2796 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 7, NOVEMBER 1998

Multiaccess Fading Channels—Part I:
Polymatroid Structure, Optimal Resource
Allocation and Throughput Capacities

David N. C. Tse,Member, IEEE and Stephen V. Hanlyember, IEEE

Abstract—In multiaccess wireless systems, dynamic allocation Thus a user has to be dynamically allocated more power when
of resources such as transmit power, bandwidths, and rates is jts reception at the base station is weak. This is to combat the
an important means to deal with the time-varying nature of the so-callednear—far problem. Another example is the dynamic

environment. In this two-part paper, we consider the problem . . . . .
of optimal resource allocation from an information-theoretic channel allocation strategy which aims to adaptively find the

point of view. We focus on the multiaccess fading channel with best frequencies to transmit at.

Gaussian noise, and define two notions of capacity depending Most of the existing work on dynamic resource allocation
on whether the traffic is delay-sensitive or not. In part I, we has been done with respectgpecificmultiple-access schemes,
characterize the throughput capacity regionwhich contains the such as CDMA, TDMA (time-division multiple access) and

long-term achievable rates through the time-varying channel. L . .
Wegshow that each point on theg boundary of trﬁ/e region can FDMA (frequency-division multiple access). In this paper, we

be achieved by successive decoding. Moreover, the optimal rate@ddress the problem at a more fundamental level: what are the
and power allocations in each fading state can be explicitly information theoretically optimal resource allocation schemes
obtained in a greedy manner. The solution can be viewed as and their achievable performance for multiple access? We
the generalization of the water-filling construction for single-user focus on the single-cell uplink scenario where a set of mobiles

channels to multiaccess channels with arbitrary number of users, icate to the b tati ith inal . o
and exploits the underlying polymatroidstructure of the capacity communicate to the base station with a singie receiver. ur

region. In part Il, we characterize a delay-limitedcapacity region answers are in terms afapacity regionsof the multiaccess

and obtain analogous results. fading channel with Gaussian noise, when both the receiver

Index Terms—Fading channels, multiaccess, multiuser water and the transmitters can tracl_< the tlme-var_ylng Channel.l To

filling, power control, successive cancellation. this end, we consider two notions of capacity for the fadlng
channel.

The first is the classic notion of Shannon capacity directly
applied to the fading channel. In this definition, the channel
HE mobile wireless environment provides several unigutatistics are assumed to be fixed, and the codeword length
challenges to reliable communication not found in wiredan be chosen arbitrarily long to average over the fading of
networks. One of the most important of these is the timéhe channel. Thus to achieve these rates, users will experience
varying nature of the channel. Due to effects such as multipatblay which depends on how fast the channel varies. We call
fading, shadowing, and path losses, the strength of the charthés the throughput capacityas it measures long-term rates,
can fluctuate in the order of tens of decibels. A generalieraged over the fading process.
strategy to combat these detrimental effects is through theln contrast, we also define a notiondglay-limitedcapacity
dynamic allocation of resources based on the states of fhe fading channels: these are the rates achievable using
channels of the users. Such resources may include transmitaleword lengths which arexdependentof how fast the
power, allocated bandwidth, and bit rates. For example, amannel varies. The former notion of capacity is relevant
the IS-95 CDMA (code-division multiple access) standard, tHfer situations when the delay requirement of the users is
transmitter powers of the mobiles are controlled such that theuch longer than the time scale of the channel fading; it is
received powers at the base station are the same for all mobifesticularly appropriate for data applications in which delay is
not an issue, although it can also be relevant for delay-sensitive
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successive decoding, which means that a series of single-usdn Part | of this paper, we will characterize the throughput
decodings is sufficient to achieve capacity. More preciselyapacity region and the optimal resource-allocation schemes,
first one user is decoded, treating all other users as noise, thdrle we will relegate the analysis of delay-limited capacities
its decoded signal is subtracted from the sum signal, then tioe Part 1. Part | is organized as follows. In Section I
next user is decoded and subtracted, and so forth. Thus wer introduce the Gaussian, multiaccess, flat-fading model
solution characterizes the optimal multiple-access schemesaad present a coding theorem for the throughput capacity
well as the optimal power allocation. Given the state of thegion when transmitters and receiver can track the channel.
channels, the optimal power allocation can be computed velkiis theorem implies that the extra benefit gained from the
efficiently and explicitly usinggreedyalgorithms. transmitters tracking the channel is fully realized in the ability

The optimal power allocations we obtain are solutions to allocate transmitter power based on the channel state.
various optimization problems over the multiaccess Gaussibn Section 1ll, we use Lagrangian techniques to show that
capacity region. Since the number of constraints defining ttiee optimal power allocation can be obtained by solving a
capacity region is exponential in the number of users, to obtdamily of optimization problems over a set of parallel time-
simple solutions we need to exploit the spegialymatroid invariant multiaccess Gaussian channels, one for each fading
structure of the capacity region. Polymatroid structure hagate. Given the Lagrange multipliers (“power prices”) for the
been used successfully in many resource-allocation probleaverage power constraints, the problem is that of finding the
to obtain greedy optimization algorithms (see, for exampleptimal “rate” and “power” allocations as a function of each
[5].) In this paper, we will show that the multiaccess Gaussidading state. Here, we exploit the polymatroid structure of
capacity region in fact belongs to a special clasgeaferalized the optimization problem to obtain an explicit solution via a
symmetricpolymatroids, and we derive new greedy solutiongreedy algorithm. In Section IV we provide a simple iterative
to various optimization problems for this class of polymatroidglgorithm to compute the power prices for given average

Goldsmith and Varaiya [8] addressed the problem of corpower constraints. Together with the greedy power alloca-
puting the throughput capacity single- userfading channels tion, this yields an efficient algorithm for dynamic resource
when both the transmitter and the receiver can track th#ocation; moreover, it lends itself naturally to adaptive
channel. The optimal power allocation is obtained via wateimplementation when the fading statistics are not known. In
filling over the fading states. Knopp and Humblet [14] hav&ection V, we show how the usual economic interpretation of
solved the multiuser version of that problem for the speciabgrange multipliers has useful application in radio-resource
case of symmetric users with equal rate requirements. @docation. In particular, we exploit the symmetry between
similar result was also presented later in [3].) Our resultate and power to define a power minimization problem, dual
on computing the entire throughput capacity region of tHe that of maximizing Shannon capacity. In Section VI, we
multiaccess fading channel and the associated optimal powélt present greedy power allocation solutions when additional
allocation can be viewed as the analog of the classic watgewer constraints are imposed. These results exploit further
filling solution in the multiuser setting. In a related workproperties of polymatroids. In Section VII, we extend our flat
Cheng and Veri [2] obtained an explicit characterization offading model to the case of frequency-selective fading.
the capacity region of the two-user time-invariant multiaccessDue to the length of the paper, we provide a self-contained
Gaussian channel with intersymbol interference (I1SI). We wi#lummary of the main points of the solution at the end of the
see that this channel is essentially the “frequency dual” pgper, in Section VIIL.
the multiaccess flat-fading channel and our techniques for theA word about notation: in this paper we will use boldface
latter can be readily applied and provide a general solution lgters to denote vector quantities.
the multiaccess ISI channel for ambitrary number of users.
Moreover, our results extend to the frequency-selective fading II. THE MULTIACCESS FADING CHANNEL
case in a straightforward manner.

The notion of delay-limited capacity was introduced in [12]\. Preliminaries

which obtained results in the symmetric case. The delay-We focus on the uplink scenario where a setldf users

limited povyer-allo_catlon schemes are S|m|Iar_ in flavor Rommunicate to a single receiver. Consider the discrete-time
those considered in the CDMA power control literature (Se%ultiple—access Gaussian channel

for example, [11] and [19]), where the goal is to maintain ”

a desired signal-to-noise ratio (SNR) all fading states.

However, those works consider only dt)ecoding scﬁemes where Y(n)= Z vV Hi(n)Xi(n) + Z(n) (1)

a user is decoded treating other users as interference, which is =1

suboptimal from an information-theoretic point of view. Ouwhere M is the number of usersY,;(n) and H;(n) are the

optimal schemes shed some light on the possible improvemeansmitted waveform and the fading process of dfeuser,

by using more complex decoding techniques. respectively, andZ(n) is white Gaussian noise with variance
Early work on power control in the Shannon-theoretic com=>. We assume that the fading processes for all users are

text [9], [10] established structural results about the multiusgintly stationary and ergodic, and the stationary distribution

Gaussian capacity region arising directly from its polymatroidas continuous density and is bounded. Usgialso subject to

structure. These results provided additional motivation for tle average transmitter power constrainfpfNote that in this

present paper. basic model, we consider fading effects which are frequency
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nonselective. Frequency-selective fading will be consideredpnoof of this result can be found in [17]. An intuitive under-
Section VII. standing of this result can be obtained by viewing capacities in
Consider first the simple situation where the users’ locatiotsrms of time averages of mutual information (Gallager [7]),
are fixed and the signal of uséiis attenuated by a factor of the rate of flow of which can be viewed as a random process
h; when received at the base station, i.H;(n) = h; for depending on the fading levels of the users. Specifically, at
all time n. The characterization of the capacity region of théme n, the rate of flow of joint mutual information between
multiaccess memoryless channel with probability transitiomssubsetS of users and the receiver, conditional on the other
p(y|z1,- -, zar) is well known (Ahlswede [1], Liao [13]); it users’ messages being known, can be thought of as
is the set of all rate vectorR satisfying 1 S Hy(n)P;
R(S) < IV (X)ies|(Xi)igs] VS C{l,---, M} glog |1+ &ST
for some independent input distributigte: )p(z2) - - - p(zar).
(In this paper, for any vector we use the notations(S) (This assumes that the transmitted waveforms are independent
to denotey", s v(i).) Note thatS is any subset of usersGaussian processes with powes) Thus the amount of mutual

in {1,2,---, M}. The right-hand side of each of the abovénformation averaged over a time interval 7 is
inequalities is the mutual information between the output and ‘ ‘
. ; L ; T > Hi(n)P;
the inputs of users irf, conditional on the inputs of users 1 1 ics
not in S. In the case of the Gaussian multiaccess channel, this T Z 2 log | 1+ o2
capacity region reduces to n=t
S P As T — oo, this quantity converges to the right-hand side
1. iCS of the constraint in (3) corresponding to the subSetThis
Colh, P) = B: R(S) < Qlog’ 1+ o2 is because of the ergodicity and stationarity of the fading
processes.
The multiaccess fading system above is reminiscent of a
for everyS C {1,---, M} (2) queuing system with time-varying service rates, corresponding

to the instantaneous rates of flow of joint mutual information.
In this interpretation, the capacity can be viewed as the

v;/]her?]_h = '(111'7”'r17 ho) a.nddP = (Pr,---, Py) Noteh throughput of such a queuing system, being the long-term
that this region is characterized B}’ — 1 constraints, each i ym average arrival rates (of mutual information) sus-

corresponding to a nonempty subset of users. The right-nag, e by the system. Hence, we will also call this capacity
S|d_e pf each constraint is the joint mutual information P&he throughput capacityof a fading channel. We will use
unit time between the subset of the users and the rFeCeE terms capacity and throughput capacity interchangeably

conditional on knowing the transmitted symbols of the othela-ﬁ this paper, using the latter when we want to emphasize the

users, under (optimal) independent Gaussian distributed iNPYfSyin ction from other notions of capacity that will be defined
It can also be interpreted as the maximum sum rate achiev:

art 1.
for the given subset of users, with the other users’ messages

already known at the receiver. Moreover, it is known th
the capacity region has precisely! vertices in the positive
quadrant, each achievable by a successive decoding using on&e shall now focus on the scenario of interest in this paper,
of the M! possible orderings. where all the transmitters and the receiver know the current
We now turn to the case of interest where the channdtate of the channels of every user. Thus the codewords and
are time-varying due to the motion of the users. When tfiee decoding scheme can both depend on the current state
receiver can perfectly track the channel but the transmitté¥sthe channels. In practice, this knowledge is obtained from
have no such information, the codewords cannot be choserfkg receiver measuring the channels and feeding back the
a function of the state of the channel but the decoding c#iformation to the transmitters. Implicit in this model is the
make use of such information. For this scenario, the capacg§sumption that the channel varies much more slowly than
region is known (Gallager [7], Shamai and Wyner [17]) anthe data rate, so that the tracking of the channel variations

aé' The Capacity Region Under Dynamic Resource Allocation

is given by can be done accurately and the amount of bits required
for feedback is negligible compared to that required for

1 Z%HJD? transmitting information. Whereas the transmitters send at

(Ri,---,Rym) : R(S) < En 5log | 1+ 7&7 , constant transmitter power when they do not know the current

state of the channel, dynamic power control can be done
in response to the changing channels when the transmitters
VS c{1,---, M} (3) can track the channels. We are interested in characterizing
the capacity region in this scenario, with the side-information
of the current state of the channel available at both the
where H = (Hy,---,Hjy) is a random vector having thetransmitters and the receiver. Again, we will call this the
stationary distribution of the joint fading process. A rigorouthroughput capacityregion.
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R2 It is worth pointing out that as a result of power control,
codewords are random: since the power control depends on
© p2 the random fading process, so do the codewords themselves.
Q\\ However, consider the multiuser, Gaussian channel with a
unit power constraint on each user, and in which the fading
level for useri is H;P;(H). This channel has capacity region
Cs(P). Consider then any rat® in the interior of C¢(P).
Given any positivee, we can choose a codelength and a
codebook (nonrandom) such that the probability of error is less
\ thane. But, as in the proof of Theorem 2.1, we can use this
p! codebook to construct the random codebook for the original
fading channel, with the same probability of error. Thus in the
original channel, we can use this nonrandom codebook, and
scale each symbol by the appropriate power control (dependent
Fo 1l A hrouah ) ) o of ) _ on the realization of the fading) to get the random codeword
o e s b2 120 ha s ransmitted. The receiver can decode since it knows
regions is a pentagon. The boundary surface is the curved part. the realization of the fading, and the nonrandom codebooks
of the users.

Cl R1

A power-control policyP is a mapping from the fading state
space toR}!. Given a joint fading statd = (hy,- -, has)
for the users,P;(h) can be interpreted as the transmitter In this section, we will obtain an explicit characterization
power allocated to user For a given power control policf?, of the throughput capacity region (5) as well as the optimal

I1l. EXPLICIT CHARACTERIZATION OF THE CAPACITY REGION

consider the set of rates given by power and rate control policies, and also show that successive
decoding is always optimal to get all points on the boundary.
Cy(P) = {R :R(S) < We do this by exploiting a special combinatorial structure of
the regionsC, andCy.
Ex B log <1 + % Z Hipi(H)>] , A. Polymatroid Structure
7" ies

We begin with a few definitions. As before, for a vector
VS C {1, -,M}} 4 vE RM, we shall use the shorthand notatie(S) to denote

>ics Vi-
(the subscriptf denotesfading). Definition 3.1: Let £ = {1,---,M} and f : 2¥ — R, be
Comparing this with the capacity region (3), one can heurig-set function. The polyhedron
tically think of C;(7) as the set of achievable rates when B(f) = {(z1, - an) : 2(S) < f(S)

powers are dynamically allocated according to polReyThe
following coding theorem substantiates such an interpretation.

Theorem 2.1: The throughput capacity region for the mul{S & polymatroidif the S?t functionf satisfies
tiaccess fading Gaussian channel when all the transmitters ag) f(#) = 0 (normalized). .
well as the receiver have side-information of the current state2) f(S) < f(T) if S € T (nondecreasing).

VS C B,z; > 0 Vi} (6)

of the channel is given by 3) f(SY+ ()= f(SUT)+ f(SNT) (submodular).
= The polyhedron
ey = | ¢s(P) (5) Poy
Per G(f) ={(w1, -, on) : 2(S) = f(S) VS C E}
where 7 is the set of all feasible power control policiess a contra-polymatroidif f satisfies
satisfying the average power constraint 1) f(#) = 0 (normalized).
F={P:Ex[P,(H)] <P, Vi}. 2) f(S) < f(T)if S CT (nondecreasing).
3 S)+ f(T) < FSUT) + f(SNT) (supermodular).
Proof: See Appendix A. O ) JS)+ (I < J( )+ I ) (sup )

If f satisfies the three propertieg,is called arank function
The above theorem essentially says that the improveménmtboth cases.

in capacity due to the transmitters having knowledge of the Polymatroids were introduced by Edmonds [4] where he

channel state comes solely from the ability to allocate poweusoved the following key properties. #f is a permutation on

according to the channel state. Also, note that since ttiee setf, define the vectos(r) € RM by v 1y () = f(m(1))

capacity region is convex, the above characterization impliaad

that time sharing is not required to achieve any point in the . y p

capacity region. An example of a two-user capacity region ir(m) = f{r (), m(@h) = J({(1), -, m (@ = 1))

shown in Fig. 1. fori =2,---, M.
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Lemma 3.2:Let B(f) be a polymatroid. Thern(x) is a Proof: One can directly verify the submodularity of the
vertex of B(f) for every permutationr. Also, any vertex mutual information function. A shorter proof is as follows. Let
of B(f) strictly inside the positive orthant must kér) for = be a permutation o and consider the rate vectdi(w)
somer. Moreover, ifA is a given vector imf, then a solution defined by
of the optimization problem

max X -z subject tox € B(f) (7) i=1-- M-1

RW(M)(W) = I[Y§ Xﬂ'(]\l)]‘
is attained at a point(«*), where thex* is any permutation - _ _ o
such thath,;y > -+ > Aar). Conversely, supposg These are the capacities achieved by successive decoding in
is a set function and3(f) is the polyhedron defined in (6).the order given byr, and hence the rate vectd(r) lies in

Then if v(x) € B(f) for every permutationr, then B(f) is the region (9). Since this is true for every by Lemma 3.2,
a polymatroid. the polyhedron (9) is a polymatroid. O

Note_ that B(f) is a polyhedron characterized by an ex- Corollary 3.5: The capacity regiok,(k, P) of a memory-
ponentially large number of constraints (). The above |egs Gaussian multiaccess channel is a polymatroid.
lemma says that the polymatroid structurefigff) allows the

linear program (7) to be solved efficiently, in fact in time Lemma 3.6:Let P be any power control policy. Then
O (M log M). One can in fact re-interpret the solution of th&s(7) defined in (4) is a polymatroid.

linear program as that obtained from the followingeedy Proof: By direct verification. O
algorithm The following structural result shows that the regié(P)
« Initialization : Setx; = 0 for all i. Setk = 1. can be written as a weighted sum of the capacity regions of
+ Step k: Increase the value af,.( until a constraint Parallel ime-invariant Gaussian channélgh, 7(h)).
becomes tight. Goto Step+ 1. Definition 3.7: A rate allocation policyR is a mapping
* After M steps, the optimal solution is reached. from the set of joint fading states t&}; for each fading

It can be shown, by the properties ¢f that at stepk, Stateh, R;(h) can be interpreted as the rate allocated to user
the constraint that becomes tight is the one that corresporid&hile the users are in stafe
to the sgbsgt{w(l),---,w(k)}. .Thus. this algorithm yi(_elds ~ Lemma 3.8: For any power control policy®
the solution in Lemma 3.2. It is said to be greedy since it
is always moving in the direction of steepest ascent of theC;(P) = {Eg[R(H)] : R is a rate allocation policy s.t.
objective function while staying inside the feasible region. Vh R(h) € Cy(h, P(h))}. (10)
More importantly, after increasing a component of the vector,
the algorithm never revisits it again. Thus only steps are Furthermore, for any permutation on £
required. We will see that the solutions to all the optimization
problems in this paper have this greedy character. v(m) = Exlva ()] (11)

There is an analogous lemma for contra-polymatroids. . .
g poly where v(7) is the vertex ofC;(P) corresponding to the

Lemma 3.3:Let G(f) be a contra-polymatroid. Then thepermutationr, and for each staté, v () is the vertex of
pointsv(w) wherer is a permutation orEs are precisely the C,(h, P(h)) corresponding to permutation.
vertices ofG(f). Moreover, ifA is a given vector i}/, then Proof: Define
a solution of the optimization problem
£ ={En[R(H)]: R is a rate allocation policy s.t.

minA-z subject tox € G(f) (8) R(h) € Cy(h, P(h))}.

By definition, we have that C C;(P). But by Lemma
3.6, C#(P) is a polymatroid, and hence is the convex hull
of successive decoding poink(w), wherew ranges over all
permutations of£, and

is attained at a point(«*) wheren* is any permutation such
that A1) > --- > Are(ar). Conversely, iff is a set function
and v(w) € G(f) for every permutationr, then G(f) is a
contra-polymatroid.

Now consider a discrete memoryless multiaccess channgl i H. P (H)
with transition matrixp(y|x1,---,zar). A similar version of ZR —Egy llog 14 =t
T 2

the following result was obtained in [10]. 2 ’

. g
1=1

Lemma 3.4: For any independent distributiop(z,)--- n=12 . M
p(zar) on the inputs, the polyhedron S
But for any n, R(x) € &£, and hence every extreme point
{ReRY : R(S) <I[Y;X(S)|X(S) VS CE} (9 of Cy(P) lies in £. By the convexity ofé, it follows that
& = C;(P). This also establishes the second part of the lemma.
is a polymatroid. O
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B. A Lagrangian Characterization of the Capacity Region and hence we can rewrite (14) as an optimization over the set

We shall now make use of the polymatroid structure & Power control laws
Cy(h, P) andC(P) to explicitly characterize the throughput pax 4. R — A- Ex[P(H)] subject toR € C¢(P). (15)

capacity regionC(P) of the multiaccess fading channel and (&7)
the optimal power control policies, under an average power| et be the permutation corresponding to a decreasing or-

constraintP. _ dering of the components of the vecjar By the polymatroid
We focus on characterizing the boundary of the regi6R),  structure ofC,(P), for any given power controP, u - R is
as given in the following definition. maximized at
Definition 3.9: The boundary surface @f(P) is the set of R _E '11 e H1)yPr1)(H)
those rates such that no component can be increased with the =) = “H [ 5108 { 1+ o2
other components remaining fixed, while remaining’ (). r
For example, the boundary surface of the Gaussian capacityR _E 11 14 Ho (i) Py (H)
region without fading is simply the points where the constraint *=(x) = FH | 5108 | 1+ k—1 ’
for the entire set of users is tight. The points on the boundary o? + Z: H Py (H)
surface are in some sense the optimal operating points because B = k=2-.- M. (16)

any other point in the capacity region is dominated component-
wise by some point on the boundary surface. In the two-userHence, the optimization problem (15) is equivalent to
example in Fig. 1, the boundary surface is the curved part. 1 HoyPoy(H)

The following lemma shows that the computation of thanaxul[EH[§log <1 + %)}

boundary of the regiorC(P) and the associated optimal
power control policy can be reduced to solving a family

of optimization problems over a set of parallel multiaccess M 1. Ho3yPriy (H)
Gaussian channels. - Z rka | o log [ 1+ )
_ k=2 o2+ 3 He(iyPr(y(H)
Lemma 3.10:The boundary surface @f(P) is the closure i=1
of all points R* such thatR" is a solution to the optimization — X-Ex[P(H)] (%))

roblem . .
P and this is, in turn, equivalent to

MAX fi - R subjecttoR € C(fj) (12) i "
max u1 = log | 1+ Nr()Pr(1)
r 2 o2

for some positivg: € R} . For a givenu, R* is a solution to
the above problem if and only if there exists\ae R/, rate

allocation policy R(-), and power control policyP(-) such M P (i) (k)
e - : : > s log [ 14+ ~A-p
that for every joint fading staté, (R(h), P(h)) is a solution + 2 b log h—1
. . . 2
to the optimization problem k=2 0%+ Y heiyPri
i=1

1(1239))(”'T_'\'p subject tor € Cy(h, p) (13) for every fading stateh. But this latter problem is also

and equivalent to

Eu(Ri(H) =R, Eu[Pi(H)=P, i=1-M mcpe T Ap subjecttor € Cy(h.p)

™p

where P; is the constraint on the average power of user  because of the fact tha, is a polymatroid.
Proof: The first statement follows from the convexity of This completes the proof. O
the capacity region.

Now consider the set One can interpret, as a vector of rate rewards, prioritizing

the users. A poinR* on the boundary for a givep is a rate
S={(R,P):PecRl RecC(P)}. vector which maximizeg: - R over the capacity regio@'(P).
As p varies, we get all points on the boundary of the convex

By the concavity of the log function, it can readily be verified apacity region. The vectck can be interpreted as a set of

that S is a convex set. Thus there exist Lagrange muItipIier A . .
Ae §Rf‘( such thatR" is a solution to the optimization problempOWer prices; for a give, A is chosen such that the average

power constraints are satisfied.

max o -R—\-P. (14) It follows immediately from (16) that an optimal solution
(RP)eS will be a successive decoding solution. Lemma 3.8 then shows
Now that the optimal solutiofR*(H), P*(H)) will be such that
e(P) = U C(P) R*(h) is a corner point of’,(h, P*(h)) for everyh, with the

same orderingr for eachh. However,a priori, the optimizing
R* for a giveny may not be unique. We will see though that
= U Cs(P) the continuity of the stationary density of the fading processes
{PEa[P(H)]=P} implies that it will be unique.

{P:Eu[P(H)|<P}
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C. Optimal Power and Rate Allocation whereu,(z) - dz can be interpreted as the marginal increase in

We now consider the problem of determinif@*(h), the value of the overall objective functign-r — X - p due to
P*(h)) for each fading staté. Note that Lemma 3.10 can adding a low-rate virtual user of received powderto user: at

. ) . N ; .
be viewed as a multiaccess generalization of the LagrangiQifrference leves-+z. Starting at: = 0, the op;@mal solution
formulation for the problem of allocating powers over a sét oPtained by choosing at each interference levetz, to add

of parallel single-user Gaussian channels [6]. The solution fovirtual user which will lead to the largest positive marginal
the optimization problem in the single user setting is giveiCrease in the objective function. Here, the choice is whether

by the classic water-filling construction. Here we will providd® @dd such a virtual user, and if so, to which (physical) user.

a solution in the multiaccess setting. Again we make use bf€ interference levet” + » is the total received power of all
the polymatroid structure and the solution will have a gree%ytual_use_rs already added, plus the backgraound noise. The
flavor. ecoding is done by successive cancellation in reverse order

To get some intuition about what the solution may look like? the Vvirtual users added to the algorithm. See Fig. 2 for a

let us first reinterpret the classic water-filling solution for thE'rée-user example. ,
single-user case. The solution in that setting is to solve, for V& Se€ that the proposed solution has a greedy flavor.
each fading staté, the optimization problem To prove that this indeed solves the optimization problem

(13), we have to identify further polynomial structure in the
time-invariant multiaccess Gaussian capacity regioh, P).
Solving this problem in turn leads us to a new result in
polynomial theory.

A . 1 q
3 . o .
max {7 hq} subject to r < 5 log (1 + —0_2)

4

where we have formulated the problem in terms ofréeeived

power ¢q. Equivalently, the problem is Definition 3.11 (see [5]): The rank functionf of a poly-
1 q A matroid B( f) is generalized symmetrif there exists a vector
max bbg (1 + ;) - Eq} y € R} and a nondecreasing concave functipisuch that
q

F(S) = g(y(S)) for every S C E.
Here, A is the Lagrange multiplier (power price) chosen such

. o . I il ified th h isfies the th
that the average power constraifitis satisfied. We can write t can be readily verified that such ghsatisfies the three

properties of a rank function. We state the following easily

1 4 1 roven result.
ilog(l—l—%):/ 227d2. P
¢ o 2o +2) Lemma 3.12:Let ¢ be a nondecreasing concave function

The integral representation can be giverate splittinginter- and for eachy, define the generalized symmetric rank function
pretation, where the single user can be visualized as being sfitS) = g(y(5)). For all vectorse € RY, the set{y : z €
into many low-rate virtual users, each with received podrer B(fy)} is a contra-polymatroid.

The total rate is achieved by successive cancellation amon
these virtual users, with the rate achieved by the virtual u
decoded as interference level + z to be 1/[2(¢? + 2)] - d=.

The optimization problem can be recast in the integral form Corollary 3.13: For a given average transmitter power con-
straintp and fixedh, the capacity regiod, (k, p) is a polyma-

gkpplying this to the capacity regio6,(h, P), we get the
s1‘85Iowing “dual” polymatroid structure.

g
max/ {% — é} dz. troid with generalized symmetric rank function. On the other
9 Jo [2002+2) h hand, for a given rate vecter the set ofreceived powershat
Let us define can supportr
_ 1A Q(h,7) ={g:3Ips.t.qg = hip;,r€Cyh,p)}
u(z) = 57—
2(02+2) h

is a contra-polymatroid.

and interpretu(z) - dz as themarginal utility (rate revenue . L 1 solve (13), and note that by Corollary 3.13,
minus power cost) of adding a virtual user at interference. . .
it is sufficient to consider the more general problem stated

level o2 + 2. The optimal solution can be described by addinﬁ;] Theorem 3.14, in terms of a polymatroid with generalized
more virtual users until the marginal utility of adding any s

further virtual users is negative. In particular,if0) < 0, symmetric rank function. The following is a new result.

then nothing is transmitted at all. Theorem 3.14:Consider the problem
Of course, the resulting optimal received powgris the .

same as that of the water-filling solution, and this seems likdhiX # *¥ —A -y subjectto z(5) < g(y(5)) VS C B
a rather convoluted way of presenting the solution. Howeve
the interpretation of the single-user solution suggests a nat

conjecture for the optimal solution for the multiuser optimiza-
tion problem (13). Define the marginal utility function for user wi(2) = g’ (2) — A, i=1
¢ to be

r : . : . .
Qereg is a monotonically increasing concave function.
efine the marginadtility functions

M

R

» u'(z) = [mzax uz(z)}

g = 202 4+2)  h;

(Here, 2T = max (z,0).)
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marginal
utility of users

o? + z
2 2
o o+ qf ottt 4
Fig. 2. A three-user example illustrating the greedy power allocation.zFagis represents the received interference level gadis the marginal utility

of each user at the interference levels. At each interference level, the (physical) user who is selected to transmit is the one with the highestlitgargina
Here, user 1 gets decoded after user 2, and user 3 gets no power at all. The optimal received powers for user 1 andgjisen@qdraespectively.

Then the solution to the above problem is given bgndw; can intersect at most once. Thus thés are distinct.
fo z)dz and an optimizing point(z*,y*) to achieve Pick the point
this can be found by a greedy algorithm.

Proof: Let J* be the optimal value for the above prob- Ui ==, k=0 K -1
lem. For any fixedy, the set of feasible forms a polymatroid, y; =0 else
and by Lemma 3.2, the valug® must be attained at a point zi = g(zrg1) — 9(2k), k=0,--K—1
satisfying =0 else
T = .
Tr(l) = 9(%(1)) It can be directly verified that

k k—1 =)
Tr(k)y =9 <Z yﬂi)) - 9<Z yﬂi)) woxt -yt = /0 u(z)dz
=1 =1

and thatz* is a vertex of the polymatroid with rank function

for some permutation. Hence f(-) = g(y*(-)). Thus the upper bound is attained(at,y*).

M O
J* maxu,r(l)g(uﬁ(l) +Zuﬁ(k) Observe that the solution can be obtained via a greedy
k=2 algorithm. Starting withz = y = 0, the component that
k gets selected to be increased is the one which leads to the
X [9 <Z yﬂi)) - 9<Z %(i))] -Ay steepest ascent of the objective function. When none of the
‘ i=1 components leads to an increase in the objective function, the
M Eigkwﬂ optimal solution is reached. Moreover, the algorithm never
= max Un (i) (2) dz revisits a component after finishing increasing it.
k=1 Efék—ly"(” Specializing this result to the case of the time-invariant
< /Oo “(2) dz Gaussian channel gives exactly the proposed solution to the
—Jo optimization problem (13) discussed earlier. The funcigda
We now show that this upper bound can actually be attamegken to be

First, note that by the concavity gf the function:* is mono- g(z) = llog (1 + %)

tonically decreasing. I&*(0) = 0, thenJ* = 0 and attained 2 i

atz=y=0. If «*(0) >0, then let0 =29 < 21 <---< zx In terms of the received powets= (hip1,---,hppr), the
wherezy is the smallest for which «*(z) = 0 (if there is no optimization problem can be rewritten as

such point,z; = ), and such that in the interv@dy,, zx11],

w*(z) = u,, (2) for someiy, k=0, - — 1. Hence, atz, mameu Z » “g; subject tor(S) < g(g($)) VS C E.
u;,_, intersectsy;, . Now, sincey’ is monotone two curves;
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Moreover, it shows that the optimal solution is achieved; = u2, as explained at the end of Section IlI-C. Every point
by successive decoding among thetual users Any such on the boundary surface is a corner point of some pentagon
solution can be represented by a permutatioand a set of C;(P), which is the capacity region for a particular power
intervals [z, 2;,11], ¢ = 1,---,M of the real line such that control policy P. The point corresponding tp; = u» is a
z1 = 0, 2,41 — #; is the received power of usei(s), and users corner point of a degenerate pentagon, i.e., a rectangle. Why
are decoded in the order given byM), n(M —1),---,«(1). this is so will be explained later in this subsection.

The valuez; is the total received power of the interfering It should also be noted that the uniqueness result above
users when usei (i) is decoded. Thus user(i) is decoded only holds for positiven. If some of the rewardg;’s equalo,

at a total interference level @f? + z;. One can also think of the R* which maximizesu - R may not be unique. However,

a solution as the choice of which (if any) user to transmit &t is clear that one can get arbitrarily close to these points
every interference levet? + z, » € [0, o). Refer again to (the extreme points of the boundary surface) by letting some
Fig. 2 for an example. Note that in the optimal solution, sonaf the rewards go to zero. Thus it suffices to focus on the
users may be allocated zero powers (and hence zero ratss)ctly positive reward vectorg for a parameterization of the
although the priority order (the reverse of the decoding orddspundary surface. We will give a more explicit interpretation
of the transmitting users is always in increasing order of tted these extreme points in Section IlI-E.

rate rewardsu;’s. For any such positives, the above lemma implies that we

At a given fading stateh, the optimal rate and powercan define a parameterizatidii (;1) which is the unique rate
allocated are not unique only when the utility functions ofector on the boundary which maximizes - R. Its value
two users coincide, i.ey; = u; and% = Z—j for somei,j. can be obtained using the greedy rate and power allocation
But since the users have a joint fading distribution with golution, withA chosen such that the average power constraints
continuous density, this will only happen on a set of fadingre satisfied. In the common case when the fading processes
states with probability). Thus with probabilityl, the optimal of the users are independent of each othBf(y) has a
power and rate allocation is unique and is explicitly given bgarticularly simple form.

1 For the givenu and A, let R*(h, 4, X) and P*(h, i, A) be
Ri(h) = / ———dz Pi(h) = | A the optimal solution to the problem (13). Since the stationary
A 2(0% +2) distributions of the fading processes have a continuous density,
where Pr(H; = H;) = 0 for all < # j. We observe that the choice
of which user to transmit at each interference levebnly

A = {7 €[0,00) 1 ui(#) > u;(2) Vj # i andu;(z) > 0}.  depends on the values of the marginal utility functions of the

users at. Thus the average rate and power of each user can be

The proof of Theorem 3.14 illustrates the fact that theomputed first at each interference leveind then integrated
optimal point will be a corner point for every fading stategyer all ». Thus

although this also follows directly from Lemmas 3.8 and 3.10.
En[Ri(H, p, A)]

D. Boundary of the Capacity Region o0
We no [ i ' ' ' :/ Ea (g (D1, ) vi anduys0p) 4
w combine the Lagrangian formulation given in o {ui(z)>u;(2)  Vj 1(2)>0}
Lemma 3.10 and the optimal power and rate allocation so- >~ )
lution to give a characterization of the capacity regitid), = /0 9 (#) Pr(ui(z) > u;(z) Vjandu(z) > 0)dz

parameterized by the rate rewards First, we present the o o
following lemma, which allows us to have a well-defined :/ L /
parameterization of the boundary of the capacity region by o 2(o? +z){ LQH
the rate rewardsgs.

22ph(0? + 2

Lemma 3.15:Let i be a given positive rate reward vector. H £y, <2/\‘(U2 ikf)(i (+ 7)_ <)h> fi(h)dh ¢ dz

Then there is a uniqu&* on the boundary which maximizes ki ‘ °) Tk T

- R, and there is a unique Lagrangian power piicguch that  Eg[P; (H, 1, A)]

the optimal power allocation solving (13) satisfies the average o0 1

power constraints. :/0 Eu [h_if[ui(z)mj(z) Vi aﬂdui(z)>0}:| dz
Proof: See Appendix B. O

i i 1
In the two-user example shown in Fig. 1, this means that — o {/ZMC,Z“> h
every line of negative slope has a unique point of tangency at #i
the curved boundary. In particular, there is no linear part on 2\ h(0? + 2)
this boundary. This is in contrast to the (nonfading) Gaussian % | | F < ——3 — )fz‘(h) dh o dz

. . . ; . . oy 2)\1(‘7 + Z) + (Nk Nz)h
multiaccess capacity region, where the boundary is a line with ki
slope—1 (in the two-user case). Thus even when= 1., the (18)
optimal R* is unique. This is true because when the fading
distributions have continuous density, the optimal rate am¢hereF; and f; are the cdf and pdf of the stationary distribu-
power allocations are unique with probability even when tion of the fading process for useér respectively.
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Combining this with Lemmas 3.10 and 3.15, we have thmower is used when the channel is good and little or even no
following characterization of the throughput capacity regiopower when it is bad.

C(P). Note that sincéR* and’P* are invariant under scalings 2) Maximum Sum-Rate Point If we sety; = -+ = pup =
of the vectorg: andA, we can normalize such thaf. 1, = 1. 1, we get the point on the boundary of the capacity region that

Theorem 3.16:Assume that the fading processes of usefrﬁ]aximizes the sum of the rates of the individual users. For
are independent of each other. The boundarg(@?) is the is case, the marginal utility functions(z)'s are given by

closure of the parametrically defined surface . 1 Ag
wi(2)= 55—~ 7
2024+2) by
* . M _ . . . .
{R () € RY vzﬂi = 1} We note that for a given fading state the marginal utility
¢ function of the user with the smalles}g dominates all the
where for: = 1,---, M others for allz. This means that in the optimal strategy, at most
- - one user is allowed to transmit at any given fading state. The
Ri(p) = / 1 / optimal power control strategp* can be readily calculated
g 0o 2(0242) | J2ue?s to be
7 L _ o)t if R > Ap ;
[ (2 ) Yyl 0= R Gl
ki "\2Ni(0% +2) + (u — pi)h ) ) ’ '
The optimal rates are given by
(19)
. . . _ =1 {1 o2\
where the vectol is the unique solution of the equations R = Slog |1+ |5 — —
= = 1 Ak .
0 22ie2+2) h x HFk )\_Zh f(h)dh, i=1,-- M

ki

y HFk < 2Xph(0? + 2) )h>fi(h) dh S 4, — p,  where the constants;’s satisfy

e 2Xi(0? + 2) + (b — o /1 JEN \
k _
(20) /0 <2)\7‘, — 7) kl;[Fk <)\_7‘,h> f(h)ydh =P,

i = 1,---, M. Moreover, every point can be attained by t=1,---

successive decoding. . ) )
Note that due to the special structure of the optimal powafiS Solution was recently obtained by Knopp and Humblet

control policy, the various expectation terms have been #d4]. Note that this power control gives rise to a time-division

duced fromAZ-dimensional integrals to two-dimensional inJnultiple-access strategy. This explains why in the two-user
tegrals. For a givery, it should therefore be possible toexamplelof.F|g. 1, the point on t.he boundary corresponding to
compute numerically with low complexity. We shall presentta = #2 1S in fact the corner point of a rectanguidy(P).

an algorithm to do this in Section IV, but first let us examine 3) Multiple Classes of Users While the above strategy
several special cases of Theorem 3.16. maximizes the total throughput of the system, it can be unfair if

1) Single-User Channel When M = 1, the above result the fading processes of the users have very different statistics.
reduces to characterizing the capacity of the power-controllEQ" €xample, some of the users may be far away from the

M.

7

single-user time-varying channel base station; they will get lower rates through since their
channel is worse that that of the nearby users a lot of the

B /°° 1 /°° Fhydn b dz time (there are, of course, still other sources of fluctuations
o 2002+ 2) 22 40) ) of the channels, such as fading at a faster time scale due to

- o+ multipaths). One way of remedying this situation is to assign
_/ ~log <1+ ﬂ(i _ 0’_) )f(h) dh unequal rate rewards to users. Let us consider an example
0 o2\2\ R where there are two classes of users. Users in the same class
. . . _ have the same fading statistics and power constraints; the first
bl reversing the Orqer of integration. Usm_g (20), the constafjbss can represent users at the cell boundary, while the other
ax IS shown to satisfy the power constraint class consists of users close to the base station. To maintain
</ o2 + _ equal rates for everyone, we can assign rate rewards all
/ < ) f(h)dh = P.
0

R users in class 1, angd, to users in class 2, with; > ps.

By symmetry, the power prices of users in the same class are
This is just the classic water-filling solution to the problem dhe same. We observe that at any fading state, the marginal
power allocation over a set of parallel single-user channels, amdity function of the user with the best channel within each
for each fading levek. This result was obtained by Goldsmithclass dominates those of other users in the same class. Thus
and Varaiya [8] in the context of the single-user time-varyinthe optimal strategy has the form that at each fading state,
fading channel. The strategy has the characteristic that mordy the strongest user in each class transmits, and the two
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users are decoded by successive cancellation, with the negsbges (u, X). We first present the following monotonicity
user decoded first. This gives an advantage to the user lBmma, which can be verified directly from the greedy power
away. Adjusting the rate rewards can be thought of as a waljocation algorithm.
to maintain fairer allocation of resources to the users. We . . . .
) o . ; Lemma 4.1:For all¢, if the ¢th component of is increased
consider this issue further in Section V. ; .
. : . and the other components are held fixEg\) decreases while
Note that in the first two examples, the optimal powe . . .
. o :(A) increases foy # i. More generally, for any subs#t, if
control strategy has the special characteristic that the power’ . 7 .
. we increase\; for all ¢ € S, and hold the remaining; fixed,
allocated at each fading sta#e depends only onh and -
I then average powers of users$f will increase.
the Lagrange multipliers. For the general case, the allocate

power depends on one additional variableepresenting the  Given average powetP, let R* be the optimum rate

interference level. corresponding to the rewargs, and letA™ be the shadow
power prices. Algorithm 4.2 below generates a sequéiiag
E. Extreme Points of the Boundary Surface from any starting poin(0) that converges ta\".

In the previous subsection, we parameterize the boundaryAlgorithm 4.2: Let A(0) be an initial arbitrary set of posi-
of the capacity region by positive reward vectors. By lettingve power prices. Given theth iterateA(n), then+1th iterate
some of the rate rewards approaghone can get arbitrarily A(n+1) is given by the following: for each, A\;(n+1) is the
close to the extreme points. We can also give an explicihique power price for théth user such that the average power
characterization of the extreme points as follows. of users is P; under the optimal power control policy when

SupposeL is a set of subsets d&F = {1,2,---, M} with the power prices of the other users remain fixed(at). (The
the property that all subsets i are nested. By this we meanuniqueness follows from the monotonicity property above.)
that !f Iy, I € L then Fy C B or By € Fi. Then it is In terms of (20) for the case when the fading is independent,
possible to insist that all users in a subsetlirare decoded, A\, 1) is the unique root: of the equation
and canceled, before any user in the complementary subsféf1 +1)i uniqu quat
is decoded, foeveryfading stateh. With positive vectors o o
and A, we can define the decoding order in each subset, jl,ft / 1
as before, except that now there is absolute priority given {o 22(o24s)
each subset of users i over its complement. The extreme
points of the boundary surface 6{P) are characterized in v H < 2X(n)h(0? + 2) )f‘(h) dh S dr = P
exactly this way: by a positivéu, A) pair, together with a set M\ 2z(0? + 2) + (ue — ) )" S
of nested subsets of usefs

For example, in the two-user case, &s— 0, the optimal which can be solved by binary search if the statistics of
power allocation and the resulting rate for user 1 approach@g fading are known. Otherwise, one can update the power
that for the single-user fading channel with only user 1 preseptices by directly measuring the change in the average power
i.e., a water-pouring solution. This is the popt in Fig. 1, consumption.
with user 1 achieving rat€’;. User 2 is always decoded before
user 1 in every fading state, and the optimal power control for
user 2 is also water-pouring, but regarding the sum of t
interference created by user 1 and the background noise as
time-varying noise power. Thus we get to an extreme point A(n) — A%,
of the boundary.

m

i

ksti

Theorem 4.3:Given average poweP, let R* be the opti-
um rate corresponding to the rewayds, and letA™ be the
adow prices at the poig®, R*). Then

n T oo

and henceR(A(n)) — R*, and P(A(n)) — P.

In Section 111-B, we provided a Lagrangian characterizatiolemma.
of the boundary surface 6% P). In particular, we characterize
a boundary point by a positive rate rewards vegigrand
that associated with this is a unique positive shadow power
price vectorA. We now present a simple iterative algorithm . . .
to compute for a given . and average power constraints ii) For any positiveA(0), there exists\ > A(0) for which
P. In the case when the fadings of the users are independent, PQ) < P .
this amounts to solving the nonlinear equations (20)Xan Proof: See Appendix C. 0
Theorem 3.16. Moreover, the iterative algorithm has a natural|gorithm 4.2 defines a mapping
adaptive implementation when the exact fading statistics are
not known. T: R —RrY

Throughout this subsection, we assume a vector of rate An) — Aln+1).
rewardsp and power constraint® to be given and fixed.
Let us defineR(\) and P(X) to be the rate and averageThe following properties ofl" are useful in the proof of
powers under the optimal power control associated with tAdeorem 4.3. The first follows directly from the uniqueness of

Lemma 4.4:

i) For any positiveA(0), there exists\ < A(0) for which
P\ > P.
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the solution of system (20) for given. The second follows  The iterative algorithm has the same monotonicity property
from Lemma 4.1. as other power-control algorithms in the literature (Hanly [11],
Yates [19]). In the references quoted, users directly control
. . . their access to the “available capacity” by updating their
i) The vegtor*of_ shadow prices™ corresponding to the yansmit powers. Monotonicity arises from the fact that if
point (P, R") is the unique fixed point ?T' ) a user increases power, this decreases the rates of all other
ii) The mapping? is order preserving, i.e) < A®) = users, causing them to increase power. This occurs because
T(AY) < T(A?). interference from other users is treated as pure noise in
these papers. In multiuser decoding, increasing power always
benefits other users, so we do not get monotonicity in terms
Lemma 4.6: of transmit power alone. Instead, users control access to the
i) If X(0) > T(A(0)) and we define “available capacity” through the power pricaAsNevertheless,
A(n) =T7(AN0)), n=0,1,2,-- monotonicity occurs itk-space, enabling very similar iterative
procedures to be applied.

Lemma 4.5:

The following lemma is also useful.

then A(n) is a decreasing sequence.
i) If A(0) < T(A(0)) thenA(n)
and A(n) T A% ]
iii) If A(0) > T(A(0)) then A(n) | A*. So far, we have formulated the problem of optimal resource
allocation in terms of the computation of the capacity region,
i.e., given average power constraints, what are the set of
of T. fchie\llat_)le re::es? This is trr]le stande_lrd inffo_rmation-.theo;]etic
. ; - ormulation. However, another question of interest is: what
ii) The order-preserving property ofl’ implies that ae the average powers needed to support a given ;

A(n))$2, is an increasing sequence. However, By Lemma 4; : . .
i(i) (ﬁ?e)zrr]goexists a poink fgr Wﬂich A(0) < A and P(y)‘) <p rates, and the associated optimal resource-allocation schemes?

By the order preserving propertk(n) < 77(A) ¥n, but since l’:] tltjrns t?lut that (;hstzre is at_cl(l)mflﬁzte ar;alogcilr:s solut|0nt to
P(X) < P, and part i) holds, it also follows th&™(A) is a at problem, and It essentiafly foflows from the symmetry

: : between rate and power.
decreasing sequence. Her@én))o2, is bounded, and must =~ _. : '
converge to the unique fixed poidt of 7. First, given target rate® let us define the seD(R) and

iii) Analogous to ii), but where we use Lemma 4.4 i) to guauj-tS boundary surface; it is the “power space equivalent” of

antee dower bound to the decreasing sequeridén))> ;. the capacity regioi€(P), and contains the set of all average
"=t power vectors that can suppakt

IS an increasing Sequence,, - AN Economic FRAMEWORK FOR RESOURCEALLOCATION

Proof:
i) The property follows from the order-preserving propert

Proof of Theorem 4.3.Lemma 4.4 guarantees the exis- Definition 5.1:
tence of pointaw(0) and z(0) with the following properties: « D(R) = {P: RecCP)

) w(0) < A0) < 2(0); » The boundary surface @?(R) is the set of those powers
i) Pw(0)) =2 P; such that we cannot decrease one component, and remain
i) P(z(0)) < P. in D(R) without increasing another.

Now definew(n) = T"(w(0)) and z(n) = T"(2(0)). It
follows from property ii) and Lemma 4.6 ii) that(n) T A*.
Similarly, it follows from property iii) and Lemma 4.6 iii)
that z(n) | X". Finally, it follows from property i) and the
order-preserving property & thatw(n) < A(n) < z(n). We
conclude that\(n) — A™.

Lemma 3.10 provides a Lagrangian characterization of the
interior points of the boundary surface 6(P). We take any
p € RY and the lemma shows that this specifies a unique
point on the boundary surface 6{P). In addition, there is
a uniqguex = A(P,u) associated with this point. We now
extend this characterization to the “dual” $etR"):

Algorithm 4.2 has all the users updatingn) simulta-
neously. However, convergence still occurs if users upda&
one at a time, or even asynchronously under certain we
conditions (Mitra [16]). An advantage of this is that the
users do not need to know the fading statistics.\Jf is
being updated, for example, then binary search can be used minA- P subjectto P € D(R"). (21)
to find the new value that achieveB;, for user i. This

iterative algorithm, together with the greedy power-allocatiopy, 5 given positive\, P is a solution to the above problem if
algorithm described in the last section, yields the following,q only if there exists a nonnegatiuec R, rate allocation
dynamic resource allocation scheme for maximizing the tmﬁ‘@)licy R(h), and power control policyP(h) such that for

rate revenue subject to average power constraints: at e%%ry joint fading staté, (R(k), P(h)) is a solution to the
fading state, the greedy algorithm computes the optimal r%ﬁtimization problem

and power allocation using the current power prices; at a
slower time scale, the power prices are adjusted to meet the maxp-r—A-p subjectto = e C,(h,p) (22)
average power constraints. (r.p)

Lemma 5.2: An average power vectdP lies in the interior

the boundary surface @(R") if and only if there exists a

sitive A € R such thatP is a solution to the optimization
roblem
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and as a set of “power prices.” To see this, consider problem (21),
EniR(HY = B E HYl— P P M and interpretA - P as the total price of the power vectdt.
m[Ri(H)] = R;, Eg[Pi(H)] =1, ¢= LM At any solution P, there is an associated shadow reward
Moreover, for a givenk and R*, P and 1 are unique. on the rates. Now if we seX = X", then by the uniqueness
Proof: The proof of this lemma is almost identical to thaPf the supporting hyperplane t6 at (R", P) we must have

of Lemma 3.10, as both follows from the convexity of the sépat # = p*. It follows that the shadow prices in the rate
maximization problem (12) are the power prices in the “dual”

S={(R,P):ReC(P)} ={(R,P): P D(R)}. (23) problem, and the shadow rewards in (21) are the rate rewards

. . - ) in (12).

Uniqueness can be proved in a similar manner as in Lemmawel therefore, consider the following economic framework

3.15. for resource allocation. We are given a vecjet of rate
Thus each point on the boundary B{R*) is that obtained rewards, and a vectdt” of power prices, and our aim is to find

by minimizing a total cosf - P while supporting the desired the optimal operating poirtR", P) such thatu* - R— A" P is

ratesR*. The greedy algorithm defined in Theorem 3.14 camaximized. Section IlI-B provides a greedy algorithm which

be used to compute the optimal power and rate allocation, fitains this optimal operating point.

a given shadow rewargt. To computep: for a given A and

target ratesR”, one can use the following iterative algorithm, v/|. AuxiLIARY CONSTRAINTS ON TRANSMITTED POWER

entirely analogous to Algorithm 4.2. . . .
y 9 g The constraints on the transmitter powers we have consid-

Algorithm 5.3: Let ¢£(0) be an initial arbitrary set of posi- ered so far are on their long-teraveragevalue, and under
tive shadow rewards for rates. Given thth iterateg(n), the power control, the transmitter power will vary depending on
n + 1th iteratep(n + 1) is given by the following: for each, the fading state. In practice, one often wants to have some
wi(n + 1) is the unique rate reward for thiégh user such that shorter term constraints on the transmitter power as well.
the rate of usei is R} under the optimal power control policy These constraints may be due to regulations, or as a way
when the rate rewards of the other users remain fixgda}. of imposing a limit on how much interference a mobile can
cause to adjacent cells. To model such auxiliary constraints,

Denote the rate byR(u(n)) and the average power by e consider the following feasible set of power controls:

P(u(n)) under the optimal power control policy. The promW
of the following theorem is entirely analogous to the proof ofr — (p . E4[P,(H)] < P, andP;(h) < B, Vi andh € H}
Theorem 4.3.

whereH is the set of all possible joint fading states of the
users. Thus in addition to the average power constraints, we
also have a constrairt; on the transmitter power of thih

user in every state. We will assume that for evErf’i > P

Theorem 5.4:Given desired rateR", let P be the optimum
average power corresponding to the pridesand letu* be
the appropriate shadow rewards. Then

win) — p*, n T oo Otherwise, the average power constraint becomes innocuous.
. _ We shall now concentrate on the problem of computing the
and henceR(p(n)) — R, and P(u(n)) — P. optimal power control subject to these constraints.

We have seen that given rate rewagdsand power con- e focus on the capacity region
strglntsP, there (_eX|sts a umquE VXhICh maX|m|z¢$~Rand cr(P, P) — U C;(P)
unique Lagrangian power price® . Similarly, given power P
prices A and target rateskR”®, there exists unique® which
minimizesA - P and unique Lagrangian rewargs. In fact, whereC;(P) can be interpreted as the set of achievable rates
one can also show that give®R*, P) on the boundary o6 under power controfP.

(defined in (23)), there exist uniqye*, A* such that In parallel to the case when there are only average power
- . N constraints, we will characterize this region in terms of the
(B",P) = arg wpest R-A"-P solution to a family of optimization problems over parallel
~ Gaussian channels. The proof of the following lemma is
i.e., there is a unique supporting hyperplané &t, P) to S. analogous to that of Lemma 3.10.
This fact allows us to give two economic interpretations to

poand A

Let us interpreg:; as the rate reward for usérThat is, user
i earnsu] R; if it sends with rateR;. The total revenue earned
in the channel is thep* - R. Lemma 3.10 shows that any
point R* on the interior of the boundary surface @fP) can
be obtained as a maximization of total revenue. The Iemmﬁlaxu 7 —X-p subject tor € C,(h,p) and p; < P Vi
shows that at the optimal solutid®™, a set of shadow prices - (24)
A" exist, in the sense that if we change the power constraint v
AP, then we change the revenue earnedbyA P. However,
it is clear from Lemma 5.2 that we can interppet directly Eg[R(H)] = R" Eg[P(H) =P

Lemma 6.1:A rate vector R* lies on the boundary of
cr(P, P) if and only if there exisi, A € R, rate-allocation
policy R(h) and power-control policyP(h) such that for
every joint fading statd, (R(h),P(h)) is a solution to the
optimization problem
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where P, is the constraint on the average power of user
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Algorithm 6.2:

Moreover, P is a power-control policy which can achieve the « |nitialization : Sety(® = 0. Setk = 0.

rate vectorR".

Consider the more general optimization problem over poly-

matroids with generalized symmetric rank functign

max gt - & — X - ¥ subject toz(S) < g(y(S))

« Step k: Pick ani; such thatl;, (™) > 0, v < a;,,
and ;, (y*) > I;(y®) for all j such thatyj(.k) < aj,.
If there is no suchi, then stop. If there is more than
one suchig, pick the largest one. By Fact 2, we know
that for eachj > i, there either exists a unique solution
v > yfk) to the equation

Ui Ypg Ui Ypr

where ¢;'s are given constants. Although there are expo- I (ygk) (k)) — I (ygk) (k))
J k) Tk k)

nentially large number of constraints, we will exploit the

polymatroid structure and given an efficient greedy optimiza- (where v; is in the ¢th position) or there is no such

tion algorithm.
Without loss of generality, let us assume that> ps >

solution, in which case we set = co. Also, by Fact 1,
let v be the unique solution to the equation

- > . By Lemma 3.2, for any vectoy, the maximum I, ( ) (k)) —0
value of 1 - z subject to the polymatroid constraints is given W \Y1 7l ) =
by if it exists, and letvg = co otherwise. We now set:
M i i1 (k1) {min{ai, v, minys; v}, i =1
Y; = : .,
Zmlg<zyk>—g<zyk>] yik, 1 # .
=1 k=1 k=1

Hence the optimization problem (25) is equivalent to
M-1 @ M
a i — Mi— s =
max ; (i — prim1)g <kz_:—l Zlk) + pag <kz_:—l Zlk)

subject to0 < 9; < a;.

Goto stepk + 1.

We note that at each step, we are always increasing the
component which leads to the largest rate of positive increase
of the objective function and which has not reached the peak
constraint. Thus the algorithm is a greedy one.

Theorem 6.3: Algorithm 6.2 terminates at an optimal point
for the problem (25), and the number of steps needed is at
most 2M.

We will now demonstrate that the optimal solution can be  pygof: See Appendix D. 0
obtained by a simple combinatorial greedy algorithm with

number of steps bounded B41.
Let us define

M—1 k
I(y) = Z (pr — Nk—l)g<z ym>

k=1 m=1
M
+Nl\4.g<2 ym,> _Ay
m=1
and let
oI M-1 k
Liy) = o9, W)= (= _Nk—1)9/<z ym>
K c=1 m=1
M
+ iy’ <Z ym> - A
m=1

We first observe two facts.

Fact 1. I;(y) is monotonically decreasing ig;.
Fact 2. For j > 14,

j—1 %

k=1 m=1

The optimal power-allocation problem with auxiliary con-
straints (24) can be expressed in terms of the received powers
= (h1p1, e hMpM)

lnaXZuﬂZ — Z Qz subject toR(S) < g(q(5))

(r.q)

A

b
VSCEandqiSFV'L

where
1 z

Thus Algorithm 6.2 can be used to solve this problem. It
should also be noted that as in the case without the auxiliary
power constraints, successive decoding can be used to achieve
an optimizing rate vector.

VIl. FREQUENCY-SELECTIVE FADING CHANNELS

In the previous sections we have analyzed a flat fading
model which is appropriate if the Nyquist sampling period
is large compared to the delay spread of the multipaths
in the received signal, so that the individual paths are not
resolvable in the sampled system. This is typically the case
with narrowband transmission. For wideband applications,
the multipaths can be resolved, and hence the channel has

so that the difference is independent gf and decreases memory. The appropriate model is the time-varying frequency-

monotonically withy; (by the concavity ofy).
Consider now the following algorithm.

selective fading channel. In this section, we will extend some
of our previous results to this model.
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We start with a continuous-time model. Suppdgeusers interpreted as the transmitter power that usallocates at
share a total bandwidth? centered around frequencfy, frequencyf. Let
corrupted by white additive Gaussian noise of spectral density
4. The average transmitter power of ugds constrained to "
be less than or equal tB;. At time ¢, the kth path transmitted 7 5
from theith user is attenuated by () and delayed by, (t) F= {7) : /i Pi(H)df <P Vt}
before being received at the base station. These quantities are :
time-varying due primarily to the motion of the transmitter but

also to the motion of other objects in the system. The basebass the set of all feasible power allocation policy. Then the

representation of the channel is given by capacity region of the channel is
M w PIRAGHI-HEHIE
y(t) = Z/xz(t — )i (1, 8) dr + 2(t) U R:R(S) < / log [ 14 22 5
i=1 PeF = 7

wherez;(-) is the transmitted signal of usérz(-) andy(-) are

the complex baseband noise and received signal, respectively, VS {1, M)} (26)
i.e., the actual noise and received signalegz(t) exp’2™/ot] B

and Re [y(t) exp??7/o?], respectively. The time-varying im-

pulse responsek;’s represent the fading effects where 5?2 = poW.
In [2], an explicit characterization of the region and the
hi(T,t) = Z (1) (T — (1)) optimal power allocations are obtained for the two-user case.
k We shall now give the solution in the general multiuser case,

omforin(t) . which follows almost directly from the results in Section III.
where i (t) = aii(t) exp Y. We assume that there iSthe ey observation is that the structure of this capacity

a boundl; on the largest delay of any path, so thatr,t) = 0 agion is in fact identical to that of the capacity region of

for 7 < 0 and7 > Tp. The parametefy is the multipath o fiat fading channel (Theorem 2.1), with the role of the

delay spread. fading stateh now played by frequency. Using the results

The fading of the channel stems from both the time variatiq} section 111 each point on the boundary of the capacity

of the attenuatiors;(t), due to path loss and shadowing efteion can be computed via an optimization problem over a

fects (slow fading), as well as the constructive and destructiyg; s parallel channels, one for each frequency. In complete
interference between the various paths (fast fading). The latigy.

g s alogy to Theorem 3.16, we have the following result.
typically occurs at a much faster time scale than the former.
We now sample the system at a Nyquist ratend get Theorem 7.1:Assume that for userand any constant, the
level set{ f : |H;(f)| = a} has Lebesgue measuweThen the

M ; ; ; :
boundary of the capacity region of the Gaussian multiaccess
Y(n) =Y Hi(kn)X(n—k)+Z(n) channel with 1SI is

=1 k
where N
. . {R (u):ueﬂ?f,z:m:l}
Y(n)=y(=), X(n)=z( ‘
(T>( (5 ) (T> where fori = 1,---, M
S\l — 7T n %)
Hi(k,n):/+hi T, ) dr R :/ AN d 27
m(E =) ( T) i (1) ; (OQH)m( i(z,A)) dz (27)
Note that the Nyquist ratd” is in general larger thany Where
because the the received signal is spread out due to the time- W W i i
varying channel. Al A =97 € { 2 ’?} "2tz |Hi(f)2
To begin analyzing the capacity region of this channel, when !
both the transmitters and the receiver can track the channel, L A +
let us first focus on the special case when the channel is > [max( 5 ;D 5 ]
time-invariant. In this case, the channel is given by iFi\om Tt  H ()

and m(-) is the Lebesgue measure of a set. The vecdior

M T .
Y(n) = Z ZHi(k)X(n — k) + Z(n). satisfies the eqol:atlons
; 1 _
=1k / / ~ df dz = P; (28)
- . . . o Jaen [Hi(f)I?
This is the Gaussian multiaccess channel with intersymbol . M

interference (ISl), and a characterization of the capacity regif)n_ "

has been obtained by Cheng and Vefd]. Let fIi(f) be the The rate vector on the boundary corresponding to a specific
Fourier transform of the channel. Ltbe a power-allocation 1+ can be achieved by successive decoding, with the users
policy such that for usei and frequencyf, P;(f) can be decoded in increasing order pf’'s. The corresponding power
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allocations to achieve that point are given by where
1 ¥ ,
P =g mUE € 000) s fe Az ). F= {79 E /; Pi(f, H(f,w) df| <P \ﬁ}
-w w1 ) 7 5
f€|:Ta?:|a i=1,--M andH(fw)= (Hi(f,w), -, Hy(f,w))

The interpretation of this power allocation is similar to that USing the techniques of Section I, each point on the
in the flat fading case. The variabierepresents the receivedP0undary of this capacity region can again be computed via an
interference caused by users’ signals, beyond the backgro@Rgmization problem over a set of parallel channels, this time
Gaussian noise. At frequengyand received interference levelone for each frequency and fading state,. This leads to
o2+ 7, useri transmits if it yields the maximum increase in théhe following generalization of Theorem 3.16 to the frequency
objective functiory-r—A-p, which is the case if € 4;(z,A). selective fading case.

Next we analyze the general situation when the channel istpoorem 7.2:For each frequency’ and transmitter, let

time-varying. Even for the case when only the receiver C8fle random variableﬁi(f, ) have continuous cdfy(f,-) and

track the channel, there is in general no clean characterizatmsityfi(ﬁ ). Also assume that the fading processes of users

of the capacity region of time-varying frequency-selectivsre independent of each other. The boundary of the region is
fading channels [15]. However, if we make the assumptio e parametrically defined surface

that the channel varies very slowly relative to the multipat
delay spread and that the time variations are random and *oN L M L
ergodic, then the capacity region for that case is given by [7] {R () i€ Ry Ei:m =1

% 2P1|Hi(f,w)|2 where fori = 1,---, M
R:R(S)S[E/ log | 1+5—F0— |df o W oo
S = [ st [
! o 2007 +2) | Jow et
1
VS c{l,---,M} HFk <f, TR )fi(f, R)dhdf % dz
ki Arl 2A, (02 +2)
where P; is the average power constraint of ugeFor each (29)

realizatiqn (time-slot), Hi_(~,w) is the frequepf:y reSponse, 1 are the vectod satisfies the equations

of useri’s channel at fading state. The intuition behind W

this result is that if the time variation is slow relative to theAm /7 /Oo 1

delay spread, the overall channel can be thought of as a set f —w 2,\7.(;,_2“) h

parallel time-invariant channels. The expectation is taken over i

all (joint) fading states. 1 -
How valid is this assumption in practice? We use here a HF" <f’ EYI Hk__;“>fi(f, hydhdf ¢ dz = B,

numerical example in [7]. Consider a typical mobile scenario e T 2T

where the vehicle is moving at 60 km/h and the carrier

frequency is 1 GHz. The time constant associated with the fast VIIL

fading effects due to constructive and destructive interference ) ) )
between paths is of the order of the time taken for the mobile N this paper, we have characterized the throughput capacity
to travel one wavelength at the transmitted frequency. In tHgion of the multiaccess fading channel with perfect channel
example, it is 0.018 s. Typical delay spread between path&te information at the receiver and the transmitters. Just as
range from10~7 to 1.5 x 10~° seconds [18]. Hence, the timethe solution to the corresponding single-user channel has the
variation due to fast fading is significantly slower than thwater-filling interpretation, our solution can be viewed as the
delay spread. This is even more so when the users are moviigltiuser analog of water filling with an arbitrary number
at a slower speed. Thus we see that the assumption is g@iteusers. The new mathematical ingredient is provided by
reasonable for typical wireless situations. the polymatroid structure of the problem, yielding a greedy

In analogy to Theorem 2.1, it can be shown that the capacptimal power allocation. The solution contains various steps,
region for this channel when all the transmitters and thghich we summarize in the following.

ki

i=1,---,M. (30)

C ONCLUSION

receivers can track the channel is given by « For each fading statk = (hy, - - -, hyy), define
. e | eshil
U {R.Rw) < El/l log (1 ¢ P)= {R: Y R < Llog <1+ Lics )
cF R ? . €S ¢
Yics PilS HUL w)IHi(f @) )
+ o2 if for everyS C {1,---,M}

VS c {1, M} where P = (P;,---,Py). This can be interpreted as
T the capacity region of ad/-user multiaccess Gaussian
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channel with noise variancg?, transmit powersP, and
fading state of the users fixed At

The fading stateh varies according to a stationary and
ergodic process. LeH be the random vector with the
stationary distribution of the fading state. The capacity
region of the fading channel when both the transmitters
and the receiver have perfect channel state information is

The valueu*(z) - 6q is therefore the marginal increase in
the value of the overall objective functign - r — A - p

by allocating powelbg to the user that will benefit most

at the interference levet? + . The procedure is thus
greedy Integrating over alk: gives the optimal rate and
power allocation, as well as the successive decoding order
to achieve the optimal solution. See Fig. 2 for an example.

shown to be (Theorem 2.1) e The optimal average powers and rates can be computed
C(P) = EylC,(H,P(H explicitly as a function of\. This gives a parameterization
(P) PLch 1[G (H))] of the boundary of the capacity regigi{P) in terms of
where P = (Py,---,Py) is the average power con- p andA (Theorem 3.16).

e For a givenyu, the value of A to meet the average
allocation policies satisfying the average power constraint power constraints can be computed by a simple iterative
N algorithm, which is provably convergent (Theorem 4.3).
F={P:Ex[Pi(H)| < F; Vi}. Taken together, these results provide simple solutions for
The regionE g [C,(H,P(H))] is the set of all rate vectors computing the throughput capacity region as well as a char-
which are the weighted average of rate vectors in eaahterization of the structure of the optimal resource-allocation
of the setsC,(h,P(h)), weighted according the fadingschemes to achieve the points on the boundary of the region.
distribution. The problem formulation considered in this paper suffers
The regionC(P) is convex. Every point on the boundaryfrom a drawback that delay is not considered; the Shannon
of C(P) is a solution to an optimization problem capacities are essentially long-term throughput in a time-
varying system, and the delay incurred depends on the rate
(31) of variations of the fading processes. In the sequel to this
paper, we will define a notion afielay-limited capacity for
for some nonnegatives (Lemma 3.10). the fading channel; these are the rates achievable with delay
The optimal solution to (31) can be solved by deconitdependenof how slow the fading processes are. We will see
position into a set of optimization problem over paralleihat polymatroid structure will again help us in characterizing
multiaccess channels, one for each fading shaleemma the delay-limited capacity region of the fading channel.
3.10)

I(na))(p, - — X - p subject tor € C,(h,p)
P

straints of the users anf is the set of all feasible power

TAX b R subject toR € C(P)

(32)
APPENDIX A

where X is the Lagrangian multiplier for the average PROOF OF THEOREM 2.1

power constraints. The optimal solution to (32) gives The proof of this theorem is straightforward other than the
a power allocatiorP(h) and a rate allocatioR(h) in  technicalities due to the continuous fading distributions.
fading stateh. If A is chosen such that the average por any power control policyP, we can reinterpret the
power constraints are satisfied (i.&n[P(H)] = P), channel as a unit transmit power channel with fadin; (k)
then R" = Ex[R(H)] is an optimal solution to (32).  for ysers. It follows from (3) that all rate vectors ig(P)
The optimization problem (32) has a simple greedy S@ye achievable.
lution, a_tlthough there are exponentially large number of Conversely, suppose raRis achievable. By this we mean
constraints (inM). (Theorem 3.14). Define that there exists a sequence of codes, indexedViywith
o(z) = %log (1 n ) code Cy of blocklength IV, and with probability of error
ey — 0. For codeCy, we index the messages of useby
_ {1,2,---,2%N1 and useri uses the uniform distribution to
select one of these messages, and transmits the corresponding
codeword. We denote the resulting random vectotXbyfor
1=1,2,---, M. Note that the codewords can be chosen as a
The optimal value for problem (32) is given by function of the states of the channel.
0 Let f(h) be the equilibrium probability density of being
/0 u*(z)dz. in fading stateh. Without loss of generality, assume that
. L . . . _the fading of all users is bounded hy For eachk, let
The optimal solution is achieved tsuccessive decodlngIk — {0, %’ %’ .-, 1}™ be a partition of the fading state space

and can be interpreted as follows. Think ef + ~ as M . o
the current “interference level” due to background nois » 1. For each cubic elemet of part_|t|on_Ik, let (&) b_e
t random subset dt,---, N] at which times the fading

and received powers of users not yet canceled. Start wh o : L
» =0, and at each allocate a marginaleceivedpower state H lies in E. Let Q(N) be uniformly distributed on
8Q) to the useri* with the largest positives; (). Stop [L,---,N]. Define

whenuw;(z) < 0 for all 7. The marginal increase in rate of
useri* is g. (z)- 8¢, decoding at interference levef + -.

z

2
M
2(02 4+ 2)

i i
. = .0 _ _ =
w;(2) = pig' (2) s >

w(z) [Iniax uz(z)}

VHE.N) = E[X}(Q(N))|QN) € S(B)].
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Let f(E) be the probability that a randodH lies in £. For Hence, the above derivation implies that the capacity region
any message from uséy there is a power constraint on theC(P) is bounded by
corresponding codeword. It follows that for eash (%)
U & ™
> VMEN)f(E)<E. PER

ECl Combining this with the achievability result, we have for every

For all cubic element# such thatf(E) # 0, V*(E, N) are  the following inner and outer bounds:

bounded sequences iN. Thus we must have the existence U CH(P) C U Cs(P) C C(P) C U C(k)(P)
of limiting V;*(E) such that there is convergence along a !

CF PCF PCFy
subsequence a& — oc. Further
As k —
VME)f(E) < P, 33 ~(k
k PEF PEF

We define h(E) to be the upper corner of’. Let H(n) Hence
be the fading at timen and define a new valu#(n) by

H(n) = h(E) it H(n) € E. Define c(Py=J ¢(P)
PEF
3 a4 and the proof is complete
Y(n) =3 Hin)Xi(n) + Z(n). P piete.
i=1
APPENDIX B
By Fano’s inequality, we have for any C {1,2,---,M} PROOF OF LEMMA 3.15

We first claim that there is an almost surely unique rate and
power allocation which maximizgs- R subject to the average
power constraints. (Almost surely with respect to the fading
distribution.) Suppose not, and IR PU)), j = 1,2, be

1
R(S) < NI[(Xi)iES§Y|(X7‘,)iESCaH] +en

whereey — 0 as N — oo. But

1 two such rate and power allocations. Defiffe, P) by
N [(Xz)z€S7Y|( Z)ZESC H] 1
= _(RW 2
= I[(X:(QN)))ies; Y (QINDI(Xi(Q(N)))iese, R=5(RY+RY)
H(Q(N )) Q(N)] p= %(7)(1) 1+ PR).
= > FEXA(QIV))ies: Y (QINNIX(QV))ies
Rl Note that this also achieves a point on the boundary of the
H(Q(N)),Q(N),Q(N) € S(E)] capacity region. By the concavity éég, (R, P) is feasible
< FEMIX(QINics; YV (QINN(Xi(QIV))icse . > Pi(h)hi
Ecly VS, vh, > Ri(h) < Glog [ 1+ e (35)
3 a
H(Q(N)),Q(N), Q(N) € 5(E)] ies
%2@ hi(E)V(E, N) For anyh, consider all subset$ for which there is equality
<> F(E)5log | 1+ = in (35). If there is a use¥ that is not in any such subset,
Eely then R;(h) can be increased without violating any constraint.

But this contradicts the fact that this rate allocation achieves a
Taking limits along the convergent subsequence, we obtairboundary point of the capacity regi@t{ P). Therefore, every
S hi(E)VH(E) user must be almost surely in a tight constraint, and hence, by
P AL the strict concavity ofog, P (H) = P (H) almost surely.
< Z f(E)§ log | 1+=——5— | (34)  Now we consider the issue of uniqueness of rate allocation
Eely policy. By Lemma 3.10, any rate-allocation poli®/(h) and

_ _ ~ power-allocation policy”(h) which maximizesy - R must
Let 7. be the set of all power controls which are piecewiseplve the optimization problem

constant on the cubic elements &f and satisfy the average

power constraint. Define ﬁhi i (36)

T
C_'J(ck)(p) ={R:R(S) for every fading statd:, for someA. The only possibility for
nonuniqueness oR (k) occurs if u; = p; for somed, 5, for

then we can reverse the decoding order: aind j without
) f(h)dh VS}

affecting the objective function. Howeveﬁ% > 2—7 or vice
g J

versg with probability 1, so with probabilityl, P;(h) = 0 or

5/ 110g< Z [khi1Pi(h
[0,1]M

1ES
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P;(h) = 0. Together with the fact that the power allocatiomrice, it is clear thatP; (A")) is infinite. With A = (¢, 0),
is unique, we can conclude that there is also a unique rate have a two user channel, witp = (u1,p02) and
allocation. A = (e,0). It is clear that hereP,(AY) < oo and
Now we show that the Lagrangian power pricasfor p,(A(®)) = 0. Note that by taking;; small we can ensure
maximizing - R subject to average power constraintghat p(A®) > P, and¢; < e. This becomes the inductive
must also be unigue. Without loss of generality, assume ”P%othesis: suppose that with(™ = (1,62, €m_1,0)
g1 < pz < oo < oy LetP be the unique optimal power- have,(A"™) > P,.¢; < cforall i = 1,2,---,m — 1.
allocation policy; it can be obtained by maximizipg r—X-p o~ SetAZ(m-l—l) —( v 0 )
) . . = (e1,€2, -+, em,0), and note that for any
subject tor € C,(h,p) for each fading state, for some choice Nt . .
. ¢m this gives a new channel wittn + 1 users. Provided
of A. We want to show that suchXamust also be unique. WeF > 0. we must have that
show by induction ork that A\, must be uniquely specified. ™ '
Let h be a fading state for whici; (k) > 0; in this fading H(,\<m+1>) > pi()\(m)) > P, i=1,2---,m—1.
state, user 1 must be decoded first (which means it is last in
the priority ordering). Then from the greedy power-allocatioBy choosinge,,, small we can ensure th&tm()\(m*l)) > P,
algorithm, we see that in this fading state, the total receivegid ¢,, < . Note thath+1()\(m+1)) = oo. By induction,

power must be that value af such thatu, (2) = 0, i.e., we terminate withA®) — (e1, €2, -, ear—1,0) for which
o PAMY > P ande; < foralli =1,2,---,M — 1, and

AL = M : Py (A™)) = oo. Again, by choosingey; small, andA =

2<a2 + lei(h)) (¢1,¢,---,ear), We can ensure that botfy, < Py(A) < oo

and Pp;—1 < Pp—1(X) < oco. This establishes part i) of the
Thus; is uniquely specified. Now assume that - - -, A\, are  lemma.

uniquely specified. Lek be a fading state whef@, ., (h) > 0. ii) One can construct such & in a manner analogous to
In this fading state, the total received power from usethat in part i).

k+1,k+2,---, M must be the value of such that

_ APPENDIX D
Up41(2) = MaX U; {2
n(z) i<k ) PROOF OF THEOREM 6.3
since only userd, -- -,k can be decoded before user- 1. We first show by induction ok the following claim.
Hence A;,1 must satisfy If ¢ is the component to be increased at skeghen for
i Aest all i # 4 1) if 4™ = a;, then L(y®) > L (y®); 2) if
" e 0 < y® < a, thenL(y®) = I, (y™) andi < iy; 3) if
2(02 + Pj(h)> 4 =0, then (™) < I, (y™).
JZktl For k = 0, only case 3) can occur so that the claim is

Hi

- max _ true by definition ofiy. Assume the claim is true at step

i<k ) k = m. The i,,th component is updated @:f*l), and all
2{ o +j>zk:+1 Pi(h) the other components remain unchanged. Fof i,,, 1) if

- (m+1) — g,, then by the inductive hypothesid;(y™) >

By the induction hypothesis\,, - - -, i, are uniquely specified I; (™) and by Fact 11;_ (y™) > L, (y*Y), so that we

T

and hence so islkﬂ. This completes the proof of uniquenesgaye 7,(y(m+V) > I, (ym+D); 2) if 0 < y§"'+1> < a;,
of the power price vectoA. then by the inductive hypothesid;(y™) = I, (¥™) and
1 < im,, SO that together with Fact 2, this implies that
APPENDIX C L™y = I (ymtD): 3) if ™ = 0, then by
PROOF OF LEMMA 4.4 the inductive hypothesis and the definition of the algorithm,
i) Without loss of generality, we assume Ly™ ) < L, (ym+D),
Consider now the three possibilities in which thgth
12 H2 2 2 component can be updated.
so that the decoding order i&/,M —1,---,1. Let ¢ > 0 i) Iim(?l(mf’l)) = 0: in this case, the algorithm termi-
be arbitrary. We define a sequence of power prices  Nates since by the above, all the other components
,\(1)7 )\(2)7 A and from these construct another vector of either rtfach the peak constraint (case 1)) or satisfies
pricesA. We shall show thaf satisfies the conditions of the Li(y™ ) = 0 (cases 2) and 3)).

i) Lty = I (y™m+D) for somej > i,,. In this

lemma. Form < M, we takeA™ to be power prices of a
" P P case,l;, . (¥ V) = I (ym*D) for somei,,qi

fictitious channel in which only users 2, - - - ,m are present.

. m—+1 .
Further, we extend the definition of the channel to allow the ~ such thatygmﬂ ) =0, and the claim holds for step
price of the power of the user decoded last to be zero, and ﬂ%njgrll)- _ .
the power allocated to that user to be infinite. WA = 0, it} v = a;,,: If there exists ani such that0 <

we consider a single user channel wjth= p; and A = 0; yi(m“) < a;, theni,, 1 will satisfy Iimﬂ(y(m'"l)) =

user 1 occupies the channel alone. With this reward and  I; (y‘*Y)) and the claim now holds for step+1. If
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no suchi exists but there is ansuch tha™ ™ =0, 2]

thens,,+1 will be chosen to satisfy; ., (y(™+Y) >
L(y™+Y) for all i such thay ™" = 0, and the claim (3]
again holds for stepn. + 1. Otherwise, the algorithm
terminates. Thus in all cases, either the algorithmy,
terminates or the claim holds for step + 1. This
proves the claim. 5]
We see from above that the algorithm terminates either via
case i) or case iii). In case iii), the final poigt satisfies 6]

Liy") 2 0, for yf =a; 7]
Iz(y*) =0, for 0 < yf < a;
Li(y") <0, for y7 = 0. [8]

In case iii),y* satisfiesy = a; and;(y*) > 0 for all <. Thus,
in either casey* satisfies the Kuhn—Tucker conditions and is[®!
an optimal point. [10]
We can also see from the above that if a component has
already been increased, the only situation when the algoritqm]
returns to that component is in case iii), when another compo-
nent has reached its peak value. This implies that the event of
the algorithm returning to some component that has alreagdy;
been increased can happen at mbkttimes, and hence the
algorithm must terminate after at maat/ steps. [13]
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