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ABSTRACT   

Photoacoustic imaging (PAI) can be used to monitor lesion formation during high-intensity focused ultrasound (HIFU) 
therapy because HIFU changes the optical absorption spectrum (OAS) of the tissue. However, in traditional PAI, the 
change could be too subtle to be observed either because the OAS does not change very significantly at the imaging 
wavelength or due to low signal-to-noise ratio in general. We propose a machine-learning-based method for lesion 
monitoring with multi-wavelength PAI (MWPAI), where PAI is repeated at a sequence of wavelengths and a stack of 
multi-wavelength photoacoustic (MWPA) images is acquired. Each pixel is represented by a vector and each element in 
the vector reflects the optical absorption at the corresponding wavelength. Based on the MWPA images, a classifier is 
trained to classify pixels into two categories: ablated and non-ablated. In our experiment, we create a lesion on a block of 
bovine tissue with a HIFU transducer, followed by MWPAI in the 690 nm to 950 nm wavelength range, with a step size 
of 5 nm. In the MWPA images, some of the ablated and non-ablated pixels are cropped and fed to a neural network (NN) 
as training examples. The NN is then applied to several groups of MWPA images and the results show that the lesions 
can be identified clearly. To apply MWPAI in/near real-time, sequential feature selection is performed and the number of 
wavelengths is decreased from 53 to 5 while retaining adequate performance. With a fast-switching tunable laser, the 
method can be implemented in/near real-time.   

Keywords: Multi-wavelength photoacoustic imaging, high-intensity focused ultrasound therapy, lesion formation 
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1. INTRODUCTION  

High-intensity focused ultrasound (HIFU) therapy, or focused ultrasound surgery (FUS), is an emerging medical 
procedure that heats and destroys diseased tissue noninvasively by focusing acoustic energy underneath a patient’s skin. 
Reliable and accurate therapy monitoring is indispensable for safe and effective HIFU therapy. Ultrasound imaging has 
been used to assist HIFU therapy (USgFUS) because the lesions created by HIFU show up in ultrasound images as 
hyperechoic regions1.  Besides, ultrasound imaging is advantageous for being portable, real-time, and low-cost. 
However, ultrasound-based monitoring is not widely-used due to its lack of precision. Magnetic resonance imaging 
(MRI) provides a more precise approach (MRgFUS) by monitoring temperature distribution during HIFU therapy2, but 
MRI is bulky, slow, and expensive3.  

Photoacoustic imaging (PAI) combines the contrast of optical absorption with the deep penetration and high spatial 
resolution of ultrasound imaging4. PAI is a good alternative for lesion monitoring during ablations because HIFU therapy 
changes the optical absorption spectrum (OAS) of tissue5, which can be detected with PAI. However, the change could 
be too subtle to be observed either because the OAS does not change very significantly at a particular imaging 
wavelength or due to low signal-to-noise ratio in general. Photoacoustic spectroscopy measures optical property at more 
than one wavelength6 and can potentially make the OAS change easier to be detected in PAI. A previous study showed 
visualization of HIFU lesions with multi-wavelength PAI (MWPAI) using a correlation-based algorithm7. In this study, 
we develop a machine-learning-based approach to process multi-wavelength photoacoustic (MWPA) images and identify 
lesion formation in tissue. The following section presents a theoretical background for the developed approach. 
Experimental methods are described next, followed by the presentation of the results and related discussion. 
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2. THEORETICAL BACKGROUND 

2.1 Photoacoustic effect  

The physical basis for PAI, photoacoustic (PA) effect, refers to the generation of acoustic waves caused by the 
absorption of electromagnetic energy. A short laser pulse causes thermal expansion of tissue, which induces a transient 

pressure rise P . It can be calculated as7, 8: 
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where ( )Tβ  is the volume expansion coefficient, ( )Tvs  is the speed of sound, ( )TCp  is the isobaric heat capacity, 

( )λμabs  is the optical absorption coefficient, ( )λ0F  is the incident laser fluence, ( )r
rη  is the percentage of laser 

fluence that has reached position r
r

. ( ) ( ) ( )TCTvT ps

2β  is referred to as the Grüneisen coefficient ( )TΓ , which is a 

function of temperature T . So, equation (1) can be written as: 
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2.2 Photoacoustic imaging system 

The pixel values in a PA image linearly scale with the pressure rise caused by PA effect due to the linearity of the PAI 

system9. So, the pixel value at r
r

is proportional to the pressure rise at the corresponding location in the imaging field: 

 ( ) ( ) NrPrErv +=
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)(  (3) 

( )rE
r

is a constant that depends on the PAI system and the location r
r

. N is the system’s added noise. Combining (2) 

and (3): 

 ( ) ( ) ( ) ( ) ( ) NrFTrETrv abs +Γ=
rrr ηλλμλ 0),,(  (4) 

2.3 Multi-wavelength photoacoustic imaging and optical absorption spectrum 

In MWPAI, PAI is repeated at a sequence of wavelength iλ ( Ni ,...,2,1= ). Each pixel is represented by an N-element 

vector where element e is the pixel value at wavelength iλ : 

 ( ) ( ) ( ) ( ) ( ) NrFTrETre iiabsi +Γ=
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If temperature T is stable and system noise N is low enough to be negligible: 
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where ( ) ( ) ( )rTrErC
rrr ηΓ=)( . If the laser fluence ( )iF λ0  at each wavelength is known and used to normalize each 

element in the vector. The normalized element is: 
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For a specific type of tissue, we assume ( )λμabs  reaches its peak value at maxλ . By normalizing the element with 

)( maxλnorme , the normalized element value can be written as: 
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From equation (8), we can see that the pixel value, or vector, at a specific location in MWPAI can be converted to its 
optical absorption spectrum that is normalized to its peak value, regardless of its location. 

Neural networks (NNs) provide a powerful computational tool for classification. One study shows the ability of NNs to 
assist ovarian cancer diagnosis by classifying co-registered ultrasound and photoacoustic images10. In this study, we use 
the NN approach as our fundamental tool for pixel classification. 

 

3. METHODS 

3.1 Experimental setup 

 

Figure 1. Experimental setup. 

Figure 1 shows the block diagram of the experimental setup and the triggering scheme. A programmable imaging system 
(Model Vantage 64 LE, Verasonics Inc., Kirkland, WA), a PC (Model Precision T7910, Dell Inc., Round Rock, TX), and 
a linear ultrasound transducer array (Model L7-4, Philips, Bothell, WA) are used for PA data acquisition. The imaging 
system has 64 parallel receive channels with 2:1 multiplexing capability to receive from all of the 128 elements of the 
linear array. Therefore, the laser has to fire twice to acquire the data to reconstruct a complete frame at a certain 
wavelength. A programmable laser system (Model Phocus Mobile, Opotek Inc., Carlsbad, CA) with a customized dual-
output fiber is used for laser illumination.  The laser system is programmed to scan from wavelength 690 nm to 950 nm 
with a step size of 5 nm and fire twice at each wavelength. The width of the laser pulse is 5 ns and the repetition rate is 
20 Hz. The energy per pulse at the output of the dual-output fiber is different at different wavelengths. The minimum is 
7.93 mJ at 950 nm and the maximum is 14.74 mJ at 715 nm. The dual-output fiber has an exit aperture of 40 mm by 0.25 
mm in each branch. The flash lamp trigger output signal of the laser serves as the master clock that drives the system.  

 

Figure 2. PA image preprocessing. 
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Table 1.  Performance of the classifier with all wavelengths. 

Dataset Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%) 

Group 1 75.2748 73.5378 73.9896 74.8377 74.4063 

Group 2 75.9613 71.9018 72.9979 74.9442 73.9316 

Group 3 76.8025 69.7957 71.7735 75.0546 73.2991 

 

Table 2.  Performance of the classifier with reduced wavelengths. 

Dataset Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%) 

Group 1 65.2734 62.4644 63.4900 64.2698 63.8689 

Group 2 69.5246 63.4744 65.5582 67.5620 66.4995 

Group 3 67.6829 65.3100 66.1141 66.8974 66.4965 

 

Table 3.  Performance of the classifier with reduced wavelengths and combined pixels. 

Dataset Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%) 

Group 1 70.1859 69.6838 69.8353 70.0355 69.9349 

Group 2 72.5026 70.4911 71.0730 71.9381 71.4969 

Group 3 68.9472 71.8497 71.0082 69.8231 70.3985 

 

Table 4.  Performance of the classifier with full wavelengths and combined pixels. 

Dataset Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%) 

Group 1 93.9748 83.6341 85.1679 93.2799 88.8045 

Group 2 74.2738 80.1097 78.8770 75.6924 77.1917 

Group 3 69.6913 79.4411 77.2201 72.3839 74.5662 

 

3.2 Experimental procedure and data acquisition 

Sample ex-vivo bovine tissue is cut into blocks (approximately 4.0 cm × 4.0 cm × 3.0 cm). A HIFU transducer (5-MHz, 
19-mm circular aperture, 15-mm focal distance, Precision Acoustics Ltd., Dorchester, Dorset, UK) is used to create a 
visible lesion on the block before it is placed in room-temperature water to be imaged.  

Every iteration of PA data acquisition is initiated by the rising edge of the flash lamp trigger signal from the laser. After 
receiving the trigger signal, the imaging system waits for 235 µs, sends a trigger signal to the Q-switch trigger-in port of 
the laser so that it fires, and starts acquiring PA data concurrently. 

A hundred frames of photoacoustic data are acquired at each wavelength to reconstruct MWPA images. One frame of 
ultrasound data is also acquired to reconstruct a co-registered ultrasound image that can be used for anatomical structure 
matching. 

3.3 Data processing 

Standard delay-and-sum beamforming is applied to both ultrasound and photoacoustic data for image reconstruction. 
Photoacoustic frames of the same wavelength are averaged before image reconstruction for higher signal-to-noise ratio. 
Based on the ultrasound image, the tissue part of the image is cropped as the area where pixels are to be classified. 
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Besides, some pixels of ablated and non-ablated tissue are selected for training and testing. The ground truth for training 
examples is generated by visually co-registering the ultrasound image and the photograph of the lesion after the tissue is 
cut open and manually delineating it. Figure 2 shows the cropped region as well as the marked pixels. The pixels in the 
yellow frame are cropped tissue pixels. The red and green regions are ablated and non-ablated tissue pixels, respectively, 
that are manually marked. They are used to train the NN.  

The laser pulse energy is measured beforehand and used to normalize each vector to eliminate the effect of variation of 
incident laser fluence due to wavelength. Then each vector is normalized to its maximum element. The training examples 
are fed to a 3-layer NN. The number of neurons in each layer is 53, 159, and 1. After the training is completed, the NN is 
tested to check the classification performance. Three groups of datasets are used for testing. Group 1 is the MWPA 
image where training examples are selected. Group 2 contains three MWPA images of the same block of bovine tissue as 
group 1 but at different imaging planes. Group 3 contains eight MWPA images of two other blocks of bovine tissue. 
After the classification is finished, the density of “ablated” pixels, which is the number of “ablated” pixels over the 
number of all the pixels in the region of interest, inside the 21 × 21 window that centers each pixel is calculated and thus 
a density map is generated. Then the 0.75-density contour is drawn on the map to delineate lesion areas. 

 

Figure 3. Classification result. 

 

3.4 Wavelength selection 

In order to facilitate real-time implementation of this machine-learning-based lesion identification approach, reducing the 
number of wavelengths is desired because it decreases the number of frames required for each MWPA image and 
increases the frame rate. In this study, we choose a sequential feature selection algorithm11. It keeps adding new 
wavelengths until the number of misclassifications stops decreasing. The algorithm gives 10 out of 53 wavelengths that 
are the most relevant to classification, and we choose the first 5 wavelengths as selected features. 

3.5 Improvement in classification by taking into account texture and spatial information 

Fewer wavelengths facilitate real-time implementation, but tend to degrade classification performance at the same time. 
In order to boost the performance when using fewer wavelengths, the pixels in a 3 × 3 window that centers each pixel are 
combined to represent it before feeding it to the NN. With this approach, texture and spatial information is also taken 
into consideration. 
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4. RESULT AND DISCUSSION 

Figure 3 shows the classification results for different groups of datasets. Tables 1, 2, 3, and 4 show the sensitivity, 
specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy for each dataset with 
different classifier configuration. As we can see, the basic classifier is able to identify pixels of ablated tissue. After 
sequential selection, 690 nm, 780 nm, 785 nm, 845 nm, and 865 nm are selected as the 5 most relevant wavelengths to 
classification. There is some performance degradation when using fewer wavelengths, but it can be compensated to some 
extent by using combined PA image pixels. The best performance is achieved when using combined PA image pixels at 
all wavelengths. 

 

5. DISCUSSION 

The constraints for classification performance includes the following. First, the imaging system noise could degrade the 
performance.  The second constraint is the penetration depth of PAI. It could be increased by boosting the laser pulse 
energy. In this study, we assume that each pixel is either ablated or non-ablated while it could actually be somewhere in 
between. Probabilistic classification could be applied to solve this issue. In our study, the ground truth for training 
examples is generated by visually co-registering the ultrasound image and the photograph of the lesion after the tissue is 
cut open and manually delineating it. This method could be not accurate enough.  

There is also room for improvement by using a more sophisticated classifier. Other classification methods such as 
support vector machine could also be used to achieve better performance than NN10. 

 

6. CONCLUSION 

This study develops a machine-learning-based approach for lesion identification during HIFU therapy. With this 
approach, lesions in ex-vivo bovine tissue can be identified clearly. Sequential feature selection decreases the number of 
wavelengths and facilitates real-time implementation. With our programmable laser system and a high-end computing 
platform, the approach can be implemented in real-time. 
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