
South Dakota State University

Open PRAIRIE: Open Public Research Access Institutional
Repository and Information Exchange

GSCE Faculty Publications Geospatial Sciences Center of Excellence (GSCE)

2017

Multi-year MODIS Active Fire Type Classification
Over the Brazilian Tropical Moist Forest Biome
David P. Roy
South Dakota State University, david.roy@sdstate.edu

S. S. Kumar
South Dakota State University

Follow this and additional works at: http://openprairie.sdstate.edu/gsce_pubs

Part of the Earth Sciences Commons, Physical and Environmental Geography Commons, and
the Remote Sensing Commons

This Article is brought to you for free and open access by the Geospatial Sciences Center of Excellence (GSCE) at Open PRAIRIE: Open Public

Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in GSCE Faculty Publications by an authorized

administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please

contact michael.biondo@sdstate.edu.

Recommended Citation
Roy, David P. and Kumar, S. S., "Multi-year MODIS Active Fire Type Classification Over the Brazilian Tropical Moist Forest Biome"
(2017). GSCE Faculty Publications. 27.
http://openprairie.sdstate.edu/gsce_pubs/27

http://openprairie.sdstate.edu?utm_source=openprairie.sdstate.edu%2Fgsce_pubs%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openprairie.sdstate.edu?utm_source=openprairie.sdstate.edu%2Fgsce_pubs%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openprairie.sdstate.edu/gsce_pubs?utm_source=openprairie.sdstate.edu%2Fgsce_pubs%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openprairie.sdstate.edu/gsce?utm_source=openprairie.sdstate.edu%2Fgsce_pubs%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openprairie.sdstate.edu/gsce_pubs?utm_source=openprairie.sdstate.edu%2Fgsce_pubs%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/153?utm_source=openprairie.sdstate.edu%2Fgsce_pubs%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/355?utm_source=openprairie.sdstate.edu%2Fgsce_pubs%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1192?utm_source=openprairie.sdstate.edu%2Fgsce_pubs%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openprairie.sdstate.edu/gsce_pubs/27?utm_source=openprairie.sdstate.edu%2Fgsce_pubs%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:michael.biondo@sdstate.edu


Multi-year MODIS active fire type classification over the Brazilian
Tropical Moist Forest Biome

D. P. Roy and S. S. Kumar

Geospatial Sciences Center of Excellence, South Dakota State University, Brookings, SD, USA

ABSTRACT

The Brazilian Tropical Moist Forest Biome (BTMFB) spans almost 4 million
km2 and is subject to extensive annual fires that have been categorized
into deforestation, maintenance, and forest fire types. Information on
fire types is important as they have different atmospheric emissions
and ecological impacts. A supervised classification methodology is
presented to classify the fire type of MODerate resolution Imaging
Spectroradiometer (MODIS) active fire detections using training data
defined by consideration of Brazilian government forest monitoring
program annual land cover maps, and using predictor variables
concerned with fuel flammability, fuel load, fire behavior, fire seasonality,
fire annual frequency, proximity to surface transportation, and local
temperature. The fire seasonality, local temperature, and fuel
flammability were the most influential on the classification. Classified fire
type results for all 1.6 million MODIS Terra and Aqua BTMFB active fire
detections over eight years (2003–2010) are presented with an overall
fire type classification accuracy of 90.9% (kappa 0.824). The fire type
user’s and producer’s classification accuracies were respectively 92.4%
and 94.4% (maintenance fires), 88.4% and 87.5% (forest fires), and,
88.7% and 75.0% (deforestation fires). The spatial and temporal
distribution of the classified fire types are presented and are similar to
patterns reported in the available recent literature.
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1. Introduction

The Brazilian Tropical Moist Forest Biome (BTMFB) supports the world’s largest contiguous area of
tropical forest and has experienced high rates of deforestation over the last few decades (Fearnside
2007; Numata et al. 2011) and extensive annual burning (Setzer and Pereira 1991; Giglio et al. 2006;
Chen et al. 2011; Morton et al. 2013). Fire is used as the primary tool for forest and agricultural land
clearing and the majority of fires are thought to be anthropogenic. Fires have been broadly classified
into one of three types: (i) Maintenance fires, (ii) Deforestation fires, and (iii) Forest fires (Cochrane
and Schulze 1999; Nepstad et al. 2001; Schroeder et al. 2005; Ten Hoeve et al. 2012). Maintenance
fires are lit on pasture and arable land to remove crop residues, shrub, and secondary forest re-
growth, to reduce pests, and to encourage nutrient recycling (Crutzen and Andreae 1990; Nepstad
et al. 2001) and can burn variable amounts of biomass depending on the vegetation condition and
the time since the last fire application (Cochrane et al. 1999). Maintenance fires are lit typically every
two to four years, usually by burning the field perimeters and ensuring that the fire progresses across
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the pasture (Kauffman, Cummings, and Ward 1998). The fires are lit in the dry season and around
midday to early afternoon when diurnal temperatures are the warmest and relative humidity the
lowest; the fires burn quite rapidly (only several hours), although smoldering combustion of residual
woody debris may take several days to burn (Kauffman, Cummings, and Ward 1998). Forest and
deforestation fires occur in forests but have different causes. Deforestation fires are set by people
to clear forested lands, typically for conversion to agricultural uses, and may burn large volumes
of biomass and cause ecosystem structural change (Cochrane and Schulze 1999; Gerwing 2002)
and of the three fire types they generate the most significant greenhouse and trace gas emissions
(van der Werf et al. 2008). The vegetation in the forest area is slashed and left to dry for several
months, large trees may be felled, sometimes the fuel is pushed into a large pile, and subsequently
the dry fuel is burned typically in the late dry season by igniting the clearing/pile edges to produce
energetic fires that can have flame lengths greater than 10 m and that can last for several days (Kauff-
man et al. 1995; Guild et al. 1998; Graça, Fearnside, and Cerri 1999; Morton et al. 2008). Forest fires
are almost exclusively escaped fires lit elsewhere by people or ignited by lightning. Forest fires
initially burn the forest litter, and the fires burn slowly (as little as 150 m per day) with low energy
(flame heights no more than 10 cm) and are usually extinguished when the relative humidity
increases in the evening, although smoldering woody debris may reignite weeks later if the con-
ditions are conducive (Cochrane and Schulze 1998; Cochrane and Laurance 2002). In subsequent
years, especially in drought years, a significant proportion of the forest biomass and not just the
understory may also burn (Cochrane et al. 1999; Alencar, Solórzano, and Nepstad 2004; Alencar,
Nepstad, and Diaz 2006; Aragão and Shimabukuro 2010; Alencar et al. 2011). In addition to emis-
sions estimation, information on the timing, location and incidence of the different fire types are
important for policy-makers and regulatory bodies to monitor and regulate the use of fire (Morton
et al. 2008, 2013; GOFC-GOLD 2010) and to provide insights into post-disturbance land manage-
ment practices and vegetation dynamics that can be difficult to infer in the region (Ramankutty
et al. 2007; Laurance et al. 2011).

Satellite data have been used to monitor fire activity using active fire detection algorithms that
detect the location of fires burning at the time of satellite overpass and using burned area algorithms
that map the spatial extent of the area affected by fire (Lentile et al. 2006; Roy, Boschetti, and Smith
2013). Attribution of fire type to mapped burned pixels remains a research issue and has mainly been
concerned with inferring the spatial extent of understory fires (Alencar, Nepstad, and Diaz 2006; Shi-
mabukuro et al. 2010; Morton et al. 2013).

This paper develops and assesses amethodology to classifyMODerate resolution Imaging Spectro-
radiometer (MODIS) active fire detections over the BTMFB as maintenance, forest, or deforestation
fire types. Previously, satellite active fire detection fire types have been inferred using different tech-
niques including the geographic context and proximity of satellite active fire detections relative to the-
matic land cover classes, roads, and forest edges (Nepstad et al. 2001; Schroeder et al. 2005; Alencar,
Nepstad, and Diaz 2006; Giglio 2007; Ten Hoeve et al. 2012; Chen, Morton, et al. 2013) and by con-
sideration of the temporal persistence of satellite active fire detections (Morton et al. 2008; Le Page
et al. 2010; Chen, Morton, et al. 2013). These approaches have not been validated, and are expected
to be less useful when new isolated forest areas are burned and because thematic land cover classes,
roads, and forest edges may not be reliablymapped. In this study, a supervised random forest classifier
is used to classify the fire type of MODIS active fire detections. Training data are defined by examin-
ation of annual Brazilian government forest monitoring program (PRODES) land cover time series
and are used to provide a fire type classification accuracy assessment. The BTMFB study area and
the data are first described, followed by description of the predictor variables that do not include
the PRODES land cover data, and then the classification methodology. The relative importance of
the predictor variables are reported in a way that accommodates correlation among variables. Results
of the fire type classification of eight years (2003–2010) of 1 km MODIS Terra and Aqua active fire
detections over the BTMFB and accuracy assessment, including select local comparison with Landsat
data, are presented. This is followed by concluding remarks and discussion.
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2. Study area

Figure 1 shows a map of the BTMFB study area covering an area of 3,982,550 km2, equivalent to
about 46% of Brazil and about 80% of the Brazilian Legal Amazon. The area lies between 5.140°
N to 13.680° S and 73.67° W to 46.160° W and encompasses the Brazilian states of Rondônia,
Pará, Acre, Amazonas, Roraima, Amapá, and portions of Mato Grosso. Vector shape files delineating
the moist forest biome and Brazilian states were obtained from the Instituto Brasileiro do Meio
Ambiente e dos Recursos Naturais Renováveis (IBAMA 2013). The roads and navigable rivers are
also shown (described in Section 3.3.4) and reflect the spatial extent of surface transportation net-
works. The BTMFB study area is extensive, and encompasses the Equator, and so the fire seasonality
varies geographically. Typically, the fire season in the Brazilian Amazon occurs from December to
May for regions north of the equator and from July to December for regions south of the equator
(Boschetti and Roy 2008; Morton et al. 2008). For all of the Brazilian Amazon, the peak fire
month is usually August or September (Aragão et al. 2008).

3. Data

3.1. Satellite active fire data

The Collection 5, Level 2 MODIS 1 km Terra and Aqua active fire detection products (MOD14 and
MYD14) (Giglio et al. 2003) were used in this study. The products define the locations of active fires
detected at the time of MODIS overpass and include an estimate of the active fire detection confi-
dence, the 4 µm and the 11 µm brightness temperatures [K] of the area around the fire detection,
and the Fire Radiative Power (FRP) [MW]. All the Terra (10:30 and 22:30 Equatorial overpass
times) and Aqua (13:30 and 01:30 Equatorial overpass times) active fires detected over the study

Figure 1. BTMFB study area (thick black outline) colored by states, with the official and unofficial roads (gray) and navigable river
banks (blue). The limits of the legal amazon are shown by the green border.
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area from 2002 to 2010 were used. The active fire detections for 2003 to 2010 were classified; the 2002
active fire detections were not classified but were used to parameterize some of the classification pre-
dictor variables.

The MODIS active fire product can only detect fires that are sufficiently hot and/or large depend-
ing on the areal proportions and temperatures of the non-burning and the smoldering and flaming
fire components and is sensitive to the fire(s) sub-pixel position(s) (Kaufman et al. 1998; Giglio et al.
2003; Giglio and Justice 2003). The observed MODIS pixel footprints have elliptical shapes although
the point spread function is approximately rectangular and triangular in the along-track and along-
scan directions respectively (Nishihama et al. 1997; Wolfe, Roy, and Vermote 1998; Wolfe et al.
2002). The MODIS is a whiskbroom sensor and consequently, the active fire products detect fires
that occur in pixel footprints that increase in area in the along-track and along-scan directions
respectively from approximately 1.0 by 1.0 km at nadir to 2.0 by 4.8 km at the scan edge (Wolfe,
Roy, and Vermote 1998). This causes a systematic detection omission at increasingly higher
MODIS scan angles where only larger and/or hotter fires and higher FRP fires tend to be detected
(Giglio, Kendall, and Justice 1999; Mottram et al. 2005; Kumar et al. 2011). Conversely, at high
scan angles, the MODIS pixel footprints spatially overlap in the track direction between consecutive
scans (the so-called bow-tie effect) (Nishihama et al. 1997; Wolfe, Roy, and Vermote 1998). This may
result in a duplication of MODIS active fire detections at higher scan angles (Freeborn et al. 2014).
However, duplicated detections cannot be distinguished from large individual fire events, from clus-
ters of many small fires, or from long fire fronts that cover several adjacent pixels (Morisette et al.
2005; Freeborn et al. 2014). Consequently, in this study, each Level 2 MODIS active fire detection
is considered as a single fire event located at the pixel center. The FRP value was divided by the
pixel footprint area to give area normalized FRP [MW km−2] (Kumar et al. 2011).

The Collection 5 MODIS active fire product has an estimated 3% active fire detection commission
error in the Amazon occurring primarily over locations with strong thermal contrast, such as patches
of bare soil surrounded by cooler dense vegetation (Schroeder, Csiszar, and Morisette 2008). Errors
of omission are usually more prevalent than these commission errors due to surface obscuration by
cloud and optically thick aerosols and because MODIS may not overpass when fires are occurring
(Giglio 2007; Roy et al. 2008; Schroeder et al. 2008). In addition, omission errors occur due to sensor
and algorithm detection limitations. MODIS active fire detection algorithm simulations indicate that
the size of the smallest flaming fire having at least a 50% chance of being detected under ideal

Figure 2. Total number of Level 2 MODIS Aqua and Terra, day and night, active fire detections over the study area (Figure 1) for
each year. A total of 1,604,950 MODIS active fires were detected over the study area from 2003 to 2010. In 2002 (not illustrated),
there were 151,085 active fire detections and were used to parameterize some of the classification predictor variables.
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daytime and nighttime conditions is 100 m2, and that nighttime detection probabilities are higher
than daytime probabilities (Giglio et al. 2003).

Figure 2 summarizes the total number of annual MODIS Aqua and Terra, day and night, active
fire detections for 2003–2010 over the study area, an eight-year total of 1,604,950 active fire detec-
tions. Caution in interpreting the absolute number of active fire detections is well known due to the
aforementioned MODIS active fire detections issues. For this reason, we report both the absolute
numbers and the relative proportions of the classified active fire types in the results section. The
greatest and least number of fires occurred in 2005 and 2009, respectively. The large number of
fires in 2005 has been observed by other researchers (Alencar, Nepstad, and Diaz 2006; Morton
et al. 2008; Silvestrini et al. 2011) and is thought to be related to the extensive drought in that
year (Espinoza et al. 2011; Lewis et al. 2011) when drier conditions increased the probability of
escaped agricultural maintenance fires (Cochrane et al. 1999; Nepstad et al. 2001; Alencar, Solórzano,
and Nepstad 2004; Alencar, Nepstad, and Diaz 2006) and opportunistic setting of fires to clear
forested land (Araujo et al. 2009, 2010). From 2003 to 2010, deforestation decreased by almost
75% (Assunção, Gandour, and Rocha 2013; PRODES 2013; Souza et al. 2013), likely associated
with the promulgation of a 2008 government deforestation policy and the transparency offered by
Brazilian satellite-based forest monitoring efforts (Nepstad et al. 2009; Assunção, Gandour, and
Rocha 2013). The low number of active fires in 2009 is perhaps related to this deforestation policy
as a more normal number of fires were observed in the non-forest cerrado further south of the
BTMFB (Ten Hoeve et al. 2012).

3.2. PRODES land cover data

The Brazilian government forest monitoring program produces the PRODES (Projeto de Monitor-
amento do Desflorestamento na Amazonia Legal) annually updated land cover classification that is
used for monitoring annual deforestation across all the legal amazon (PRODES 2013). The PRODES
wall-to-wall classification data over the BTMFB study area were extracted and used in this study. The
PRODES classification defines the following 90 m (resampled from a 250 m × 250 m minimum
mapping unit) classes: deforestation, forest, non-forest (savanna, agriculture, urban, rock, flood
plain), missing data, water, and cloud. The classification has been updated annually with respect
to a 1997 baseline classification using multiple remote sensing algorithms and expert opinion
(PRODES 2013). Only the deforestation class is updated and the date and year of the Landsat
image used for deforestation detection and the closest previous year with a non-missing forest
class are available as attributes. Any location that is classified as deforested is never subsequently
reclassified to another class (due to regrowth or conversion to agriculture for example). The accuracy
of the PRODES data is unpublished but is considered to reflect a high level of accuracy and is the
only moderate resolution wall-to-wall annual dataset that is available publically. Recently, less
than a 2% difference between the PRODES Brazilian Amazon deforested area for 2000–2010 and
the deforested area mapped independently using Landsat data and different techniques was reported
(Souza et al. 2013).

All the PRODES data for 1997–2010 over the BTMFB were used, and in this period, about 6.4% of
the study area pixels were classified as missing or persistently cloudy. As an example, Figure 3 illus-
trates the PRODES deforestation detected over the study area between years 2003 and 2011 (red) and
regions that were classified as deforested from 1997 to 2002 (pink).

3.3. Predictor variable data and rationale for their selection

A suite of predictor variables (Table 1) were used to classify the MODIS active fire detections into
forest, deforestation, and maintenance fire types. The variables were selected based on published
research on the factors that drive and mediate fire in the Brazilian Amazon. The predictor variables
are grouped as variables concerned primarily with fuel flammability, fuel load, fire behavior, fire
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seasonality, annual fire frequency, proximity to surface transportation, and the local temperature.
The underlying premise for the variable selection is that the different fire types may occur where
the fuel load and flammability are different and consequently, the fire types may have different
fire behavior mediated by the local environmental conditions. In addition, the three fire types
may have different fire seasonality and annual frequency. The following sub-sections detail the
rationale for the predictor variable selection.

The predictor variable values were computed individually for all 1,604,950 MODIS active fire
detections over the study area from 2003 to 2010. The values were derived at the center of each
MODIS active fire detection location. For certain predictor variables, the values were derived as a
summary statistic over a 1 km circular area centered on the pixel center. A 1 km dimension was
used as fires often do not occur at the MODIS pixel center, and Morton et al. (2008) reported
that 98% of MODIS Terra and Aqua active fire detections observed over one year at three static
gas flares (Urucu, Amazonas, Brazil; Chuquicamata, Antofagasta, Chile; Espı’rito-Santo, Brazil)
occurred within 1 km of their ground locations. Different temporal periods prior to the day of
each active fire detection were used to compute the predictor variable values, up to one year prior
to detection for the MODIS fire product-related variables, and up to two years prior to detection
for the precipitation-related variables. Fixed calendar date ranges were not considered to avoid
fire seasonality reporting issues found for extensive regions and for regions that span the Equator
(Boschetti and Roy 2008).

3.3.1. Precipitation

At regional scale, the number of satellite detected fires in the Brazilian Amazon has a strong season-
ality that is correlated with the amount of antecedent precipitation, with most fires occurring about
three months after the end of the wet season (Kauffman and Uhl 1990; Aragão et al. 2008; Morton

Figure 3. Illustrative 2003 PRODES 90 m derived land cover map. Deforestation detected between year 2003 and 2011 is shown in
red. Deforested areas prior to year 2003 are shown in pink. The non-forest class (yellow) includes savannas, agricultural land, urban
areas rocky regions, and flood plains. Clouds and missing data are shown as white.
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et al. 2008; Chen et al. 2011; Vasconcelos et al. 2013). Precipitation mediates the fuel flammability
and the completeness of combustion (Rothermel and Station 1986; Carvalho et al. 2001). In addition,
precipitation may influence people’s decision to set fires, with opportunistic fires lit in drought
periods to clear land (Cochrane et al. 1999; Nepstad et al. 1999; Cochrane 2003). The degree of bio-
mass accumulation available for fire (i.e. the fuel load) in the Brazilian Amazon may be related to the
antecedent precipitation, although the role of the seasonality of sunlight and rainfall in biomass

Table 1. Fire type classification predictor variables.

Predictor variable name Variable definition Units
Descriptive
group

Data with source(s)
shown in parentheses

SumPrecip1m
SumPrecip2m
SumPrecip3m
SumPrecip6m

Total precipitation in 1, 2, 3, and
6 month(s) prior to the active
fire detection location
including the month of active
fire detection

[mm] Fuel flammability TRMM 3b43 V7
defined monthly for
a 0.25° × 0.25° grid
(TRMM 2014)

SumPrecip12m
SumPrecip24m

Total precipitation in the 12 and
24 months prior to the active
fire detection location
including the month of active
fire detection

[mm] Fuel load TRMM 3b43 V7
defined monthly for
a 0.25° × 0.25° grid
(TRMM 2014)

MaxFRP365d
SumFRP365d

MaxFRP and SumFRP are the
maximum observed FRP and
the sum total FRP,
respectively, of all the
detections within a 1 km
circular buffer around and
within the previous 365 days
of each detection location

[MW km−2] Fire behavior MOD/MYD 14 Level 2
collection 5
(LAADS 2014)

DayMaxFRP365d
DayMedianFires365d

DayMaxFRP is the day when
maximum FRP was observed
and DayMedian is the median
day (DOY) of fire occurrences
among the detections within a
1 km circular buffer around
and within the previous 365
days of each detection
location

[unitless,
Day
number]

Fire seasonality MOD/MYD 14 Level 2
collection 5
(LAADS 2014)

#FireDays365d The number of unique days that
fire was detected among the
detections within a 1 km
circular buffer around and
within the previous 365 days
of each detection location

[unitless,
count]

Annual fire
frequency

MOD/MYD 14 Level 2
collection 5
(LAADS 2014)

DistRivers
DistRoads

Closest Euclidean distance of
active fire pixel center to
navigable rivers (DistRiver)
and to roads (DistRoads)

[km] Proximity to
surface
transportation

Vector data for roads
and navigable river
networks (Veríssimo
et al. 1998; IBAMA
2013)

LocalBrighnessTemp11 µm
MedianLocalBrighnessTemp11μm
LocalBrighnessTemp4µm
MedianLocalBrighnessTemp4µm

Local brightness temperature is
the mean brightness
temperature in the window
around each active fire
detection of MODIS bands 21
(4 µm) and 31(11 µm). Median
local brightness temperature
is the median of the local
brightness temperatures of all
detections occurring within a
1 km circular buffer around
and within the previous 365
days of each detection
location

[K] Local
temperature

MOD/MYD 14 Level 2
collection 5
(LAADS 2014)
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production is subject to ongoing debate (Saleska et al. 2003; Myneni et al. 2007; Morton et al. 2014).
It is unknown, however, if these precipitation factors influence the occurrence of different fire types,
although as discussed earlier, different fire types are expected to have different fuel loads and may be
ignited at different times of the year. To capture these different potential influences, the total precipi-
tation during the month of active fire detection (termed for convenience one month), and for 2, 3, 6,
12, and 24 months prior to the detection were considered (SumPrecip#m, Table 1).

The Tropical Rainfall Measuring Mission (TRMM) monthly 0.25° × 0.25° best precipitation rate
estimate product (3B43, V7) (Huffman et al. 1995, 2007) for 2000–2010 (132 months) was used
(TRMM 2014). Huffman et al. (1995) reported relative errors in this product of less than 20% across
Amazonia. The monthly average precipitation rate [mm hr−1] was converted into total monthly pre-
cipitation [mm] taking into account the different number of days in each calendar month.

3.3.2. Fire radiative power

The FRP is directly proportional to the rate of biomass combustion (Kaufman et al. 1998; Wooster
et al. 2005) and so the MODIS FRP is expected to be different among the different fire types. For
example, the MODIS FRP of fires occurring in a high fuel load region within the arc of deforestation
in northern Mato Grosso and in a low fuel load woodland savanna in the Northern Territory of Aus-
tralia were observed to have markedly different FRP distributions, with many more high FRP fires in
Brazil than Australia (Kumar et al. 2011). Similarly, MODIS FRP boreal forest fire differences were
observed between low fuel load surface fires in Russian and high fuel load crown fires in Alaska and
Canada (Wooster and Zhang 2004). The MODIS FRP is typically under-sampled because there are
only four MODIS Terra and Aqua overpasses per day at the Equator, and so fires may not be burning
at the time of satellite overpass, and also because of cloud and smoke obscuration, and because the
fire behavior can fluctuate rapidly in space and time (Schroeder, Csiszar, and Morisette 2008;
Boschetti and Roy 2009; Kumar et al. 2011). The maximum FRP value within a 1 km buffer around
the center of the active fire detection location over the previous 365 days was derived (MaxFRP365d,
Table 1). The maximum FRP is of interest also as the maximum fire intensity affects vegetation pro-
cesses like grass and tree response to fires (Archibald et al. 2010; Heward et al. 2013).

The total biomass consumed by fire is linearly related to the temporal integration of FRP over the
fire duration and has been estimated from satellite by summing, or averaging, FRP over large (0.5–1°)
geographic grids (Roberts et al. 2005; Roberts and Wooster 2008; Ellicott et al. 2009; Kaiser et al.
2012) or over satellite mapped burned areas (Boschetti and Roy 2009). As the different fire types
are expected to consume different amounts of biomass, particularly the deforestation and mainten-
ance fire types, the summed FRP for 365 days prior to the active fire detection was derived within a
1 km buffer around the center of the active fire pixel location (SumFRP365d, Table 1).

The seasonality of the FRP may be different among the fire types as the fire type may have differ-
ent fuel loads and be ignited at different times. In an attempt to capture these influences, the day over
the 365 days prior to each active fire detection when the maximum FRP occurred was derived within
a 1 km buffer (DayMaxFRP365d, Table 1).

3.3.3. Annual fire frequency and seasonality

Deforestation fires may burn over several days, while maintenance typically last for a few hours
within a day, and forest fires burn primarily during the day but can smolder for up to several
weeks and develop active flaming fronts when conditions become favorable (Cochrane and Laurance
2002; Schroeder, Csiszar, and Morisette 2008). Morton et al. (2008) suggested that fires occurring in
the same location over two or more days are likely to be deforestation fires. To capture these potential
fire type persistence differences, the number of unique calendar days with at least one active fire
detection, within a 1 km circular buffer, within the previous 365 days of each detection center
was derived (#FireDays365d, Table 1). As noted previously, the three fire types may occur at predo-
minantly different times of the fire season. In an attempt to capture this, the day of the year when
50% of the total Terra and Aqua active fire detections were detected within the 1 km circular buffer

INTERNATIONAL JOURNAL OF DIGITAL EARTH 61



within the previous 365 days was also derived (DayMedian365d, Table 1). In cases where there were
an even number of active fire detections, the median was randomly picked from the two middle
values.

3.3.4. Distance to roads and navigable rivers

The majority of fires in the Brazilian Amazon have been observed to occur close to surface transpor-
tation networks. Adeney, Christensen, and Pimm (2009) observed that 90% of satellite active fire
detections derived from a variety of polar orbiting satellites occurred within 10 km of official
roads in the Brazilian Amazon. Similarly, 50% and 95% of MODIS active fire detections were
found to occur within 1 and 10 km, respectively, of official and unofficial roads and navigable rivers
in the BTMFB (Kumar et al. 2014). The distance to roads and navigable rivers may be different
among the fire types. For example, Adeney, Christensen, and Pimm (2009) observed differences
in fire to road relationships derived inside and outside of protected areas, and Kumar et al. (2014)
observed regional variations in fire to road/river relationships among states that had different defor-
estation rates. To capture this difference, the distance of each MODIS active fire pixel center to the
nearest official and unofficial road (DistRoads, Table 1), and to the nearest navigable river bank (Dis-
tRivers, Table 1) was derived following the method reported in Kumar et al. (2014). Figure 4 illus-
trates the official, unofficial, and navigable river data used in this study.

The red dots in Figure 4 show the 2005 MODIS active fire detections; the year that had the highest
number of detections (Figure 2). It is evident that the majority of the detected fires occur close to the
roads and navigable rivers (Kumar et al. 2014). The official road data were obtained from the Insti-
tuto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA 2013) and define the
road center lines (one dimensional line/arc segments) for federal, state, and certain private roads
digitized from maps created using government sources and last updated 6 February 2007. The

Figure 4. All MODIS Aqua and Terra day and night active fire detections for 2005 (the year of maximum active fire detections;
Figure 2) with official and unofficial roads (gray) and navigable river banks (blue).
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unofficial road data were derived by expert visual interpretation and digitization of wall-to-wall
Amazonian Landsat imagery acquired from the Instituto Nacional de Pesquisas Espaciais for 1982
through 6 February 2008 obtained from the Instituto do Homem e Meio Ambiente da Amazônia
(Imazon) (http://www.imazon.org.br). The navigable river data were also obtained from Imazon
and define the polygons of river banks for navigable rivers wider than approximately 1000 m and
river center line vectors for narrower navigable rivers. The river data were manually digitized and
their navigability status established from interviews held with community leaders and river traders
and by inspection of government reports and river surveys (Barros and Uhl 1995; Veríssimo et al.
1998).

3.3.5. Local brightness temperature

The local temperature of the three fire types may be different because of differences in the local sur-
face cover (e.g. vegetation and soil cover) and condition, and the degree of char and mineral ash
deposition. Forest and deforestation fire types occur in forests which, due to their vegetation
cover and drainage, are likely to have different fluxes of latent and sensible heat compared to main-
tenance fires that occur on pasture and crop lands (Carlson, Gillies, and Perry 1994; Weng, Lu, and
Schubring 2004; Bagley et al. 2013; Brando et al. 2014). The local surface temperature may be modi-
fied by any change in albedo caused by deposition of char and mineral ash (Jin and Roy 2005; Roy
et al. 2010). In addition, there may be differences in the proportion of satellite observed ground and
so temperature. For example, forest fires are expected to occur where there is less satellite observable
bare ground due to forest canopy obscuration (Asner and Warner 2003).

Accurate spatially and temporally explicit land surface temperature estimates are difficult to
derive at regional scale (Wan 2014; Jiménez-Muñoz et al. 2016) and are not always available for
each MODIS active fire detection. In this study, the 4 and 11 μm brightness temperatures reported
in the MODIS active fire product were used. The MODIS active fire detection algorithm is a contex-
tual algorithm that defines candidate active fires as those with elevated 4 and 11 μm brightness temp-
eratures, and then applies a contextual approach to reject false detections by examining the relative
brightness temperatures of neighboring non-candidate non-cloudy pixels (Giglio et al. 2003). Neigh-
boring pixels in a 3 × 3 km pixel window centered on the candidate pixel are considered in this pro-
cess and the window dimensions are increased progressively, up to a maximum of 21 × 21 pixels,
until there are sufficient neighboring pixels to enable a reliable brightness temperature comparison.
The mean 4 and 11 μm brightness temperatures in the window around each active fire detection are
reported in the MODIS Level 2 active fire product and were used in this study for each active fire
detection (LocalBrightnessTemp4µm and LocalBrightnessTemp11µm, Table 1). In addition, the
median 4 μm and the median 11 μm brightness temperatures were derived from all the active fire
detections within a 1 km circular buffer sensed in the 365 days prior to each detection location to
capture the temperatures under average burning conditions (MedianLocalBrightnessTemp4µm and
MedianLocalBrightness11µm, Table 1). The median rather than the mean was used because it is
robust to outliers. In cases where there were an even number of active fire detections, the median
was randomly picked from the two middle values.

4. Methods

4.1. Training data definition

Supervised classification methods develop statistical classification rules using training data that con-
sist of representative predictor variable samples and corresponding class values (Foody and Mathur
2004). For example, coarse spatial resolution land cover products, such as the global MODIS land
cover product, have been derived using training data defined by visual interpretation of Landsat
or higher spatial resolution imagery selected where the land cover is uniform and representative
of a single class (i.e. ‘pure’ pixel) at both spatial scales (Friedl et al. 2010; García-Mora, Mas, and
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Hinkley 2012). Definition of the optimal training data used with non-parametric supervised classi-
fiers is complex but given sufficient samples the use of pure training data does not provide significant
classification accuracy differences compared to using mixed (more than one class per pixel) training
data (Foody and Mathur 2006; Egorov et al. 2015).

The scale mismatch between MODIS active fire detections and Landsat data is well known (Mori-
sette et al. 2005; Roy et al. 2008; Hyer and Reid 2009; Boschetti et al. 2015) and is complex for
MODIS because at higher scan angles a single pixel footprint covers a larger area than at nadir. Con-
sequently, in this study, we explicitly consider the size of the MODIS active fire footprint and only
derive training data for pure pixels sensed near-nadir. Only active fire detections sensed with scan
angles ≤24° are used as the pixel footprint is near circular with a maximum radius of about
0.5 km (no greater than 1.10 and 1.24 km diameter in the track and scan dimensions, respectively)
(Wolfe et al. 2002; Giglio 2010).

A conservative training data generation method was implemented to derive a set of unambiguous
pure fire type class (forest, deforestation, maintenance) examples and their corresponding predictor
variable values (Table 1). The fire type class label was defined by considering the 90 m pixel PRODES
land cover classes for the year before and the year of each MODIS active fire detection within a
0.5 km buffer around the active fire pixel center as:

Forest fire type – if all 90 m pixels in the 0.5 km buffer were forest classes in both years.
Deforestation fire type – if the spatial union for both years of the 90 m pixels classified as defor-

estation covered the entire 0.5 km buffer, and all of the 90 m pixels had PRODES deforestation dates
that occurred before the MODIS active fire detection date.

Maintenance fire type – if all 90 m pixels in the 0.5 km buffer were non-forest classes (savanna,
agriculture, urban, rock, flood plain) in both years.

If the above conditions were not met, or if there were any PRODES classified cloudy or missing
90 m pixels within the 0.5 km buffer in either year, then the MODIS active fire detection was not
used for training. This meant that persistently cloudy regions at the time of Landsat overpass, for
example, due to stationary weather systems, were not used for training data. In addition, any
MODIS active fire detections over old deforested regions (i.e. deforested prior to 2003, pink tones
in Figure 3) could not be used as training data. The geolocation error between the PRODES and
MODIS datasets can be considered negligible compared to the uncertainty in the position of the
active fires within a MODIS pixel – the MODIS accuracy is within 50 m at nadir (Wolfe et al.
2002), and although the PRODES accuracy is unknown, it is likely to be comparable to the 30 m
pixel level Landsat accuracy (Lee et al. 2004). This training data selection approach provides pure
fire type training data that is internally consistent with respect to the PRODES classification scheme
used by the Brazilian government for monitoring deforestation in the legal amazon.

4.2. Classification

The random forest classifier was used as it is an established supervised classifier that can accommo-
date non-monotonic and nonlinear relationships between predictor variables, makes no assumptions
concerning the statistical distributions of the variables, and can handle correlated variables (Breiman
2001; Strobl et al. 2008). This is particularly important given the different kinds of predictor variable
used (Table 1). Random forests are an ensemble form of decision tree classification where many trees
are grown by recursively partitioning a random subset of the training data into more homogeneous
subsets referred to as nodes. The random forest classifier provides reduced likelihood of overfitting
predictor variables to the training data by independently fitting a large number of decision trees, with
each tree grown using a random subset of the training data and a limited number of randomly
selected predictor variables (Breiman 2001).

The R software RANDOMFOREST package (http://www.r-project.org/) was implemented on a
64-bit Linux computer with 128 GB of memory in order to accommodate the large amount of
required data processing. The default random forest parameter settings were used – a total of 500
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trees were grown with each tree considering 63.2% of all the training data selected at random with
replacement and considering four randomly selected predictor variables per tree. All of the MODIS
active fires detections sensed over the BTMFB from 2003 to 2010 were classified independently 500
times using each tree. The final classification result was assigned in the conventional way by the
majority fire type cover the 500 classifications.

4.3. Classification accuracy assessment

It is well established that satellite active fire detection accuracy assessment is challenging due to the
ephemeral nature of fire and difficulties in making ground-based active fire measurements at the
time of satellite overpass (Cardoso et al. 2005; Morisette et al. 2005; Schroeder, Csiszar, andMorisette
2008; Roy and Boschetti 2009). The fire type classification accuracy assessment has these issues, and
there are no reliable independent fire type data for the eight years over the BTMFB. Therefore, an
internal unbiased error estimate of the classification accuracy was derived by bootstrapping (Brei-
man 1996, 2001). Specifically, after each tree was generated using 63.2% of the training data, the
remaining ‘out-of-bag’ 32.8% was classified with the tree and the classified ‘out-of-bag’ results stored
as a vector of class labels. The majority class label over the 500 vectors was then assigned as the fire
type classification for each unique ‘out-of-bag’ sample. These data were used to generate a two-way
confusion matrix. Conventional accuracy statistics (classification percent correct, kappa, user’s and
producer’s accuracy) were then derived from the confusion matrix (Foody 2002).

The optimal training size and distribution for supervised classification is usually unknown (Foody
and Mathur 2004, 2006). Therefore to ensure that the accuracy statistics results were not unduly
influenced by the amount and distribution of the training data, the classification and accuracy assess-
ment process was repeated four times using 25%, 33%, 50%, and 75% (selected at random without
replacement) of the training data.

The described approach classifies each MODIS active fire detection into a single fire type class.
The extent to which the three fire types are mixed within a MODIS active fire detection pixel is
unknown and cannot be classified by the present methodology. To examine this qualitatively, and
to provide confidence in the local accuracy of the classification, classified MODIS active fire detec-
tions were compared with higher spatial resolution 30 m Landsat images. Landsat 5 images were
used as they do not have the scan line corrector failure that reduced the amount of useable Landsat
7 image data acquired after May 2003 by 22% (Markham et al. 2004).

4.4. Analysis of predictor variable importance

The relative importance of the predictor variables in explaining the random forest fire type classifi-
cation was investigated. In this study, the Mean Decrease in Gini (MDG) was used as it provides a
robust variable importance measure for random forest classification analyses (Breiman 2001; Strobl
et al. 2008). The Gini is a measure of the homogeneity of subsets at each node; the MDG quantifies
the mean decrease in Gini over all trees and higher MDG values imply higher predictor variable
importance (Calle and Urrea 2011; Nicodemus 2011).

Several of the predictor variables were derived from the same data source (Table 1) and so are
expected to be correlated. Random forest classifiers are designed to handle correlated predictor vari-
ables (Breiman 2001), but random forest measures of predictor variable importance are biased
when the variables are correlated (Hothorn, Hornik, and Zeileis 2006; Strobl et al. 2008). Consequently,
in this study, a straightforward approach, similar to the procedure followed by Tulbure et al. (2012),
was implemented. Recall that the predictor variables are in seven groups (fuel flammability, fuel load,
fire behavior, fire seasonality, annual fire frequency, proximity to surface transportation, and local
temperature) (Table 1). All n possible combinations of seven predictor variables found by selecting
one predictor variable from each of the groups were considered. If the predictor variables within
any combination had an absolute Pearson’s correlation coefficient greater than a certain threshold,
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then the combination was not considered. In this way, a smaller number ofm combinations of uncor-
related predictor variables were considered. For each combination, the predictor variable MDG values
were ranked and the ranking was assigned to the group that the variable was selected from. The per-
centage of times that a group was ranked a specific rank over the m combinations was computed to
assess the importance of each predictor variable group on the fire type classification.

5. Results

5.1. Training data selection

Of the 1,604,950 MODIS active fire detections, 4.5% (72,685) were selected as training data and
assigned a fire type for training (Table 2). Thus, the majority (95.47%) of the MODIS active fire
detections were not used for training and therefore were subsequently classified using the random
forest classifier without reference to the PRODES land cover data.

Table 2 summarizes the training data. Over the eight years, the percentage of active fire detections
used for training varied from 3.05% to 7.43% of the total annual number of MODIS active fire detec-
tions. The maintenance fire type training data had the greatest proportion among the fire types for all
years, except 2010, and was typically >0.5. The forest fire type proportion varied from 0.2 in 2004 and
up to 0.56 in 2010. The deforestation fire type proportions declined monotonically from 0.16 (2003)
to 0.002 (2010). This significant decline in the deforestation fire type training data proportion is
expected and reflects the documented reductions in deforestation that are discussed at the end of
Section 3.1. The reported fire type training proportions are broadly similar to those reported over
different spatial and temporal spans by other researchers (Morton et al. 2008; Ten Hoeve et al.
2012) and indicate that the training data broadly reflect the underlying populations.

5.2. Classification accuracy assessment

5.2.1. Quantitative assessment

The fire type confusion matrix generated from the 500 sets of classified ‘out-of-bag’ training data
(Section 4.3) is shown in Table 3. The overall fire type classification accuracy was 90.9% with a

Table 2. BTMFB fire type training data summary – the number of selected MODIS active fire detections and the allocated fire type
proportions by year and the eight-year total.

Year

Annual number of
MODIS active fires
detections used for

training

Percentage of all
annual MODIS
active fire

detections (Figure 2)

Number of
maintenance fire types
(annual proportion in

parentheses)

Number of forest fire
types (annual
proportion in
parentheses)

Number of
deforestation fire types
(annual proportion in

parentheses)

2003 8340 4.14 5106
(0.61)

1873
(0.22)

1361
(0.16)

2004 12,010 4.54 7672
(0.64)

2408
(0.2)

1930
(0.16)

2005 8488 3.05 5212
(0.61)

2869
(0.34)

407
(0.05)

2006 7973 3.67 5595
(0.7)

2163
(0.27)

215
(0.03)

2007 11,268 4.70 5905
(0.52)

5056
(0.45)

307
(0.03)

2008 5378 4.50 3732
(0.69)

1542
(0.29)

104
(0.02)

2009 5083 5.45 3854
(0.76)

1216
(0.24)

13
(0.003)

2010 14,145 7.43 6197
(0.44)

7919
(0.56)

29
(0.002)

All 8
years

72,685 4.53 43,273
(0.6)

25,046
(0.34)

4,366
(0.06)
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kappa of 0.824 and the lowest producer’s and user’s fire type classification accuracies were 75%
(deforestation fires) and 88% (forest fires), respectively. These results indicate quite reasonable
fire type classification accuracies.

Among the three fire types, the maintenance fire type had the highest user’s and producer’s
accuracies of 92.4% and 94.4%, respectively. This is perhaps because maintenance fires occur
under quite different conditions compared to the other two fire types and are less likely to be
obscured by the overstory vegetation found in forested systems. Of the 43,273 maintenance fire
type training data, only 0.46% and 5.1% were misclassified as deforestation and forest fires,
respectively. The forest fire type had similar user’s and producer’s accuracies of 88.4% and
87.5%, respectively, with 11.6% and 0.87% of the forest fire training data misclassified as mainten-
ance and deforestation fire types, respectively. The greater relative confusion between the main-
tenance and forest fire types is somewhat expected as maintenance fires and forest fires may
burn similar low fuel loads and so may exhibit similar fire behavior (Cochrane et al. 1999; Alen-
car, Solórzano, and Nepstad 2004; Alencar, Nepstad, and Diaz 2006). The deforestation fire type
had the lowest producer’s and user’s accuracies of 75% and 88.7%, respectively. We had expected
deforestation fires to be classified with relatively higher accuracy compared to the other fire types
because deforestation fires are lit on large piles of dry fuel material that can burn energetically
over long durations that can be observed by multiple MODIS overpasses. A total of 9.8% and
15.2% of the deforestation fire training data were misclassified as maintenance and forest fire
types respectively. Greater classification confusion between the deforestation and forest fire
types is expected as they both occur in forested systems and, as discussed previously, forest
fires that burn more than once may consume significant amounts of biomass like deforestation
fires.

To ensure that the classification results summarized in Table 3 were not unduly influenced by the
amount and distribution of the training data, the classification and accuracy assessment process was
repeated four times using 25%, 33%, 50%, and 75% (selected at random without replacement) of the
72,685 training data. The resulting overall fire type classification accuracy and kappa values were
lower than found using 100% of the training data but were still quite high at 86.2% and 0.732
(25% sample), 87.3% and 0.754 (33% sample), 88.7% and 0.782 (50% sample), and 89.9% and
0.805 (75% sample), respectively. This indicates sufficient sample size for our training and also
that the predictor variables captured the underlying variability among the fire types even under
low sampling conditions.

5.2.2. Qualitative assessment by comparison with Landsat images

Figures 5 and 6 show detailed MODIS active fire detection fire type classification results for a single
year (colored 500 m radius circles) superimposed over 30 m Landsat 5 Thematic Mapper images
sensed in the previous year over regions in Acre and Mato Grosso, respectively. These 81 × 63 km
regions were selected because they encompass fragmented landscapes and include intact forest
and cleared land, and because cloud and smoke free Landsat 5 images were available. In addition,
they include a smaller than usual proportion of MODIS active fire detections used as training

Table 3. BTMFB fire type confusion matrix results generated by consideration of the 72,685 training data (Table 2) and the
corresponding random forest classified fire types.

Training fire type

Classified fire type

Row total Producer’s accuracy (%)Maintenance Forest Deforestation

Maintenance 40,861 2211 201 43,273 94.43
Forest 2912 21,917 217 25,046 87.51
Deforestation 428 665 3273 4366 74.97
Column total 44,201 24,793 3691 n = 72,685
User’s accuracy (%) 92.44 88.4 88.68

Note: Overall percent correct is 90.87%, kappa = 0.824 with kappa standard error of 0.002.
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data because the Landsat images encompass land that PRODES classified as deforested before 2003
(pink in Figure 3). Consequently, the illustrated classification results are not overly influenced by
having a larger than normal proportion of detections that were used to define training data that
are expected to be more accurately classified.

The MODIS active fire type classification results are assumed to be associated with the land use
evident in the illustrated previous years Landsat imagery. The results indicate that the MODIS fire
type classification results are geographically plausible. In both figures, the classified forest (green)
and deforestation (red) fire types occur predominantly over forest and close to forest boundaries
while the classified maintenance fire types (blue) occur primarily over non-forest lands. This
expected classification spatial correspondence is particularly apparent in Figure 5. However, the
specific locations of fires within MODIS active fire detection pixels is unknown – fires could have
occurred at the edge, or even outside, the illustrated circles, because the detection foot print, as dis-
cussed in Section 3.1, can vary from about 1.0 by 1.0 km at nadir to 2.0 by 4.8 km at the scan edge,
and this has been observed by other researchers (Morisette et al. 2005). Thus, for example, in Figures
5 and 6 there are a minority of deforestation classified fire types (red) that appear to be incorrectly
within cleared land but on close inspection abut forested regions where the fire may have occurred.
There are a minority of obvious commission errors, for example, isolated classified maintenance fires
occurring in the interiors of intact forests that are not close to clearings. This is not unexpected, how-
ever, because, although the overall classification accuracy is high (90.9%), fire types are misclassified
as discussed above with, for example, 11.6% of the forest fire training data misclassified as mainten-
ance fires (Table 3).

Figure 5. One year of MODIS active fire type classification results (colored circles, radius 0.5 km) superimposed on a true color 30 m
Landsat image over a 81 × 63 km region in the Brazilian state of Acre (illustrated image center longitude 68.160°W, latitude 10.103°
S; town of Rio Branco evident on the eastern side). The Landsat 5 Thematic image was sensed on 7 June 2005. Classified MODIS
Terra and Aqua active fire detections for all of 2006 shown as green (forest fires), blue (maintenance fires), and red (deforestation
fires). Of the 1279 classified MODIS active fires shown, only 22 (1.7%) were included in the classification training data. The gridded
lines are spaced 25 km apart.
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To provide further confidence in the fire type classification results, Landsat images acquired in the
year after the MODIS active fire detections were also examined. Figure 7 shows the classified MODIS
active fire detections for the Mato Grosso example (Figure 6) and the normalized difference veg-
etation index (NDVI) two year difference between the Landsat 5 image sensed the year before
and sensed a year after the MODIS active fire detections (bottom). The NDVI differences were
derived using top of atmosphere Landsat red and near infrared reflectance. Reduced and increased
NDVI over the two years are shown in red and blue tones, respectively, and smaller differences are
shown in gray. The gray tones show ±0.15 differences which are comparable to Brazilian NDVI sea-
sonal variability (Morton et al. 2014; Müller et al. 2015) and to the impact of the atmosphere on
Landsat NDVI over vegetated surfaces (Roy et al. 2014). In general, as expected, the classified defor-
estation fire types occur where there was reduced NDVI. However, regions with reduced NDVI did
not always occur where there were MODIS active fire detections. This is likely because fires may not
have been detected by MODIS and NDVI reductions due to forest clearing without the use of fire
may have occurred. The forest fire types occurred often where there was small (±0.15) NDVI differ-
ences, which is expected because post-fire Landsat spectral signatures in Brazilian forests typically
return to intact forest signatures a year after fire occurrence (Souza, Roberts, and Cochrane 2005;
Alencar et al. 2011). There was no clear relationship between the NDVI differences and the location
of maintenance fires which perhaps reflects the diversity of cleared land uses and vegetation con-
ditions. Similar results were observed for the Acre site but are not illustrated. The above observations
concerning Figure 7 cannot provide a definitive check because the post-fire land use trajectory may
be different to the pre-fire trajectory. However, they do, with the observations concerning Figures 5
and 6, provide confidence in the local accuracy of the classification approach.

Figure 6. One year of MODIS active fire type classification results (colored circles, radius 0.5 km) superimposed on a true color 30 m
Landsat image for a 81 × 63 km region in the north east of Mato Grosso (illustrated image center longitude 51.592°W, latitude
10.282°S). The Landsat 5 Thematic Mapper image background was sensed on 29 June 2006. The classified MODIS Terra and
Aqua active fire detections for all of 2007 are shown as green (forest fires), blue (maintenance fires), and red (deforestation
fires). Of the 3264 MODIS active fires shown, only 143 (4.4%) were included in the classification training data. The black vector
shows the Eastern edge of the BTMFB study area. The gridded lines are spaced 25 km apart.
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5.3. BTMFB classified fire types

5.3.1. Geographic fire type distributions for years 2003 and 2010

Figures 8 and 9 show the fire type classifications results for 2003 and 2010, respectively, i.e., the
beginning and end years of the study period. The individual fire type proportions (shades of gray)
and the majority fire type (colors) in 7 km × 7 km grid cells are illustrated. At this synoptic scale,
the overall fire type classification results appear geographically plausible. The names and locations
of Brazilian states are shown in Figure 1. Maintenance classified fires occurred over non-forest
and old (prior to 2003) deforested regions, noticeably over the states of Roraima, Amapá and also
over certain old deforestation regions in the states of Rondônia, Pará, and portions of Mato Grosso
(Figure 3). This is despite the fact that the MODIS active fires detected over old deforested regions
could not be used as training data for any fire type (Section 4.1). Forest fires occurred more in the
interior forested regions along navigable river and road networks, in regions of open and transitional
forests (Alencar, Nepstad, and Diaz 2006), and also over old deforestation regions throughout the
study area (Figure 3). Deforestation classified fires occurred primarily in the ‘arc of deforestation’
spanning the states of Acre, Rondônia, Pará, and Mato Grosso that are known to be the sates
with the highest deforestation rates (PRODES 2013).

Figure 7. Top: Mato Grosso year 2007 classified MODIS active fire types (as Figure 6). Bottom: Landsat 30 m NDVI difference derived
from images sensed the year before and after the MODIS active fire detections, specifically (29 June 2006 NDVI–4 July 2008 NDVI)
shown colored as (−2.0≥ red <−0.3), (−0.3≥ orange <−0.15), (−0.15≥ gray≤ 0.15), (0.15 < light blue≤ 0.3), (0.3 < blue≤ 2.0).
The gridded lines are spaced 25 km apart.
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In 2003 and 2010, there were similar annual proportions of the classified maintenance fire type,
0.41 and 0.37, respectively (Table 4) and their geographic distributions appear broadly similar
(Figures 8 and 9). For these two years, the annual proportions of the classified forest fire type
were less similar, 0.47 (2003) and 0.61 (2010) (Table 4), and their geographic distributions are differ-
ent in several regions. In 2003 and 2010, the annual proportions of the classified deforestation fire
type were 0.12 and 0.03, respectively (Table 4) and this difference is very evident geographically.
There were far greater incidences of classified deforestation fires over the ‘arc of deforestation’ in
2003 than in 2010, and this pattern has been corroborated in the literature (PRODES 2013; Souza
et al. 2013).

5.3.2. Annual and seasonal fire type distributions for all eight study years

Figure 10 shows graphically the annual number of classified fire types for each year (Table 4).
The likely causes of inter-annual variation in the total number of MODIS active fire detections
is described in Section 3.1. In every year, there were more classified forest fires than maintenance
fires, except for 2009 (the year with the fewest MODIS active fire detections) and in all years
there were fewer deforestation fires. The annual number of classified forest and maintenance
fires have similar temporal pattern, with a correlation of 0.85. The greatest numbers of classified
forest fires occurred in 2007 and 2010 and this was also noted by Morton et al. (2013) for
southern Amazonia and by Brando et al. (2014) for eastern Mato Grosso, and was suggested
as being related to the drier conditions in these years (Morton et al. 2013; Brando et al.
2014). The forest and deforestation fires have a less similar temporal pattern with a correlation
of 0.59. As the number of MODIS active fire detections varied among years, it is useful to con-
sider the annual proportions of the three classified fire types (tabulated in Table 4). Most notice-
ably the proportion of deforestation classified fires declined from around 0.12 in 2003 to 0.03 in

Figure 8. 2003 fire type classification results showing the majority classified fire type in 7 km × 7 km grid cells colored as main-
tenance fires (blue), forest fires (green), and deforestation fires (red). The grayscale images show the relative proportion of the
active fire detections classified into each fire type in each grid cell (white = 0; 0 > light gray≤⅓; ⅓ >medium gray≤⅔; ⅔ >
dark gray≤ 1). A total of 201,519 (Figure 2) classified MODIS active fire detections are shown.
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2010 (the geographic distributions are illustrated in Figures 8 and 9). This 75% decline matches
the documented 75% decrease in deforestation from 2003 to 2010 (Assunção, Gandour, and
Rocha 2013; PRODES 2013; Souza et al. 2013).

Figure 11 shows the mean monthly number of MODIS active fire detections (from 2003 to 2010)
that were classified into the three fire types. The majority of the fire detections occur during the
southern hemisphere dry season between June and December with most inter-annual variability
(vertical lines show ±0.5σ) in July, August, and September. As for the annual classification results
(Figure 10), there were generally more classified forest fires than maintenance than deforestation
fires. However, in the months January–April, the number of forest and deforestation fires are
quite similar and lower than the number of maintenance fires, likely because this period is the

Figure 9. 2010 fire type classification results showing the majority classified fire type in 7 km × 7 km grid cells colored as main-
tenance fires (blue), forest fires (green), and deforestation fires (red). The grayscale images show the relative proportion of the
active fire detections classified into each fire type in each grid cell (white = 0; 0 > light gray≤⅓; ⅓ >medium gray≤⅔; ⅔ >
dark gray≤ 1). A total of 190,283 (Figure 2) classified MODIS active fire detections.

Table 4. BTMFB fire type classification results summarizing the annual number of MODIS active fire detections and the number and
proportion classified into the three fire types by year and eight-year total.

Year

Annual number of
MODIS active fires
detections (see

Figure 2)

Number of classified
maintenance fire types
(annual proportion in

parentheses)

Number of classified forest
fire types (annual

proportion in parentheses)

Number of classified
deforestation fire types
(annual proportion in

parentheses)

2003 201,519 82,547 (0.41) 95,549 (0.47) 23,423 (0.12)
2004 264,356 104,908 (0.4) 122,468 (0.46) 36,980 (0.14)
2005 278,747 118,386 (0.42) 131,700 (0.47) 28,661 (0.1)
2006 217,343 99,211 (0.46) 103,396 (0.48) 14,736 (0.07)
2007 239,976 90,452 (0.38) 132,891 (0.55) 16,633 (0.07)
2008 119,518 52,519 (0.44) 57,602 (0.48) 9397 (0.08)
2009 93,208 46,218 (0.5) 42,735 (0.46) 4255 (0.05)
2010 190,283 70,039 (0.37) 115,462 (0.61) 4782 (0.03)
All 8 years 1,604,950 664,280 (0.41) 801,803 (0.50) 138,867 (0.09)
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southern hemisphere wet season when forest and deforestation fires are less likely to spread and burn
for long periods (Morton et al. 2008; Chen, Velicogna et al. 2013; Vasconcelos et al. 2013).

5.3.3. Geographic fire type distributions for all eight study years

Figure 12 shows the majority classified fire type in 7 km × 7 km grid cells for each of the eight years
classified. The same general distribution of classified fire types described earlier for the 2003 and
2010 results (Section 5.3.1) is apparent for the intervening study years. At this synoptic scale, the
deforestation fires are less apparent because although deforestation classified fires can be locally clus-
tered (Figures 5 and 6), they are often spatially interspersed with other classified fire types (Figures 8
and 9).

The deforestation fires occurred primarily in the ‘arc of deforestation’ and become less appar-
ent later in the study period as their relative numbers decrease (Figure 10). As discussed earlier,
the maintenance classified fires occurred over non-forest regions, noticeably over the states of
Roraima, Amapá, and also over certain old deforestation regions in the states of Rondônia,
Pará, and portions of Mato Grosso (Figure 3). The forest fires occurred more in the interior
forested regions along navigable river and road networks, in regions of open and transitional for-
ests (Alencar, Nepstad, and Diaz 2006), and over old deforestation regions throughout the study
area (Figure 3). At this scale, it is difficult to describe inter-annual differences. However, notably,
in north central Roraima, a distinct belt of classified forest fires along the west of the main classi-
fied maintenance fire region is apparent in 2003 and 2007 but not in the other years. This has
been documented by Xaud, Martins, and Santos (2013) who noted an increased number of forest
fires in this region caused by escaped agricultural maintenance fires burning the forest in 2003
and 2007 under abnormally dry conditions. Relatively, higher classified forest fire activity is

Figure 10. Annual number of MODIS active fire detections classified as forest fires (green), maintenance fires (blue), or deforesta-
tion fires (red). The total annual number of MODIS active fire detections (black) are also shown. See Table 4 for numerical values and
the proportions classified into the three fire types by year and eight-year total.
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observed in 2010 over regions in eastern Mato Grosso, south east, and central Pará, and this has
been documented by Brando et al. (2014).

5.3.4. Investigation of the higher incidence of forest classified fires and fire type scan angle

dependency

The BTMFB results (Table 4, Figures 10–12) indicate a higher proportion of classified forest fires
than the other two classified fire types. This does not necessarily mean that the BTMFB has more
aerially extensive forest fires than maintenance or deforestation fires because cumulative MODIS
active fire detections do not provide reliable area burned (Roy et al. 2008; Mouillot et al. 2014;
Boschetti et al. 2015). Rather, the greater number of classified forest fires may be simply because
the greater majority of the BTMFB study area is forested (Figure 3). Indeed, 50.4% of the MODIS
active fire detections occurred where the footprint had one tenth or more forest cover. In addition,
differences among the characteristic size and temperature of the three fire types may systematically
affect their detection probability at different MODIS scan angles. For example, forest fires and also
maintenance fires may not burn at nighttime and their sizes may be smaller than 100 m2 so that they
are less likely to be detected by MODIS. This is particularly likely at increasingly higher MODIS scan
angles where only larger and/or hotter fires tend to be detected (Giglio, Kendall, and Justice 1999;
Mottram et al. 2005; Kumar et al. 2011). Also, for example, the bow-tie effect may result in an
over-reporting of large forest fires at high scan angles (Freeborn et al. 2014). To examine these issues,
Figure 13 shows a frequency distribution of the classified MODIS active fire detections for the three
fire types as a function of the MODIS scan angle. There is no systematic difference among the classi-
fied fire types as a function of scan angle suggesting no significant, or a similar MODIS active fire

Figure 11. Mean monthly number of MODIS active fire detections (black) for 2003–2010 and the mean monthly number of detec-
tions classified as forest fires (green), maintenance fires (blue), or deforestation fires (red). The vertical lines show the monthly mean
values ±0.5σ and are shown offset in the x-axis for visual clarity.
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detection bias, amongst the classified fire types. These results indicate that the higher incidence of
BTFBM MODIS active fire detections classified as forest fires is correct.

5.4. Analysis of predictor variable importance for fire type classification

The correlation between each of the predictor variables defined for all the MODIS active fire detec-
tions for 2003–2010 was computed. Several of the predictor variables were derived from the same
data source and were quite correlated. For example, the greatest Pearson’s correlation value (0.89)
was between SumPrecip2m and SumPrecip3m. Considering the variables within each group (Table
1), the smallest absolute correlation values were in the fuel flammability group (0.19 correlation
between SumPrecip1m and SumPrecip3m; −0.30 correlation between SumPrecip1m and SumPre-
cip6m) and in the proximity to surface transportation group (−0.14 correlation between DistRivers
and DistRoads). The variables within the other groups had absolute correlation values >0.32. Con-
sequently, an absolute correlation threshold of 0.3 was selected.

Figure 12. Annual classification results showing the majority classified fire type in 7 km × 7 km grid cells: forest fires (green), main-
tenance fires (blue), deforestation fires (red).
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Recall (Section 4.4) that all the possible combinations of seven predictor variables found by select-
ing one predictor variable from each of the groups (Table 1) were considered. If the predictor variables
within any combination had an absolute Pearson’s correlation coefficient >0.3, then the combination
was not considered. This meant that the predictor variables DistRivers, SumPrecip6m, and
SumFrp365d were not considered because one or more of them always had an absolute correlation
value >0.3 with a variable from another group. There were a total of 48 combinations considered.

Table 5 summarizes the percentage of times that a group was ranked a specific rank over the 48
combinations. The predictor variable group describing the fire seasonality variables was most fre-
quently the most important variable group followed by the local temperature and then the fuel
flammability groups. The proximity to surface transportation group was usually the fourth most
important in explaining the random forest fire type classification. The fuel load and the fire behavior
groups had similar and intermediate importance. The annual fire frequency group had unambigu-
ously the least importance. The reasons for the ordering of the importance of the predictor variables
in explaining the random forest fire type classification are complex as the relative variable impor-
tance may change under different conditions. We hypothesize that the fire seasonality variable
group captured differences in the timing and the maximum rate of burn among the fire types and
that the local temperature group was also important as it captured differences in the vegetation
and soil cover and condition among the fire types.

Considering the incremental contribution of each ranked variable group to the overall fire type
classification accuracy generated using all the training data indicated 2.96%, 10.83%, 2.58%,
0.06%, 0.75%, and 0.03% increases in accuracy as each ranked variable group was added. Using

Figure 13. Frequency distribution of eight years of classified MODIS active fire detections shown with respect to MODIS 1 km2 pixel
observation area bins (from 1 to 2 km2, 2 to 3 km2, … , 9 to 10 km2) and the corresponding MODIS scan angle. Only the 1,526,736
classified MODIS active detections not used for training are shown.
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just the highest ranked fire seasonality variables provided a 73.7% (kappa 0.484) overall fire type
classification, and using all the variables from the seven ranked groups provided 90.9% (0.823
kappa) overall fire type classification accuracy. Clearly, all the variable groups have some explanatory
power but all the variables in concert are needed to maximize the fire classification accuracy to the
accuracy level reported in Section 5.2.

6. Conclusions

This study has demonstrated a methodology to classify MODIS active fire detections over the
BTMFB into forest, deforestation, and maintenance fire types. Eight years of active fire detections
(2003–2010) were classified with an overall fire type classification accuracy of 90.9% and a kappa
of 0.824. The reported spatio-temporal distribution of the classified fire types was geographically
plausible and in agreement over regions and periods observed and documented by previous
researchers.

The fire type classification accuracy is dependent on the quality and appropriateness of the super-
vised classification algorithm, the predictor variables, and the training data. A random forest classi-
fier algorithm was used to reduce overfitting of the training data and because it makes no
assumptions concerning the statistical distributions of the predictor variables and can accommodate
non-monotonic and nonlinear relationships among variables (Breiman 2001). The predictor vari-
ables were not selected arbitrarily but rather based on published research on the factors that drive
and mediate fire in the Brazilian Amazon, concerned primarily with fuel flammability, fuel load,
fire behavior, fire seasonality, annual fire frequency, proximity to surface transportation, and the
local temperature. The fire type classification training data were strictly defined and internally con-
sistent with respect to the Brazilian government forest monitoring program (PRODES) classification
scheme (PRODES 2013). Of the approximately 1.6 million MODIS active fire detections that were
classified, only 4.53% were used to derive training data, providing confidence that the high reported
classification accuracy was not driven by the use of an excessive amount of training data.

The reported analysis of the importance of the predictor variables in classifying BTMFB fire type
indicates that the variables describing the fire seasonality, local temperature, and fuel flammability
are the most important. Predictor variables related to the proximity to surface transportation, fuel
load, fire behavior, and annual fire frequency were less important. However, all the variables con-
sidered had some explanatory power, and using them together maximized the fire type classification
accuracy.

This study described the first supervised classification of MODIS satellite fire types over the
BTMFB. Other approaches have inferred fire type, for example, using geographic context and proxi-
mity to thematic land cover classes, roads, and forest edges (Nepstad et al. 2001; Schroeder et al.
2005; Alencar, Nepstad, and Diaz 2006; Giglio 2007; Ten Hoeve et al. 2012; Chen, Morton et al.
2013). Unlike other approaches, the described approach uses predictor variable information derived
directly from MODIS active fire detections – the top two most important predictor variables were

Table 5. Predictor variable importance summary showing the percentage (out of 48) of uncorrelated variable combinations that a
variable from a group (Table 1) had a particular MDG ranking (where rank one is the most important).

Predictor variable group

Rank

1 2 3 4 5 6 7

Fire seasonality 50 46 4 0 0 0 0
Local temperature 50 0 25 21 4 0 0
Fuel flammability 0 54 44 2 0 0 0
Proximity to surface transportation 0 0 23 75 2 0 0
Fuel load 0 0 4 2 94 0 0
Fire behavior 0 0 0 0 0 100 0
Annual fire frequency 0 0 0 0 0 0 100
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derived from the MODIS FRP (fire seasonality variables) and the MODIS 4 and 11 µm brightness
temperatures (local temperature variables). The third most important predictor variables (fuel
flammability variables) were derived from the TRMM precipitation product that is systematically
generated and available for all of the tropics. We note that the random forest training is critical
and dependent on the availability of the PRODES data. However, the majority (95.47%) of the
MODIS active fire detections were classified without reference to PRODES, and once the random
forest training has been developed, the classifier is generally applicable.

In the remote sensing, random forest classification literature spatial autocorrelation in the
response and predictor variables is typically ignored. However, spatial autocorrelation violates the
assumption of independence of many statistical modeling procedures and typically result in inflated
accuracy estimates (Cliff and Ord 1981; Lennon 2000). Approaches to resolve this issue have been to
manipulate the sampling scheme to avoid spatially autocorrelated observations or to explicitly incor-
porate spatial dependence into the model. For example, one approach used with random forest and
decision trees is to include geographic position as a predictor variable (Mascaro et al. 2014). How-
ever, the training data should be distributed evenly in geographic space to avoid generating spurious
classification accuracies (Friedl, Brodley, and Strahler 1999), which is not possible in this study as the
MODIS active fire detections are sparsely distributed. In addition, unlike supervised land cover
classification approaches, where training sample points inherently have high spatial autocorrelation
due to the way they are collected (Egorov et al. 2015; Millard and Richardson 2015), the training data
in this study were derived from a random subset of the MODIS active fire detections and therefore
are less likely to be spatially autocorrelated. As observed in similar regional fire-related random forest
studies (Archibald et al. 2009; Oliveira et al. 2012), spatial autocorrelation of predictor variables may
occur due to various physical and biological processes but no technique to incorporate spatial depen-
dence has been reliably demonstrated and this remains an area of active research. Certainly, the pre-
cipitation and proximity to roads and rivers predictor variables are likely to have spatial
autocorrelation, but due to the sparse nature of the MODIS active fire detections, this is difficult
to investigate unambiguously. The relatively low omission and commission errors reported in this
study may therefore have been influenced by spatial autocorrelation effects.

Research to validate the fire type classification results is recommended. Large area fire product
validation is complicated by the ephemeral nature of fire and difficulties in obtaining timely indepen-
dent reference data (Cardoso et al. 2005; Morisette et al. 2005; Schroeder, Csiszar, and Morisette
2008; Schroeder et al. 2015; Roy and Boschetti 2009). In this study, qualitative assessment of
some of the classified MODIS active fire types were made by visual comparison with higher resol-
ution Landsat 5 scenes. However, more systematic comparison of the fire type classification results
with ground-based observations or higher spatial resolution interpreted satellite data is rec-
ommended. In particular, the extent to which the three fire types are mixed within MODIS 1 km
active fire detection pixels is unknown and cannot be classified by the present methodology. Over
regions with mixed land cover classes different fire types may occur in close proximity, for example,
maintenance and deforestation fires may escape into forest edges to cause forest fires (Cochrane and
Laurance 2002; Ten Hoeve et al. 2012). Similar fire type classification of moderate spatial resolution
satellite active fire detection data, for example, derived from ASTER or Landsat (Schroeder, Csiszar,
and Morisette 2008; Schroeder et al. forthcoming) may be helpful to examine this active fire detec-
tion scale issue, particularly as the different fire types may have flame fronts with areas smaller than
the approximately 100 m2 MODIS active fire detection threshold.

The fire type classification results presented in this study may improve the regional modeling of
greenhouse and trace gas emissions and their transport. Methodologies currently do not consider the
fire type explicitly and typically model emissions on the basis of the dominant land cover or veg-
etation type where active fires are detected (Freitas et al. 2005; van der Werf et al. 2008; Ichoku
and Ellison 2013; Castellanos, Boersma, and Van Der Werf 2014; Mitchard et al. 2014). The spatial
distribution of the classified fire types may help provide more reliable parameterization of the bio-
mass loading, combustion completeness, and emission factors that differ among the fire types. The
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temporal distribution of the classified fire types may also be useful to parameterize seasonal vari-
ations in combustion completeness and emission factors (Castellanos, Boersma, and Van Der
Werf 2014). The results of this work may help policy-makers and regulatory bodies to consider
the role of fire in the BTMFB. In particular, the spatial and temporal distribution of fire types
may help identify regions experiencing repeated forest fires needed to reduce the incidence of future
forest fires. Seasonal knowledge of the different fire type proportions may assist policy-makers more
effectively regulate and limit fire to specific periods to minimize the occurrence of forest fires due to
escaped maintenance and deforestation fires.

The fire type classification methodology may be applicable to other fire prone regions. However,
regional differences in the factors that that drive and mediate fire would need to be taken into
account, which is complex given the different interacting roles of physical, climatic, and anthropo-
genic factors (Nepstad et al. 1998; Cochrane et al. 1999; Archibald et al. 2009; Chen et al. 2011).
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