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Abstract: 13 

 14 

The detection and localization of damage using an array of closely spaced transducers is investigated 15 

theoretically and experimentally using single- and multiple-mode guided wave active sensing models. 16 

Detectors are derived using a generalized likelihood ratio approach assuming amplitude, absolute phase, 17 

and source location of a scatted wave are unknown, while frequency, group velocity, and phase velocity 18 

are known. Theoretical detection performance for processing with each detector is derived and related to 19 

the energy-to-noise ratio of a scattered mode as a metric of determining when processing with multiple 20 

modes provides increased performance over processing with a single mode. Experimentally, detectors are 21 

implemented to detect scattering from a small mass glued to the surface of an aluminum plate with a 7x7 22 

array of transducers. Relative detection and localization performance is compared through receiver 23 

operating characteristic curves and histograms of distance from true damage location for 1000 no-damage 24 

and damaged measurements. A single-mode, multi-frequency detector is shown to have the best detection 25 

and localization performance for the tested damage scenarios.  26 

 27 

Keywords: Guided ultrasonic waves, Lamb waves, generalized likelihood ratio test, detection theory, 28 

plate structures 29 

  30 
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1. INTRODUCTION 1 

The goal of every structural health monitoring strategy is to effectively detect, locate, and 2 

characterize damage to facilitate improved maintenance and performance actions in order to gain life-3 

safety advantage. Common to all strategies is a decision and information extraction process where 4 

measurements taken from a structure are processed to determine if damage is or is not present. Ultrasonic 5 

guided wave structural health monitoring (UGWSHM) is a specific inspection strategy of longstanding 6 

interest due to the ability of guided waves to travel long distances with little attenuation and sensitivity of 7 

guided waves to structural defects1. Inspection consists of first interrogating the structure with a 8 

narrowband input waveform (exciting multiple plate modes) and then analyzing the resulting scattered 9 

wave field using a signal processing method (detector) to decide if damage is or is not present. Current 10 

guided wave signal processing methods incorporate limited information about the wave propagation 11 

environment and rely on the use of a single guided wave mode, typically the first arriving mode, to decide 12 

on the presence of damage. Using information from multiple plate modes to detect damage in-service 13 

requires knowledge of the wave propagation environment (phase and group velocity) in conjunction with 14 

a statistical signal processing technique that properly combines the modes in the presence of inevitable 15 

noise or uncertainty.  16 

Detection theory is widely applied in the fields of radar, sonar, and seismology to design statistical 17 

signal processing methods that incorporate physical aspects of a problem along with variability due to 18 

environmental and operation conditions, in order to decide if an event of interest has occurred2. Detection 19 

theory is as applied hypothesis testing where the event of interest is stochastically modeled as a composite 20 

hypothesis test. The major advantage of resulting processing methods is that associated risks or 21 

uncertainty of the problem are incorporated, such as the tradeoff between probability of detection versus 22 

false alarm, which is imperative to implementing UGWSHM on in-service structures where directed 23 

actions from the decision-making process must be presented with quantified confidence.  24 
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The majority of UGWSHM signal processing methods are formulated using either engineering 1 

intuition, often termed damage-sensitive feature extraction, or through the use of a processing algorithm 2 

common in sonar applications3–9. Recently several detection theory approaches have been applied to 3 

geometrically complex structures via sparse arrays. Enhanced detection of multiple holes in an aluminum 4 

plate with stiffeners was achieved by modeling the amplitude of a scattered wave field as Rician 5 

distributed due to the large number of secondary reflections caused by the multipath environment. A key 6 

feature of this model is that only the envelope of the waveform is used and phase is modeled as unknown 7 

due to the sparsity of the array. Damage in the form of a loose bolted connection in a frame structure and 8 

cracks/holes in a fuselage rib were detected using an energy detector resulting from modeling the 9 

reverberated wave field as Rayleigh distributed, which results when minimal information about the 10 

structure’s wave propagation is known11.  11 

This study seeks to detect and locate scattering from a single damage source using a dense array 12 

of sensing points, a single off-array actuator, and a generalized multi-wave-mode scattering model. A 13 

binary composite hypothesis model is formulated, where the null hypothesis is that no damage-induced 14 

scattering is present, and the alternative hypothesis is that damaged-induced scattering is present from 15 

multiple waves with different wavenumbers. Amplitude, absolute phase, and scattering location (range 16 

and bearing) are assumed unknown while temporal frequency, spatial frequency (wavenumber), and 17 

group velocity are assumed known. Detectors are derived using a generalized likelihood ratio test 18 

approach and theoretical detection performance presented. Experimentally, the detector is implemented 19 

for an aluminum plate with damage represented as a glued surface mass (Figure 1). Detector performance 20 

for processing assuming a single wave-mode vs. multiple wave-modes is compared using receiver 21 

operator characteristic (ROC) curves for 1000 experimental runs. Additionally, the ability of the detector 22 

to properly locate the mass is presented via histograms of the distance between actual and estimated 23 

location.  24 

 The main contributions of this paper to the UGWSHM field are: (1) The derivation of a general 25 

dense array detector that incorporates scattering from multiple wave-modes with different wavenumbers, 26 
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(2) A theoretical derivation of detection performance that predicts when it is beneficial to process data 1 

using either a single scattered wave-mode or multiple scattered wave-modes, and (3) Experimental 2 

validation of the resulting detectors through a large number of experimental trials, enabling a statistical 3 

comparison of performance. 4 

The organization of the paper is as follows: The problem statement and assumptions made 5 

concerning the wave propagation environment are first outlined followed by the formulation of a general 6 

multi-mode scattering model. Four specific signal models applicable to UGWSHM are then formulated: 7 

(1) single mode scattering, (2) single mode scattering, (3)  mode scattering, and (4) multi-8 

frequency mode scattering. Detectors for each signal model are then derived using a generalized 9 

likelihood ratio approach in addition to theoretical detection performance. Experimental implementation 10 

follows, and the limitations and model assumptions are discussed.  11 

 12 

Figure 1 Experimental layout: Actuator is a piezoelectric disc while array is sensed via a scanning laser Doppler vibrometer.  13 

0
A

0
S

0 0
A S+

0
A



5 

 

2. SIGNAL MODEL 1 

The active sensing scheme illustrated in Figure 1 is assumed where a surface mounted piezoelectric 2 

transducer excited by a modulated tone burst, applies both in-plane and out of plane surface strains, 3 

inducing P narrowband guided wave modes12. The induced guided wave modes are characterized as 4 

either anti-symmetric or symmetric depending upon their associated strain/displacement profile relative to 5 

the mid-plane of the plate. An array of M sensing points located at arbitrary position , 6 

m=0…M-1, samples the spatiotemporal field for backward or forward scattering from damage with inter-7 

element transducer spacing made sufficiently small to allow phase-coherent processing and to avoid 8 

effects from spatial aliasing13. The scattering source is assumed to be located at least several wavelengths 9 

away from the array center, and any scattering received by the array can be approximated as a plane wave 10 

with wavevector, , where the superscript , represents the scattered wave mode. Figure 2, 11 

illustrates a received scattering field for . 12 

 13 

Figure 2 Assumed active sensing signal model for scattering source in the far field. 14 

A scattered signal received at the m
th sensing point and sampled discretely in time is mathematically 15 
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where is amplitude,  is absolute phase relative to the scattering source,  is the temporal 1 

frequency in cycles/sample, and  is the relative inter-element phase delay in samples due to the 2 

direction of propagation for a given wavevector2,13. The discrete time signal  is obtained by 3 

sampling a continuous time signal  at , mathematically represented as . 4 

Here,   is the sampling period with units of sec/sample. In a similar manner, the continuous temporal 5 

frequency with units of cycles/sec transforms to units of cycles/sample after sampling. In practice, a 6 

complex signal is obtained through the analytic signal representation of sampled data. An observation is 7 

composed of N samples ranging from . The inter-element phase delay, referenced at the array 8 

center for a wave with mode  propagating in direction , is  9 

 , (2) 10 

where  is the phase velocity. The function  is the boxcar function that represents the time 11 

window when wave mode a, scattered from a source a distance r away, is present at all array transducers,  12 

 , (3) 13 

where  is the arrival sample,  is group velocity, H is the Heaviside function, and 14 

 is the length of the time window. Figure 3 illustrates an example single sensor observation 15 

according to the sensing model described in Equation (1) for . A Heaviside window is chosen for 16 

mathematical simplicity of the resulting equations. In reality the envelope of a guided wave signal tapers 17 

smoothly at the edges and has unique bandwidth and side lobe structure in the frequency domain. If the 18 

bandwidths of the corresponding guided waves are known a priori then a corresponding window function 19 
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other than a Heaviside function could be used. The boxcar window serves to segment in time when an 1 

individual wave-mode is present at all array sensors.  2 

 This signal model is applicable to direct scattering from damage and does not account for 3 

reflections from geometric features such a plate edges. Reflections from geometric features are negated 4 

by subtracting a baseline measurement state, often termed baseline subtraction, from a unknown damaged 5 

measurement state resulting in a signal that only contains scattering from damage14. A baseline 6 

subtraction approach is used in this study for all experimental work.  7 

 8 

Figure 3 Single sensor observations for two signals not overlapping in time. 9 

2.1 Single, multi-modal and multi-frequency signal model 10 

UGWSHM with a dense array in practice is predominately limited to inspection frequencies below 11 

300 kHz and  modes, due to the spatial Nyquist sampling criteria set by the inter-element array 12 

spacing and dispersion relation of the material. For aerospace structures with weight constraints, this 13 

involves inspection of fuselage and structural members with thicknesses up to tens of millimeters. An 14 

2P =
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example case is inspecting a 6.35 mm thick aluminum plate with an inter-element array spacing of 6.35 1 

mm. The largest wavenumber before spatial aliasing occurs is  m
-1 corresponding to a frequency of 2 

180 kHz for the mode (Figure 4). 3 

 4 

Figure 4 Frequency-wavenumber curves for an aluminum plate of 6.35 mm thickness. 5 

Assuming that both and  modes are induced at a single actuation frequency, the scattered 6 

waves received by the array are of form: , ,7 

, , where the notation  represents an induced 8 

mode scattering off of damage and arriving at the array as an mode, whereas 
 
represents an 9 

A0 to S0 mode conversion at the damage15. Similarly,  represents an induced mode scattering 10 

off of damage and arriving as an mode, and  represents an S0 to A0 mode conversion at the 11 

damage. Combining bracketed terms with a “+” sign simply implies the presence of multiple scattered 12 
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 and letting for in Equation (1), the resulting multi-1 

modal signal model is 2 

 . (4) 3 

For all the various mode conversion possibilities, Equation (4) takes the same form except that  4 

terms are replaced by , representing the different arrival time of an outgoing  mode and a 5 

scattered  mode. Similarly, a single-mode model is obtained by letting  in Equation (1). For the 6 

case of the resulting single-mode model is 7 

 . (5) 8 
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3. DETECTOR DERIVATION  1 

It is assumed that amplitude, absolute phase, and scattering location for the signal model examples in 2 

Equations (4)-(6) are deterministic but unknown and that the excitation frequency, phase velocity, and 3 

group velocity are known. This represents an UGWSHM active sensing scheme where a known actuation 4 

signal interrogates a plate structure of known dispersion relation for damage of unknown size and 5 

location. Determining the presence of damage is equivalent to a binary composite hypothesis test where 6 

under the null hypothesis, , only noise is present and under the alternative hypothesis, , noise and 7 

scattering from damage are present.  8 

Noise is assumed to be Gaussian distributed with zero mean and known variance. In practice, the 9 

noise environment for UGWSHM inspection of complicated structures results in a highly correlated 10 

noise/interference field that is non-Gaussian and non-stationary due to the multipath environment and 11 

variations in operating conditions. However, when an ideal signal baseline subtraction is used, the 12 

resulting signal contains only Gaussian noise under  and Gaussian noise plus a damage scattered 13 

signal under 14,16. Thus, the models assumed in Equations (4)-(6), consisting of a single scattering 14 

source, are suited only to structures where reflections from boundaries are minimized via baseline 15 

subtraction. Non-ideal baseline subtraction and secondary scattering, e.g., waves that first scatter off of 16 

damage and then interact with a boundary resulting in damage appearing to originate from a boundary, 17 

are a major source of error in UGWSHM inspection10,17. To account for a non-Gaussian and non-ideal 18 

baseline subtraction conditions requires modeling of interfering boundary reflections and is not studied in 19 

this investigation.  20 

The observed array data under each hypothesis is a vector random variable and described by a 21 

probability density function (PDF). Letting  represent the observed array data vector, the PDF under 22 

 is represented as  and under  as , where  is a vector of the unknown 23 

0
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parameters. A generalized likelihood ratio test (GLRT) is used to decide between the two hypotheses. The 1 

GLRT decides  if  2 

 , (7) 3 

where is the maximum likelihood estimate (MLE) of  under , i.e., the value of  that maximizes 4 

18. 5 

3.1 Multi-modal array detector 6 

To formulate the GLRT test, the classical linear model for complex data is used2,18, where first it is 7 

assumed that the only unknown parameters are amplitude and phase and that any noise present is 8 

distributed according to a complex white Gaussian PDF with zero mean and known variance , 9 

represented as . Writing Equation (4) in vector format, the detection problem is 10 

represented formally as 11 
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 . (10) 1 

The vector 
 
is of dimension  and is referred to as an array snapshot since it captures a wave 2 

propagating through the array at a single time sample. Arranging the array snapshots in one large vector 3 

results in  4 

 ,(11) 5 

where is termed the observation matrix and is of size , and  is a vector of unknown 6 

parameters. Note that Equation (11) represents the concatenation of all time instances of  for the 7 
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The detector from Equation (14) is composed of three terms. The first two terms are inner products 1 

between the signal vectors and the data vector while the third term is a multiplication of the same inner 2 

products along with an inner product between the signal vectors. Rewriting the first term in non-vector 3 

notation gives 4 

 . (15) 5 

Changing the order of summation and incorporating the boxcar function allows Equation (15) to be 6 

written as 7 

 , (16) 8 

where  9 

 . (17) 10 
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Separation in arrival time occurs for wave-modes at the same temporal frequency, i.e.  and  both at 1 

temporal frequency , and for an individual wave-mode at different temporal frequencies, i.e.  at 2 

temporal frequency and . Additionally, orthogonally also occurs in frequency and wavenumber, 3 

dependent upon the relative separation in wavenumber and or frequency, similar in concept to spectral 4 

leakage in conventional discrete Fourier analysis13,19.  5 

The detector from Equation (14) beam forms for each mode present, combines the estimated 6 

power of each mode at a known frequency, and subtracts any correlation between the modes. When 7 

and are orthogonal, Equation (14) simplifies to  8 

 . (19) 9 

Equation (19) assumes that the only unknown parameters are amplitude and phase. In practice the 10 

location of the damage source is unknown, resulting in arrival time and angle unknown. To estimate these 11 

parameters, Equation (19) is numerically maximized over all possible range and bearing combinations 12 

represented as, 13 

 . (20) 14 

This is possible since the PDF under  is nonnegative and does not depend upon on or . Similarly, 15 

the detector under only a single propagating mode model is found by setting  in Equation (20), 16 

 . (21) 17 

3.2 Multi-frequency array detector 18 
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The multi-frequency signal model from Equation (6) results in a detector of the same form as 1 

Equation (14). Orthogonally between  and again results in Equation (20) except now the detector 2 

has components of the form 3 

 . (22) 4 

The detector again beam forms for each signal then computes a periodogram.  5 

4. DETECTOR PERFORMANCE 6 

The probability of false alarm and detection for the GLRT of Equation (12) is 7 

 . (23) 8 

 is the right tail probability for a central Chi-Squared PDF with 4 degrees of freedom and similarly9 

 is the right tail probability for a non-central Chi-Squared PDF with 4 degrees of freedom and non-10 

centrality parameter  equal to, 11 

 . (24) 12 

Central and non-central Chi-Squared PDFs result since the detector sums the square of complex Gaussian 13 

random variables. The non-centrality parameter is the energy to noise ratio (ENR) of the assumed model. 14 

An example of the non-centrality parameter for the multi-mode detector from Equation (24) is 15 
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Similar forms result for the multi-frequency detector. Scanning over  independent range-bearing 1 

combinations in Equation (20) results in a probability of false alarm of 2 

 . (26) 3 

This contrasts to the probability of false alarm and detection for a single mode where the number of 4 

degrees of freedom is reduced to two, resulting in  5 

 , (27) 6 

and non-centrality parameter 7 

 . (28) 8 

Since the number of degrees of freedom and the ENRs are different for single- and multiple-mode 9 

models, it is unclear if processing via a single mode results in better detection performance than 10 

processing via multiple modes. To investigate this, the probability of detection for both models is 11 

numerically determined by varying the ENR of the first mode for fixed ENR values of the second mode, 12 

while holding the probability of false alarm and  constant. Figure 5, compares the resulting output for 13 

second mode ENR values of -5, 0 and 10 dB, probability of false alarm of  and . Here 14 

dB is calculated as . Three cases result: (1) A second mode ENR of 10 dB results in 15 

increased performance, (2) A second mode ENR of -5 dB results in decreased performance, and (3) A 16 

second mode ENR of 0 dB results in a mixed performance with the transition occurring at a first mode 17 

ENR of 5 dB. The transition value is the point where processing with both modes becomes beneficial.  18 
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 1 

Figure 5 Probability of detection vs. ENR for single and multimode processing.  2 

Figure 6 is a plot of transition values for varying first and second mode ENR values at fixed probability of 3 

false alarm values of , and , . Choosing a second mode value of 0 dB and false 4 

alarm curve of , results in a first mode ENR transition value of 5 dB.  5 

 6 

Figure 6 ENR transition values where processing with multiple modes become unbeneficial.  7 
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5. EXPERIMENTAL APPLICATION 1 

5.1 Methods 2 

Figure 1 illustrated the experimental setup. The damage source is a steel rectangular (12.7 x 9.5 mm) 3 

block with a mass of 13.2 grams. A Gaussian-windowed actuation signal at center frequency of 150 kHz 4 

is induced by the 12.7 mm piezoelectric disc, and the scattered wave field sensed by a scanning laser 5 

Doppler vibrometer (LDV) configured to sample a 7x7 array geometry with inter-element array scan 6 

spacing of 6.35 mm. The laser vibrometer is configured in hardware with a low pass filter at a cutoff 7 

frequency of 250 kHz and is sampled at a frequency of 1.25 MHz. The actuation frequency of 150 kHz is 8 

selected as the largest actuation frequency that safely avoids spatial aliasing of the mode (Figure 4) 9 

and as a frequency that experimentally resulted in a high signal to noise ratio of received waves at the 10 

array. Retro-reflective tape is bonded to the plate over the array scan area to increase signal-to-noise ratio. 11 

A LDV is used instead of fixed piezoelectric transducers since it allows for modification of array size and 12 

geometry through software and additionally samples the wave field non-intrusively The use of the LDV 13 

array also explains the chosen active sensing configuration where a single off array actuator interrogates 14 

the plate and the LDV array senses since the LDV is incapable of actuation. The placement of the off 15 

array actuator was chosen for experimental convenience such that any damage scattered signal would 16 

arrive at the array with high a signal to noise ratio. 17 

Collected array data was band-passed filtered between 100 and 200 KHz and spatially windowed 18 

with a two dimensional Kaiser window function with window parameter 20,21. One thousand 19 

measurements were collected from no-damage (baseline) and damage states. Optimal minimum mean 20 

square error baseline subtraction was employed resulting in 1000 measurements for the  and  21 

hypotheses 22. To aid in the comparison of the proposed detectors through ROC curves, measurements 22 

form the  hypothesis were randomly selected with replacement and added to both the  and  23 

hypothesis. This was due to the large amount of backscatter from bonded mass which resulted in perfect 24 
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detection performance. Additionally, any scattering located within 50 mm of the plate edge was ignored. 1 

 range-bearing combinations were used for each detector for an average inspection area of 2 

approximately . 3 

5.2 Results 4 

The detectors from Equations (20) and (21) are implemented for the signal models Equations (4)-5 

(6): 1) , 2) , 3) and 4) . Here the excitation for 135 kHz is 6 

obtained not from a separate excitation frequency but rather from using the original excitaiton signal at 7 

150 kHz. This is possible by taking advantage of the excitation signal’s finite bandwidth and the high 8 

signal to noise ratio associted at 150 kHz excitaion. The performance of each detector is compared via 9 

receiver operating curves 2, Figure 7, where each point on a curve corresponds to a value pair of 10 

for a given threshold value . Experimentally, this is accomplished with a sliding threshold value, where 11 

at a given threshold, the output of each detector is determined under and  hypothesis. The number 12 

of detector output values that exceed the threshold under each hypothesis are counted, and then the 13 

probability of detection and false alarm estimated by dividing the count value by the number of 14 

observations.  15 
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 1 

Figure 7 Receiver operator curves single and multimode detectors at 135 and 150 kHz. 2 

Localization of damage for the detectors is shown as a histogram of the distance between the 3 

estimated and true location damage location (Figure 8). 4 

 5 

Figure 8 Histogram of distance (meters) between actual damage location and estimated multimode location. 6 

6. DISCUSSION 7 
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The multi-frequency  detector has the best performance, followed by the single 1 

mode  detector, then the multi-mode  and finally the  detector. Processing with 2 

both the and modes results in a decrease in detection performance compared to processing with just 3 

the mode. This is explained by assuming that backscatter power from damage is proportional to the 4 

power from boundary reflections. Figure 9 and Figure 10 are backscattered power from the plate edges 5 

for a non-baseline subtracted measurement, where the scales in dB are normalized to the maximum power 6 

in the image map. The backscattered scattered power from the mode is approximately -12 dB lower 7 

than the mode power; from the theoretical predictions of Figure 6, processing with a second mode 8 

( ) power below -3.5 dB results in a decrease in detection performance. Similarly, the backscattered 9 

power from the mode at 135 kHz is identical in shape to that of Figure 9 except that the normalized 10 

power is only -2 dB below that of 150 kHz, resulting in an increase in detection performance when 11 

processing with both frequencies.  12 
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 1 

Figure 9  mode normalized back-scattered power (dB) from plate boundaries (dashed line). Scale is normalized to the 2 

maximum power value in the image map.  3 

 4 

Figure 10  mode normalized back-scattered power (dB) from plate boundaries (dashed line). Scale is normalized to the 5 

maximum power value from the similar  map of Figure 9.  6 
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The detector localization is superior to that of all detectors. The localization 1 

accuracy of all detectors making use of the mode are bimodal with a peak occurring at a distance of 10 2 

mm due to scatting from damage and a second peak at 300 mm due to secondary reflections. The image 3 

map output of the  detector for a single measurement case, Figure 11, helps to explain this. 4 

The detector output and estimated damage location occurs at the point with the maximum intensity in the 5 

image map, indicated with a white star. The known damage location is indicated with a white circle. The 6 

dotted line is the image area boundary, located 50 mm from the true plate edge. In addition to the peak 7 

occurring at the true damage location, several other peaks occur near the image area boundary. These 8 

peaks are due to secondary reflections resulting from forward scattering and coherent residual scattering 9 

from non-ideal baseline subtraction. Thus the peak at 300 mm results from the secondary boundary 10 

reflections having a larger value than the direct scattering from damage.  11 

 12 

Figure 11 Multi-frequency, , detector image map. The detector output and estimated damage location is the max 13 

of image map, white star. The known damage location is at the center of the white circle.  14 
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7. CONCLUSION 1 

A general active sensing signal model consisting of multiple plane waves scattered from a single 2 

damage source and received by an array of transducers was assumed, allowing for modeling of many 3 

UGWSHM damage cases ranging from single-mode scattering to mode-converted scattering to scattering 4 

from multiple actuation frequencies. Amplitude and absolute phase of the scattered wave were assumed 5 

unknown along with the location of the damage, while frequency, group velocity and phase velocity were 6 

assumed known. Four cases of the general signal model were studied: (1) direct backscattering from the7 

mode (2) direct backscattering from the mode, (3) direct backscattering from both the and the 8 

modes, and (4) direct backscattering from the mode at two different frequencies. Detectors were 9 

derived for each model using a generalized likelihood ratio approach to decide between the null 10 

hypothesis of damage not present and an alternative hypothesis of damage present. The resulting detectors 11 

consisted of a phased array beamformer and a periodogram evaluated at a known frequency. Theoretical 12 

detection performance for processing with each detector was derived and related to the energy to noise 13 

ratio of a scattered mode as a metric of determining when processing with multiple modes provides better 14 

performance than processing with a single mode. The detectors were studied experimentally for the 15 

simulated damage case of a mass glued to the surface of an aluminum plate and compared through 16 

experimental receiver operator curves and histograms of damage location.  17 

Detectors containing the mode provided superior detection and localization performance compared 18 

to the single  mode model, attributed to the large amount of scattered energy from the modes and 19 

small amount from the  mode. Similarly, inclusion of the mode resulted in decreased performance 20 

compared to processing with just a single mode. The detector resulted in the best 21 

detection and localization performance of all detectors. The ability for superior detection performance of 22 

a given mode type and or combination will be dependent upon the specific experimental situation such as 23 

actuator and sensor type as well as the nature of the scattering induced by the damage. 24 
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Since a signal model is assumed, any deviations from the assumed model result in decreased 1 

performance. The major limitations of the assumed model and detectors are: (1) Assuming only a single 2 

scattering source limits the resulting detectors to structures where direct scattering from damage is the 3 

largest scattering source. If secondary scattering sources are larger than direct damage scatter, then 4 

boundaries cannot be imaged. (2) A Gaussian noise assumption made during the detector derivation is 5 

dependent upon an ideal baseline subtraction, which results in an uncorrelated signal except for the 6 

damage-scattered signal, and non-ideal subtraction may result in coherent noise, which would degrade 7 

detector performance. (3) Frequency, phase velocity and group velocity, are assumed known and if 8 

unknown, they must be estimated through a separate model, experimental testing, or other evidence. 9 

Future work will focus on modeling the correlation associated with the multipath environment of 10 

UGWSHM structures, extending the assumed model to allow for non-baseline subtracted signals. Such an 11 

approach would include the modeling of interference sources from boundaries, particularly suited to hot 12 

spot monitoring where damage occurs in a specific location with known boundary reflections. 13 

Additionally, incorporating the interaction of a given guided wave with a specific damage type, such as 14 

relative scattered amplitudes and scattering profiles, into an the assumed model should further enhance 15 

detection, allowing for a more robust implementation.  16 
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