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Abstract. The multi-way join operator serves a wide range of data-
streaming applications. In this paper, we introduce the SNJoin (or
Sensor-Network Join) operator that is specially designed for dynamically-
configured large-scale sensor networks. SNJoin is a multi-way join oper-
ator that scales with respect to the number of data-streaming sources
without compromising the output rate. Moreover, in a sensor field with
hundreds or thousands of sensors, every single sensor does not have to
participate in the join. Instead. bundles of sensors that experience the
same environmental conditions may join with each other. The SNJoin
operator joins sensor data partially and updates its result with the ar-
rival of new joining tuples. We introduce the SNJoin* operator as the
distributed variation of the SNJoin operator. The ultimate goal of the
SNJoin* operator is to shift the join query processing from the cen-
tralized data stream management system (DSMS) to the sensor-network
level. To avoid unnecessary communication cost, the SNJoin* operator
accepts relevance feedback to tune query processing towards sensors that
show similar behavior. The relevance feedback is computed based on the
join output to guide the join probing sequence to sensors that are more
likely to join. Experimental studies illustrate the performance gains of
the proposed multi-way join operators.

1 Introduction

With the evolution of data stream processing, the join operation conserves its
importance and wide applicability to data-streaming applications, e.g., [7-9,
11,15]. Multi-way join extends binary join by handling multiple input sources.
Sensor networks are major input sources of multiple data streams and, therefore,
sensor-network databases experience large popularity of multi-way join queries.
In (1,2], multi-way join queries are used to detect and track the propagation
of various phenomena that strike a sensor field. Other applications of multi-
way join in sensor networks are object tracking, surveillance, and environmental
monitoring [8, 21, 20].

A multi-way join over data streams can be performed using trees of non-
blocking binary joins (e.g., symmetric hash join [17] or zjoin [15]). This technique
performs the multi-way join in multiple steps and may incur several delays.
Also, the output rate of binary-join trees is sensitive to the join order. For this



reason, binary-join tress are usually equipped with a dynamic scheme for tree
reorganization at execution time (e.g., see [4]). To overcome the shortcomings of
binary-join trees, the work in [16] introduces the M.Join operator, a single-step
multi-way join operator that is symmetric with respect to all input streams.
Hence, MJoin produces early output, maximizes the output rate, and avoids
reorganization of the query plan at execution time.

Although MJoin seems to be satisfactory for a moderate number of data
streams, the multi-way join operation over sensor networks has the following
four challenges. (1) The scalability challenge: Sensor networks are typically de-
ployed in a large scale with hundreds or thousands of sensors. (2) The dynamic-
configuration challenge: Sensors can be added and removed from the sensor field
dynamically based on the network conditions, the sensors’ life time, and the
availability of additional sensors. (3) The wvariable-arity challenge: It may be
prohibitive and meaningless to include all the sensors in the join. Usually, the
sensor field spans a wide area such that only subsets of sensors that are ex-
posed to the same environmental conditions are eligible to join with each other.
This behavior results in a variable-arity output join tuple. (4) The distributed-
ezecution challenge: The join operation should be performed in a distributed
fashion where sensor readings join with each other on their route to the desti-
nation data stream management system (DSMS) taking into consideration the
number of transmitted messages. The number of transmitted messages has an
impact on the limited power capabilities of the network.

In this paper, we address the distributed execution of the continuous multi-
way window join query over dynamically-configured large-scale sensor networks.
As we proceed throughout the sections of this paper, we enhance the join al-
gorithm to address the four previously reported challenges. one at a time. The
contributions of this paper can be summarized as follows:

1. In Section 2, we handle the scalability challenge by introducing the SNJoin
operator that scales with respect to the number of input sources.

2. In Section 3, we tune SNJoin to deal with the dynamic-configuration chal-
lenge of sensor networks. Then, we formalize the concept of variable-arity
multi-way join in large-scale sensor networks and adopt this formalization in
the context of the SNJoin operator (the variable-arity challenge).

3. In Section 4, we introduce the notion of stream query processing with rele-
vance feedback to focus the join operation among sensors that show similar
behavior. The notion of stream query processing with relevance feedback ad-
dresses the wvariable-arity challenge.

4. In Section 5. we address the distributed-ezecution challenge. We shift the
join query processing from the centralized DSMS to the sensor-network level
through the SNJoin* distributed operator.

5. In Section 6, we give a mathematical analysis of the proposed SNJoin and
SNJoin* operators. In Section 7, we evaluate the proposed join operators,
implemented inside Nile [14]. In terms of output rate, performance results
show that the SNJoin operator is better than binary join trees by up to
150% and is better than MJoin by up to 60%. Also, query processing with
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Fig. 1. The structure of the SNJoin hash table.

relevance feedback increases the output rate of SNJoin* by up to 90% and
reduces the communication by up to 75%..

2 SNJdoin

In this section, we introduce the SNJoin operator that performs a complete multi-
way join among a set of streams over a sliding window (as given by Definition 1).
Upon the arrival of a new tuple, say ¢, from stream S.t joins with tuples that have
the same value from all streams (except its own stream 5 ) provided that they
are within an w time-window from each other. The multi-way join is complete in
the sense that every streaming source participates in each output tuple. If a join
value is missing in one stream, the output tuple is discarded. This is in contrast
to variable-arity multi-way join described in Section 3. Definition 1 is given in
terms of a sliding time-window. However, the generalization to a sliding tuple-
window is straightforward. Also, we define a single window w for all streams,
then, we generalize to multiple windows in Section 2.4.

Definition 1. Given m input streams, S1, Sa, - -+, Sm, each stream S; generates tuples
of the form (i:,[S:, 7)) (where t: is the tuple value that is produced by stream S; at
time ;). For a newly arriving tuple (£, [5’, 7]}, a complete multi-way join over window
w produces an output O={(%, fr1,72, -+, 7, -+, Tm]) such that t;=f and |¥ — 71| < w
Vi=1--m. S #S5}.

Hash-based join techniques maintain a hash table per stream. A new input
tuple is inserted, based on a hash function, into its own stream’s hash table and
probes other streams’ hash tables looking for matches. With the increase in the
number of streaming sources, managing a large number of hash tables becomes
costly. To avoid a lengthy join probing sequence, SNJoin proposes a single global
hash table where all incoming tuples are hashed and are inserted regardless of
their streaming sources. Grouping tuples of the same value from various streams
in the same partition of a hash table prepares output candidates for the join
operation. The details of the SNJoin operator are presented in this section.



PROCEDURE J/nsert- Probe .
INPUT: (1) a new input tuple (t.[S. 7]) and (2) an SNJoin hash table A
OUTPUT: (1) an updated SNJoin hash table and (2) the join outpul produced by tuple t

TVLEntry=TVL[(H(f)].Search(t)
VOLEntry=TVLEntry.vol-ptr. Insert(S, #)
TVLEniry. Update-count—summary(é);
CSL.Append(VOLEntry)
if TVLEntry.2{ci.c2. - .¢m) = m begin
temp=TVLEniry.vol-ptr.first;
while(temp#ANULL and ¥ — temp.7 < w) begin
if S # temp.S include temp.T in the join output of L
temp=temp.next
end

T oo =

end
6. Traverse CSL to delete expired tuples and update associated count summaries

Fig. 2. The SNJoin algorithm.

2.1 Data structure

Figure 1 illustrates the structure of the SNJoin hash table. The hash table is
divided into partitions based on a suitable hash function H. In each partition,
all tuple values that appear in the current window w are chained in a tuple-value
list (TVL), one entry per value. An entry in TVL is of the form:

1. ¢: the tuple value. Notice that a single entry is created per value even if ¢
appears multiple times, whether in a single stream or in multiple streams.

2. VOL — ptr: a pointer to the Value-Occurrence List (or VOL). VOL records
every occurrence of the value ¢. An entry in VOL contains the following:
(a) S: an identifier of the stream that produced the value t.

{(b) 7: the timestamp at which ¢ is produced.
VOL is reverse-ordered based on the tuple’s timestamp. A newly-incoming
tuple is appended at the head of VOL.

3. Yler, e,y em) = 9one, (min(l,¢;)) (where ¢; counts the number of occur-
rences of t in stream S; over the last window w): a count-summary function
that keeps track of the tuple count in each stream and returns the number
of streams that has the tuple ¢ in the most recent window w.

Finally, every single occurrence of a tuple (¢,[S, 7]) is chained chronologically,
i.e., based on their timestamps, in a global Clean-Sweep List (or CSL)). CSL
spans all partitions of the hash table to link all tuple occurrences from all streams
with the oldest being at the head of the list. The purpose of CSL is to expire
old tuples once they get outside the sliding window w.

2.2 Complete join algorithm

The SNJoin algorithm is given in Figure 2. With the arrival of a new tuple { from
stream S at timestamp 7, the hash function H is applied over { to determine the
partition where the tuple should go. Then, the partition’s tuple value list (TVL)
is searched to return a handle to the tuple’s entry in TVL, if the tuple is found.
Otherwise, a new entry in TVL is created (Step 1). The tuple’s stream () and



the tuple’s timestamp (7) are inserted at the head of the value occurrence list
(VOL) of TVLEntry to denote a new occurrence of that value (Step 2). Step 3
increments the counter of the stream that generated the tuple by one. In case
the counter increases from zero to one, the function % increments the number
of streams that contribute to producing the tuple by one. Step 4 appends the
tuple’s occurrence to the clean-sweep list (CSL) that maintains all tuples based
on their arrival order for later clean-up purposes. Step 5 checks whether the tuple
appears in all streams by investigating the count-summary function (). If the
tuple appears in all streams, a complete multi-way join operation is started by
traversing the value occurrence list (VOL(t)) to form the output from the value
occurrences in other streams (i.e., S # temp.S). Also, the condition (5 # temp.S)
ensures that no duplicate tuples are generated because all the output tuples
are formed by appending the newly-arrived value f to the cartesian product of
other streams’ qualifying tuples. We traverse VOL until we reach its end or
until we reach a tuple that is far in the past by more than the window size,
ie., 7 —temp.T > w. Notice that the count-summary function avoids generating
partial results. If a tuple does not appear in all data streams (¢ < m), no further
processing is pursued for the join operation. Also, the count summaries give a
hint about the output size which is expected to be the product of the counters

of all streams other than $ G.e., [T, c)-
i8S

Finally, in Step 6, we traverse the clean sweep list (CSL) to delete any tu-
ple with a timestamp that is outside the most recent sliding time-window, i.e.,
Currenttime — CSL.7 > w + ¢, where ¢ is an error factor that accommodates
late tuple arrivals. € represents the maximum delay in the tuple’s arrival time to
avoid expiring tuples that may join with late tuples. When a tuple is deleted, its
associated counter is decreased by one. Consequently, if a counter reaches zero,
the value of the count-summary function (+) is decremented by one to indicate
that one more stream no longer participates in the join. Although we choose
to perform the clean-sweep step (Step 6) with the arrival of every tuple, the
clean-sweep step can be performed periodically or in a lazy fashion when there
is plenty of system resources.

In addition to handling late tuple arrivals (by introducing ¢), SNJoin is in-
sensitive to out-of-order arrivals provided that we keep the value occurrence list
(VOL) sorted by timestamps. We insert a delayed tuple in its proper position in
VOL. Although the join cutput will be delayed by the maximum amount of delay
in the components of the join output tuple, the output remains unchanged. On
the other hand, the clean-sweep list (CSL) does not have to be kept sorted by
timestamps. However, the expiration of a delayed tuple will be delayed because
CSL is sorted based on the tuple’s arrival time at the system. A delayed tuple
will not be deleted unless all tuples that came before it are deleted. As a side
effect, system resources will be slightly affected because delayed tuples occupy
the system’s memory for a longer period of time than they should do. For other
techniques that handle out-of-order tuples, the reader is referred to [14].



2.3 Disk support for memory overflow

In response to fluctuations in the arrival rates of data streams, a DSMS ex-
periences variable system loads. At high-load periods, some input tuples are
dropped from the input buffers of the join operator due to memory and CPU
constraints. On the other hand, at periods of low system load, the join operator
may be blocking waiting for the arrival of new tuples. To make up for memory
constraints and to increase the join output rate, zjoin [15] flushes partitions of
the hash tables to disk at periods of high system load and joins these partitions
later, i.e., at periods of low system load. M.Join [16] proposes a coordinated mem-
ory flushing policy that coordinates the tuple flushing across all hash tables. If
tuples are flushed from partition P; of one stream, the same partition (F;) must
be flushed from all other streams before another partition P; is to be flushed.
This approach increases the output rate by allowing tuples with the same values
to be either left together in memory or flushed together to disk.

SNJoin utilizes one global hash table where tuples from all streams are hashed
based on their values. A partition of the SNJoin hash table accommodates sets of
tuples that have the same values, yet coming from different streaming sources. As
a result, flushing a partition from the global hash table is a coordinated flushing
by default where tuples of the same values are moved together to disk. SNJoin
achieves a coordinated flushing without incurring any additional coordination
cost. Although sensors are devices that have no disk in general, we investigate the
disk support for the completeness of the algorithm and for comparison purposes
with MJoin if both algorithms are applied in a centralized DSMS.

2.4 Support for multiple window sizes

In the SNJoin algorithm presented in Figure 2, we assume that the join operation
is performed over a sliding window w such that w is fixed for all streams. However,
many applications require a different window size for each group of streams or
a different window size for each individual stream (i.e., w; is the corresponding
sliding window over stream S;). To support multiple window sizes, we define
two variables wmin=MIN;(w;) and wma=M AX;(w;). First, we set w to wmin
and traverse the wvalue occurrence list as in Figure 2. Second, we extend w to
Wmae and continue to traverse the value occurrence list. However, in the second
step, we filter each tuple based on its timestamp to ensure that it falls within
its specified time frame (i.e., 7 — temp.7 < Wiemp.s). Although SNJoin handles
multiple window sizes, it turns out to do a lot of work filtering tuples out if the
gap between wy;n and wing, gets large.

3 Variable-arity Multi-way Join

For large-scale sensor networks, a complete multi-way join among hundreds or
thousands of sensors may result in no output tuples at all. A sensor network
that spans a large area usually experiences variable conditions from one region



to another. Hardly all sensors will produce the same readings within the frame
of a time-window. Moreover, it makes more sense to join sensors that show
similar behavior even if this behavior does not span the whole sensor-network
field. For example, a fire would trigger only a subset of heat sensors in the field
that are exposed to an increasing temperature. Similarly, a gas leakage out of
a container stimulates only close-by sensors to report the leaking gas. These
applications require an immediate action once a join is detected among any
number of sensors. Later on, the join output may be updated and amended with
new joining sensors as time proceeds. For example, the first few seconds a gas
leaks out of a container, there may be only two sensors reading that gas value.
After a while, a third sensor will join the two sensors in reporting the same
gas value. More and more sensors will be involved in the join as the gas cloud
propagates in the field. Similarly, other sensors may stop joining as the gas cloud
moves away from their regions.

An appropriate join strategy for large-scale sensor networks would be a
variable-arity multi-way join that allows subsets of sensors join. Then, other
sensors can be included or excluded from the join with the arrival of new tuples
into the system. The wvariable-arity multi-way join definition is given in Defi-
nition 2. Notice that the variable-arity join operation produces a variable-size
tuple that contains the arriving tuple value, its stream, its timestamp, and a
list of all streams that produce the same tuple value along with their associated
timestamp in no specific order. The size of the output tuple depends on the
number of joining streams. The list of joining sensors is expressed as pairs of (5,
7) because this list is usually sparse. Only few sensors will be included in the
joining list compared to the total number of sensors in the network. The total
number of output tuples equals [}, maz(1, ¢;), which means that streams that

i=1
£S5
do not generate the tuple ¢ (i.e.. ¢; = 0) do not affect the total number of output
tuples.

Definition 2. Given m input streams, S1, S2, -+ -, Sm, each stream S; generates tuples
of the form (t;,[S:,75]) (where t; is the tuple value that is produced by stream S; at time
7:). For a newly arriving tuple (£,[5,7]), a variable-arity multi-way join over window
w produces an output O={(t, [S. 7], [So,. Tor], [Sozs Toa)s -+ ). where S,, is one of
the joining streams such that to, =t and |# — 7o,| < w, 0; € 1--m, So, # s, So; # So,
Vi ).

Notice that the variable-arity join is different from the outer join both at the
conceptual and the implementation levels. At the conceptual level, variable-arity
join omits streams that do not participate in the join to produce a variable-size
tuple. Outer join produces a fixed-size tuple with NULL values in lieu of missing
streams. At the implementation level, variable-arity join touches only streams
that participate in the join. However, outer join probes every stream to check
the existence of the join value.



3.1 Variable-arity join algorithm

One naive approach to turn a complete join algorithm into a wariable-arity join
algorithm is straightforward. If the joining tuple is missing in one of the stream
hash tables, we ignore this stream and continue to join remaining streams. This
approach applies to both trees of binary joins and MJoin. In a tree of binary
joins, we propagate partial results up the tree even if no match is found at some
steps. In MJoin, the join probing sequence spans all hash tables looking for
matching values regardless of their existence in some tables. The major problem
with this approach is that we achieve no performance benefits.Although this
approach conceptually produces a variable-arity join, it is as costly as an outer
join. All streams have to be probed anyway even if only a subset of the streams
are to join.

Although SNJoin handles complete multi-way join efficiently, SNJoin is spe-
cially designed to perform a variable-arity multi-way join in large-scale sensor
networks. Only one hash table is probed to retrieve all the tuples that join re-
gardless of their generating stream. The variable-arity SNJoin algorithm is a
down-sized version of the complete SNJoin described in Figure 2. In variable-
arity SNJoin, maintaining count-summaries is useless because the join will be
performed regardless of the number of streams that generate the tuple. Con-
sequently, Step 3 and the first if statement in Step 5 are removed to yield the
SNJoin algorithm to variable-arity join query processing.

Variable-arity SNJoin has two major advantages. First, it scales to networks
with large number of sensors because it avoids unnecessary probes. Tuples that
contribute to the output are the only tuples to be considered. Other techniques
probe many streams that produce no output. Second, variable-arity SNJoin does
not suffer from the dynamic configuration of sensor networks because all sensor
readings are hashed to the same global table. Binary-join trees require reorga-
nization of the join tree. Also, MJoin requires considering the change in the
number of hash tables in the join probing sequence of incoming tuples.

4 Query Processing with Relevance Feedback

In this section, we take our first step to shift the join operation from the cen-
tralized DSMS to the sensor-network level. We introduce the concept of query
processing with relevance feedback as a building block of the distributed SNJoin*
algorithm. A major challenge in variable-arity multi-way join queries comes from
the fact that only a small number of sensors, compared to the thousands of sen-
sors in the network, join with each other. The problem becomes more challenging
in a distributed environment where a probe between two sensors requires a sig-
nificant communication cost. The objective of query processing with relevance
feedback is to guide the join operation to process only relevant sensors, i.e., sen-
sors that generate the same values. With the arrival of a new tuple £ at sensor
S;, a join probing sequence has to be determined. Each sensor along the probing
sequence performs the join operation over its data, then ships the result to the
next sensor in the probing sequence until the join result is received at the DSMS.



The DSMS performs any remaining query processing and forwards the result to
the client. Based on the final query output, the DSMS decides how much each
sensor contributes to the output, i.e., how much each sensor along the probing
sequence is relevant to the output. In the query processing with relevance feed-
back paradigm, the DSMS forms a feedback array (w1, wa, - -+, wi] (where k is
the arity of the join output tuples) to represent the contribution weight of each
sensor in the output and sends it back to the sensor that initiated the probing
sequence. For simplicity, let w; be the percentage of the output tuples in which
sensor S; appears. Each sensor maintains a Relevance Feedback Matriz (RFBM)
to record the relevance of each sensor to its own input tuples.The REBM is used
to guide future probing sequences. The RFBM is defined as follows:

Definition 3. Given a hash function H(f) — [h1, ha, --+, hn] and given m data
streams S1, S2, -+, Sm, a Relevance Feedback Matrix (RFBM) is a two dimensional
matriz (n X m) such that RFBM[H({), S;] represents the relevance of siream S; to the
join probing sequence of tuple .

Using RFBM, the join probing sequence for an input tuple # is formed such
that the probability of including a sensor in the probing sequence is proportional
to its relevance to t. The relevance probing sequence is defined as follows:

Definition 4. Civen m data streams S1, Sa, -+, Sm and given an input tuple £, the
Relevance Probing Sequence (RPS) of ¢ is a sequence of data streams So,, Soy, =+ -,

So, such that k < m and the probability Pr{S; € RPS}:Z,"RFI‘?;QZ([Z’%]SV].
i=1 =2

The RFBM entries are initially set to a base value (e.g., 50% to denote
that each stream has an equal probability of being included/ excluded from the
probing sequence). Then, the entries of the RFBM change dynamically with the
arrival of relevance feedback from the DSMS Pased on the following equation:

RFBMIH({), Si] = REBMIH(f), 8;] — =121 4 4y,

The above equation indicates that the RFBM is affected by the weight of
a sensor in the output (w;) relative to the average weights of all sensors in the

k
output (2%%) Notice that as sensors contribute to the output, they gradually
get a higher probability to be included in the probing sequence of the values they
generate. Similarly, if sensors do not participate in the join output they gradually
lose their good reputation and are excluded from the probing sequence.

5 SNJoin*

Up to this point, SNJoin is presented to meet the demands of the multi-way
join operation over large-scale dynamically configured sensor networks. How-
ever, SNJoin is a centralized join algorithm that requires all sensors to transmit
their data to a centralized DSMS. Hence, bottlenecks show up at the DSMS,
specially, with the increase in the network size. Scalable query processing over
sensor networks requires the en-route processing of sensor readings while they
are transmitted to the DSMS. Examples of such in-network query processing



include [6,13,18]. In this section, we present the distributed variation of the
algorithm, SNJoin*, that shifts the query processing of the join operation from
the centralized DSMS to the sensor-network level.

To reduce the communication cost among sensors, several techniques have
been proposed to configure the network topology dynamically, e.g., [3,5,19].
These techniques involve message exchange among sensors to acquire knowledge
about their locations and energy levels. Based on the acquired knowledge, sensors
are grouped into clusters. Within the members of each cluster, a specific node,
usually with a higher energy level, is designated to serve as the cluster head. The
cluster head receives the readings of all sensors in its cluster and forwards these
readings to the centralized DSMS, possibly through a multi-hop route. Cluster
heads communicate with each other to achieve a distributed execution of various
queries over the sensor network. Notice that cluster heads may be recursively
clustered into head clusters to form a hierarchy of clusters such that each sensor
node communicates with its head until its reading is received by the centralized
DSMS. For the sake of simplicity, we assume one level of clusters where cluster
heads can communicate with each other.

SNJoin* divides the multi-way join operation that is performed over the
entire sensor network into multiple multi-way join operations that are performed
separately over each cluster at the cluster head. Then, each cluster head chooses a
cluster-head probing sequence to probe other cluster heads looking for matches.
Ideally speaking, the cluster-head probing sequence spans all cluster heads in
the network to produce as much output results as possible. However, due to the
large size of the network and its associated communication cost, it is practical to
probe only clusters where it is more likely to find matches. This selective probing
reduces both the processing cost and the communication cost at the price of
losing some of the streams that could have participated in the join if they were
included in the probing sequence. The concept of relevance feedback presented
in Section 4 claims the responsibility of choosing an appropriate cluster-head
probing sequence. In SNJoin*, the relevance feedback is applied at the level of
cluster heads not at the level of individual nodes.

Figure 3 gives the SNJoin* algorithm. A cluster head receives an input tuple
from one of its cluster members, a probing request from another cluster head, or a
relevance feedback from the DSMS. The algorithm handles each case separately.
Upon receiving a new input tuple, the SNJoin* algorithm probes the cluster
head’s local hash table to retrieve a local join result (r) (Step 1). The cluster
head decides a probing sequence that spans other cluster heads based on its
local relevance feedback matrix (RFBM) (Step 2). The cluster head sets a Last-
Processed- Tuple mark over tuple  to denote the last processed tuple (Step 3).
This mark is used for processing the probing requests of other cluster heads as
explained later in this section. The cluster head sets the sequence number to
zero {SegNo = 0) because the cluster head is the initiator of the join operation
(Step 4) and prepares a probing sequence to be sent to the next hop (Cluster
head number SeqNo+1). A probing request consists of a sequence number that
indicates the last cluster head that processed the request (zero in this case), the



PROCEDURE Distributed-Insert- Probe

Upon receiving a new input tuple:

INPUT: a new input tuple (t.[S, 7]). A

OUTPUT: the join output produced by tuple t plus a cluster-head probing sequence.
1. r=insert—probe(f,/$, 7J)

2. Choose a cluster-head probing sequence (Cey, Coy. -+, Cqp )
3. Last-Processed- Tuple=(%,[§, +])
4. SeqNo =10 )
5. Ship To C“SeqNo+1: (SeqNo, [t.7]. [(C.|r|), (Csy.0), ---. (Cs,, 0)]. r)
Upon receiving a probe request: .
INPUT: a probe request PR:(SeqNo, [t. 7], [(Csy:lrsi|): (Csy:lrenl): -0 (Ceplre 1)) R).

OUTPUT: the join output produced by PR and a an updated PR.

1. r=probe(t,+) in [-co - - Last-Processed-Tuple]

2. SeqNo = SeqNo + 1 .

8. Ship To CsSeqNo+l : (SeqNo, [t. 7], [(Csy,lrsgl): -+ CSSC(IND,|T|), CSSE(]:\'(H— 0:0) -

(Cs,,,0)), RIr)
Upon receiving a relevance feedback note:
INPUT: a relevance feedback note:(t, [(Csy,wsy ). (Cog Wey )i -+ (Cspswey )]).
OUTPUT: an updated relevance feedback matriz.
fori=1to k

Koo
RFBM[H(#), s;]=RFBM[H (), s;] Z’;{—L + we,

Fig. 3. The SNJoin* algorithm.

joining tuple £, a sequence of cluster heads, and the join result 7. Notice that the
output size produced by each cluster head is associated with the cluster head
number to be used in the computation of the relevance feedback.

Upon receiving a probing request, the cluster head probes its own hash ta-
ble, accumulates its result to R, increases the probing sequence number. and
forwards the probing request to the next hop. When a cluster head probes its
local hash table, it starts from the Last-Processed- Tuple backward to avoid gen-
erating duplicate tuples. Otherwise, if the entire hash table is probed, the results
associated with tuples that came after the Last-Processed-Tuple will be dupli-
cated when they probe the hash tables of the cluster heads.

Upon receiving a relevance feedback note, the cluster head updates its own
relevance feedback matrix (RFBM) accordingly. A relevance feedback note con-
sists of a tuple () that is being assessed for relevance and a sequence of cluster
heads along with their relevance weight.

6 Analysis

In this section, we analyze the output rate of the SNJoin operator analytically
and compare it to the output rate of the MJoin. The output rate is defined to
be the number of output tuples divided by the time required to generate these
tuples [16]. The number of output tuples depends on the input rates and the
selectivity factors among various input streams regardless of the join technique.
However, the time required to generate the output tuples is the key factor that
differentiates among the performance of various join techniques. From now on,
we focus on the average time required by both MJoin and SNJoin to generate
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Fig. 4. Cost estimates of both MJoin and SNJoin.

the output tuples. For details on how to estimate the number of output tuples,
the reader is referred to [16].

First, we consider the complete multi-way join. The time required to process
a tuple, say t, from an input stream is the summation of the times taken to hash
and insert t into its corresponding hash table, choose a join probing sequence,
probe other streams’ hash tables, and form the output join tuples. Figure 4
provides estimates of these time components for both MJoin and SNJoin, given
k input streams. The hashing and insertion steps for both MJoin and SNJoin
are achieved in a constant time, i.e., O(1). However, MJoin maintains a hash
table per input stream and the join probing sequence is computed by sorting the
selectivity factors of the other £ — 1 hash tables in O({k — 1}log(k — 1)). The
objective of choosing a probing sequence is to retrieve, for each input tuple, a
join probing sequence hy, hg, ---, hg—1 such that 6} < 09 < -+ < 0p_1, Where
0; 1s the selectivity factor of the input tuple in hash table h;. MJoin probes hash
table h; and if a match is NOT found (with probability (1 — ¢;)™, where n; is
the number of tuples in hash table h;), the join probing sequence is terminated.
Otherwise, MJoin proceeds to probe the next hash table h;4; (with probability
1 — (1 — 0;)™ ). The probability that a probe will reach hash table h; equals
H] o {1 —0;)™. The best case is to probe the first table only and the worst
case is to probe all hash tables The ezpected number of probed tables equals
1+4(1-Q—o)™)+- -+ H '(1—(1—0,)™). In contrast, SNJoin has only one
global hash table and has no assoc1ated cost for deciding a probing sequence.

With each probe, MJoin produces partial results. By probing hash table h;,
the size of the partial result is the size of the cartesian product of all hash tables
up to h; multiplied by their selectivity factors, i.e., []]_; osn;. These partial
results are lost if the probing sequence terminates at this level. The cost of
forming the output tuples equals the summation of all these partial results up to
level k—1 (the last table to be probed), i.e. c1ny+0102m1M9+- - -+Hf=_11 oing. As
for SNJoin, no partial results are produced. Instead, the count-summary function
1) is checked and the result is produced if and only if there is a match in every
hash tables. The cost of the final result is the cartesian product of all input
streams multiplied by their selectivity factors, i.e., H;:ll oin;. Figure 4 shows
a noticeable reduction in the complexity of complete SNJoin over MJoin. A
verification of the complexity analysis is provided in the experiments (Section 7).

For the variable-arity multi-way join operation, the hash and insert time
components remain unchanged for both MJoin and SNJoin. However, MJoin



keeps probing all hash tables looking for matches even if the tuple value is
missing in one of the hash tables. As a result, the choose cost vanishes and
the probing cost increases to O(k) where all hash tables are probed. SNJoin
probes one table anyway and, hence, the probing cost remains O(1) in all cases.
The tuple formation cost remains unchanged for both MJoin and SNJoin with
the exception that ¢; is never zero. At least one tuple from each input stream
participates in the join (i.e., the NULL tuple). In this case, g; = ni contributing
to the join output with a total of o;n; = 1 tuple (the NULL tuple).

SNJoin* performs multi-way join over D clusters of input streams. On the
average, each cluster contains % streams. Figure 4 summarizes the cost estimates
of SNJoin* where S; and N; are the average selectivity factor and the total
number of tuples in cluster i, respectively. A stream tuple is hashed and is
inserted into the hash table of its corresponding cluster in O(1). SNJoin* endures
two costs: the cost of probing the hash table of tuple’s cluster and the cost of
probing other clusters’ hash tables. The cost of probing its own cluster’s hash
table is the same as the cost of SNJoin but with a total number of streams that
is equal to % instead of k. The cost of probing other clusters’ hash tables is the
same as the cost of the MJoin but with a total number of hash tables that is
equal to D instead of k.

7 Experiments

In this section, we conduct an experimental study to explore the performance of
the proposed SNJoin and SNJoin* operators. Three sets of experiments are per-
formed. The first set of experiments (Section 7.1) investigates the performance
of the complete multi-way join, as presented in Section 2. The second set of
experiments (Section 7.2) addresses the variable-arity multi-way join support,
as presented in Section 3, and examines the dynamic reconfiguration of sensor
networks. The third set of experiments (Section 7.3) highlights the advantages
of query processing with relevance feedback and investigates the performance of
SNJoin*, as presented in Section 5. In Sections 7.1 and 7.2 , we compare the
performance of the following three techniques:

1. XJoin tree, where the multi-way join is achieved through a binary tree of

zjoin operators with disk support for memory overflow.

2. MJoin, where the multi-way join is performed using the single-step symmet-

ric MJoin operator with a coordinated memory flushing policy as described
in [16].

3. SNJoin, where the multi-way join is performed as described in this paper.
In Section 7.3, we compare the performance of SNJoin* with a distributed vari-
ation of MJoin. The output rate, measured in terms of the number of output
tuples per second, is the major measure of performance. Other measures of per-
formance include the output delay and the input drop rate. The output delay is
the time difference between the arrival of a tuple and the time its effect appears
in the output. Due to the system’s limited CPU time and the continuous ar-
rival of stream data, some input tuples are dropped randomly from the system’s
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Fig. 5. Performance of complete multi-way join.

buffers to accommodate new tuples (i.e., random load shedding). In all experi-
ments (except the experiment that deals with disk support for memory overflow
in Section 7.1). we assume that tuple dropping occur due to limited CPU time
not due to limited memory. We allocate enough memory to accommodate all
tuples in the sliding window. We measure the number of dropped input tuples
relative to the total number of input tuples as the input drop rate.

Unless mentioned otherwise, experiments are performed over variable-size
sets of simulated sensors. Each sensor generates a stream of 10,000 tuples where
the tuple values follow the Zipfian distribution. For each stream, the Zipfian pa-
rameter is an integer value chosen randomly between 1 and 5. The interarrival
time between two consecutive tuples coming from the same source follows the ex-
ponential distribution. The average interarrival time is an experiment-controlled
parameter. We have two experimental setups that produce similar system load.
The first setup is directed to complete multi-way join {Section 7.1) and features
a small number of high rate sensors (up to 20 sensors with an average inter-
arrival time of 10 milli-seconds). Notice that complete multi-way join tends to
produce fewer or no results as we increase the number of sensors. The second
setup is directed to variable-arity multi-way join (Sections 7.2 and 7.3) and uti-
lizes a large number of low rate sensors {up to 2000 sensors with an average
interarrival time of 1 second). This setup simulates large-scale sensor networks.
The join techniques are triggered through a multi-way join query with a sliding
window of size 1 minute. All the experiments in this section are based on a real
implementation of the join operators inside the Nile data stream management
system [10]. The Nile engine executes on a machine with Intel Pentium I'V, CPU
2.4GHZ and 512MB RAM running Windows XP.

7.1 Performance of complete SNJoin

The performance of the complete multi-way join operation under an zjoin tree,
MJoin, and complete SNJoin is given in Figure 5. As illustrated in Figure 5a,
complete SNJoin reduces the processing time per input tuple and reduces the
output delay by up to 38% over MJoin and by up to 18% over the zjoin tree (in
case of 20 streaming sources). As a result of reducing the per-tuple processing
time, complete SNJoin reduces the input drop rate and, consequently, processes
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Fig. 6. Performance of variable-arity multi-way join.

more tuples (Figure 5b). The output rate of SNJoins is double the output rate
of zjoin trees and exceeds the output rate of MJoin by up to 45% (Figure 5c¢).
To test disk support for memory overflow, we force some of the tuples to be
either dropped or spooled to disk by reducing the main memory size that is avail-
able for the join techniques. We limit the main memory to accommodate around
50% of the total number of tuples that are coming from all streams during the
one-minute sliding window. We conduct an experiment to test the performance
of complete SNJoin with and without the disk support. The performance gains
of the disk support are significant for small numbers of streams (up to 58% in-
crease in output rate in case of 2 streams). However, with the increase in the
number of streams, the disk support tends to be less beneficial. For large number
of streams, there is hardly enough time to revisit the spooled tuples. In this case,
spooling incurs a cost that is not justified if spooled tuples are not processed.

7.2 Performance of variable-arity SNJoin

Performance gains of SNJoin become more significant under variable-arity multi-
way join. In contrast to binary join trees and MJoin, variable-arity SNJoin avoids
unnecessary probes, and therefore, reduces its per-tuple processing time. Figure 6
illustrates the efficiency of variable-arity SNJoin in terms of the output delay
and the input drop rate. From the figure, variable-arity SNJoin increases the
output rate by up to 150% over binary join trees and by up to 60% over MJoin.
Figure 7 illustrates the output rate of the join techniques under a
dynamically-configured set of sensors. This experiment studies the behavior of
the centralized variable-arity SNJoin with respect to the dynamic configuration
of the network in terms of additions and deletions to the sensor set. Every minute,
a number of sensors (randomly chosen between 1 and 100) is either added or re-
moved from the sensor set. Comparing Figure 6¢ and Figure 7, notice that the
dynamic behavior of the network reduces the output rate of zjoin tree by up to
50% and reduces the output rate of MJoin by up to 25%. However, the output
rate of variable-arity SNJoin is reduced by only 4% (in case of 2000 sensors).

7.3 Performance of SNJoin*
In this Section, we study the distributed execution of SNJoin* over clusters of
sensors. We conduct this experiment over various sensor-network sizes where
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Fig. 9. The effect of relevance feedback on SNJoin*.

sensors are uniformly distributed in the space. Clusters of sensors are obtained
using a simulation of the HEED clustering technique [19] with the cluster range
being set to 10% of the total sensor space (the number of clusters is decided
by the algorithm based on the cluster range). For simplicity, we construct a
one-level clustering hierarchy where cluster heads can communicate through a
one-hop communication link. The join operation.is performed at cluster heads.
Cluster heads receive the sensor readings of their cluster members, perform the
join operation, and communicate with other cluster heads to perform remote
probes. Figure 8 compares the output rate of a distributed variation of the
MJoin to the performance of two variations of the SNJoin*: one with relevance
feedback and the other without relevance feedback. The distributed variation of
MJoin is obtained by performing the MJoin operation among members of the
same cluster at the cluster head. Then, each cluster head probes other clusters
in a descending order of the average selectivity of their members. From Figure 8,
notice that query processing with relevance feedback increases the output rate
of SNJoin by up to 90% for a sensor network of 2000 sensors.

Accepting relevance feedback allows the join operation to focus on sensors
that show similar behavior, and hence, reduces the number of probed streams.
Consequently, the per-tuple processing time and the input drop rate are reduced.
As a negative effect of relevance feedback, not all cluster heads are probed and,
consequently, the output join tuple may miss some streams that could otherwise
participate in the join. This results in a decrease in the width of the output
tuple. Experimentally, this reduction in the width of the tuple did not exceed
12% (at 2000 sensors). Figure 9 illustrates the effect of the relevance feedback
on the performance of SNJoin* with respect to the reduction in the number of
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probed streams, the output delay, the input drop rate, the tuple width, and the
communication cost. We measure the communication cost in terms of the total
number of bytes transmitted per second. There is no performance gain in terms
of communication cost between SNJoin and MJoin because all cluster heads are
probed anyway. SNJoin * increases the communication cost by one extra message
per an input tuple. This message is sent from the DSMS to the stream that
generated the tuple to carry the relevance feedback of other streams to that tuple.
On the other hand, SNJoin * reduces the communication cost as a consequence of
reducing the number of cluster-head probes. The net reduction in communication
cost is illustrated in Figure 9 where we can notice the coirelation between the
reduction in the number of probes and the reduction in the communication cost.

8 Related Work

The multi-way join operation can be achieved through a tree of binary Joins
(either symmetric hash join [17], zjoin [15], or hash merge join [12]), a single
MJoin operator [16], or a single SNJoin operator. Figure 10 provides a com-
parison among various multi-way join techniques based on a key set of distin-
guishing features. Trees of binary joins are not scalable due to their multi-step
non-symmetric processing. For the same reason, trees of binary joins do not allow
the dynamic configuration of sensor networks (unless query plan reorganization
is performed). On the other hand, MJoin and SNJoin are symmetric, scalable,
and dynamically configurable. Also, the output delay in binary join trees in-
creases with the increase in the number of tree levels. The single-step processing
of MJoin and SNJoin results in a lower output delay. Moreover, SNJoin is spe-
cially designed for large-scale dynamically-configured sensor networks. Trees of
binary joins are sensitive to the variable input rates and require reorganiza-
tion of the query plan operators (e.g., see [4]) to increase their output rate.
XJoin provides disk support to handle memory overflow. Similarly, MJoin and
SNJoin support memory overflows and enhances the disk support further with
a coordinated flushing policy. Although all techniques can be tweaked to handle
variable-arity join processing, they do not make use of partial processing to re-
duce the processing cost significantly. However, SNJoin supports variable-arity
multi-way join by design.



9 Conclusions and Directions for Future Extensions

In this paper, we presented the SNJoin (or Sensor-Network Join) operator, a
multi-way join operator for sensor-network databases. To meet the demands
of sensor networks, SNJoin is designed to scale with respect to the number of
sensors in the network without sacrificing the output rate. We introduced the
notion of query processing with relevance feedback to adjust the join selectivity
between sensor pairs. SNJoin* supports the distributed execution of the multi-
way joil operation with the capability to accept and process relevance feedback.

Experimental studies that are based on a real implementation inside a pro-
totype data stream management system show the scalability of the SNJoin op-
erator. For a sensor network of 2000 sensors, the proposed SNJoin operator
increases the output rate by up to 150% over binary join trees and by up to 60%
over MJoin. Also, the output rate of SNJoin* increases by up to 90% with the
deployment of relevance feedback.
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