subclass of traffic signs:

triangle-up (28 stages cascade), triangle-down (27 stages),

circle-blue (26 stages), circle-red (23 stages), rectangle (23

stages) and diamond (25 stages).

The output of the cascades is processed further by a SVM

classifier that uses Haar-like features, pyramids of HOGs

and pixels in RGB space. All features are variance normal-

ized and mean subtracted and then concatenated into a single

feature vector, which serves as input to a linear SVM.

Fig. 11 shows the performance of the sliding window

approach, of the Det+Extr1 pipeline (Table 2), and of their

combination. The 2D Testing set has been used. The sliding

window approach outperforms the Det+Extr1 pipeline for

low numbers of FN or FP, both for the BB and TS criteria.

Nevertheless, if we allow for higher FN or FP (which is the

case, as the 3D analysis prunes away most single view er-

rors), then the Det+Extr1 pipeline is better in terms of TS

detections. The performance can be improved by combining

the sliding window and the Det+Extr1 pipelines. Their out-

puts are combined, all put through a linear SVM, and then

selected by thresholding their confidences. Fig. 12 shows

cases that could be detected by one pipeline but not the other.

Thus, if the computation time is not crucial, running both ap-

proaches is advantageous. In our single-core / single-thread

implementations, the Det+Extr1 pipeline is about 50 times

faster than the sliding window pipeline. The Det+Extr1 pipeline

achieves about 2 frames per second.

7.4 Part-based model comparison

Here we compare with the state-of-the-art generic object

class detector of Felzenszwalb et al. [8]. This discrimina-

tively trained part-based model detector is the top performer

of PASCAL VOC Challenge 2009 [6].

The system relies on discriminative training with par-

tially labeled data. The authors combine a margin-sensitive



Multi-view traffic sign detection, recognition, and 3D localisation 11

0.01 0.1 1 2
0

2

4

6

8

10

12

14

accepted backgrounds per 2MP image

m
is

s
e
d
 t
ra

ff
ic

 s
ig

n
s
 [
%

]

 

 

BB:det+extr1

TS:det+extr1

BB:sliding window

TS:sliding window

BB:combined (sliding window & det+extr1)

TS:combined (sliding window & det+extr1)

BB:part−based models (Felzenszwalb)

TS:part−based models (Felzenszwalb)

Fig. 11 Comparison with state-of-the-art methods. - Detection plots

for every time a sign appears (BB - bounding box level), or only de-

manding it is detected at least once (TS - traffic sign level). In blue one

finds results for the main pipeline presented in this paper. The results

for the alternative sliding window approach are shown in red. Green

shows results for their combined use. The combined performance is

better than the sliding window approach and our proposed approach

with Extr1 extraction setting taken alone. In cyan is the result of the

generic part-based model system from Felzenszwalb et al. [8]

approach for data-mining hard negative examples with a for-

malism called latent SVM which is a reformulation of MI-

SVM in terms of latent variables. A latent SVM is semi-

convex and the training problem becomes convex once latent

information is specified for the positive examples. This leads

to an iterative training algorithm that alternates between fix-

ing latent values for positive examples and optimizing the

latent SVM objective function. The HOGs are the basic fea-

tures employed by this method.

For a fair comparison, we use the publicly available scripts.

We train on the Training part of BelgiumTS (see Table 1)

a model with 5 components which correspond to the basic

shapes of the traffic signs. The 2D Testing material is used

for assessing the performance.

Fig. 11 shows how this part-based model detector com-

pares with our proposed systems. The poorer performance

when compared with our specialized systems is believed to

come from the fact that this approach is a generic one and

works on HOG features. The running time compares to the

sliding window approach for 2Mpxl images. The cascaded

version from the same authors [7] is expected to provide the

same accuracy and an up to 20 times speedup, but the system

is still far from realtime performance. Thus our Det+Extr1

pipeline exhibits better accuracy and is much faster than the

part-based models variants considered here.

a) Missed detections:

b) Detected only by sliding window:

c) Detected only by det+extr1:

Fig. 12 Complementarity of sliding window and the proposed ap-

proach. Shown are samples where both methods fail (a) and where one

method fails but the other one is successful (b,c), at the same threshold

level.

7.5 Multi-view evaluation

In this section, we report on the multi-view results. More-

over, in the single-view case we only paid attention to the

detection of traffic signs, not yet to their recognition or lo-

calisation. Here we will also cover these topics. The inclu-

sion of correct localisation within 3 meters in X-Y-Z within

the criteria explains why some of the scores go down with

respect to the single-view case. Most of the incorrectly 3D

localised traffic signs were detected in at least one view.

We evaluate our multi-view pipeline, based on Det+Extr1

single-view processing, on the 4 image sets of the 3D Test-

ing part of BelgiumTS (see Table 1). The evaluation is re-

stricted to a subset of 62 traffic sign classes. These include

all regular signs, but exclude direction indicators with text.

A breakdown of the test data per class, along with its achieved

performance, is shown in Fig. 13. The results are summa-

rized in Table 3. The operating point was selected to mini-

mize FP at better than 95% correct localisation. This could

be shifted towards a better localisation rate at the cost of

more FP (see Fig. 14 for false detections). Fig. 15 shows
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Table 3 Summary of 3D achieved results. Localised TS means cor-

rectly located traffic signs in 3D space, FP stands for false positives in

3D and Recognised TS are the 3D recognition results with respect to

the located 3D TS.

# No.frames No.TSs 3D Localised TS FP Recognised TS

18 × 3001 99 94(95.0%) 3 90(95.7%)
28 × 6201 87 83(96.5%) 7 81(97.6%)
38 × 2001 47 44(93.6%) 2 43(97.7%)
48 × 4001 86 83(96.5%) 8 81(97.6%)

P

8 × 15204 319 304(95.30%) 20 285(97.04%)

samples of missed traffic signs (i.e. not detected, misplaced

or wrongly classified). The main causes are occlusions, a

weak confidence coming from the detection and/or few views

where a sign is visible. The average accuracy of localisation

(distance between the 3D position according to the ground

truth and the 3D reconstructed traffic sign) is 26 centimeters.

90% of the located traffic signs are reconstructed within 50

centimeters from the ground truth, but we have also 3 traffic

signs that are reconstructed at more than 1.5 meters.

The recognition results are summarized in the last col-

umn of Table 3. The overall classification rate is 97% with

95.30% accurately 3D-localised traffic signs. In comparison,

Ruta et al. [25] achieve 85% classification rate with 86%
traffic signs detected, on a smaller dataset but using a real-

time system with only a single front camera and exploiting

tracking.

8 Discussion

Having introduced our system and the experiments that we

perform, we now discuss topics such as trading off perfor-

mance for speed, practical aspects and the generality of the

approach, and driver assistance/real-time applications.

8.1 Performance versus speed

The performance/speed tradeoff is an often returning topic.

We considered a processing time of 2fps (operating on 2Mpixel

images) to be sufficient if a very high detection rate (> 95%)

of close-by traffic signs (within 50 metres) and a very low

false detections per image (< 2) could be warranted. Our

experiments corroborated that using a multi-view/3D analy-

sis helps a lot in pruning the false detections while getting

very high 3D localisation rates. This is another observation

to keep in mind when putting together a final system.

Given the above, deploying a det+extr1 pipeline (see

Section 7) makes sense. This proved to yield a speed of 2fps

at a level of 96% detection rate and 2 false positives per

image (see Table 2), in line with our goals. Combined with

the multi-view/3D analysis MDL optimization we exceed

95% accurate 3D localisation rate (see Table 3) with very
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Fig. 13 Breakdown of the traffic sign class occurrence and perfor-

mance in the test data. The information is provided for each class as

a/b/c, where a–the number of distinct signs from the class correctly

3D localised and recognised, b–the number of distinct signs from the

class correctly 3D localised and c–the number of distinct signs from

the class that appears in the test data.

few false positives (20 in 8×15204 recorded frames). These

results are quite satisfactory given that our system working

without any human supervision.

In all steps we could trade speed off for better perfor-

mance in localisation. This is doable by using more basic

threshold methods in the segmentation step or combining

with complementary sliding window and/or part-based model

approaches (see Fig. 11). Also, if an human operator is post-

filtering the results then we could allow more false positives

at image level (for per image detection) and at the traffic

sign level (for 3D localisation), which would improve the

mapping performance.

8.2 Generality

The results in this paper have been presented with a partic-

ular application in mind and using a specific setup. Yet, the

proposed methods as well as the overall pipeline lend them-

selves to applications in different contexts and with different
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Fig. 14 False positives.

imagery. For instance, the optimisation for picking the best

thresholds has a general formulation (see Section 4). Param-

eters like κ1,2,3 can be adapted based on training data. The

number of annotations, the ratio between false positives and

negatives, and the precision of segmentation can be used to

set parameters. Thereafter, parameter settings can be fine-

tuned further on the basis of cross-validation with sets of

parameters in their close vicinity. The initial setting takes a

few hours, while cross-validating tens of settings would take

a few days, however.

Our cameras yielded substantially different colours. More-

over, the illumination conditions vary a lot (e.g. strong sun-

light, shadows). In the absence of a colour normalization

and/or illumination compensation of the input images, as in

our case, the segmentation thresholding criteria seem capa-

ble of largely making up for this. We have also experimented

with imagery of lower quality (also taken in Belgium, from

a different type of mobile mapping van) and the drop in

segmentation performance was less severe than anticipated,

with exactly the same thresholding criteria. Note that if a

different country would be involved, then certainly the de-

tection and recognition need to be retrained, as the signs will

be somewhat different.

8.3 Real-time applications

Our mapping system has always been intended for off-line

processing, mainly because our structure-from-motion runs

offline and has to be applied prior to the traffic sign part. In-

deed, it yields the necessary camera poses, needed for the

image fusion and 3D localisation. Otherwise, there clearly

is on-line potential. The det+extr1 pipeline (see Section 7)

works at 2fps on 2 Mpixel images and at 16fps on 640×480

pixel images (VGA resolution). The running time increases

linearly with the number of pixels. A speed of 16fps is al-

ready within the range for driver assistance. On the other

hand, for the automated mapping of traffic signs, there is no

critical need for on-line processing and it is better to make

the most out of the collected data in order to increase the

precision (e.g. after driving by the same spot multiple times,

which often happens for crossroads where many of the traf-

fic signs are to be found).

This said, we have experimented with driver assitance

as well, for which we proposed a slighly modified version

of our pipeline [27,23]. Typically only one camera can be

used in such case. Yet, still one can combine frame level

detection/recognition with 3D pose tracking. We obtained

a recognition performance per image level of about 97%,

using a linear SVM with pyramidal HOG features LDA-

projected to a 61-dimensional subspace. The traffic sign recog-

nition at track level was about 100% in the experiments and

we had almost no false detections or missed traffic signs.

9 Conclusions

Traffic sign recognition is a challenging problem. We have

proposed a multi-view scheme, which combines 2D and 3D

analysis. Following a principle of spending little time on

the bulk of the data, and keeping a more refined analysis

for the promising parts of the images, the proposed system

combines efficiency with good performance. One contribu-

tion of the paper is the integer linear optimisation formu-

lation for selecting the optimal candidate extraction meth-

ods. The standard sliding window approach is found to be

complementary to the proposed detection based on fast ex-

tracted candidates, but much slower for similar performance.

In case sufficient time is available, it is useful to combine the

proposed pipeline with sliding windows. Our experiments

show that the state-of-the-art part-based model [8] is slow

and performs poorer than our proposed system. Another con-

tribution is the efficient bounded evaluation of linear AdaBoost-

like classifiers which brings an important decrease in the

computational time. Another novelty is the MDL formula-

tion for best describing the 2D detections with 3D recon-

structed traffic signs, without strongly relying on sign posi-

tions with respect to the ground plane. Moreover, our task

includes accurate 3D localisation of the traffic signs, which

prior art did not consider.

In the future, we will research adding further semantic

reasoning about traffic signs. They have different probabili-

ties to appear at certain places relative to the road, and also

the chances of them co-occurring differ substantially.

Appendix

Appendix details the way of transforming eqs. (2,3,4) into

the 0-1 Integer Linear Programming form. Solution of for-
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a) b) c) d) e)

Fig. 15 Not detected(a,b), misplaced(c), or wrongfully classi-

fied(d,e) traffic signs.

mulated problems are found via MOSEK optimisation tool-

box3.

Let us suppose we are given n positive samples and m

different extraction methods (e.g. colour thresholding with

given threshold). Every method correctly extracts (i,e., with

sufficient accuracy) some subset of positive samples. De-

noting correctly extracted samples by ”1” and incorrectly

extracted samples by ”0”, each method is characterized by

an n-dimensional extraction vector. We align these vectors

row-wise into an n×m extraction matrix A. Introducing the

binary m-dimensional vector T , where selected methods are

again denoted by ”1” and not selected method by ”0”, the

number of False Negatives from the subset of methods given

by T corresponds to the number of unsatisfied inequalities

A · T ≥ 1n, where 1n denotes the n-dimensional column

vector of ones. Hence, introducing an n-dimensional binary

vector of slack variables ξ, the number of False Negatives is

FN(T ) = min
ξ

1
⊤
n · ξ

subj.to: A · T ≥ 1n − ξ, (16)

ξ ∈ {0, 1}n.

Let us be given the m-dimensional real valued vector b

containing the average number of False Positives for every

method 1 . . . m. number of False Positives is estimated on

traffic-sign-free images from an urban environment. Then

the average number of False Positives obtained using the

subset of methods given by T is

FP(T ) = b
⊤ · T (17)

Substituting from Equations (16),(17), yields ILP form

of Problem (2):

T ∗ = arg min
T ,ξ

κ1 · 1
⊤
n · ξ + b

⊤ · T

subj.to: A · T ≥ 1n − ξ (18)

ξ ∈ {0, 1}n, T ∈ {0, 1}m.

Since card(T ) = 1
⊤
m · T , ILP form of Problem (3) is

T ∗ = arg min
T

κ11
⊤
n · ξ + (b⊤ + κ2 · 1

⊤
m) · T

subj.to: A · T ≥ 1n − ξ (19)

ξ ∈ {0, 1}n, T ∈ {0, 1}m.

3 http://www.mosek.com

Finally, introducing the m-dimensional vector c with av-

erage accuracy of every method, ILP form of Problem (4) is:

T ∗ = arg min
T

κ11
⊤
n · ξ + (b⊤ + κ2 · 1

⊤
m − κ3 · c

⊤) · T

subj.to: A · T ≥ 1n − ξ (20)

ξ ∈ {0, 1}n, T ∈ {0, 1}m.
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