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Abstract

Taxi order demand prediction is of tremendous importance for continuous upgrading of an

intelligent transportation system to realise city-scale and personalised services. An accurate

short-term taxi demand prediction model in both spatial and temporal relations can assist a

city pre-allocate its resources and facilitate city-scale taxi operation management in a mega-

city. To address problems similar to the above, in this study, we proposed a multi-zone order

demand prediction model to predict short-term taxi order demand in different zones at city-

scale. A two-step methodology was developed, including order zone division and multi-zone

order prediction. For the zone division step, the K-means++ spatial clustering algorithm was

used, and its parameter k was estimated by the between–within proportion index. For the

prediction step, six methods (backpropagation neural network, support vector regression,

random forest, average fusion-based method, weighted fusion-based method, and k-near-

est neighbour fusion-based method) were used for comparison. To demonstrate the perfor-

mance, three multi-zone weighted accuracy indictors were proposed to evaluate the order

prediction ability at city-scale. These models were implemented and validated on real-world

taxi order demand data from a three-month consecutive collection in Shenzhen, China.

Experiment on the city-scale taxi demand data demonstrated the superior prediction perfor-

mance of the multi-zone order demand prediction model with the k-nearest neighbour

fusion-based method based on the proposed accuracy indicator.

Introduction

Traffic has become an important factor impacting city management and operation as well as

the daily lives of numerous dwellers. One of the most fundamental problems for a smart city is

identifying a method to establish an efficient transportation system. Currently, with the con-

tinuous upgrading of intelligent transportation systems to realise city-scale services and per-

sonalised services, taxi demand data are of concern and need to be accessed increasingly

rapidly. Moreover, directly processing city-scale data could pressurise data-processing systems,
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because the data may be highly complex, posing tremendous challenges for the real-time calcu-

lation of city-scale system operation management. To address this problem, a critical approach

is accurate short-term multi-zone taxi demand prediction by dividing the order zone to reduce

the processing time and improve the prediction accuracy simultaneously. An accurate predic-

tion of the taxi order demand implies the provision of assistance to a city to pre-allocate

resources and facilitation of city-scale taxi operation management in a megacity [1]. This type

of a model can be beneficial to numerous city-scale operational management scenarios. For

example, for a sharing service, it can help facilitate the schedule of sharing the vehicle fleet in

advance to reduce the high cruise expense. Further, for taxi operation management, it can

reduce the imbalance between the taxi supply and demand in some areas.

The literature includes numerous studies of prediction methods under different traffic sce-

narios, including traffic volume, taxi demand, and traffic flow volume. Time series analysis

methods are the most prominent models for the prediction of traffic. Representatively, the

autoregressive integrated moving average (ARIMA) is a well-known time series forecasting

model, owing its short-term prediction performance [2–4]. For example, Li et al. [4] used an

ARIMA variant to predict the number of passenger pick-ups from urban hotspots. More

recently, machine learning methods are being frequently used to predict future traffic data,

which attempt to identify historical data that are similar to the prediction instant. These meth-

ods include neural networks (NNs), support vector regression (SVR), random forest (RF), and

k-nearest neighbour (kNN). Mukai et al. [5] predicted taxi demand from the taxi probe data of

Tokyo using a back-propagation neural network. Feng et al. [6] proposed a novel improved

support vector machine (SVM) prediction algorithm to predict short-term traffic flow subse-

quent to the use of the adaptive particle swarm optimization algorithm, to optimize the param-

eters of the above-mentioned improved SVM. Nikravesh et al. [7] compared some machine

learning methods based on the network traffic data, and the results demonstrated that the

SVM performed better in predicting the multidimensionality of network traffic data. Habtemi-

chael et al. [8] proposed an enhanced kNN algorithm for short-term traffic forecasting, and it

was found to provide promising results. More recently, deep learning methods, such as convo-

lutional neural networks (CNNs) and long short-term memory networks (LSTMs) have been

applied to short-term traffic prediction [9, 10]. Ma et al. [9] employed a CNN to predict large-

scale network-wide traffic speed by learning traffic as images, and the result demonstrated that

this method could outperform other existing algorithms by a large accuracy improvement. Yu

et al. [10] built a deep LSTM to predict the peak-hour traffic of a large-scale traffic flow in Los

Angeles, following identification of the unique characteristics of the traffic data.

Although individual prediction methods present good predictive performances, to further

reduce the prediction error, in recent years, some researchers have attempted to combine pre-

diction models to improve the prediction accuracy [11, 12]. Qiu et al. [13] proposed an inte-

grated precipitation-correction model to use the fusion method with four prediction models

to predict freeway traffic flow. Vlahogianni [1] combined three different prediction models to

propose a surrogate model for freeway traffic speed prediction. Moreover, these studies veri-

fied that a fusion-based prediction model could improve the prediction accuracy.

From the literature, it can be found that numerous studies on taxi order demand prediction

methods are predominantly concerned about temporal changes. To increase the prediction

performance and to adapt to city-scale development, some studies consider the spatial effect

on the former. For example, some researchers investigate taxi order demand prediction for

hotspot analysis or grids. Li et al. [4] analysed the spatial–temporal variation of passengers in a

hotspot. Chang et al. [14] used a clustering method to identify a hotspot area and then pre-

dicted its traffic data. Ke et al. [15] employed a novel deep learning approach called the fusion

convolutional LSTM network to predict the passenger demand for on-demand ride services
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for 7×7 grids in Hangzhou, China by analysing spatial–temporal characteristics. Yao et al. [16]

utilized a CNN and a LSTM to predict the taxi order demand for 20×20 grids. Currently,

although most studies focus on hotspots or uniformly divided grid zones, there are no investi-

gations on multi-zone prediction analysis considering the order spatial distribution as well as

on the overall performance for zone prediction.

In this study, we develop a multi-zone order demand prediction model to conduct a spa-

tial–temporal prediction analysis. Specifically, it aims at predicting the order demand in differ-

ent parts of an urban area by considering the traffic prediction and spatial difference

simultaneously. The model reuses order information of the current time period continuously

sent/received by the telematics systems installed on all the taxis to predict the order demand of

the next period in different zones, which are divided by a clustering algorithm based on data

similarity. The main contributions of this study are as follows:

1. The proposed two-step model composed of a clustering-based multi-zone division model

and six prediction methods (backpropagation neural network (BP–NN), SVR, RF, average

fusion-based method, weighted fusion-based method, and kNN fusion-based method) can

realise spatial–temporal prediction at city-scale. The clustering-based multi-zone division

model uses the K-means++ clustering algorithm, and the above six prediction methods are

employed for the order prediction and comparison analysis.

2. The proposed multi-zone order demand prediction model is validated by real-world taxi

order demand data in Shenzhen, China.

3. A systematic comparison analysis is developed to compare the prediction accuracies of the

six prediction methods and the prediction accuracies of the two different zone division

methods, the proposed clustering based zone division method and the commonly used grid

zone division method. Furthermore, we propose multi-zone weighted indicators to evaluate

the overall prediction performances of these prediction models.

The remainder of the paper is organized as follows. Section 2 describes the structure and

mathematical formulation of the proposed multi-zone taxi order demand prediction model.

Section 3 presents the analyses of the prediction performance of the multi-zone taxi order

demand prediction model based on a real-world dataset. Finally, we conclude the paper in Sec-

tion 4.

Methodology

The proposed clustering-based multi-zone order prediction model aims to predict short-term

taxi order demand in multiple zones. The framework of this model is shown in Fig 1. For data

collection, we collect information including the order ID, order time, order longitude, and

order latitude, and these could provide an adequate basis for the model and analysis discussed

below. For the model development, we propose a clustering based multi-zone order prediction

model to predict short-term order demand in multiple zones. This model contains two parts.

The first model is the order zone division model. In this model, we first propose a cluster valid-

ity index called the between–within proportion (BWP) index to determine the optimal num-

ber (k) of zones, an important parameter of the K-means++ clustering algorithm. Then we use

the K-means++ clustering algorithm to divide the entire order zone. The second model is the

prediction model. In this model, first we conduct influence variable correlation analysis to

determine the input variables of the prediction model, and then we use cross validation to esti-

mate the parameter for the prediction model. Subsequently, we propose six prediction models:

BP–NN, SVR, RF, average fusion-based method, weighted fusion-based method, and kNN
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fusion-based method for taxi order prediction. The three fusion-based methods combine the

predicted outputs of the BP-NN neural network, SVR, and RF based on some principles to

yield the final prediction results. For the performance analysis, we compare the prediction per-

formance of these six different prediction models in different zones by using prediction accu-

racy indicators. These include the mean absolute error (MAE), mean absolute percentage

error (MAPE), root mean square error (RMSE). Further, three multi-zone weighted accuracy

indicators, including the multi-zone weighted MAE (MZW-MAE), multi-zone weighted

MAPE (MZW-MAPE), and multi-zone weighted RMSE (MZW-RMSE) are employed to com-

pare the overall performances of these prediction models.

Order zone division model

Order demand varies with the area. To better analyse and predict taxi demand, it is necessary

to divide an area into several zones. However, dividing the area based on administrative dis-

tricts or uniformly grid division cannot accurately reflect the spatial distribution difference in

taxi demand. Further, spatial clustering algorithms, whose clustering principle is based on data

similarity could better reflect this difference.

Spatial clustering algorithm

Currently, the well-known spatial clustering algorithms are K-means, density-based spatial

clustering of applications with noise (DBSCAN), and other spatial algorithms. The K-means

clustering algorithm aims to partition the n observations into k clusters in so as to minimize

the within-cluster sum of squares [17]. The DBSCAN is a typical density clustering algorithm

which clusters based on the region density, and the region density must exceed the predefined

Fig 1. Research framework.

https://doi.org/10.1371/journal.pone.0248064.g001
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density threshold in the given radius neighbourhood, so that it can find clusters of any shape

[18]. However, the DBSCAN algorithm is slightly more complex than the K-means algorithm.

It needs to coordinate the neighbourhood sample number threshold and the distance thresh-

old, �. The final clustering effect differs based on the combination of different parameters. In

addition, the dataset can typically be extremely large, so that when the DBSCAN clustering

algorithm is used, its convergence time can be significantly long. Conversely, the K-means

algorithm is more suitable for large datasets, and the algorithm has relative scalability and high

efficiency. Its time complexity is 0(nkt), where n is the number of samples, k is the number of

clusters, and t is the number of iterations.

The choice of the k initial centroids directly affects the accuracy of the final clustering result

and the duration of the algorithm operation; therefore, it is necessary to select the appropriate

k centroids. K-means++ algorithm optimizes the initialization centroids based on the K-

means algorithm. Therefore, it is chosen to divide the order zone.

The principle of the K-means algorithm is that given a set of data points,

w ¼ fx
1
; . . . ; xnf; xn 2 R

n, the K-means clustering algorithm partitions the input into k�m

sets, C1,. . .,Ck to minimize the within-cluster sum of squares (WCSS) given by:

argmin
C

X

k

j¼1

X

x2Cj

k x� mjk
2; ð1Þ

where μj denotes the jth centroid, c(i) 2 {1,. . .,k} denotes the cluster label for xi, and k�k
2 is the

square of the Euclidean distance.

The K-means algorithm flow is as follows:

Step1: Initialize cluster centroids m
1
; . . . ; mk 2 R

n randomly from χ.

Step2: For every i, assign xi to the cluster with the closest centroid, in other words,

c(i) = argminj kxi − μjk
2.

Step3: For every j, update centroid μj, set μj to be the center of mass of all points in

Cj : mj ¼
1

jCjj

P

x2Cj
x.

Step4: calculate the deviation, D ¼
Pk

j¼1

P

x2Cj
kx� mjk

2

.

Step5: repeat Step 2, 3 and 4 until D converges.

The K-means++ clustering algorithm uses a distance-based sampling method to optimize

the initialization centroids based on the K-means algorithm. The K-means++ algorithm flow

is as follows:

Step1a: Take one centroid μ1, chosen uniformly at random from χ.

Step1b: Take a new centroid μj, choosing x 2 χ with probability DðxÞ2
P

x2w
DðxÞ2

.

Step1c: Repeat Step 1b until we have taken k centroids altogether.

Step2-5: Proceed as with the standard K-Means algorithm.

Determination of parameter k. The most critical part of the K-means++ algorithm is the

determination of the value of k. However, in reality, k is difficult to be accurately determined.

The indexes used to test the validity of the clusters have been proposed by scholars from
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various countries, including the Calinski–Harabasz index (CH), Davies–Boudin index (DB),

Krzanowski–Lai index (KL), weighted inter-intra index (Wint), in-group proportion index

(IGP), and others [19, 20]. Using these indexes to calculate the clustering validity of k clusters

in the range of [kmin, kmax], the optimal number of clusters, kopt, can be obtained. However,

these indexes have defects. When the clustering structure cannot be discriminated, the test

results are not sufficiently ideal; therefore, it is difficult to obtain a perfect optimal number of

clusters. Zhou et al. [21] proposed a new index according to the geometric structure of the

sample, and after a large amount of data verification, the clustering result obtained by this

index improved. Thus, for the determination of the value of k, this study chooses the BWP

index.

Let k = {X, R} be the clustering space, where X = {x1, x2,. . .,xn}, n is the number of samples,

and c is the number of clusters.

Definition 1. Let the minimum interclass distance, b(i, j), of the jth sample of the ith class be

expressed as the minimum of the average distance of the sample to all the samples in each of

the other classes, which is given by:

b i; jð Þ ¼ min
1�k�c;k6¼i

ð
1

nk

X

nk

p¼1

k xðkÞp � x
ðiÞ
j k

2Þ; ð2Þ

where k and i are class labels, x
ðiÞ
j is the jth sample of the ith class, xðkÞp is the pth sample of the

kth class, nk is the number of samples in the kth class, and k�k2 is the square Euclidean

distance.

Definition 2. Let the minimum intra-class distance, w(i, j), of the jth sample of the ith class

be expressed as the average distance of the sample to all the other samples in the ith class,

which is given by:

w i; jð Þ ¼
1

ni � 1

X

ni

q¼1;q6¼j

k xðiÞq � x
ðiÞ
j k

2; ð3Þ

where xðiÞq is the qth sample of the ith class, and q 6¼ i, ni is the number of samples in the ith

class.

Definition 3. Let clustering distance, baw(i, j), of the jth sample of the ith class be expressed

as the sum of the minimum inter-class distance and intra-class distance of the sample, which is

given by:

bswði; jÞ ¼ bði; jÞ þ wði; jÞ

¼ min
1�k�c;k6¼i

ð
1

nk

X

nk

p¼1

k xðkÞp � x
ðiÞ
j k

2Þ þ
1

ni � 1

X

ni

q¼1;q6¼j

k xðiÞq � x
ðiÞ
j k

2; ð4Þ

Definition 4. Let clustering subtraction distance, bsw(i, j), of the jth sample of the ith class

be expressed as the difference between the minimum inter-class distance and intra-class dis-

tance of the sample, given by:

bswði; jÞ ¼ bði; jÞ þ wði; jÞ

¼ min
1�k�c;k6¼i

ð
1

nk

X

nk

p¼1

k xðkÞp � x
ðiÞ
j k

2Þ þ
1

ni � 1

X

ni

q¼1;q 6¼j

k xðiÞq � x
ðiÞ
j k

2; ð5Þ
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Definition 5. Let the Between-Within Proportion index, BWP(i, j), of the jth sample of the

ith class be expressed as the ratio of the clustering subtraction distance to the clustering dis-

tance of the sample (see Eq (6)):

BWP i; jð Þ ¼
bswði; jÞ

bawði; jÞ
¼

bði; jÞ � wði; jÞ

bði; jÞ þ wði; jÞ

¼
min

1�k�c;k6¼i
ð 1

nk

Pnk
p¼1

k xðkÞp � x
ðiÞ
j k

2Þ � 1

ni�1

Pni
q¼1;q6¼j k xðiÞq � x

ðiÞ
j k2

min
1�k�c;k6¼i

ð 1

nk

Pnk
p¼1

k x
ðkÞ
p � x

ðiÞ
j k2Þ þ

1

ni�1

Pni
q¼1;q6¼j k x

ðiÞ
q � x

ðiÞ
j k2

; ð6Þ

From the perspective of the intra-class distance, the smaller the value of w(i, j), the better

the result. From the perspective of the inter-class, the larger the value of b(i, j), the better the

result. To achieve equilibrium in both the cases, a linear combination is chosen to consider

both requirements. Clustering subtraction distance bsw(i, j) = b(i, j) + (−w(i, j)) can be used to

evaluate the clustering result. The larger the value of bsw(i, j), the better the clustering effect.

Simultaneously, to reduce the influence of dimension on clustering, clustering distance baw(i,

j) is introduced. The index can be made dimensionless by compressing bsw(i, j) by baw(i, j);

thus, the range of the values of the index is [-1,1]. If BWP(i, j)� 1, it indicates that the sample

is correctly clustered. If BWP(i, j)� −1, it indicates that the sample is incorrectly clustered.

Index BWP(i, j) only reflects the clustering of a certain sample; it does not reflect the clus-

tering of all the samples. However, if the average of the BWP(i, j) of all the samples in the data-

set is obtained, the clustering effect of the dataset can be reflected. The larger the average value,

the better the clustering effect of the dataset, and the number of clusters corresponding to the

maximum value is the optimal clustering number, which is given by

avgBWP kð Þ ¼
1

n

X

k

j¼1

X

nj

i¼1

BWP i; jð Þ; ð7Þ

kopt ¼ argmax
2�k�n

favgBWPðkÞg; ð8Þ

where avgBWP(k) is the average value of the BWP obtained when the sample set is clustered

into k classes and kopt is the optimal clustering number.

Order prediction model

The BP–NN, SVR, and RF are adopted in this study, because they are commonly used predic-

tion models. Furthermore, the average fusion-based method, weighted fusion-based method,

and kNN fusion-based method are also employed in this study for their advantages of effec-

tively reduction in the large error of an individual prediction model in a certain prediction

[22].

Backpropagation neural network. A BP neural network is a multi-layer feedforward neu-

ral network based on the error back propagation [23]. The basic concept is to use the network

MSE as the objective function. Based on the gradient descent strategy, the parameters are

adjusted in the negative gradient direction of the target to minimize the MSE between the

expected output value and the true value. The BP neural network model has the advantage of

approximating non-linear functions with arbitrary precision. In this study, cross-validation is

performed for the selection of parameters. After minimizing the MAPE in the process of opti-

mization, the number of hidden layer can be determined.
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Support vector regression. SVR is a well-known machine learning method that emerged

at the end of the 20th century. It is mainly used for classification and prediction and has good

generalization ability. It was proposed by the world-renowned scholar Vapnik [24]. SVR con-

tinuously adjusts the parameters by training the samples to derive a model that minimizes the

sum of the deviations between the predicted and the true values of all the training samples. By

inputting the predicted input vector into the model, the value can be predicted. In this study, a

radial basis function (RBF) is utilized as the kernel function because it is demonstrated to be

highly suitable for traffic prediction under different conditions [12]. After optimising, the

capacity values, C, of the SVR can be determined, and in this study, the ε-insensitive loss func-
tion is used.

Random forest. Decision trees are a well-known classification and regression method

owing to their simplicity and ease of implementation. However, they do not usually have a

good predictive performance as a result of being prone to overfitting. To enhance this tradi-

tional method, random forest (RF) has been used as an ensemble prediction model that pro-

duces a large number of decision trees in parallel to reduce the bias and variance of the

predictions [25]. In the tree construction process of an RF, there are two primary statistical

techniques involved: bootstrapping and bagging. First, through randomly sampling the entire

training data set with replacement, RF generates N bootstrapped training data sets. Each boot-

strapped training data set is employed to construct a regression tree. During the training pro-

cess, it is possible that the constructed decision trees are highly correlated, especially when the

root node is a relatively strong variable. For this reason, rather than consider all the variables,

only a small, fixed number, m, of the total variables are considered at each split. After optimi-

sation, m can be determined. Subsequently, during the prediction, all N trees are bagged to

have an average value that reduces the variance of the model.

Average fusion-based method. Average fusion-based method: The average of the predic-

tion results of each individual predictor is taken as the final result. Given a set of predictors,

ŷ i; i ¼ 1; . . . ;m, we seek to compute final prediction ŷ as follows:

ŷ ¼
1

m
ŷ1 þ ŷ2 þ � � � þ ŷmð Þ; ð9Þ

where ŷ i is the prediction result using the ith predictor,m is the total number of the predictors.

In this study, the predictors are BP–NN, SVR, and RF, thus, m is set to 3.

Weighted fusion-based method. In this method, the weights of different predictors are

not identical. The weighted hybrid method is written as:

ŷ ¼ a
1
ŷ1 þ a

2
ŷ2 þ � � � þ amŷ

m ¼
X

i

aiŷ
i; ð10Þ

ai ¼
1=MAPEi

P

j1=MAPEj

; ð11Þ

where ŷ i is the prediction result using the ith predictor and αi is the weight of the i
th predictor.

In this study, the weights are generally calculated by the inverse of the MAPE using the train-

ing dataset.

kNN fusion-based prediction model. The kNN fusion-based method is highly unstruc-

tured and does not require any pre-determined model specification. The basic concept of the

kNN fusion-based method is that in the scenario of the current traffic state, search the nearest

neighbour to this state in the training used historical datasets, compute the prediction errors of

the nearest neighbour set, estimate the weights of each predictor, and combine the final
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predicted outputs of each individual predictor based on these weights [26]. Fig 2 depicts the

flowchart of the kNN fusion-based method. There are two steps in the kNN fusion-based

method.

Step 1: Neighbourhood searching process. The search process finds the nearest neighbours,

which are the historical observations that are most similar to the current observation. The

Euclidean distance is used in this study to determine the distance between the current input

feature vector and the historical observations. p is the number of historical observations with

the nearest distances to the input feature vector. The set of p nearest neighbours of the input

feature vector xc can be written as J
xc
¼ ½x

1
; x

2
; . . . ; xp�

T
and xj = [xj1, xj2,. . .xjn], where

j = 1,2,. . .,p and n is the dimension of the feature space. The trial and error method introduced

by Guo et al. [27] is used for setting the parameters of the kNN. In this study, p is set to 5.

Step 2:Weighted parameter estimation process. This process is used to calculate the weights

of each predictor. For each vector xj, the predicted value, ŷ i
j ¼ fiðxjÞ, where i = 1,2,. . .,m, fi

denotes the ith predictor and error eij ¼ ŷ i
j � yj, of each predictor can be calculated. Hence, the

errors can be used to estimate the weights of each predictor at the current time as wi = (1/

Fig 2. Flowchart based on the kNN fusion-based method.

https://doi.org/10.1371/journal.pone.0248064.g002
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MAPEi)/∑j(1/MAPEj), where the MAPE is calculated based on the selected nearest neighbour

dataset. The main difference between the weighted fusion-based method and the kNN fusion-

based method is that the weights used in the latter are dynamically updated in each step.

Prediction accuracy indicators

To better compare and analyse the actual prediction performance and the effects of different

prediction models, the predictors need to be evaluated and analysed. In this study, the follow-

ing performance evaluation indicators are adopted: MAE, MAPE, and RMSE, which are given

by:

MAE ¼
1

N

X

i

jD̂ i � Dij; ð12Þ

MAPE ¼
1

N

X

i

jD̂ i � Dij

Di

; ð13Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i½D̂ i � Di�
2

N

s

; ð14Þ

where N is the total sample size, D̂ i is the predicted order value, and Di is the observed value.

Since MAPE is greatly affected by the very small values, we only calculate MAPE for samples

with taxi demand higher or equal to 5. This is a common practice used in many studies, as

low-demand scenarios can be less concerned [16, 28].

Based on the above indicators, the predicted results of the BP–NN, SVR, RF, average

fusion-based, weighted fusion-based, and kNN fusion-based prediction models are analysed

and evaluated.

To better compare the performances of the different prediction models in terms of multi-

zone prediction, we then proposed multi-zone weighted indicators based on the MAE, MAPE,

and RMSE to evaluate the overall prediction performances of these prediction models in all

the zones. These included MZW-MAE, MZW-MAE, and MZW-RMSE, which are given by:

MZW �MAE ¼
X

k

ok

O
MAEk; ð15Þ

MZW �MAPE ¼
X

k

ok

O
MAPEk; ð16Þ

MZW � RMSE ¼
X

k

ok

O
RMSEk; ð17Þ

where O is the total number of order demands in all the zones in the testing dataset, ok is the

number of order demands in zone k, andMAEk,MAPEk, RMSEk are the prediction accuracy

indicators for zone k.

Numerical experiment

Data description and processing

The data in this study are provided by DiDi-UDian Scientific Shenzhen Co., which are col-

lected from 10 August to 23 October 2015 in Shenzhen, China (https://github.com/thu-lps/
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taxi-demand-order.git). The order data include information such as the order ID, order time,

order longitude, and latitude. (Ethic committee of Tsinghua University Shenzhen Interna-

tional Graduate School confirmed that the ethic approval was waived in this case.).

The aim of this study is to adopt the order prediction in the Shenzhen urban area to Shen-

zhen Airport, for example, and it does not consider the order demand outside the city. The

coordinate range of Shenzhen is 22˚450~22˚820 north latitude, and 113˚710~114˚370 east longi-

tude, which is the area of the study zone. Then the data in the above range are selected. Fur-

thermore, as we predict the taxi order demand to the airport, it is necessary to extract the

order data for which the order destination points are Shenzhen Airport. The extraction results

are visualized as shown in Fig 3. (blue points are the order origin points and the orange points

are the order destination points at Shenzhen Airport).

Clustering-based zone division

The order demands to Shenzhen Airport differ between working days and non-working days,

and passenger taxi demands have a strong regularity over working days. Therefore, this section

only divides the order zone of the working days as the case study. As the daily taxi order to the

airport is relatively low, in this study, the GPS data of all the Shenzhen taxi orders in the work-

ing days spanning from 1 September 2015 to 31 September 2015, including the longitude and

latitude of the data, were used for zone division to reduce the randomness caused by the small

amount of data and data dispersion.

The range of the values of k is limited to [2,30] based on experience and the actual condi-

tions. After calling the K-means++ algorithm, the k-value curve is obtained (shown in Fig 4).

As can be seen from Fig 4, when the value of k is 10, the value of the BWP index is the larg-

est, which is 0.71826. Hence, the number of order areas in this study is determined to be 10.

Fig 3. Visualization of the order demand on 10 August, 2015 (orders to Shenzhen Airport).

https://doi.org/10.1371/journal.pone.0248064.g003
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Fig 5 presents a clustering result graph, and after visualizing the clustering data, Fig 6 can

be obtained.

The boundary of each divided zone is mainly determined by the boundary points of the

each cluster. However, the boundary points were also fine-tuned based on the principle that

boundaries do not cross with the main road, the rivers, the mountains or the parks. This is

based on the consideration when a driver cruises near the zone boundaries to find passengers,

Fig 4. Curve of the BWP value variation with the k value.

https://doi.org/10.1371/journal.pone.0248064.g004

Fig 5. Clustering result graph with k = 10.

https://doi.org/10.1371/journal.pone.0248064.g005
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they do not need to cross the main road, the river, the mountain or the park to pick up the pas-

sengers, which can save the cruise time. Hence, when the boundaries cross with the main road,

the rivers, the mountains, or the parks, the boundaries of this part is fine-tuned to take the

main road, the rivers, the mountains, or the parks as the boundaries. The order zones are fine-

tuned and numbered to yield Fig 7.

Influence variable correlation analysis

This study considers the taxi order demands to Shenzhen Airport on weekdays as an example

to predict the taxi order demand to it in different zones within 60 min. We select the GPS data

of all the Shenzhen taxi orders from 1 September 2015 to 31 September 2015 and calculate the

order demand to the airport within a time interval of 60 min. This is followed by the correla-

tion analysis of the factors that influence the taxi demand to the airport by a taxi.

(1) The taxi demand correlation analysis of different periods on a certain working day.

Dn(t) is the taxi taxi demand to the airport during period [t, t + 1] of day n. The Pearson corre-

lation is employed to conduct the correlation analysis. The correlation analysis is shown in

Fig 8.

With 60 min as the time interval, a day can be equally divided into 24 periods. Dn(t − 1)

denotes the taxi order demand during period [t − 1, t), and Dn(t − 2) denotes that during

period [t − 2, t − 1), and so on. According to the correlation coefficients shown in Fig 8, the

demand of a current period has a higher correlation with the demand of the adjacent period,

and the correlations with the demand of period [t − 2, t − 1), [t − 1, t) are up to 0.75. Therefore,

when predicting the taxi taxi demand, we can select Dn(t − 1) and Dn(t − 2) as the input

variables.

Fig 6. Visualization of the clustering result.

https://doi.org/10.1371/journal.pone.0248064.g006
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Fig 7. Order zones are adjusted and numbered.

https://doi.org/10.1371/journal.pone.0248064.g007

Fig 8. Taxi demand correlation analysis for different periods on a certain working day.

https://doi.org/10.1371/journal.pone.0248064.g008
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(2) The taxi demand correlation analysis of the same period on different days. We choose

Tuesday as an example. Dn−1(t) denotes the taxi demand of the previous working day, n −1,

which is Monday, Dn−2(t) denotes the taxi demand two days before, which is Sunday, and so

on. The Pearson correlation is also applied to conduct the correlation analysis. The correlation

analysis is shown in Fig 9.

According to the correlation coefficients in Fig 9, the correlations of the same time on dif-

ferent working days are quite different. The correlation between Tuesday and Saturday is

around 0.86, as well as Sunday; however, the correlation with adjacent working days is as high

as 0.9, and the correlation with the last Tuesday is up to 0.925. In comparison, it is slightly

lower with the Tuesday before the last Tuesday. After conducting the taxi demand correlation

analysis on other working days, the results show that the taxi demand correlation between

working days is strong, while the correlation between working days and non-working days is

weak. Therefore, when predicting the order demand, the taxi order demand of the same period

on the previous 5 working days before the current period are chosen as the input variables.

(3) The taxi demand correlation analysis of different zones. Intuitively, zones far away from

the Shenzhen Airport generally have less taxi demand to the airport than the zones close to the

airport, because the farther the distance, the more expensive the taxi fare, and thus passengers

turn to other cheap transportation means, such as subway, public bus to the airport. Besides,

the regularity of the taxi demand in the zones far away from the airport is also different from

that of zones close to the airport. For example, passengers in zones far from the airport need to

take a taxi earlier than passengers in zones close to the airport, so the peak demand for taxi

orders will appear earlier in the zones far from the airports. Hence, zones far from the airport

may share similar taxi demand patterns, and zones close to the airport may share similar taxi

demand patterns. Meanwhile, zones with large populations and developed economies can

Fig 9. Taxi demand correlation analysis of the same period on different working days.

https://doi.org/10.1371/journal.pone.0248064.g009
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share a similar taxi demand pattern, and zones with small populations and underdeveloped

economies can share a similar taxi demand pattern. However, similar regions may not neces-

sarily be close in space. Therefore, we employed the dynamic time warping (DTW) to measure

the similarity DTW(D(i), D(j)) between zone i and zone j. DTW(D(i), D(j)) is the dynamic

time warping distance between the demand patterns of two zones. D(i) denotes the taxi

demand pattern of zone i. The smaller the DTW(D(i), D(j)), the more similar zone i and zone

j. The details about DTW algorithm can be seen in Müller (2007). In this study, the average

weekly normalized taxi demand time series of different zones spanning from September 1 to

September 31 are used as the taxi demand patterns of different zones. The results are shown in

Fig 10.

According to the DTW distance in Fig 10, the similarity between zones can be obtained.

We define that if the value of DTW distance is less than 2, then the correlation between these

two zones is strong, otherwise, the correlation is weak. If the correlation is strong, the influenc-

ing variables of the other zone are put as the input variables of the model in the zone for pre-

diction. For example, Zone 1 is similar to Zone 3, Zone 4, and Zone 8. When predicting the

taxi demand Dn(t) in Zone 1, the influencing variables Dn(t − 1), Dn(t − 1), and the taxi order

demand of the same period on the previous 5 working days before Dn(t) of Zone 3, Zone 4,

and Zone 8 are also added as the input variables in the prediction model. However, Zone 6,

Zone 7, Zone 9, Zone 10 have weak correlation with other zones. The reason is that in these

Fig 10. Taxi demand correlation analysis of different zones.

https://doi.org/10.1371/journal.pone.0248064.g010
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zones, there are few order demand to the airport, for most of the periods the order demand is

less than 10, and there is no regularity in the demand.

Prediction results

The data of all the working day attributes from 10 August 2015 to 18 October 2015 are selected

as the training dataset, and the data of all the working day attributes from 19 October 2015 to

21 October 2015 are sorted as the testing dataset. A day is equally divided into 24 periods, and

the whole area is divided into 10 zones. We define that if the order demand is less than 10 in

more than 18 periods of a day in a zone, then we will not predict the order demand in this

zone as people do not care about the zone where there is little demand for the whole day.

Hence, the order demand in Zone 6, Zone 7, Zone 9, Zone 10 are not predicted.

Table 1 and Figs 11–14 show the prediction performances of these prediction models,

including BP–NN, SVR, RF, average fusion-based method, weighted fusion-based method,

and kNN fusion-based method in all the zones.

In Zone 2, the values of the MAPE using the average and weighted fusion-based methods

are 21.6% and 21.387%, whereas that using the kNN-fusion based method is 18.964%. Com-

pared with the average and weighted fusion-based methods, the values of the MAE and RMSE

using the kNN fusion-based method are relatively lower than those by other prediction mod-

els, which are 2.632 and 3.749, respectively. Similarly, the kNN fusion-based method gives the

most accurate results in Zone 3 (e.g. 7.071 orders/h of the RMSE), Zone 4 (e.g. 4.150 orders/h

of the RMSE), Zone 5 (e.g. 5.609 orders/h of the RMSE), and Zone 8 (e.g. 4.240 orders/h of the

RMSE). In Zone 1, BP–NN is better. However, the performance of the kNN fusion-based

Table 1. Prediction accuracies of the different methods.

Zone1 Zone2 Zone3

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

BP–NN 5.345 20.063% 7.915 3.019 26.236% 3.943 5.05 29.641% 7.250

SVR 7.445 23.674% 9.552 3.122 19.044% 4.004 6.159 32.686% 8.044

RF 5.785 22.831% 8.417 2.845 20.862% 3.771 5.291 29.764% 7.395

Average 6.136 21.400% 8.474 2.94 21.610% 3.826 5.308 29.895% 7.408

Weighted 6.028 21.242 8.4 2.922 21.387% 3.814 5.12 28.994% 7.264

kNN fusion 5.913 21.182% 8.334 2.632 18.964% 3.749 4.732 26.779% 7.071

Zone4 Zone5 Zone8

MAE MAPE RMSE MAE MAE RMSE MAE MAPE RMSE

BP–NN 3.216 27.293% 4.850 4.112 20.997% 5.658 3.096 22.946% 4.836

SVR 3.775 29.133% 4.624 4.513 22.647% 5.941 3.510 25.199% 4.869

RF 3.237 27.834% 4.389 4.116 22.423% 5.660 3.052 21.733% 4.642

Average 3.339 27.929% 4.467 4.119 21.082% 5.654 3.078 21.934% 4.637

Weighted 3.328 27.859% 4.489 4.088 21.182% 5.624 2.982 21.298% 4.528

kNN fusion 2.959 27.679% 4.150 3.969 20.448% 5.609 2.712 19.366% 4.240

MZW-MAE MZW-MAPE MZW-RMSE

BP–NN 4.296 23.797% 6.247

SVR 5.335 25.478% 6.923

RF 4.563 23.645% 6.346

Average 4.600 23.743% 6.374

Weighted 4.463 23.371% 6.267

kNN fusion 4.171 22.569% 6.191

https://doi.org/10.1371/journal.pone.0248064.t001
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method is also significantly better than that of the other prediction models in Zone 1. Com-

pared with the MAPE of the average fusion-based method, the improvement of the kNN

fusion-based method is 0.22%.

In terms of the overall prediction performance analysis, the values of the MZW-MAE,

MZW-MAPE, and MZW-RMSE of the kNN fusion-based method are the lowest in all the six

prediction methods, which are 4.171 orders/h, 22.569%, and 6.191 orders/h, respectively. This

indicates that the kNN fusion-based method can give a better performance in multi-zone

prediction.

Effect of zone division

In order to investigate the performance of clustering-based zone division on order demand

prediction, a comparative analysis is conducted to compare it with grid-based zone division.

For the comparison between these two zone division methods, we should make the number

of zones obtained by the two zone division methods similar. Hence, we partition the Shenzhen

urban area into 3×4 grids uniformly where each grid refers to a zone (see Fig 15). Just like the

taxi order demand prediction performed on clustering-based zone division, firstly, the influ-

encing factors of different zones are analysed and the influencing variables are extracted. Sub-

sequently, we use the same training dataset and testing dataset to train and test the models

Fig 11. Prediction accuracy analysis with MAE.

https://doi.org/10.1371/journal.pone.0248064.g011
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individually. The order demands in Zone 3, Zone 4, Zone 6, Zone 7, Zone 8 are less than 10 in

more than 18 periods of a day, thus, these zones are not included when predicting the taxi

order demand. The results are shown in Table 2.

According to the comparison results shown in Table 2, the prediction performance of the

clustering-based prediction models is significantly better than those of grid-based prediction

models based on the prediction accuracy indicators MZW-MAE, MZW_MAPE, and

MZW_RMSE. For example, the MZW-RMSE of clustering-based kNN fusion based model is

lower than the MZW-RMSE of grid-based kNN fusion based model by 2.0. This demonstrates

that the proposed clustering-based model can reach a better level than the commonly used

grid-based model in capturing the spatio-temporal correlation of taxi order demand.

Besides, it is also noteworthy that kNN fusion based model outperforms other prediction

models under the scenario of the grid zone division. Comparing with the MAZ-MAE of the

second best prediction model, the weighted fusion-based method, the improvement of the

kNN fusion-based method is up to 0.1. It indicates that kNN can perform well under both the

scenarios of the clustering-based zone division method and the grid zone division method.

Conclusion

To help facilitate city-scale taxi operation management in a megacity, this paper proposes a

clustering-based multi-zone order demand prediction model to divide the order zones by the

Fig 12. Prediction accuracy analysis with MAPE.

https://doi.org/10.1371/journal.pone.0248064.g012
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K-means++ spatial clustering algorithm. The order demand is then predicted in the different

divided zones based on six different prediction models: kNN fusion-based method, BP–NN,

SVR, RF, average fusion-based method, and weighted fusion-based method. This study con-

siders the taxi order demand to Shenzhen International Airport as a case study for the order

zone division and the order demand prediction in different zones. The result indicates that it

is effective to use the multi-zone taxi demand prediction model to divide the order zone and

predict the order demands. According to the systematic comparison analysis, the kNN fusion-

based method has the best overall predictive performance for multi-zone order demand based

on the three multi-zone weighted indicators MZW-MAE, MZW-MAPE, and MZW-RMSE).

Besides, the proposed clustering-based zone division method is compared with the commonly

used grid zone division method. The results show that the prediction performances of cluster-

ing-based prediction models are significantly better than those of grid based prediction models

and kNN fusion based method also outperforms other five prediction models under the sce-

nario of grid zone division. Overall, we can support that in the case of city-scale order predic-

tion, using the clustering-based multi-zone prediction model with the kNN-fusion based

method can be effective. Moreover, it can be suggested that the multi-zone prediction model

with the kNN fusion-based method proposed in this study serve as a basis of scheduling opti-

mization at city-scale. However, limited by the data availability, our analysis has been con-

ducted on the taxi order demand to the airport for the case study, and the divided zones are

Fig 13. Prediction accuracy analysis with RMSE.

https://doi.org/10.1371/journal.pone.0248064.g013
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Fig 14. Overall prediction performance analysis.

https://doi.org/10.1371/journal.pone.0248064.g014

Fig 15. Grid zone division of the urban area in Shenzhen.

https://doi.org/10.1371/journal.pone.0248064.g015
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with limited number due to the demand quantity. If more sufficient data without the limitation

of destination can be obtained in the future, it is suggested to consider the correlation between

origins and destinations to make the zone division finer, and thus to construct a more compre-

hensive prediction model.
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