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Abstract

We extend multi-way, multivariate ANOVA-type analysis to cases where one
covariate is the view, with features of each view coming from different, high-
dimensional domains. The different views are assumed to be connected by having
paired samples; this is common in our main application, biological experiments
integrating data from different sources. Such experiments typically also include a
controlled multi-way experimental setup where disease status, medical treatment
groups, gender and time of the measurement are usual covariates. We introduce
a multi-way latent variable model for this new task, by extending the generative
model of Bayesian canonical correlation analysis (CCA) both to take multi-way
covariate information into account as population priors, and by reducing the di-
mensionality by an integrated factor analysis that assumes the features to come in
correlated groups.

1 Introduction

Finding disease and treatment effects from populations of biological samples is a prototypical multi-
way modeling task, traditionally solved with multivariate ANOVA. The research question is, are
there differences in the population that can be explained by either covariate or, more interestingly,
their interaction, which would hint at the treatment being effective. It is naturally additionally inter-
esting what the differences are.

A recurring problem in multi-way analyses, especially with modern high-throughput measurements
in molecular biology, is the ”small n, large p”-problem. The dimensionality p of the measurements
is high while the number of samples n is low, and additionally the data may be collinear making
estimation of the effects impossible with classical methods, univariate or multivariate linear models
solved with multi-way ANOVA techniques. The most promising modern method, Bayesian sparse
factor regression model [1], is useful in finding the variables most strongly related to the external
covariate and to infer relationships between those variables via common latent factors. Instead of a
regression model we will build on a generative multi-way latent factor model [2] which incorporates
an assumption of clusteredness of the variables to regularize the model, and makes it possible to
extend the model to multi-view factor analysis. Such clusteredness is well justified in biological
applications.



Experiments integrating biological data from different sources make measurements of the same
sample with different measurement techniques or from different tissues, usually resulting in paired
samples from different, unmatched domains. We now assume the different views form one covariate
in the multi-way analysis, with the additional problem that the samples come from different domains
and cannot be directly compared. We introduce a new hierarchy level of latent variables intended to
decompose the views into view-specific and shared components, which is needed for the multi-way
analysis. Such a decomposition is possible given that the samples in the different views come in
pairs, which we need to assume.

The resulting decomposition between the views turns out to be implementable with Bayesian canon-
ical correlation analysis [3, 4], interpretable as unsupervised multi-view modeling. Hence, in this
work we re-interpret unsupervised multi-view modeling as one-way modeling of samples from dif-
ferent domains, and combine it with multi-way modeling. Given that we additionally can work
under the large p, small n conditions, the model is expected to have widespread applicability in
current molecular biological measurements.

2 Model

2.1 Multi-way, multi-view

We will generalize ANOVA to multi-view (multi-domain) analysis, restricting to two covariates and
two views for simplicity, although generalization is straightforward. Using ANOVA-style notation
and assuming the views to be in the same domain, the multivariate linear model for samples is

va=p"+ aq+ By + (aB)ay + V4 + (@Y)aa + (BY)va + (@B%)aba + noise, (1)

where ud is the grand mean, ¢ and b (¢ = 0,... A and b = 0,...B), are the two traditional
independent covariates such as disease and treatment, and d denotes the view. The o, 3, and
(a3)qp are the shared main and interaction effects, «y,; would be the view-effect, (@v)ad, (837)bd
and (a37)aba are the view-specific main and interaction effects.

For different values of d the domain of v may vary, meaning different feature spaces with different
dimensionalities. We assume the samples of the different views to come in pairs, v = [x, y]. For the
rest of the paper we will change the notation for clarity to v} = x, v? =y, and assume a mapping
f7 from the effects to the domain of x which is linear for now. Then,

X = p" + fH(aa+ By + (@B)a) + [ () + (B)F + (aB)g,) + noise, 2)
assuming v, = 0, because it is impossible to compare means of different domains, and that the
view-specific effects are in the same domain as the view-independent effects and hence need to be
transformed with the same function. The equation for y is analogous. To our knowledge, there
exists no method capable of studying the shared and view-specific multi-way effects.

2.2 Hierarchical model

We next formulate a hierarchical latent-variable model for the task of multi-way, multi-view learning
under “large p, small n” conditions. For this we need three components: (i) regularized dimension
reduction, (ii) combination of different data domains, and (iii) multi-way analysis. We formulate
each of these as part of an overall generative model, which is solved by Gibbs sampling. In effect
the model, shown in Figure 1, consists of two factor analyzers, where the loadings assume cluster
memberships (multiplied with scales), a generative model of CCA, and population-specific priors
on z that assume ANOVA-type multi-way structure. We will now introduce the details of each of
these parts in turn.

2.2.1 Factor analysis model

To deal with the small sample size n < p problem, we reduce the dimensionality of the data x and y
from the two views into their respective latent variables x'** and y'*. This can be done by a factor
analysis (FA) model

x5~ N(0, %)
x;j ~ N(p* 4+ Voxlt A" 3)
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Figure 1: The hierarchical latent-variable model for multi-way, multi-view learning under “large p,
small n”” conditions.

Here V¥ is the projection matrix that is assumed to generate the data vector x; from the latent
variable xé-“t, A® is diagonal noise with elements o;. The xé—at is a latent variable vector, whose
elements are known as factor scores. The V*x!** models such common variance of the data around
the variable-means p” that can be explained by factors common to all or many variables. The
covariance matrix of x'%*, U* comes from the CCA. At this point, when n < p, V¥ cannot be
estimated due to the singularity of the sample covariance matrix.

2.2.2 Regularized projection matrix that assumes grouped variables

We make the structured assumption that there are strongly correlated groups of variables in the data
[2]. We regularize the V* projection matrix to a clustering matrix such that each variable comes
from exactly one factor. The projection matrix is positive-valued, each row having one non-zero
element corresponding to the cluster assignment of the variable. We therefore assume that the main
correlations are positive correlations between variables belonging to the same cluster.

2.2.3 Generative model of CCA

We now need to search a view shared by the two different domains x'** and y'**, needed for finding
shared multi-way effects. Given paired data, this is a task for Bayesian CCA (BCCA) [3, 4] which
introduces a new hierarchy level where a latent variable z captures the shared variation between the
views. The generative model of BCCA has been formulated as

Zj ~ N(O, I),
X\~ N(W¥z;, ¥7), 4)

where z; is the shared latent variable, W is the projection matrix and ¥* is the marginal covariance
matrix, and likewise for y.

2.2.4 ANOVA-type model for latent variables.

We assume that the ANOVA-type effects act on the latent variables z, which allows access to shared
effects found in both the spaces x'** and y'**. They are modeled as population priors to the latent
variables, which in turn are given Gaussian priors e, 3y, (@3)ap ~ N (0, I). In normal BCCA the
prior is zero-mean. In the K, -dimensional shared latent variable space we then have

z; = o + By + (afB)qp + noise. ®)

In addition, Bayesian CCA assumes that the data is generated by a sum of shared latent variables z
and view-specific latent variables z” and zY. The model then decomposes the ANOVA-type effects
to the shared effects and to view-specific effects ¥, 3y, and (a/3)%,, and likewise for y.
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Figure 2: The method finds the generated effects o« = +2,6Y = +2, and (a3)* = +2 (shown by
the boxes). The dots show posterior mean and the thin lines include 95% of posterior mass, as a
function of number of observations. A consistently non-zero posterior distribution implies an effect
found.

3 Results

We demonstrate the functionality of the method on generated data with a two-way, two-view ex-
perimental setup. The generated data has known effects «, 5Y, and (a/3)*, each with strength +2.
We then study how well the model finds the effects as a function of the number of measurements.
Both x and y are 200-dimensional and the noise o; = 1. The method finds the three generated
effects, shown in Figure 2. The uncertainty decreases with increasing number of observations. Note
that the shared effect is found with much less uncertainty since there is evidence from both views.
With small numbers of samples, there is considerable uncertainty in the effects for view-specific
components. In typical bioinformatics applications there may be 20-50 samples.

4 Discussion

We have generalized ANOVA-type multi-way analysis to cases where multiple views of samples
having a multi-way experimental setup are available. The problem is solved by a hierarchical latent
variable model that extends the generative model of Bayesian CCA to model multi-way covariate in-
formation of samples by having population-specific priors on the shared latent variable of CCA. Fur-
thermore, the method is able to decompose the covariate effects to shared and view-specific effects,
treating the multiple views as one covariate. Finally, the method is designed for cases with high di-
mensionality and small sample-size, common in bioinformatics applications. The small sample-size
problem was solved by assuming that the variables come in correlated groups, which is reasonable
for bioinformatics applications.

The modelling task is extremely difficult due to the complexity of the task and small sample-
size. Hence it was striking that the method was capable of finding covariate effects with small
sample-sizes in the generated multi-view, multi-way dataset. We have also applied the method to
metabolomics data, which demonstrated its successful applicability to a real data, and we are cur-
rently writing a manuscript about that.
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