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Abstract—Previous video summarization studies focused on a problem. For instance, watching a large number of videos
monocular videos, and the results would not be good if they to grasp important information quickly is a big challenge.
were applied to multi-view videos directly, due to problems such  \;4e syummarization, as an important video content service
as the redundancy in multiple views. In this paper, we present d d d’ d inct tati f vid ’
a method for summarizing multi-view videos. We construct a produces a.con e_nse an Succm_c repre_sen ation or video
spatio-temporal shot graph and formulate the summarization content, which facilitates the browsing, retrieval and storage
problem as a graph labeling task. The spatio-temporal shot of the original videos. There has been a rich literature on
graph is derived from a hypergraph, which encodes the cor- summarizing a long video into a concise representation, such
relations with different attributes among multi-view video shots 5o 4 key-frame sequence [1]-[6] and a video skim [7]-

in hyperedges. We then partition the shot graph and identify - . . .
clusters of event-centered shots with similar contents via random [20]. These existing methods provide effective solutions to

walks. The summarization result is generated through solving a sumrnqrizatipn. HOW@Vel’,_ th?y focus on monocular videos.
multi-objective optimization problem based on shot importance Multi-view video summarization has been rarely addressed,
evaluated using a Gaussian entropy fusion scheme. Different though multi-view videos are widely used in surveillance
summarization objectives, such as minimum summary length oy tems equipped in offices, banks, factories and crossroads of
and maximum information coverage, can be accomplished in . . . .

the framework. Moreover multi-level summarization can be Cciti€s for private and public securities. For the all-weather, day
achieved easily by configuring the optimization parameters. f':md night mU|t"V|?W surveillance SyStemS,_\(ldeo data r?COYded
We also propose the multi-view storyboard and event board increases dramatically every day. In addition to surveillance,
for presenting multi-view summaries. The storyboard naturally ~multi-view videos are also popular in sports broadcast. For
reflec'_[s correlations among multi-view summarized shots t_hat example, in the soccer match, the cameramen usually replay
describe the same important event. The event-board serially th | ded by diff t distributed in th
assembles event-centered multi-view shots in temporal order. e goals rgcor e .y. ! e_ren camera§ _'S nbuted In the
Single video summary which facilitates quick browsing of the football stadium. Multi-view video summarization refers to the

summarized multi-view video can be easily generated based onproblem of summarizing multi-view videos into informative

the event board representation. video summaries, usually presented as dynamic video shots
Index Terms—Video summarization, multi-view video, spatio- €oming from multi-views, by considering content correlations
temporal graph, random walks, multi-objective optimization. within each view and among multiple views. The multi-view

summaries will provide salient events with more rich informa-
tion than less salient ones. This will allow the user to grasp
the important information from multiple perspectives of the
ITH the rapid development of computation, commumulti-view videos without watching the whole of them. Multi-
nication and storage infrastructures, multi-view vide@jew summarization will also benefit the storage, analysis and
systems that simultaneously capture a group of videos am@nagement of multi-view video content.
record the video content of the occurrence of events with Applying the existing monocular video summarization
considerable overlapping field of views (FOVs) across multiplgethods to each component of a multi-view video group could
cameras, have become more and more popular. In contiagl to a redundant summarization result as each component
to the rapid development of video collection and storaggas overlapping information with the others. To generate a
techniques, consuming these multi-view videos still remaiRgncise multi-view video summary, information correlations

. . , as well as discrepancies among multi-view videos should
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a hypergraph to model such correlations, in which each kind ofKey frame extraction should take into account the underly-
hyperedge characterizes a kind of correlation among shots. iByg dynamics of video content. DeMenthenal.[1] regarded
converting the hypergraph into a spatio-temporal shot graplideo sequence as a curve in high-dimensional space. The
the edge weights can qualitatively measure similarities amoagrve is recursively simplified with a tree structure represen-
shots. We associate the value of a graph node with shation. The frames corresponding to junctions between curve
importance computed by a Gaussian entropy fusion schersegments at different tree levels are viewed as key frames.
Such a scheme can calculate the importance of shots in th@njalic et al. [3] divided video sequence into clusters and
presence of brightness difference and conspicuous noisessblected optimal ones using an unsupervised procedure for
emphasizing useful information and precluding redundanciuster-validity analysis. The centroids of clusters are chosen
among video features. With the graph representation, the fiaal key frames. Let al. [4] formulated key frame extraction as
summary is generated through the event clustering basedaorate-distortion Min-max optimization problem. The optimal
random walks and a multi-objective optimization process. solution is solved by dynamic programming. Besides, Orriols
To the best of our knowledge, this paper presents the fiestal. [5] addressed summarization under a Bayesian frame-
multi-view video summarization method. It has the followingvork. An EM algorithm with a generative model is developed
features. to generate representative frames. Note that, key frames can be
« A spatio-temporal shot graph is used for the representsansformed into skim by joining up the segments that enclose
tion of multi-view videos. Such a representation makdbem, and vice versa.
the multi-view summarization problem tractable in the In contrast to key frames, an advantage of video skim is
light of graph theory. The shot graph is derived from that signals in other modalities such as audio information can
hypergraph which embeds different correlations amorag included. Furthermore, skim preserves the time-evolving
video shots within each view as well as across multipleature of the original video, making it more interesting and
views. impressive. Video saliency is necessary for summarization to
« Random walks are used to cluster the event-centered shmduce the representative skim. For static image, d¥lal.
clusters, and the final summary is generated by mulf22] calculated visual feature contrast as saliency. A normal-
objective optimization. The multi-objective optimizationized saliency value for each pixel is computed. To evaluate
can be flexibly configured to meet different summarizesaliency of video sequence, multi-modal features such as
tion requirements. Additionally, multi-level summariesnotion vector and audio frequency should be considered [11],
can be achieved easily through setting different p§t6], [19]. Maet al.[11] presented a generic framework of user
rameters. In contrast, most previous methods can orftention model through multiple sensory perceptions. Visual
summarize the videos from a specific perspective on thed aural attentions are fused into an attention curve, based
summaries. on which key frames and video skims are extracted around
« The multi-view video storyboard and the event-board atbe crests. Recently, Yoet al. [19] also introduced a method
presented for representing multi-view video summarfor human perception analysis by combining motion, contrast,
The storyboard naturally reflects correlations amorgpecial scenes, and statistical rhythm cues. They constructed
multi-view summarized shots that describe the same ira-perception curve for labeling three-level summary, namely
portant event. The event-board serially assembles evelkgywords, key frames and video skim.
centered multi-view shots in temporal order. With the Various mechanisms have been used to generate video skim.
event-board, a single video summary that facilitates quidkam et al. [12] proposed to adaptively sample the video with
browsing of the summarized video can be easily genefisual activity-based sampling rate. Semantically meaningful
ated. summaries are achieved through an event-oriented abstraction.
The rest of this paper is organized as follows. We briefBy measuring shots’ visual complexity and analyzing speech
review previous work in Section II. In Section IlI, we present data, Sundararet al. [17] generated audio-visual skims with
high-level overview of our method. The two key componengpnstrained utility maximization that maximizes information
of our method, spatio-temporal shot graph construction ag@ntent and coherence. Since summarization can be viewed
multi-view summarization, are presented in Section IV an@s a dimension reduction problem, Gong and Liu proposed
V, respectively. We evaluate our method in Section VI, arl@ summarize video by using singular value decomposition

conclude the paper in Section VII. (SVD) [9]. The SVD properties they derived help to output
the skim with user-specified length. Gong’s another method
Il. RELATED WORK [8] produces video summary by minimizing visual content

This paper is made possible by many inspirations fronedundancy of the input video. Previous viewers’ browsing log
previous work on video summarization. A comprehensivgill assist in future viewers. Yet als method [20] learns user
review of the state-of-the-art video summarization methodsderstanding of video content. A ShotRank is constructed to
can be found in [21]. In general, two basic forms of videmeasure importance of video shot. The top ranking shots are
summaries exist, i.e., the static key frames and dynamic videlnosen as video skim.
skim. The former consists of a collection of salient images Some technigues for generating video skims are domain-
fetched from the original video sequence, while the latter gependent. For example, Babaguchi [7] presented an approach
composed of the most representative video segments extradtedbstracting soccer game videos by highlights. Using event-
from the video source. based indexing, an abstracted video clip is automatically



PAPER TO APPEAR IN IEEE TRANSACTIONS ON MULTIMEDIA 3

View 1 Video

Video [ Multi-view ) Importance (Spatio-temporal’) Random( Shot ) Multi-objective
N —_— —_—
Parsing \VVideo Shots, Computation| Shot Graph Walks |Clusters Optimization —

View 2 Video

View N Video ﬁ
Fig. 1. Overview of our multi-view video summarization method.
created based on impact factors of events. Soccer events can [1l. OVERVIEW

be detected by using temporal logic models [23] or goalmouth\ywe construct a spatio-temporal shot graph to represent
detection [24]. Much attention has been paid to rush vidgRe multi-view videos. Multi-view summarization is achieved
summarization [25]-[27]. Rush videos often contain redufnough event-centered shot clustering via random walks and
dant and repetitive contents, by exploring which a conciggytj-objective optimization. Spatio-temporal shot graph con-
summary can be generated. The methods in [15], [18] fock§yction and the multi-view summarization are the two key
on summarizing music videos via the analysis of audio, Visué’émponents. The overview of our method is shown in Fig. 1.
and text. The summary is generated based on the alignmenfy construct the shot graph, we first parse the input multi-
of boundaries of the chorus, shot class and repeated lyrics,@iy videos into content-consistent video shots. Dynamic and
the music video. Besides, automatic music summarization Ragortant static shots are reserved as a result. The preserved
been considered in [28]. shots are used as graph nodes and the corresponding shot
importance values are used as node values. For evaluating the

importance, a Gaussian entropy fusion model is developed to

Graph model has also been used for video summar|zat|%1se together a set of intrinsic video features. The multi-view

tgmet ‘1‘ [1:] t.‘:ﬁ;elqzig akgr;apz Zgi?'zit;r; mg[hgdn;hrﬁsthots usually have diverse correlations with different attributes,
putes opli Vi sKim | S via Gynami . as temporal adjacency and content similarity. We use

programming. Ngaet al. [13] use_d tempor.al graph analysis hypergraph to systematically characterize the correlations
to effectively capsulate information for video structure ang

L ) . ) mong shots. A hypergraph is a graph in which an edge,
hIrghlﬁ]ghttr.];rr;l;%:lo?cgenllr;g ttgr?]e\;tl'c(jgljl e\ézltité?n Ezntsrzﬁgg%gually named as a hyperedge, can link a subset of nodes. Each
graph, : . u ica’tly s R of correlation among multi-view shots is thus represented
and generate summaries. Lee et al. [29] presented a scenalla: - vind of hyperedge in the hypergraph. The hypergraph

N . : ith
based dynamic video absiraction method using graph mat%:,;f]'further converted into a spatio-temporal shot graph where

Ing. Mult|-I§veI scena_nos generated by a graph-based VIdggrrelations of shots in each view and across multi-views are
segmentation and a hierarchical segment are used to segm%]égped to edge weights

Vi into shots. Dynamic vi ractions ar mplish . S N .
deo into shots. Dynamic video abstractions are accomplishe 0 implement multi-view summarization on the spatio-

by accessing the hierarchy level-by-level. Another graph-ba }‘flnporal graph, we employ random walks to cluster those

v@eo. summarization method is given by Peng and Ngo [1 vent-centered similar shots. Using them as the anchor points,
Highlighted events can be detected by a graph clusterlp

algorithm, incorporating an effective similarity metric of videoIHaI summarized multi-view shots is generated by a multi-
9 ' rporating ar Y . .~ Objective optimization model that supports different user re-
clips. Comparing with their methods, we focus on multi-vie

videos. Due to content correlations among multi-views, th pirements as well as multi-level summarization.
: 9 ' We use the multi-view video storyboard and the event-

igflet:-r:ir;s?oar:nsgt?t'to%rapnﬁavzgn consmtrrlquzcﬁda?gi ?hoarﬁeﬁorz%lgard to represent the multi-view summaries. The multi-view
lons, ing su Izatl gl gtoryboard demonstrates the event-centered summarized shots
in a multi-view manner as shown in Fig. 5. In contrast, the

The above methods provide many effective solutions ﬁyent—board shown in Fig. 6 assembles those summarized shots

mono-view video summarization. However, to the best of o&°Nd the timeline.

knowledge, few methods are dedicated to multi-view video

summarization. Multi-view video coding (MVC) algorithms IV. SPATIO-TEMPORAL SHOT GRAPH

[30]-[32] also deal with the multi-view videos. Using tech- It is difficult to directly generate summarization, especially
nigues such as motion estimation, disparity estimation atfte video skims from multi-view videos. A common idea
so on, MVC removes information redundancy in spatial and to first parse the videos into shots. In this way, video
temporal domains. The video content is however unchangedmmarization is transformed into a problem of selecting a set
Therefore, MVC could not remove redundancy at the semantit representative shots. Obviously, the selected shots should
level. In contrast, our multi-view video summarization methofavor interesting events. Meanwhile, these shots should be
makes an effort to pave the way for this, by exploringon-trivial. To achieve this, content correlations as well as
the content correlations among multi-view video shots artisparities among shots are taken into account. In previous
selecting those most representative shots for summary.  methods for mono-view video summarization, each shot only
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Fig. 2. The spatio-temporal shot gragh(V, E, W). Each node inG represents a shot, and its value is the shot importance. Each edge
connects a pair of nodes (shots) with correlation which is evaluated by shots’ similarity. Without losing generality, only three shots in ea
view are given for illustration. To expose clearly the graph, the edges in graph are with several colors, and each shot is represented a
orange segment.

correlates with its similar shots along the temporal axis. Thwoduct of frame number and frame resolution. We sort the
correlations are simple, and easily modeled. However, factivity values of all shots and select the activity threshold
the multi-view videos, each shot correlates closely with natteractively.

only the temporally adjacent shots in its own view, but also

the spatially neighboring shots in other views. Relationships parsing the multi-view videos into shots allows us to seek
among shots increase exponentially relative to the mono-vieW|ution of summarization in a more compact shot space.
video, and the correlations are thus very complicated. To betigitally, each shot correlates with the similar shots in its own
explore such correlations, we consider them with differegfey as well as the ones in other views. This characteristic
attributes, for instance, temporal adjacency, content similarijygkes the weighted graph a suitable representation of multi-
and high-level semantic correlation separately. A hypergrapfay videos, by viewing shots as nodes and converting the
is initially introduced to systematically model the correlationggrelations between shots into edge weights. We extend
in which each graph node denotes a shot resulting frofe graph model for mono-view video summarization [10],

video parsing, while each type of hyperedge characterizes [I_alg]' [14] and segmentation [38] to a spatio-temporal shot
relationship among shots. We then transform the hypergragfyph. Connectivity of the graph we constructed is inherently

into a weighted spatio-temporal shot graph. The weights @8mplicated due to the spatio-temporal correlations among
graph edges thus qualitatively evaluate correlations amopgiti-view shots.

multi-view shots.

The multi-view videos are treated as a weighted undirected
A. Graph Construction shot graphG(V, E, W) as illustrated in Fig. 2. Each node in

We first parse the multi-view videos into shots. Variou¥ represents a shot resulting from video parsing. Its value
algorithms have been proposed for shot detection [33]_[37].@ the importance of shot calculated by the Gaussian entropy
[34], Ngo et al. proposed an approach through the analysis 8¢sion model. The edge sét connects every pair of nodes if
slices extracted by partitioning video and collecting temporey are closely correlated. The edge weighmeasures node
signature. It has proven effective in detecting camera break@nilarity by taking into account their correlations in terms of
such as cuts, wipes, and dissolves. Xiatgal. [36] used a different attributes. We model such correlations among shots
cumulative multi-event histogram over time to represent vid&$th @ hypergraph in which each type of hyperedge denotes
content. An on-line segmentation algorithm named forward-kind of correlation. By converting the hypergraph into the
backward relevance is developed to detect breaks in videRpito-temporal graph, the edge weights quantitatively evaluate
content. For multi-view videos, especially those surveillan@@frelations among shots. Note that, the shot graph is called
videos, the cameras remain nearly stable, and the vidéb§Patio-temporal graph in the sense that it embeds the scene
recorded only contain the same scene in most cases. The $h{@rmation coming from different spatial views. The “spatio-
mainly contains those temporally contiguous frames whidgmporal” he_re differs from its traditional definition on the
share the same semantic concept with relatively higher prdgonocular video sequence.
ability. To detect the shots, we basically adopt the algorithm
proposed in [36], and further discard those shots with lower ac-By representing the multi-view videos as the spatio-
tivities. In particular, for every shot detected, we first computemporal shot graph, correlations among shots are naturally
the differential image sequence of adjacent frames. Each imagel intuitively reflected in the graph. Moreover, the graph
can then be converted into a binary image by comparing thedes carry shot importance, which is necessary to create a
absolute value of each pixel against a threshold. We compuatincise and representative summary. We describe the Gaussian
for each shot a normalized activity value through counting themtropy fusion model and hypergraph in subsection8 Ad
total number of its non-zero pixels and dividing it the by th&/-C separately.
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B. Shot Importance Computation contained in different features are uncorrelated, the above

By representing multi-view videos with graph multi-viewformula weakens noise influence and the useful information
video summarization is converted into a task of selecting i €mPhasized. According to information theory, a measure
most representative video shots. The selection of representa@d1e amount of information is entropy. We then add up the

shots often varies with different people. In this sense, detectifigifoPy values of all feature sets and subtract the entropy of
representative shots generally involves understanding vidg&ir union from the sum,

content based on human perception and is very difficult. To M

make it computationally tractable, we instead quantitatively H(S) = ZH(FZ-) —H(F, Fy, ..., Fu), (2)
evaluate the shot importance by considering low-level image i=1

features as well as high-level semantics. We introduceymerer; — (fin, fizs---» fin)T fij is thei-th feature set for
Gaussian entropy fusion model to fuse a set of low-levgie j-th frame of shotS. H (-) denotes entropy of the feature.
features such as color histogram and wavelet coefficients, ando estimate the probability of(F;) andp(F, Fs, . .., Fa),

compute an importance score. For high-level semantics, Wecommon idea is to approximate them with the Gaussian
mainly consider human faces now. Moreover, we take intstribution,

account the interesting events for specific types of videos, p(Fy) ~ N (0,57 (3)
since video summarization is often domain-specific.

1) Shot importance by low-level feature®e develop a p(Fy, Fy, .o Far) ~ N (0, %), 4)
Gaussian entropy fusion model to measure shot informatigperesi is the covariance matrix offi 17y (i =1, ..., M),
by integrating low-level features. In contrast, previous mongnqs: is the one of fi 1M, F1, By, .. ’ﬁl; are normalized

view video summarization methods generally combine featur

with linear or non-linear fusion schemes. Such schemes would L&

not necessarily lead to the optimal performance for our muilti- fii =% ; fii

view videos when the videos are contaminated by noises. This fij= = = = , (5)
is especially true for multi-view surveillance videos which LS (fij =13 fi))?

often suffer from different lighting conditions across multiple 2 T = R

virtual of non-linear time series analysis [41], the Gaussian

views. Under such circumstance, we should robustly a@%
tropy of shotS is finally expressed as,

fairly evaluate the importance of the shots that may capt
the same interesting event in multiple views under different
illuminations. To account for this, we need to emphasize
the portion of shot-related useful information in multi-view
videos, and depress the influence of noises simultaneously.
Based upon such observation, we first extract from the vide§ere 2j; is the j-th element in the diagonal of matrix.
a set of intrinsic low-level features which are often correlatem = I A\j- ; is eigenvalue of.

with each other. j= . . .
We now mainly take into account the visual features, N €NtropyH is a measure of information encoded by the
tS. We take it as the importance. An additional advantage

They are color histogram feature, edge histogram feature, ’ X ) .
wavelet feature [9], [39], [40]. The features in other modalitieS! the Gaussian entropy fusion scheme is that it works well as

such as textual and aural features used in previous vid@g9 @s the union of feature vector groups covers most useful

analysis methods [11], [19], however, can also be imegratgpjormation of multi-view videos. Therefore, instead of using
into our method. Without losing generality, for shtwith all the feature sets, it would be sufficient if some well-defined

n frames, suppose that overalll feature vector sets are(€alure sets are available. _
extracted. We expand each featufe into a one-column 2) Shotimportance by high-level semantiddumans are

vector. Two arbitrary features; and F; may have different usually important content in video sequence. We employ the
dimensions. We denote the feature sets{By}M Viola-Jones face detector [42] to detect faces in each frame.
. iy

The feature sets contain shot-related useful information. g&- ddition, video summarization is often domain-specific.

sides, they are often contaminated by noises. The Gaussianfinition of shot importance may vary according to different

tropy fusion model aims at emphasizing the useful informatigfid€0 9enres. For instance, in a baseball game video, the shots
“home run”, “catch” and “hit” usually catch much

of feature sets and simultaneously minimizing noise influendgat contain

We can relatively safely assume that different features hayge! attention. Many methods have been suggested to detect

uncorrelated noise characteristics. The interaction of featfieresting events for specific type videos, such as abnormal
sets is shot-related information expressed as detection [43] in surveillance video, excitement and inter-

estingness detection in sports video [7], [23], [24], brilliant
M M music detection [28] and so on. A detailed description of
1(8) = Z I(F) - f@gl £). (1) these methods is beyond the scope of this paper. However, for
=1 specific type of multi-view videos, interesting event detection
In the above formula, importance of shetis measured by can be integrated into our method. For those shots that contain
adding up information amount of the individual features anfdces in most frames or interest events, the importance scores
subtracting information amount of their union. Since noisese set to 1.

1 1
H(S) = 5 ) logy(T)5) — 5 log, S| (6)
j=1
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C. Correlations among Shots by Hypergraph To measure the total similarityy” of shotsS; and S;, a
Basically, three kinds of relationships among multi-vievstraightforward way is to fuse together the above similar-
shots are considered: ity values with certain weights and to construct the spatio-

« Temporal adjacencylwo shots are likely to describe thetempo_r a_l graph d!rectly. Sucha schemt_a, howe_ver, may destroy
e original relationship once the fusion weights could not

same event if one shot is temporally adjacent to the other. . .
« Visual similarity Two shots are related to each other i e set properly. For instance, two shots with large temporal
they are visually similar distance visually resemble each other, imaging a people who

. Semantic correlationTwo shots may correlate with eachrepeats his actions at a 24-hour interval in the same scene.

other due to the same event or semantic object such a],%astrong correlation between the two shots should exist.

face occurs in both shots. eV(_ar'FheIess, improper weights will mak& too smz_all and
. L . , negligible. A natural way to remedy the flaw occurring above
Temporal adjacency implies that adjacent video shots m

: : : ; to represent the correlations among multi-view shots as
share the same semantic concepts with relatively higher pr hypergraph. A hypergraph is a graph in which an edge
ability. For two shotsS; and S;, the temporal similarity is :

can connect more than two nodes. This edge is named as a

defined as, hyperedge [44] which often links a subset of nodes. Obviously,
1 in this sense, an ordinary graph is a special kind of the
Wi (S;, S5) = 7 ;
«(56:5) al+ag - d+ ag - d? 0 hypergraph.
whered = |t; — ;| computes the temporal distangg.and  In our hypergraph, the nodes just represent video shots.

t; are the time stamp of their middle frames.is further TO construct the hyperedges, we build for each relationship,
integrated into a light attenuation function, in which the pd-e.. temporal adjacency, visual similarity as well as semantic
rametersy;, o, andas control the temporal similarity. We usecorrelation, an ordinary graph and apply graph clustering
the following ways to set their values. Given the training shodgorithm to the nodes. All the nodes in a cluster are then
parsed from a mono-view video, we first compute temportinked by a hyperedge in the hypergraph. Note that, two cluster
similarities of each shot pair given initial values. Then w&ay overlap as for each relationship the clustering algorithm
modify the values until the temporal similarities computet$ performed. The weight on the hyperedge is the average of
are in accordance with our observation. Through experimerii@lation values of all pairs of nodes in the same cluster.
a1, ap and ag are set asl, 0.01 and 0.0001, respectively.  Generally, there are two methods to transform a hypergraph
Different settings of the three parameters will have the sariido a general graph. One is directly using the hypergraph
effect on summarization if the values are given with regaghrtition algorithm such as normalized hypergraph cut [45].
to an invariant relative magnitude. We use similar ways to stbe other seeks solution through clique expansion or star
other parameters in similarity computation. expansion [46]. We employ clique expansion to convert the
Visual similarity is computed by hypergraph into the spatio-temporal graph. By clique expan-
keVisSim(S:.5;) sion, each hyperedge is expanded into a clique, in which the
W (S5, 55) = e s (8) weight on each pair of nodes is taken as the weight on the
wherek is a control parameter set tbl. For computational hyperedge. On the spatial temporal shot graph, edge weight
efficiency, we select three frames, namely the first, middl& is the sum of edge weights derived from those cliques the
and last froms; and S; separately and calculate the visuafdge belongs to. In addition, to further simplify the graph, the
similarity according to their color histograrfi: and edge €dge weigh#¥ is set to zero if it is smaller than a predefined
histogramH ; [40] distances, threshold.

VisSim(S;, S;) = w-|He(S:)—He(S;) |+ He(S:)—HEe(S;)|.
9) V. MULTI-VIEW SUMMARIZATION

The use of edge histogram weakens the influence of lighting
difference across multi-view shots: here is a weight that The spatio-temporal shot graph is a suitable representation
is empirically set t00.5. For specific domainslV, could be of multi-view video structure, since it carries shot information
modified to accommodate more complex texture informatioand meanwhile reflects intuitively correlations among shots.
as well as motion features. Due to the correlations among multi-view shots, the shot graph

Semantic correlation of video shots is often related to thes complicated connectivity. This makes the summarization
occurrences of specific events. Besides, it varies with differaask challenging. We must generate the most representative
video genres. For instance, for surveillance videos, there igph nodes (shots) by taking into consideration the connec-
definite correlation between two shots if the same human faoens as well as users’ requirements. Our basic observation is
is detected in both shots. However, for football game videdbat, with the shot graph, the multi-view video summarization
there exists a strong correlation among the shots that recordcalh be formulated as a graph labeling problem. We accom-
the goals in a match. Since a comprehensive study of semaplish this in two steps. We first cluster those event-centered
correlation is beyond the scope of this paper, in our curresitmilar shots, and pick out the candidates for summarization
implementation, we allow the user to interactively specifgy random walks. Final summary is generated by a multi-
semantically correlated video shots. Semantic correlation valolgiective optimization process that is specifically devised for
W, of two correlated shots; and S; is set to 1. accommodating different user requirements.
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A. Shot Clustering by Random Walks L is a N,, x N, dimensional sparse, symmetric and positive
g]gfinite matrix, whereV,, is the number of nodes in graph.

. To cluster similar shots, we first sample a small number We further decompose into blocks corresponding to nodes
important shots and then cluster the shots of the same event

by random walks. We adopt random walks in this step rather?/s andVy separately as,
than other graph partition algorithms such as graph cut because I — Ls B
of the following reasons. BT Ly |°

On one hand, random walks has proven to be effective iy each unseeded node, the final determination to which
handling large and complex graphs, even in the presencesg@bqed cluster it belongs to is made by solving,
conspicuous noises. It is thus suitable for our clustering task

which needs to partition the spatio-temporal shot graph with LyXy = -B" Xs, (12)
complicated node connections. Graph cut, however, is pron

N W
to the small cut and noise influence [47].

(11)

fiere Xy represents the probabilities that unseeded nodes
o belong to seeded nodes’ clustelsg denotes the matrix that
On the other hand, our graph partition iSfxway S€g- 1arks the cluster category of seeded nodes. We use a Con-

mentation problem given sampled shots indicating seeds Jghaie Gradient algorithm [49] to solve the linear formulation
candidate clusters. Random walks algorithm works well fQ¢" .2 qom walks. which runs very fast.

such problem. The random walker starts from each unsamplecﬂn the end, to favor important events with long duration,

node (shot) and determines for it the most preferable samp Q filter out trivial shot clusters with low entropy values.
shot’'s cluster. The final clusters thus obtained are actu

b rthermore, the two clusters whose similarity exceeds a given
event-centered. In general, many events can be represefedsy, 4 are merged together. The remainder shot clusters

as object activities and interactions, showing different moticg}e used as candidates for summarization in multi-objective
patterns [48]. For the event captured by multi-view ShOtﬁptimization (Fig. 3).

similarities among shots in terms of visual, temporal as wel
as semantic correlations should be large. In addition, each o o
event may have at least a central shot which has a high sRetMulti-Objective Optimization
importance. We can take it as one of the best views recordindJsers normally have various requirements over summariza-
this event. The random walks based shot clustering fulfilteon, according to different kinds of application scenarios.
these requirements in that we select the shots with higHar general, a good summary should achieve the following
importance as seeded nodes. Such shots just can be viegeals simultaneously.) Minimize shot number. The retrieval
as the centers of events. Furthermore, the weight on graptagplication of summary requires that a small number of
defined in form of shots’ similarities which makes clusteringhots should be generated) Minimize summary length.
event relevant shots possible. Notice that, the property Bie minimum length of summary would be of great help to
our event-centered clustering also facilitates video retrieval ideo storage3) Maximize information coverage. To achieve
allowing the user to specify their interested shots as seeds. Bm®ugh information coverage, the sum of resulting shots’
final clusters containing seeds are thus the retrieval resultsentropy value in each cluster must exceed a certain threshold.
Although a detailed description of random walks theory i$) Maximize shot correlation. It would be much better if shots
beyond the scope of this paper, it essentially works as follows. every resulting cluster strongly correlate with each other.
First, we partition the node s&t into seeded nodeigs and This yields the most representative shots for the interesting
unseeded nodel;, satisfying that the value of each seed igvent.

Vs exceeds an entropy threshold. To meet the above requirements, we design a multi-objective
We then define the combinatorial Laplacian matrix for grappPtimization model to generate final summary. The optimiza-
as follows, tion follows the complexity incompatibility principle [50]. We
formulate the summarization as a graph labeling problem.
Zj W (S;,S;) if i=7, For the shot cluste€s with n, shots, the decision whether
Lij = —-W(S;, S;) if Si,Sj are linked by edge, or not the shots should be in the summary is denoted by
0 otherwise. x = (x1,22,...,2,,),Vx € X. X is the0/1 solution space

(10) in which z; = 1 stands for reserved shot afidstands for
unreserved one (Fig. 4).

_— -~ N\
View 1 Video : \ ] i B i )
1 | \ vy View 1 Video ’ LA o d .
i : A T W ! AN N \ ‘\ I
View 2 Video \ VD ) ) i o s \ \
! \ T vy View 2 Video i G [N Y
! \ ; Vg / I wol
! \ ) Yo / / IR ol
! I ! (- / / Pyoow
View N Video \ s \ EENP A ) ) ’ ‘ Ly
A S oo View N Video | 1 |

Fig. 3. Graph partition by random walks. Shot clusters generated By, 4. Final video summary resulting from optimization. Dashed
random walks are enclosed by dashed circles. lines connect the shots that are reserved in the same shot cluster.
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The multi-objective optimization function is given by,

campus, office lobby and road videos are typical surveillance
videos, since surveillance videos are one of the most important

max{—f1(z), — fo(x), fs(x), fa(z)} s.t. { %((?) ;]D%m‘f”” multi-view video types. Some multi-view videos are semi-
= (T??) synchronous or non-synchronous. Most multi-view videos are

captured by three or four ordinary cameras with ove3éll

__a A P degree coverage of the scene. To further verify our method,
where f,(z) = Z zis fol2) = 1; Di- i, Di > 0, we also deliberately shot an outdoor scene by four cameras
falw) = Z Ri-z:, and fa(x) = 1. Z W(S S,) iz with only 180 degree coverage. Note that, all of the videos are

(3] - 2 ) R i

captured using the web cameras or hand-held ordinary video
f1, fo, f3 and f1 denote the total shot number, summargameras by non-specialists, making some of them unstable and
length, information coverage, and shot correlation within clusbscure. Moreover, some videos have quite different brightness
ter respectivelyD; and R; are length and importance of shotacross multi-views. These issues pose great challenges to the
i1 separatelyg(xz) and h(z) are defined in forms of fuzzy setmulti-view video summarization.

[51], Table | shows the information on experimental data. All
experimental results were collected in a PC equipped with P4
3.0 GHZ CPU and 1GB memory. The multi-view videos as
with u(fi(2)) = [fi(z) — inf f;(2)]/[sup fi(z) — inf f;(z)].  Well as summaries can be found in the demo page

Dinas is the maximum allocated length of one clust®y,;, http:/cs.nju.edu.cn/ywguo/summarization.html

is the minimum information entropy afs. They are defined Note that, we sacrifice the visual quallty of original multi-
as, view videos to meet the space limitation of online storage by

compressing them with high compression ratios.

Display of multi-view summary. We employ here the
where D and R are the total length of shots if's and multi-view storyboardo represent the multi-view video sum-
the sum of importance values respectively. and A2 are mary, as illustrated in Fig. 5. The storyboard naturally reflects
the parameters that control summary granularity. The twpatial and temporal information of the resulting shots as well
constraints mean that the total length of shotsClp after as their correlations, allowing the user to walk through and
optimization should be less thad,,.... Whereas the entropy analyze the summarized shots in a natural and intuitive way.
should be greater tha,,;,,. We will show in experiments, |n the storyboard, each shot in summary is represented by its
by flexibly configuring; and X, multi-level summarization middle frame. By clicking on the yellow block highlighted
can be easily achieved. with corresponding shot number, the user can browse the

We further define the minimum function, summarized video shot. Dashed lines connect those shots of

. the same scene-event derived from random walks clusterin
u(F(z)) = 1?324{7””(‘/:1'(@)} (14 and multi-objective optimization. By means of the multi-view °
in which (z) = (u(1(a)) (o))t Fl) 1)) . . The summanzec
Mii=1,..,.4 ale coefﬂments that control the weights of objective
’ Shots are assembled along the timeline across multi-views.
functions saUsfyng 7, =1 andn; > 0. They can be Each shot is represented with a box and the number in box
illustrates the view the shot belongs to. Dashed blue boxes

By employing the Max-Min method, the multi- c)bjectiverepresent those events that are recorded by more than one

optimization is transformed into the following 0-1 mixeoshOt or Qiﬁerent views_. By clicking on the boxes, the shots
integer programming problem: can be displayed. Obviously, through the event-board, we can

easily generata single video summarthat includes all the

9(@) = p(f2(2)),  h(zx) = p(fs(z))

Dmaz:Al'D; Rmin:AQ'Rv

configured accordlng to different user requirements.

Do summarized shots. We show some examples of the single
z* = argmaxu(F(z)) st A-F<| —Rnin |, video summary in our demo page. One of its advantages over
vex —u(F) storyboard is that it allows the rapid browse of summarized
(15)  result. If the user needs to browse the summary within limited
. 0 1 0 0 Y , time, the single summary would be a good choice.
with A = 01 01 _1 01 & is the final A distinct characteristic of the multi-view videos is that the

events are captured with overlapping across multiple views.
To generate a compact yet highly informative summary, it is
0ull'sually important to summarize a certain event only in the
most informative view, and to avoid repetitive summary. This

is especially true if the user only hopes to obtain a short length

video summary. Our method realizes this. One example is
shown in the summary of multi-view officel videos. In the
VI. 24th shot, the girl who opened the door and went to her cube

We conducted experiments on several multi-view videos, iis only reserved in the second view, although she appeared
cluding typical indoor and outdoor environments. The officein four views simultaneously. The man who opened the door

optimization result to be solved.

This integer programming in a typical knapsack problem
in combinatorial optimization. We use a pseudo-polynomi
time dynamic programming algorithm [52] to solve it. The
algorithm runs fast for all our experiments.

EXPERIMENTS
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videos

View 1 video

View 2 videg”’

17 118 21 122 24 25 126 428

View 3 video

Fig. 5. Multi-view video storyboard. Without losing generality, the multi-view officel videos with 4 views are given for illustration. The blue
rectangles denote original multi-view videos. Each shot in summary is represented with a yellow box, by clicking on which the correspondil
shot can be displayed. Each shot in summary is assigned a number indicating its order in those shots resulting from the video parsing pro
Here, we give the numbers for the convenience of further discussion. Dashed lines connect those shots with strong correlations. The mil
frames of a few resulting shots, which allow the quick browse of the summary, are demonstrated here.

in the 24th shot and left the room in the5th shot is only Multi-level summarization can be conveniently achieved
reserved in the second view. In this sense, our method danour method. We only need to configure the two parameters
be applied to the selection of optimal views. In addition, th&; and)\. in multi-objective optimization. As aforementioned,
method supports summarizing the same event using temporallyis integrated into the constraint that controls total length of
successive multi-view shots. The event is recorded by the shstsnmary.\, is used to adjust information coverage. Increasing
describing it with the best views in its duration. A1 and . simultaneously will generate a long and meanwhile

o informative summary.
On the other hand, it is also reasonable to produce a y

multi-view summary for the same event. For example, for The multi-view badminton videos are summarized into three
a traffic accident, all videos in multi-views are often crucidfVels. according to the length and information entropy set for
in responsibility identification and verification. Our methodh® Summary. The parametey is set t00.035, 0.075 and0.15,
handles this case successfully. In the multi-view office1 vided§SPectively, on the 1st, 2nd and 3rd level is set t0.6, 0.65

three guys intruded the views and left the room. This actigid0-7 accordingly. Obviously, the high-level summary covers
is reserved simultaneously in th#2nd shot of the second MOSt part of low-level summary, while reasonable disparity
view and40th shot of the fourth view. Other typical exampledS due to the different optimization procedures involved. The
are the28th and 35th shots,30th and 46th shots,38th and 10w level summary comprises the most highly repeated actions,
49th shots. Such summaries are attributed to two points. Fir§tch as serve, smash and dead bird. Such statistics can be usec
the shot importance computation algorithm fairly computd€! Padminton training. The high level summary in contrast
the importance of multi-view shots, even in the presence 8pPPends more amazing rally, e.g. the shots 67, 79, 124, 135
brightness difference and noises. Second, the summarizafigi§l 154 on level 3.

method makes the most of correlations among multi-view Other examples of multi-level summarization include the
shots. office lobby and road videos. We summarize both of them
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Fig. 6. The event-board assembles the event-centered summarized shots in temporal order. Each shot is represented with a box an
number in box illustrates the view the shot belongs to. Dashed blue boxes represent those events that are recorded by more than one
or different views. By clicking on the boxes, the summarized shots can be displayed. Some representative frames, usually the middle fra
of the shots, are showed for quick preview of the summary.

TABLE |
DETAILS OF MULTI-VIEW VIDEOS AND SUMMARIES.

Multi-view No. of Video Length Levels of Level Summary Length (Mins.) A2
Videos Views (Mins.) Summary Info. Reserved

(%)

officel 4 11:16/8:43/11:22/14:58 1 Level 1 1:53 70

campus 4 15:19/13:51/12:30/15:03 1 Level 1 4:02 60

) . . . Level 1 2:56 60

office lobby 3 08:14/08:14/08:14 2 Tevel 2 =17 -0

. . . Level 1 2:21 60

road 3 5:11/8:49/8:46 2 Tevel 2 778 70

Level 1 0:50 60

badminton 3 5:07/5:00/5:00 3 Level 2 1:08 65

Level 3 2:08 70

into two levels by setting\s to 0.6 and 0.7, respectively. videos. The major cost is spent on video parsing and graph
In general, the videos containing many events with differenbnstruction, which take about 15 minutes for the officel
shot importance values are more suitable for multi-level suraxample. In contrast, summarization with random walks based
marization. For such videos, the low-level summary contaictustering and multi-objective optimization is fast. This step
the shots which are enough to describe most of the origiredends less than 1 minute, since the graph constructed only
video events. The high-level compact summary, by contrabgs nearly 60 nodes. Video summarization is often used as a
comprises the events which are more active or salient. post-processing tool. Our method can be accelerated by high
There are some discussions about the choice\;ofand performance computing system.
A2. Intuitively, A5 is used to control importance value of the
summary. In our method, shot importance is evaluated by the . . . o
entropy defined in terms of low-level features and updated €y Comparison with Mono-view Summarization
high-level semantics. The total entropy of those shots that aréMe compare our method with previous mono-view video
discarded for their lower activities is too low to be taken intsummarization methods. The summaries produced by our
account. Therefore, we can relatively safely assume that ailkthod and previous ones are shown in the demo webpage.
reserved shots contain most information of multi-view videos. We implement the video summarization method presented
A2 thus can be regarded as the minimum percent information[11] and apply it to each view of the multi-view officel,
to be preserved in summary. In implementatiog,is given campus, and office lobby videos. For each multi-view video,
by user. For\, we try it from 0.05 to 1 with an increment of we combine the resulting shots along the timeline to form a
0.05, and select the one ensuring a solution for Equation (18hgle video summary. For a fair comparison, we also use
as\i. the above method to summarize the single video formed
Computational complexity of our method mainly dependsy combining the multi-view videos along the timeline, and
on the lengths, resolutions and activities of the multi-viegenerate a dynamic single video summary. As the summary
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TABLE Il
PERFORMANCE COMPARISON WITH PREVIOUS METHODS
Data Method Length of Summary (s)] Number of Events in Summary| Precision (%) | Recall (%)
User attention method1 [11 40 10 100 38
officel. User attention method2 [11 55 12 100 46
Graph method [10], [14] 64 7 100 26
Multi-view method 55 16 100 61
User attention method1 [11 76 14 56 48.3
campus User attention method2 [11 35 8 40 27.6
Graph method [10], [14] 109 14 50 48.3
Multi-view method 42 16 69.6 55.2
User attention method1 [11 184 31 95 72.1
) User attention method2 [11 179 30 100 69.8
office lobby—— = oh-method (10T, [12] 201 75 100 58
Multi-view method 176 33 100 76.7

is extracted around crests of attention curve, the methofl different methods are all around 50 seconds, except the
does not provide a mechanism to remove content redundageynpus summary obtained by the graph method [10], [14]
among multi-views. It is obvious that the summaries producésl 109 seconds. The second/sixth row is the data computed
by the method contain much redundant information. Theby applying the method [11] to each view video separately.
exist significant temporal overlaps among summarized mulfthe third/seventh row is generated by applying it to the
views shots. Most events are simultaneously recorded in thiagle video formed by first combining each view. Generally,
summaries. for the officel multi-view videos, from the precision scores,

By using our multi-view summarization method, such resummaries obtained by each method belong to the ground-
dundancy is largely reduced in contrast. Some events #feth. In contrast, precisions of the four methods computed on
recorded by the most informative summarized shots, while th& campus videos are all around%0The campus videos
most important events are reserved in multi-view summariggntain many trivial events. It is challenging to generate an
Some events that are ignored by previous method, for instanttiased summary using the methods. The last column of the
the events recorded from 1st to 5th second, 14th to 18#ble indicates that our method is superior to others in terms
second, and 39th to 41st second in our officel single videbrecall. This suggests that our method is more effective in
summary, are reserved by our method in contrast. This is demoving content redundancy.
termined by our shot clustering algorithm and multi-objective
optimization operated on the_z_spatlo-tempor_al shot graph. Sygh | ger Study
property of our method facilitates generating a short-length,
yet highly informative summary.

We also compare our algorithm against a graph—basg
summarization method. A single video is first formed b§
combining the multi-view videos along the timeline. We the
o e e v memto ol o th f I Sty e e 12 particpant o ke
event clustering and highlight detection [14]. Normalized CLP[art in the study in our meetlng. room. All the participants
widely employed by previous methods often suffers fro re undergraduate student; ranging in age from 16 to 22. To
the “small cut” problem. This can be problematic whe ur knowlgdge, they remained unknown abou.t our project.
the method uses heuristic criterion to select highlight fro ach participant was shown the officel, badminton, campus

event clusters as summary. That is, some important eve d roa(_j multi-view _videos, together with their sgmmaries.
with short durations are missed. Our method. however. c mmaries of badminton at three levels are all given. They

meet different summarization objectives by using the multf é® only asked to respond t_o Fhe quest|_or_13 we raised. '_I'he
objective optimization. Important events with much highe?n'“ne study was conducted similarly. Participants voluntarily

importance are reserved in multi-views, while some importafﬁSponded to advertisements posted to mailing lists and were
events with shot durations are preserved as well.

To further evaluate the effectiveness of our method, we

aue carried out a user study. The aim is to assess the
njoyability, informativeness, and usefulness of our multi-view

ideo summary.

The study was conducted off-line and on-line simultane-

To quantitatively compare our method with previous ones, TABLE 1l
we use precision and recall to measure the performance. We STATISTICAL DATA OF USER STUDY
invited 5 graduate students who remained unknown about olir M“'-ﬂZC',ZW Level E“JO(%’/a)b'“ty '8% Use([;')”ess
. . . Vi

research to define the ground-truth video summaries. Each shet——— — 6: 8; 8;

is. labeled as a ground-truth _shot only_lf _the flye guys agreEcampus Cevel 1 &2 & &

with each other. For the officel multi-view videos, totally J Tevel 1 57 52 62

26 shots are labeled as ground-truth shots. The ground-trdth " Level 2 69 59 67

summary of campus videos includes 29 shots. Precision and _ Level 1 75 85 71
. badminton Level 2 81 86 80

recall scores of the methods are shown in Table Il. Accurately Tevel 3 36 a8 89

controlling the summary lengths are difficult. The summaries
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not compensated for their time. The link of the project VII. CONCLUSIONS ANDFUTURE WORK

webpage was opened to them. We obtained 23 responses Q) s paper, we propose, to the best of our knowledge, the
the officel and badminton videos, and 27 responses 0 )& attempt at multi-view video summarization. We propose
campus and road videos from the graduate students ranging,se the spatio-temporal shot graph, which is based on a
in age from 21 to 29. _ hypergraph, to embed the multi-view video structure, cluster
The questions for evaluating our method are: Q1: HOWe eyent-centered video shots using random walks, and gen-
about the enjoyability of the video summary ? Q2: DO YOUrate the final summary by multi-objective optimization. The
think the information encoded in the summary is reliablgyimization procedure can balance various user requirements.
compared to the original multi-view videos. Q3: Will youyeanwhile, multi-level summarization can be conveniently
prefer the summary to original multi-view videos if stored,-nieved. Experiments show that the proposed summarization

in your computer ? method is robust to brightness difference among multiple

For Q1 and Q2, the participant was requested to assign W@\s and conspicuous noises frequently encountered in multi-
scores ranging from O to 100, whereas he/she only needggly videos.

to respond to Q3 with “yes” or “no”. Each participant was | qur current version, the video saliency and shot impor-

required to choose at least one from the officel and badminigpce are computed using only the visual features. One future
testing examples, and wrote the answers on the answer shggty s (o take into account multi-modality features. It is also
We combine the off-line and on-line answers together. Fgpssible to couple other effective attention detection methods
the usefulness term, we compute the percentage of numbefafy [22] together, and develop multi-view summarization
‘yes” to all responses in each test. The statistical data of U$gEihod for specific video genres. Furthermore, the multi-view
study are shown in Table Ill. The results are encouraglng.nglmemary is now represented as a multi-view storyboard or
the increase of information reserved in summary, the users @"ingle video summary. It may be useful to generalize the
more satisfied with the summary in terms of informativeneggyeq collage [53], [54] to the representation of multi-view
and usefulness. As for enjoyability, users’ scores on badmintgigeq summary. This is another future work.
videos are higher than the score of office videos, even for
the same level of information entropy reserved. This is partly
attributed to the interestingness of the badminton videos. ACKNOWLEDGMENT
The authors would like to thank the reviewers for their

o helpful comments and suggestions.
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