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Multiaccess Fading Channels–Part I:
Polymatroid Structure, Optimal Resource

Allocation and Throughput Capacities
David N. C. Tse,Member, IEEE, and Stephen V. Hanly,Member, IEEE

Abstract—In multiaccess wireless systems, dynamic allocation
of resources such as transmit power, bandwidths, and rates is
an important means to deal with the time-varying nature of the
environment. In this two-part paper, we consider the problem
of optimal resource allocation from an information-theoretic
point of view. We focus on the multiaccess fading channel with
Gaussian noise, and define two notions of capacity depending
on whether the traffic is delay-sensitive or not. In part I, we
characterize the throughput capacity regionwhich contains the
long-term achievable rates through the time-varying channel.
We show that each point on the boundary of the region can
be achieved by successive decoding. Moreover, the optimal rate
and power allocations in each fading state can be explicitly
obtained in a greedy manner. The solution can be viewed as
the generalization of the water-filling construction for single-user
channels to multiaccess channels with arbitrary number of users,
and exploits the underlying polymatroidstructure of the capacity
region. In part II, we characterize a delay-limitedcapacity region
and obtain analogous results.

Index Terms—Fading channels, multiaccess, multiuser water
filling, power control, successive cancellation.

I. INTRODUCTION

T HE mobile wireless environment provides several unique
challenges to reliable communication not found in wired

networks. One of the most important of these is the time-
varying nature of the channel. Due to effects such as multipath
fading, shadowing, and path losses, the strength of the channel
can fluctuate in the order of tens of decibels. A general
strategy to combat these detrimental effects is through the
dynamic allocation of resources based on the states of the
channels of the users. Such resources may include transmitter
power, allocated bandwidth, and bit rates. For example, in
the IS-95 CDMA (code-division multiple access) standard, the
transmitter powers of the mobiles are controlled such that the
received powers at the base station are the same for all mobiles.
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Thus a user has to be dynamically allocated more power when
its reception at the base station is weak. This is to combat the
so-callednear–far problem. Another example is the dynamic
channel allocation strategy which aims to adaptively find the
best frequencies to transmit at.

Most of the existing work on dynamic resource allocation
has been done with respect tospecificmultiple-access schemes,
such as CDMA, TDMA (time-division multiple access) and
FDMA (frequency-division multiple access). In this paper, we
address the problem at a more fundamental level: what are the
information theoretically optimal resource allocation schemes
and their achievable performance for multiple access? We
focus on the single-cell uplink scenario where a set of mobiles
communicate to the base station with a single receiver. Our
answers are in terms ofcapacity regionsof the multiaccess
fading channel with Gaussian noise, when both the receiver
and the transmitters can track the time-varying channel. To
this end, we consider two notions of capacity for the fading
channel.

The first is the classic notion of Shannon capacity directly
applied to the fading channel. In this definition, the channel
statistics are assumed to be fixed, and the codeword length
can be chosen arbitrarily long to average over the fading of
the channel. Thus to achieve these rates, users will experience
delay which depends on how fast the channel varies. We call
this the throughput capacityas it measures long-term rates,
averaged over the fading process.

In contrast, we also define a notion ofdelay-limitedcapacity
for fading channels: these are the rates achievable using
codeword lengths which areindependentof how fast the
channel varies. The former notion of capacity is relevant
for situations when the delay requirement of the users is
much longer than the time scale of the channel fading; it is
particularly appropriate for data applications in which delay is
not an issue, although it can also be relevant for delay-sensitive
traffic if the fading in the channel is sufficiently fast to give
tolerable delays. On the other hand, delay-limited capacity is
relevant when the delay requirement is shorter than the time
scale of channel variations so that one cannot average over the
fades and has to maintain the desired rate at all fading states.

We have obtained complete characterizations of these two
capacity regions as well as the optimal resource-allocation
schemes which attain the points on the boundary of these
regions. We compute the boundaries of the capacity regions,
and show that every point on the boundary is achievable by
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successive decoding, which means that a series of single-user
decodings is sufficient to achieve capacity. More precisely,
first one user is decoded, treating all other users as noise, then
its decoded signal is subtracted from the sum signal, then the
next user is decoded and subtracted, and so forth. Thus our
solution characterizes the optimal multiple-access schemes, as
well as the optimal power allocation. Given the state of the
channels, the optimal power allocation can be computed very
efficiently and explicitly usinggreedyalgorithms.

The optimal power allocations we obtain are solutions to
various optimization problems over the multiaccess Gaussian
capacity region. Since the number of constraints defining the
capacity region is exponential in the number of users, to obtain
simple solutions we need to exploit the specialpolymatroid
structure of the capacity region. Polymatroid structure has
been used successfully in many resource-allocation problems
to obtain greedy optimization algorithms (see, for example,
[5].) In this paper, we will show that the multiaccess Gaussian
capacity region in fact belongs to a special class ofgeneralized
symmetricpolymatroids, and we derive new greedy solutions
to various optimization problems for this class of polymatroids.

Goldsmith and Varaiya [8] addressed the problem of com-
puting the throughput capacity ofsingle- userfading channels
when both the transmitter and the receiver can track the
channel. The optimal power allocation is obtained via water-
filling over the fading states. Knopp and Humblet [14] have
solved the multiuser version of that problem for the special
case of symmetric users with equal rate requirements. (A
similar result was also presented later in [3].) Our results
on computing the entire throughput capacity region of the
multiaccess fading channel and the associated optimal power
allocation can be viewed as the analog of the classic water-
filling solution in the multiuser setting. In a related work,
Cheng and Verd́u [2] obtained an explicit characterization of
the capacity region of the two-user time-invariant multiaccess
Gaussian channel with intersymbol interference (ISI). We will
see that this channel is essentially the “frequency dual” of
the multiaccess flat-fading channel and our techniques for the
latter can be readily applied and provide a general solution to
the multiaccess ISI channel for anarbitrary number of users.
Moreover, our results extend to the frequency-selective fading
case in a straightforward manner.

The notion of delay-limited capacity was introduced in [12]
which obtained results in the symmetric case. The delay-
limited power-allocation schemes are similar in flavor to
those considered in the CDMA power control literature (see,
for example, [11] and [19]), where the goal is to maintain
a desired signal-to-noise ratio (SNR) atall fading states.
However, those works consider only decoding schemes where
a user is decoded treating other users as interference, which is
suboptimal from an information-theoretic point of view. Our
optimal schemes shed some light on the possible improvement
by using more complex decoding techniques.

Early work on power control in the Shannon-theoretic con-
text [9], [10] established structural results about the multiuser
Gaussian capacity region arising directly from its polymatroid
structure. These results provided additional motivation for the
present paper.

In Part I of this paper, we will characterize the throughput
capacity region and the optimal resource-allocation schemes,
while we will relegate the analysis of delay-limited capacities
to Part II. Part I is organized as follows. In Section II
we introduce the Gaussian, multiaccess, flat-fading model
and present a coding theorem for the throughput capacity
region when transmitters and receiver can track the channel.
This theorem implies that the extra benefit gained from the
transmitters tracking the channel is fully realized in the ability
to allocate transmitter power based on the channel state.
In Section III, we use Lagrangian techniques to show that
the optimal power allocation can be obtained by solving a
family of optimization problems over a set of parallel time-
invariant multiaccess Gaussian channels, one for each fading
state. Given the Lagrange multipliers (“power prices”) for the
average power constraints, the problem is that of finding the
optimal “rate” and “power” allocations as a function of each
fading state. Here, we exploit the polymatroid structure of
the optimization problem to obtain an explicit solution via a
greedy algorithm. In Section IV we provide a simple iterative
algorithm to compute the power prices for given average
power constraints. Together with the greedy power alloca-
tion, this yields an efficient algorithm for dynamic resource
allocation; moreover, it lends itself naturally to anadaptive
implementation when the fading statistics are not known. In
Section V, we show how the usual economic interpretation of
Lagrange multipliers has useful application in radio-resource
allocation. In particular, we exploit the symmetry between
rate and power to define a power minimization problem, dual
to that of maximizing Shannon capacity. In Section VI, we
will present greedy power allocation solutions when additional
power constraints are imposed. These results exploit further
properties of polymatroids. In Section VII, we extend our flat
fading model to the case of frequency-selective fading.

Due to the length of the paper, we provide a self-contained
summary of the main points of the solution at the end of the
paper, in Section VIII.

A word about notation: in this paper we will use boldface
letters to denote vector quantities.

II. THE MULTIACCESS FADING CHANNEL

A. Preliminaries

We focus on the uplink scenario where a set of users
communicate to a single receiver. Consider the discrete-time
multiple-access Gaussian channel

(1)

where is the number of users, and are the
transmitted waveform and the fading process of theth user,
respectively, and is white Gaussian noise with variance

. We assume that the fading processes for all users are
jointly stationary and ergodic, and the stationary distribution
has continuous density and is bounded. Useris also subject to
an average transmitter power constraint of. Note that in this
basic model, we consider fading effects which are frequency
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nonselective. Frequency-selective fading will be considered in
Section VII.

Consider first the simple situation where the users’ locations
are fixed and the signal of useris attenuated by a factor of

when received at the base station, i.e., for
all time . The characterization of the capacity region of the
multiaccess memoryless channel with probability transitions

is well known (Ahlswede [1], Liao [13]); it
is the set of all rate vectors satisfying

for some independent input distribution .
(In this paper, for any vector we use the notation
to denote .) Note that is any subset of users
in . The right-hand side of each of the above
inequalities is the mutual information between the output and
the inputs of users in , conditional on the inputs of users
not in . In the case of the Gaussian multiaccess channel, this
capacity region reduces to

for every (2)

where and Note
that this region is characterized by constraints, each
corresponding to a nonempty subset of users. The right-hand
side of each constraint is the joint mutual information per
unit time between the subset of the users and the receiver
conditional on knowing the transmitted symbols of the other
users, under (optimal) independent Gaussian distributed inputs.
It can also be interpreted as the maximum sum rate achievable
for the given subset of users, with the other users’ messages
already known at the receiver. Moreover, it is known that
the capacity region has precisely vertices in the positive
quadrant, each achievable by a successive decoding using one
of the possible orderings.

We now turn to the case of interest where the channels
are time-varying due to the motion of the users. When the
receiver can perfectly track the channel but the transmitters
have no such information, the codewords cannot be chosen as
a function of the state of the channel but the decoding can
make use of such information. For this scenario, the capacity
region is known (Gallager [7], Shamai and Wyner [17]) and
is given by

(3)

where is a random vector having the
stationary distribution of the joint fading process. A rigorous

proof of this result can be found in [17]. An intuitive under-
standing of this result can be obtained by viewing capacities in
terms of time averages of mutual information (Gallager [7]),
the rate of flow of which can be viewed as a random process
depending on the fading levels of the users. Specifically, at
time , the rate of flow of joint mutual information between
a subset of users and the receiver, conditional on the other
users’ messages being known, can be thought of as

(This assumes that the transmitted waveforms are independent
Gaussian processes with power.) Thus the amount of mutual
information averaged over a time interval is

As , this quantity converges to the right-hand side
of the constraint in (3) corresponding to the subset. This
is because of the ergodicity and stationarity of the fading
processes.

The multiaccess fading system above is reminiscent of a
queuing system with time-varying service rates, corresponding
to the instantaneous rates of flow of joint mutual information.
In this interpretation, the capacity can be viewed as the
throughput of such a queuing system, being the long-term
maximum average arrival rates (of mutual information) sus-
tainable by the system. Hence, we will also call this capacity
the throughput capacityof a fading channel. We will use
the terms capacity and throughput capacity interchangeably
in this paper, using the latter when we want to emphasize the
distinction from other notions of capacity that will be defined
in Part II.

B. The Capacity Region Under Dynamic Resource Allocation

We shall now focus on the scenario of interest in this paper,
where all the transmitters and the receiver know the current
state of the channels of every user. Thus the codewords and
the decoding scheme can both depend on the current state
of the channels. In practice, this knowledge is obtained from
the receiver measuring the channels and feeding back the
information to the transmitters. Implicit in this model is the
assumption that the channel varies much more slowly than
the data rate, so that the tracking of the channel variations
can be done accurately and the amount of bits required
for feedback is negligible compared to that required for
transmitting information. Whereas the transmitters send at
constant transmitter power when they do not know the current
state of the channel, dynamic power control can be done
in response to the changing channels when the transmitters
can track the channels. We are interested in characterizing
the capacity region in this scenario, with the side-information
of the current state of the channel available at both the
transmitters and the receiver. Again, we will call this the
throughput capacityregion.
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Fig. 1. A two-user throughput capacity region as a union of capacity regions,
each corresponding to a feasible power controlP . Note that each of these
regions is a pentagon. The boundary surface is the curved part.

A power-control policy is a mapping from the fading state
space to . Given a joint fading state
for the users, can be interpreted as the transmitter
power allocated to user. For a given power control policy ,
consider the set of rates given by

(4)

(the subscript denotesfading).
Comparing this with the capacity region (3), one can heuris-

tically think of as the set of achievable rates when
powers are dynamically allocated according to policy. The
following coding theorem substantiates such an interpretation.

Theorem 2.1:The throughput capacity region for the mul-
tiaccess fading Gaussian channel when all the transmitters as
well as the receiver have side-information of the current state
of the channel is given by

(5)

where is the set of all feasible power control policies
satisfying the average power constraint

Proof: See Appendix A.

The above theorem essentially says that the improvement
in capacity due to the transmitters having knowledge of the
channel state comes solely from the ability to allocate powers
according to the channel state. Also, note that since the
capacity region is convex, the above characterization implies
that time sharing is not required to achieve any point in the
capacity region. An example of a two-user capacity region is
shown in Fig. 1.

It is worth pointing out that as a result of power control,
codewords are random: since the power control depends on
the random fading process, so do the codewords themselves.
However, consider the multiuser, Gaussian channel with a
unit power constraint on each user, and in which the fading
level for user is . This channel has capacity region

. Consider then any rate in the interior of .
Given any positive , we can choose a codelength and a
codebook (nonrandom) such that the probability of error is less
than . But, as in the proof of Theorem 2.1, we can use this
codebook to construct the random codebook for the original
fading channel, with the same probability of error. Thus in the
original channel, we can use this nonrandom codebook, and
scale each symbol by the appropriate power control (dependent
on the realization of the fading) to get the random codeword
that is transmitted. The receiver can decode since it knows
the realization of the fading, and the nonrandom codebooks
of the users.

III. EXPLICIT CHARACTERIZATION OF THE CAPACITY REGION

In this section, we will obtain an explicit characterization
of the throughput capacity region (5) as well as the optimal
power and rate control policies, and also show that successive
decoding is always optimal to get all points on the boundary.
We do this by exploiting a special combinatorial structure of
the regions and .

A. Polymatroid Structure

We begin with a few definitions. As before, for a vector
, we shall use the shorthand notation to denote
.

Definition 3.1: Let and be
a set function. The polyhedron

(6)

is a polymatroid if the set function satisfies

1) (normalized).
2) if (nondecreasing).
3) (submodular).

The polyhedron

is a contra-polymatroidif satisfies

1) (normalized).
2) if (nondecreasing).
3) (supermodular).

If satisfies the three properties,is called arank function
in both cases.

Polymatroids were introduced by Edmonds [4] where he
proved the following key properties. If is a permutation on
the set , define the vector by
and

for .
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Lemma 3.2:Let be a polymatroid. Then is a
vertex of for every permutation . Also, any vertex
of strictly inside the positive orthant must be for
some . Moreover, if is a given vector in , then a solution
of the optimization problem

subject to (7)

is attained at a point , where the is any permutation
such that . Conversely, suppose
is a set function and is the polyhedron defined in (6).
Then if for every permutation , then is
a polymatroid.

Note that is a polyhedron characterized by an ex-
ponentially large number of constraints (in ). The above
lemma says that the polymatroid structure of allows the
linear program (7) to be solved efficiently, in fact in time

. One can in fact re-interpret the solution of the
linear program as that obtained from the followinggreedy
algorithm:

• Initialization : Set for all . Set .
• Step : Increase the value of until a constraint

becomes tight. Goto Step .
• After steps, the optimal solution is reached.

It can be shown, by the properties of, that at step ,
the constraint that becomes tight is the one that corresponds
to the subset . Thus this algorithm yields
the solution in Lemma 3.2. It is said to be greedy since it
is always moving in the direction of steepest ascent of the
objective function while staying inside the feasible region.
More importantly, after increasing a component of the vector,
the algorithm never revisits it again. Thus only steps are
required. We will see that the solutions to all the optimization
problems in this paper have this greedy character.

There is an analogous lemma for contra-polymatroids.

Lemma 3.3:Let be a contra-polymatroid. Then the
points where is a permutation on are precisely the
vertices of . Moreover, if is a given vector in , then
a solution of the optimization problem

subject to (8)

is attained at a point where is any permutation such
that . Conversely, if is a set function
and for every permutation , then is a
contra-polymatroid.

Now consider a discrete memoryless multiaccess channel
with transition matrix . A similar version of
the following result was obtained in [10].

Lemma 3.4: For any independent distribution
on the inputs, the polyhedron

(9)

is a polymatroid.

Proof: One can directly verify the submodularity of the
mutual information function. A shorter proof is as follows. Let

be a permutation on and consider the rate vector
defined by

These are the capacities achieved by successive decoding in
the order given by , and hence the rate vector lies in
the region (9). Since this is true for every, by Lemma 3.2,
the polyhedron (9) is a polymatroid.

Corollary 3.5: The capacity region of a memory-
less Gaussian multiaccess channel is a polymatroid.

Lemma 3.6:Let be any power control policy. Then
defined in (4) is a polymatroid.

Proof: By direct verification.

The following structural result shows that the region
can be written as a weighted sum of the capacity regions of
parallel time-invariant Gaussian channels .

Definition 3.7: A rate allocation policy is a mapping
from the set of joint fading states to ; for each fading
state can be interpreted as the rate allocated to user

while the users are in state.

Lemma 3.8:For any power control policy

is a rate allocation policy s.t.

(10)

Furthermore, for any permutation on

(11)

where is the vertex of corresponding to the
permutation , and for each state, is the vertex of

corresponding to permutation.
Proof: Define

is a rate allocation policy s.t.

By definition, we have that . But by Lemma
3.6, is a polymatroid, and hence is the convex hull
of successive decoding points , where ranges over all
permutations of , and

But for any , , and hence every extreme point
of lies in . By the convexity of , it follows that

. This also establishes the second part of the lemma.
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B. A Lagrangian Characterization of the Capacity Region

We shall now make use of the polymatroid structure of
and to explicitly characterize the throughput

capacity region of the multiaccess fading channel and
the optimal power control policies, under an average power
constraint .

We focus on characterizing the boundary of the region ,
as given in the following definition.

Definition 3.9: The boundary surface of is the set of
those rates such that no component can be increased with the
other components remaining fixed, while remaining in .

For example, the boundary surface of the Gaussian capacity
region without fading is simply the points where the constraint
for the entire set of users is tight. The points on the boundary
surface are in some sense the optimal operating points because
any other point in the capacity region is dominated component-
wise by some point on the boundary surface. In the two-user
example in Fig. 1, the boundary surface is the curved part.

The following lemma shows that the computation of the
boundary of the region and the associated optimal
power control policy can be reduced to solving a family
of optimization problems over a set of parallel multiaccess
Gaussian channels.

Lemma 3.10:The boundary surface of is the closure
of all points such that is a solution to the optimization
problem

subject to (12)

for some positive . For a given , is a solution to
the above problem if and only if there exists a , rate
allocation policy , and power control policy such
that for every joint fading state, is a solution
to the optimization problem

subject to (13)

and

where is the constraint on the average power of user.
Proof: The first statement follows from the convexity of

the capacity region.
Now consider the set

By the concavity of the log function, it can readily be verified
that is a convex set. Thus there exist Lagrange multipliers

such that is a solution to the optimization problem

(14)

Now

and hence we can rewrite (14) as an optimization over the set
of power control laws

subject to (15)

Let be the permutation corresponding to a decreasing or-
dering of the components of the vector. By the polymatroid
structure of , for any given power control , is
maximized at

(16)

Hence, the optimization problem (15) is equivalent to

(17)

and this is, in turn, equivalent to

for every fading state . But this latter problem is also
equivalent to

subject to

because of the fact that is a polymatroid.
This completes the proof.

One can interpret as a vector of rate rewards, prioritizing
the users. A point on the boundary for a given is a rate
vector which maximizes over the capacity region .
As varies, we get all points on the boundary of the convex
capacity region. The vector can be interpreted as a set of
power prices; for a given , is chosen such that the average
power constraints are satisfied.

It follows immediately from (16) that an optimal solution
will be a successive decoding solution. Lemma 3.8 then shows
that the optimal solution will be such that

is a corner point of for every , with the
same ordering for each . However,a priori, the optimizing

for a given may not be unique. We will see though that
the continuity of the stationary density of the fading processes
implies that it will be unique.
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C. Optimal Power and Rate Allocation

We now consider the problem of determining
for each fading state . Note that Lemma 3.10 can

be viewed as a multiaccess generalization of the Lagrangian
formulation for the problem of allocating powers over a set
of parallel single-user Gaussian channels [6]. The solution to
the optimization problem in the single user setting is given
by the classic water-filling construction. Here we will provide
a solution in the multiaccess setting. Again we make use of
the polymatroid structure and the solution will have a greedy
flavor.

To get some intuition about what the solution may look like,
let us first reinterpret the classic water-filling solution for the
single-user case. The solution in that setting is to solve, for
each fading state , the optimization problem

subject to

where we have formulated the problem in terms of thereceived
power . Equivalently, the problem is

Here, is the Lagrange multiplier (power price) chosen such
that the average power constraintis satisfied. We can write

The integral representation can be given arate splitting inter-
pretation, where the single user can be visualized as being split
into many low-rate virtual users, each with received power.
The total rate is achieved by successive cancellation among
these virtual users, with the rate achieved by the virtual user
decoded as interference level to be

The optimization problem can be recast in the integral form

Let us define

and interpret as themarginal utility (rate revenue
minus power cost) of adding a virtual user at interference
level . The optimal solution can be described by adding
more virtual users until the marginal utility of adding any
further virtual users is negative. In particular, if ,
then nothing is transmitted at all.

Of course, the resulting optimal received power is the
same as that of the water-filling solution, and this seems like
a rather convoluted way of presenting the solution. However,
the interpretation of the single-user solution suggests a natural
conjecture for the optimal solution for the multiuser optimiza-
tion problem (13). Define the marginal utility function for user

to be

where can be interpreted as the marginal increase in
the value of the overall objective function due to
adding a low-rate virtual user of received powerto user at
interference level . Starting at , the optimal solution
is obtained by choosing at each interference level , to add
a virtual user which will lead to the largest positive marginal
increase in the objective function. Here, the choice is whether
to add such a virtual user, and if so, to which (physical) user.
The interference level is the total received power of all
virtual users already added, plus the backgraound noise. The
decoding is done by successive cancellation in reverse order
of the virtual users added to the algorithm. See Fig. 2 for a
three-user example.

We see that the proposed solution has a greedy flavor.
To prove that this indeed solves the optimization problem
(13), we have to identify further polynomial structure in the
time-invariant multiaccess Gaussian capacity region .
Solving this problem in turn leads us to a new result in
polynomial theory.

Definition 3.11 (see [5]):The rank function of a poly-
matroid is generalized symmetricif there exists a vector

and a nondecreasing concave functionsuch that
for every .

It can be readily verified that such ansatisfies the three
properties of a rank function. We state the following easily
proven result.

Lemma 3.12:Let be a nondecreasing concave function
and for each , define the generalized symmetric rank function

. For all vectors , the set
is a contra-polymatroid.

Applying this to the capacity region , we get the
following “dual” polymatroid structure.

Corollary 3.13: For a given average transmitter power con-
straint and fixed , the capacity region is a polyma-
troid with generalized symmetric rank function. On the other
hand, for a given rate vector, the set ofreceived powersthat
can support

s.t.

is a contra-polymatroid.

We wish to solve (13), and note that by Corollary 3.13,
it is sufficient to consider the more general problem stated
in Theorem 3.14, in terms of a polymatroid with generalized
symmetric rank function. The following is a new result.

Theorem 3.14:Consider the problem

subject to

where is a monotonically increasing concave function.
Define the marginalutility functions

(Here, .)
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Fig. 2. A three-user example illustrating the greedy power allocation. Thex-axis represents the received interference level andy-axis the marginal utility
of each user at the interference levels. At each interference level, the (physical) user who is selected to transmit is the one with the highest marginal utility.
Here, user 1 gets decoded after user 2, and user 3 gets no power at all. The optimal received powers for user 1 and user 2 areq

�

1
andq�

2
, respectively.

Then the solution to the above problem is given by
and an optimizing point to achieve

this can be found by a greedy algorithm.
Proof: Let be the optimal value for the above prob-

lem. For any fixed , the set of feasible forms a polymatroid,
and by Lemma 3.2, the value must be attained at a point
satisfying

for some permutation . Hence

We now show that this upper bound can actually be attained.
First, note that by the concavity of, the function is mono-
tonically decreasing. If , then and attained
at . If , then let
where is the smallest for which (if there is no
such point, ), and such that in the interval ,

for some , . Hence, at ,
intersects . Now, since is monotone, two curves

and can intersect at most once. Thus the’s are distinct.
Pick the point

else

else.

It can be directly verified that

and that is a vertex of the polymatroid with rank function
. Thus the upper bound is attained at .

Observe that the solution can be obtained via a greedy
algorithm. Starting with , the component that
gets selected to be increased is the one which leads to the
steepest ascent of the objective function. When none of the
components leads to an increase in the objective function, the
optimal solution is reached. Moreover, the algorithm never
revisits a component after finishing increasing it.

Specializing this result to the case of the time-invariant
Gaussian channel gives exactly the proposed solution to the
optimization problem (13) discussed earlier. The functionis
taken to be

In terms of the received powers , the
optimization problem can be rewritten as

subject to
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Moreover, it shows that the optimal solution is achieved
by successive decoding among theactual users. Any such
solution can be represented by a permutationand a set of
intervals of the real line such that

is the received power of user , and users
are decoded in the order given by .
The value is the total received power of the interfering
users when user is decoded. Thus user is decoded
at a total interference level of . One can also think of
a solution as the choice of which (if any) user to transmit at
every interference level . Refer again to
Fig. 2 for an example. Note that in the optimal solution, some
users may be allocated zero powers (and hence zero rates),
although the priority order (the reverse of the decoding order)
of the transmitting users is always in increasing order of the
rate rewards ’s.

At a given fading state , the optimal rate and power
allocated are not unique only when the utility functions of
two users coincide, i.e., and for some .
But since the users have a joint fading distribution with a
continuous density, this will only happen on a set of fading
states with probability . Thus with probability , the optimal
power and rate allocation is unique and is explicitly given by

where

and

The proof of Theorem 3.14 illustrates the fact that the
optimal point will be a corner point for every fading state,
although this also follows directly from Lemmas 3.8 and 3.10.

D. Boundary of the Capacity Region

We now combine the Lagrangian formulation given in
Lemma 3.10 and the optimal power and rate allocation so-
lution to give a characterization of the capacity region ,
parameterized by the rate rewards. First, we present the
following lemma, which allows us to have a well-defined
parameterization of the boundary of the capacity region by
the rate rewards .

Lemma 3.15:Let be a given positive rate reward vector.
Then there is a unique on the boundary which maximizes

, and there is a unique Lagrangian power pricesuch that
the optimal power allocation solving (13) satisfies the average
power constraints.

Proof: See Appendix B.

In the two-user example shown in Fig. 1, this means that
every line of negative slope has a unique point of tangency at
the curved boundary. In particular, there is no linear part on
this boundary. This is in contrast to the (nonfading) Gaussian
multiaccess capacity region, where the boundary is a line with
slope (in the two-user case). Thus even when , the
optimal is unique. This is true because when the fading
distributions have continuous density, the optimal rate and
power allocations are unique with probabilityeven when

, as explained at the end of Section III-C. Every point
on the boundary surface is a corner point of some pentagon

, which is the capacity region for a particular power
control policy . The point corresponding to is a
corner point of a degenerate pentagon, i.e., a rectangle. Why
this is so will be explained later in this subsection.

It should also be noted that the uniqueness result above
only holds for positive . If some of the rewards ’s equal ,
the which maximizes may not be unique. However,
it is clear that one can get arbitrarily close to these points
(the extreme points of the boundary surface) by letting some
of the rewards go to zero. Thus it suffices to focus on the
strictly positive reward vectors for a parameterization of the
boundary surface. We will give a more explicit interpretation
of these extreme points in Section III-E.

For any such positive , the above lemma implies that we
can define a parameterization which is the unique rate
vector on the boundary which maximizes . Its value
can be obtained using the greedy rate and power allocation
solution, with chosen such that the average power constraints
are satisfied. In the common case when the fading processes
of the users are independent of each other, has a
particularly simple form.

For the given and , let and be
the optimal solution to the problem (13). Since the stationary
distributions of the fading processes have a continuous density,

for all . We observe that the choice
of which user to transmit at each interference levelonly
depends on the values of the marginal utility functions of the
users at . Thus the average rate and power of each user can be
computed first at each interference leveland then integrated
over all . Thus

and

and

and

(18)

where and are the cdf and pdf of the stationary distribu-
tion of the fading process for user, respectively.
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Combining this with Lemmas 3.10 and 3.15, we have the
following characterization of the throughput capacity region

. Note that since and are invariant under scalings
of the vectors and , we can normalize such that .

Theorem 3.16:Assume that the fading processes of users
are independent of each other. The boundary of is the
closure of the parametrically defined surface

where for

(19)

where the vector is the unique solution of the equations

(20)

. Moreover, every point can be attained by
successive decoding.

Note that due to the special structure of the optimal power
control policy, the various expectation terms have been re-
duced from -dimensional integrals to two-dimensional in-
tegrals. For a given , it should therefore be possible to
compute numerically with low complexity. We shall present
an algorithm to do this in Section IV, but first let us examine
several special cases of Theorem 3.16.

1) Single-User Channel: When , the above result
reduces to characterizing the capacity of the power-controlled
single-user time-varying channel

by reversing the order of integration. Using (20), the constant
is shown to satisfy the power constraint

This is just the classic water-filling solution to the problem of
power allocation over a set of parallel single-user channels, one
for each fading level . This result was obtained by Goldsmith
and Varaiya [8] in the context of the single-user time-varying
fading channel. The strategy has the characteristic that more

power is used when the channel is good and little or even no
power when it is bad.

2) Maximum Sum-Rate Point: If we set
, we get the point on the boundary of the capacity region that

maximizes the sum of the rates of the individual users. For
this case, the marginal utility functions ’s are given by

We note that for a given fading state, the marginal utility
function of the user with the smallest dominates all the
others for all . This means that in the optimal strategy, at most
one user is allowed to transmit at any given fading state. The
optimal power control strategy can be readily calculated
to be

if for all
else.

The optimal rates are given by

where the constants ’s satisfy

This solution was recently obtained by Knopp and Humblet
[14]. Note that this power control gives rise to a time-division
multiple-access strategy. This explains why in the two-user
example of Fig. 1, the point on the boundary corresponding to

is in fact the corner point of a rectangular .
3) Multiple Classes of Users: While the above strategy

maximizes the total throughput of the system, it can be unfair if
the fading processes of the users have very different statistics.
For example, some of the users may be far away from the
base station; they will get lower rates through since their
channel is worse that that of the nearby users a lot of the
time (there are, of course, still other sources of fluctuations
of the channels, such as fading at a faster time scale due to
multipaths). One way of remedying this situation is to assign
unequal rate rewards to users. Let us consider an example
where there are two classes of users. Users in the same class
have the same fading statistics and power constraints; the first
class can represent users at the cell boundary, while the other
class consists of users close to the base station. To maintain
equal rates for everyone, we can assign rate rewardsto all
users in class 1, and to users in class 2, with .
By symmetry, the power prices of users in the same class are
the same. We observe that at any fading state, the marginal
utility function of the user with the best channel within each
class dominates those of other users in the same class. Thus
the optimal strategy has the form that at each fading state,
only the strongest user in each class transmits, and the two
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users are decoded by successive cancellation, with the nearby
user decoded first. This gives an advantage to the user far
away. Adjusting the rate rewards can be thought of as a way
to maintain fairer allocation of resources to the users. We
consider this issue further in Section V.

Note that in the first two examples, the optimal power
control strategy has the special characteristic that the power
allocated at each fading state depends only on and
the Lagrange multipliers. For the general case, the allocated
power depends on one additional variablerepresenting the
interference level.

E. Extreme Points of the Boundary Surface

In the previous subsection, we parameterize the boundary
of the capacity region by positive reward vectors. By letting
some of the rate rewards approach, one can get arbitrarily
close to the extreme points. We can also give an explicit
characterization of the extreme points as follows.

Suppose is a set of subsets of with
the property that all subsets in are nested. By this we mean
that if then or . Then it is
possible to insist that all users in a subset inare decoded,
and canceled, before any user in the complementary subset
is decoded, forevery fading state . With positive vectors
and , we can define the decoding order in each subset, just
as before, except that now there is absolute priority given to
each subset of users in over its complement. The extreme
points of the boundary surface of are characterized in
exactly this way: by a positive pair, together with a set
of nested subsets of users.

For example, in the two-user case, as , the optimal
power allocation and the resulting rate for user 1 approaches
that for the single-user fading channel with only user 1 present,
i.e., a water-pouring solution. This is the point in Fig. 1,
with user 1 achieving rate . User 2 is always decoded before
user 1 in every fading state, and the optimal power control for
user 2 is also water-pouring, but regarding the sum of the
interference created by user 1 and the background noise as the
time-varying noise power. Thus we get to an extreme point
of the boundary.

IV. A N ITERATIVE ALGORITHM FOR RESOURCEALLOCATION

In Section III-B, we provided a Lagrangian characterization
of the boundary surface of . In particular, we characterize
a boundary point by a positive rate rewards vector, and
that associated with this is a unique positive shadow power
price vector . We now present a simple iterative algorithm
to compute for a given and average power constraints

. In the case when the fadings of the users are independent,
this amounts to solving the nonlinear equations (20) forin
Theorem 3.16. Moreover, the iterative algorithm has a natural
adaptive implementation when the exact fading statistics are
not known.

Throughout this subsection, we assume a vector of rate
rewards and power constraints to be given and fixed.
Let us define and to be the rate and average
powers under the optimal power control associated with the

prices . We first present the following monotonicity
lemma, which can be verified directly from the greedy power
allocation algorithm.

Lemma 4.1:For all , if the th component of is increased
and the other components are held fixed, decreases while

increases for . More generally, for any subset, if
we increase for all , and hold the remaining fixed,
then average powers of users in will increase.

Given average power , let be the optimum rate
corresponding to the rewards, and let be the shadow
power prices. Algorithm 4.2 below generates a sequence
from any starting point that converges to .

Algorithm 4.2: Let be an initial arbitrary set of posi-
tive power prices. Given theth iterate , the th iterate

is given by the following: for each, is the
unique power price for theth user such that the average power
of user is under the optimal power control policy when
the power prices of the other users remain fixed at . (The
uniqueness follows from the monotonicity property above.)

In terms of (20) for the case when the fading is independent,
is the unique root of the equation

which can be solved by binary search if the statistics of
the fading are known. Otherwise, one can update the power
prices by directly measuring the change in the average power
consumption.

Theorem 4.3:Given average power , let be the opti-
mum rate corresponding to the rewards, and let be the
shadow prices at the point . Then

and hence , and .

To prove this theorem, we first consider the following
lemma.

Lemma 4.4:

i) For any positive , there exists for which
.

ii) For any positive , there exists for which
.

Proof: See Appendix C.

Algorithm 4.2 defines a mapping

The following properties of are useful in the proof of
Theorem 4.3. The first follows directly from the uniqueness of
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the solution of system (20) for given. The second follows
from Lemma 4.1.

Lemma 4.5:

i) The vector of shadow prices corresponding to the
point is the unique fixed point of .

ii) The mapping is order preserving, i.e.,
.

The following lemma is also useful.

Lemma 4.6:

i) If and we define

then is a decreasing sequence.
ii) If then is an increasing sequence,

and .
iii) If then .

Proof:
i) The property follows from the order-preserving property

of .
ii) The order-preserving property of implies that

is an increasing sequence. However, By Lemma 4.4
ii), there exists a point for which and .
By the order preserving property, , but since

, and part i) holds, it also follows that is a
decreasing sequence. Hence is bounded, and must
converge to the unique fixed point of .

iii) Analogous to ii), but where we use Lemma 4.4 i) to guar-
antee alower bound to the decreasing sequence .

Proof of Theorem 4.3:Lemma 4.4 guarantees the exis-
tence of points and with the following properties:

i) ;
ii) ;

iii) .

Now define and . It
follows from property ii) and Lemma 4.6 ii) that .
Similarly, it follows from property iii) and Lemma 4.6 iii)
that . Finally, it follows from property i) and the
order-preserving property of that . We
conclude that .

Algorithm 4.2 has all the users updating simulta-
neously. However, convergence still occurs if users update
one at a time, or even asynchronously under certain weak
conditions (Mitra [16]). An advantage of this is that then
users do not need to know the fading statistics. If is
being updated, for example, then binary search can be used
to find the new value that achieves for user . This
iterative algorithm, together with the greedy power-allocation
algorithm described in the last section, yields the following
dynamic resource allocation scheme for maximizing the total
rate revenue subject to average power constraints: at each
fading state, the greedy algorithm computes the optimal rate
and power allocation using the current power prices; at a
slower time scale, the power prices are adjusted to meet the
average power constraints.

The iterative algorithm has the same monotonicity property
as other power-control algorithms in the literature (Hanly [11],
Yates [19]). In the references quoted, users directly control
their access to the “available capacity” by updating their
transmit powers. Monotonicity arises from the fact that if
a user increases power, this decreases the rates of all other
users, causing them to increase power. This occurs because
interference from other users is treated as pure noise in
these papers. In multiuser decoding, increasing power always
benefits other users, so we do not get monotonicity in terms
of transmit power alone. Instead, users control access to the
“available capacity” through the power prices. Nevertheless,
monotonicity occurs in -space, enabling very similar iterative
procedures to be applied.

V. AN ECONOMIC FRAMEWORK FOR RESOURCEALLOCATION

So far, we have formulated the problem of optimal resource
allocation in terms of the computation of the capacity region,
i.e., given average power constraints, what are the set of
achievable rates? This is the standard information-theoretic
formulation. However, another question of interest is: what
are the average powers needed to support a given set oftarget
rates, and the associated optimal resource-allocation schemes?
It turns out that there is a complete analogous solution to
that problem, and it essentially follows from the symmetry
between rate and power.

First, given target rates let us define the set and
its boundary surface; it is the “power space equivalent” of
the capacity region , and contains the set of all average
power vectors that can support.

Definition 5.1:

•
• The boundary surface of is the set of those powers

such that we cannot decrease one component, and remain
in without increasing another.

Lemma 3.10 provides a Lagrangian characterization of the
interior points of the boundary surface of . We take any

and the lemma shows that this specifies a unique
point on the boundary surface of . In addition, there is
a unique associated with this point. We now
extend this characterization to the “dual” set :

Lemma 5.2:An average power vector lies in the interior
of the boundary surface of if and only if there exists a
positive such that is a solution to the optimization
problem

subject to (21)

For a given positive , is a solution to the above problem if
and only if there exists a nonnegative , rate allocation
policy , and power control policy such that for
every joint fading state , is a solution to the
optimization problem

subject to (22)
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and

Moreover, for a given and and are unique.
Proof: The proof of this lemma is almost identical to that

of Lemma 3.10, as both follows from the convexity of the set

(23)

Uniqueness can be proved in a similar manner as in Lemma
3.15.

Thus each point on the boundary of is that obtained
by minimizing a total cost while supporting the desired
rates . The greedy algorithm defined in Theorem 3.14 can
be used to compute the optimal power and rate allocation, for
a given shadow reward . To compute for a given and
target rates , one can use the following iterative algorithm,
entirely analogous to Algorithm 4.2.

Algorithm 5.3: Let be an initial arbitrary set of posi-
tive shadow rewards for rates. Given theth iterate , the

th iterate is given by the following: for each,
is the unique rate reward for theth user such that

the rate of user is under the optimal power control policy
when the rate rewards of the other users remain fixed at.

Denote the rate by and the average power by
under the optimal power control policy. The proof

of the following theorem is entirely analogous to the proof of
Theorem 4.3.

Theorem 5.4:Given desired rates , let be the optimum
average power corresponding to the prices, and let be
the appropriate shadow rewards. Then

and hence , and .

We have seen that given rate rewardsand power con-
straints , there exists a unique which maximizes and
unique Lagrangian power prices . Similarly, given power
prices and target rates , there exists unique which
minimizes and unique Lagrangian rewards . In fact,
one can also show that given on the boundary of
(defined in (23)), there exist unique such that

i.e., there is a unique supporting hyperplane at to .
This fact allows us to give two economic interpretations to

and .
Let us interpret as the rate reward for user. That is, user

earns if it sends with rate . The total revenue earned
in the channel is then . Lemma 3.10 shows that any
point on the interior of the boundary surface of can
be obtained as a maximization of total revenue. The lemma
shows that at the optimal solution , a set of shadow prices

exist, in the sense that if we change the power constraint by
, then we change the revenue earned by . However,

it is clear from Lemma 5.2 that we can interpret directly

as a set of “power prices.” To see this, consider problem (21),
and interpret as the total price of the power vector.
At any solution , there is an associated shadow reward
on the rates. Now if we set , then by the uniqueness
of the supporting hyperplane to at we must have
that . It follows that the shadow prices in the rate
maximization problem (12) are the power prices in the “dual”
problem, and the shadow rewards in (21) are the rate rewards
in (12).

We, therefore, consider the following economic framework
for resource allocation. We are given a vector of rate
rewards, and a vector of power prices, and our aim is to find
the optimal operating point such that is
maximized. Section III-B provides a greedy algorithm which
attains this optimal operating point.

VI. A UXILIARY CONSTRAINTS ONTRANSMITTED POWER

The constraints on the transmitter powers we have consid-
ered so far are on their long-termaveragevalue, and under
power control, the transmitter power will vary depending on
the fading state. In practice, one often wants to have some
shorter term constraints on the transmitter power as well.
These constraints may be due to regulations, or as a way
of imposing a limit on how much interference a mobile can
cause to adjacent cells. To model such auxiliary constraints,
we consider the following feasible set of power controls:

and and

where is the set of all possible joint fading states of the
users. Thus in addition to the average power constraints, we
also have a constraint on the transmitter power of theth
user in every state. We will assume that for every, .
Otherwise, the average power constraint becomes innocuous.
We shall now concentrate on the problem of computing the
optimal power control subject to these constraints.

We focus on the capacity region

where can be interpreted as the set of achievable rates
under power control .

In parallel to the case when there are only average power
constraints, we will characterize this region in terms of the
solution to a family of optimization problems over parallel
Gaussian channels. The proof of the following lemma is
analogous to that of Lemma 3.10.

Lemma 6.1:A rate vector lies on the boundary of
if and only if there exist , rate-allocation

policy and power-control policy such that for
every joint fading state is a solution to the
optimization problem

subject to and
(24)

and
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where is the constraint on the average power of user.
Moreover, is a power-control policy which can achieve the
rate vector .

Consider the more general optimization problem over poly-
matroids with generalized symmetric rank function

subject to

(25)

where ’s are given constants. Although there are expo-
nentially large number of constraints, we will exploit the
polymatroid structure and given an efficient greedy optimiza-
tion algorithm.

Without loss of generality, let us assume that
. By Lemma 3.2, for any vector, the maximum

value of subject to the polymatroid constraints is given
by

Hence the optimization problem (25) is equivalent to

subject to

We will now demonstrate that the optimal solution can be
obtained by a simple combinatorial greedy algorithm with
number of steps bounded by .

Let us define

and let

We first observe two facts.

Fact 1: is monotonically decreasing in .
Fact 2: For

so that the difference is independent of and decreases
monotonically with (by the concavity of ).

Consider now the following algorithm.

Algorithm 6.2:

• Initialization : Set . Set .
• Step : Pick an such that , ,

and for all such that .
If there is no such , then stop. If there is more than
one such , pick the largest one. By Fact 2, we know
that for each there either exists a unique solution

to the equation

(where is in the th position) or there is no such
solution, in which case we set . Also, by Fact 1,
let be the unique solution to the equation

if it exists, and let otherwise. We now set:

Goto step .

We note that at each step, we are always increasing the
component which leads to the largest rate of positive increase
of the objective function and which has not reached the peak
constraint. Thus the algorithm is a greedy one.

Theorem 6.3:Algorithm 6.2 terminates at an optimal point
for the problem (25), and the number of steps needed is at
most .

Proof: See Appendix D.

The optimal power-allocation problem with auxiliary con-
straints (24) can be expressed in terms of the received powers

subject to

and

where

Thus Algorithm 6.2 can be used to solve this problem. It
should also be noted that as in the case without the auxiliary
power constraints, successive decoding can be used to achieve
an optimizing rate vector.

VII. FREQUENCY-SELECTIVE FADING CHANNELS

In the previous sections we have analyzed a flat fading
model which is appropriate if the Nyquist sampling period
is large compared to the delay spread of the multipaths
in the received signal, so that the individual paths are not
resolvable in the sampled system. This is typically the case
with narrowband transmission. For wideband applications,
the multipaths can be resolved, and hence the channel has
memory. The appropriate model is the time-varying frequency-
selective fading channel. In this section, we will extend some
of our previous results to this model.
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We start with a continuous-time model. Supposeusers
share a total bandwidth centered around frequency ,
corrupted by white additive Gaussian noise of spectral density

. The average transmitter power of useris constrained to
be less than or equal to . At time , the th path transmitted
from the th user is attenuated by and delayed by
before being received at the base station. These quantities are
time-varying due primarily to the motion of the transmitter but
also to the motion of other objects in the system. The baseband
representation of the channel is given by

where is the transmitted signal of user, and are
the complex baseband noise and received signal, respectively,
i.e., the actual noise and received signal are
and , respectively. The time-varying im-
pulse responses ’s represent the fading effects

where . We assume that there is
a bound on the largest delay of any path, so that
for and . The parameter is the multipath
delay spread.

The fading of the channel stems from both the time variation
of the attenuation , due to path loss and shadowing ef-
fects (slow fading), as well as the constructive and destructive
interference between the various paths (fast fading). The latter
typically occurs at a much faster time scale than the former.

We now sample the system at a Nyquist rateand get

where

Note that the Nyquist rate is in general larger than
because the the received signal is spread out due to the time-
varying channel.

To begin analyzing the capacity region of this channel, when
both the transmitters and the receiver can track the channel,
let us first focus on the special case when the channel is
time-invariant. In this case, the channel is given by

This is the Gaussian multiaccess channel with intersymbol
interference (ISI), and a characterization of the capacity region
has been obtained by Cheng and Verdú [2]. Let be the
Fourier transform of the channel. Let be a power-allocation
policy such that for user and frequency , can be

interpreted as the transmitter power that userallocates at
frequency . Let

be the set of all feasible power allocation policy. Then the
capacity region of the channel is

(26)

where .
In [2], an explicit characterization of the region and the

optimal power allocations are obtained for the two-user case.
We shall now give the solution in the general multiuser case,
which follows almost directly from the results in Section III.
The key observation is that the structure of this capacity
region is in fact identical to that of the capacity region of
the flat fading channel (Theorem 2.1), with the role of the
fading state now played by frequency . Using the results
of Section III, each point on the boundary of the capacity
region can be computed via an optimization problem over a
set of parallel channels, one for each frequency. In complete
analogy to Theorem 3.16, we have the following result.

Theorem 7.1:Assume that for userand any constant, the
level set has Lebesgue measure. Then the
boundary of the capacity region of the Gaussian multiaccess
channel with ISI is

where for

(27)

where

and is the Lebesgue measure of a set. The vector
satisfies the equations

(28)

.

The rate vector on the boundary corresponding to a specific
can be achieved by successive decoding, with the users

decoded in increasing order of’s. The corresponding power
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allocations to achieve that point are given by

The interpretation of this power allocation is similar to that
in the flat fading case. The variablerepresents the received
interference caused by users’ signals, beyond the background
Gaussian noise. At frequencyand received interference level

, user transmits if it yields the maximum increase in the
objective function , which is the case if .

Next we analyze the general situation when the channel is
time-varying. Even for the case when only the receiver can
track the channel, there is in general no clean characterization
of the capacity region of time-varying frequency-selective
fading channels [15]. However, if we make the assumptions
that the channel varies very slowly relative to the multipath
delay spread and that the time variations are random and
ergodic, then the capacity region for that case is given by [7]

where is the average power constraint of user. For each
realization (time-slot) , is the frequency response
of user ’s channel at fading state . The intuition behind
this result is that if the time variation is slow relative to the
delay spread, the overall channel can be thought of as a set of
parallel time-invariant channels. The expectation is taken over
all (joint) fading states.

How valid is this assumption in practice? We use here a
numerical example in [7]. Consider a typical mobile scenario
where the vehicle is moving at 60 km/h and the carrier
frequency is 1 GHz. The time constant associated with the fast
fading effects due to constructive and destructive interference
between paths is of the order of the time taken for the mobile
to travel one wavelength at the transmitted frequency. In this
example, it is 0.018 s. Typical delay spread between paths
range from to seconds [18]. Hence, the time
variation due to fast fading is significantly slower than the
delay spread. This is even more so when the users are moving
at a slower speed. Thus we see that the assumption is quite
reasonable for typical wireless situations.

In analogy to Theorem 2.1, it can be shown that the capacity
region for this channel when all the transmitters and the
receivers can track the channel is given by

where

and
Using the techniques of Section III, each point on the

boundary of this capacity region can again be computed via an
optimization problem over a set of parallel channels, this time
one for each frequency and fading state . This leads to
the following generalization of Theorem 3.16 to the frequency
selective fading case.

Theorem 7.2:For each frequency and transmitter , let
the random variable have continuous cdf and
density . Also assume that the fading processes of users
are independent of each other. The boundary of the region is
the parametrically defined surface

where for

(29)

where the vector satisfies the equations

(30)

VIII. C ONCLUSION

In this paper, we have characterized the throughput capacity
region of the multiaccess fading channel with perfect channel
state information at the receiver and the transmitters. Just as
the solution to the corresponding single-user channel has the
water-filling interpretation, our solution can be viewed as the
multiuser analog of water filling with an arbitrary number
of users. The new mathematical ingredient is provided by
the polymatroid structure of the problem, yielding a greedy
optimal power allocation. The solution contains various steps,
which we summarize in the following.

• For each fading state , define

for every

where . This can be interpreted as
the capacity region of an -user multiaccess Gaussian
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channel with noise variance , transmit powers , and
fading state of the users fixed at.

• The fading state varies according to a stationary and
ergodic process. Let be the random vector with the
stationary distribution of the fading state. The capacity
region of the fading channel when both the transmitters
and the receiver have perfect channel state information is
shown to be (Theorem 2.1)

where is the average power con-
straints of the users and is the set of all feasible power
allocation policies satisfying the average power constraint

The region is the set of all rate vectors
which are the weighted average of rate vectors in each
of the sets , weighted according the fading
distribution.

• The region is convex. Every point on the boundary
of is a solution to an optimization problem

subject to (31)

for some nonnegative (Lemma 3.10).
• The optimal solution to (31) can be solved by decom-

position into a set of optimization problem over parallel
multiaccess channels, one for each fading state(Lemma
3.10)

subject to (32)

where is the Lagrangian multiplier for the average
power constraints. The optimal solution to (32) gives
a power allocation and a rate allocation in
fading state . If is chosen such that the average
power constraints are satisfied (i.e., ),
then is an optimal solution to (32).

• The optimization problem (32) has a simple greedy so-
lution, although there are exponentially large number of
constraints (in ). (Theorem 3.14). Define

The optimal value for problem (32) is given by

The optimal solution is achieved bysuccessive decoding
and can be interpreted as follows. Think of as
the current “interference level” due to background noise
and received powers of users not yet canceled. Start with

, and at each allocate a marginalreceivedpower
to the user with the largest positive . Stop

when for all . The marginal increase in rate of
user is , decoding at interference level .

The value is therefore the marginal increase in
the value of the overall objective function
by allocating power to the user that will benefit most
at the interference level . The procedure is thus
greedy. Integrating over all gives the optimal rate and
power allocation, as well as the successive decoding order
to achieve the optimal solution. See Fig. 2 for an example.

• The optimal average powers and rates can be computed
explicitly as a function of . This gives a parameterization
of the boundary of the capacity region in terms of

and (Theorem 3.16).
• For a given , the value of to meet the average

power constraints can be computed by a simple iterative
algorithm, which is provably convergent (Theorem 4.3).

Taken together, these results provide simple solutions for
computing the throughput capacity region as well as a char-
acterization of the structure of the optimal resource-allocation
schemes to achieve the points on the boundary of the region.

The problem formulation considered in this paper suffers
from a drawback that delay is not considered; the Shannon
capacities are essentially long-term throughput in a time-
varying system, and the delay incurred depends on the rate
of variations of the fading processes. In the sequel to this
paper, we will define a notion ofdelay-limitedcapacity for
the fading channel; these are the rates achievable with delay
independentof how slow the fading processes are. We will see
that polymatroid structure will again help us in characterizing
the delay-limited capacity region of the fading channel.

APPENDIX A
PROOF OF THEOREM 2.1

The proof of this theorem is straightforward other than the
technicalities due to the continuous fading distributions.

For any power control policy , we can reinterpret the
channel as a unit transmit power channel with fading
for user . It follows from (3) that all rate vectors in
are achievable.

Conversely, suppose rate is achievable. By this we mean
that there exists a sequence of codes, indexed by, with
code of blocklength , and with probability of error

. For code , we index the messages of userby
and user uses the uniform distribution to

select one of these messages, and transmits the corresponding
codeword. We denote the resulting random vector byfor

. Note that the codewords can be chosen as a
function of the states of the channel.

Let be the equilibrium probability density of being
in fading state . Without loss of generality, assume that
the fading of all users is bounded by. For each , let

be a partition of the fading state space
. For each cubic element of partition , let be

that random subset of at which times the fading
state lies in . Let be uniformly distributed on

. Define
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Let be the probability that a random lies in . For
any message from user, there is a power constraint on the
corresponding codeword. It follows that for each

For all cubic elements such that , are
bounded sequences in. Thus we must have the existence
of limiting such that there is convergence along a
subsequence as . Further

(33)

We define to be the upper corner of . Let
be the fading at time and define a new value by

if . Define

By Fano’s inequality, we have for any

where as . But

Taking limits along the convergent subsequence, we obtain

(34)

Let be the set of all power controls which are piecewise-
constant on the cubic elements of and satisfy the average
power constraint. Define

Hence, the above derivation implies that the capacity region
is bounded by

Combining this with the achievability result, we have for every
the following inner and outer bounds:

As

Hence

and the proof is complete.

APPENDIX B
PROOF OF LEMMA 3.15

We first claim that there is an almost surely unique rate and
power allocation which maximizes subject to the average
power constraints. (Almost surely with respect to the fading
distribution.) Suppose not, and let , , be
two such rate and power allocations. Define by

Note that this also achieves a point on the boundary of the
capacity region. By the concavity of is feasible

(35)

For any , consider all subsets for which there is equality
in (35). If there is a user that is not in any such subset,
then can be increased without violating any constraint.
But this contradicts the fact that this rate allocation achieves a
boundary point of the capacity region . Therefore, every
user must be almost surely in a tight constraint, and hence, by
the strict concavity of almost surely.

Now we consider the issue of uniqueness of rate allocation
policy. By Lemma 3.10, any rate-allocation policy and
power-allocation policy which maximizes must
solve the optimization problem

(36)

for every fading state , for some . The only possibility for
nonuniqueness of occurs if for some , for
then we can reverse the decoding order ofand without
affecting the objective function. However, or vice
versa, with probability , so with probability , or
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. Together with the fact that the power allocation
is unique, we can conclude that there is also a unique rate
allocation.

Now we show that the Lagrangian power pricesfor
maximizing subject to average power constraints
must also be unique. Without loss of generality, assume that

. Let be the unique optimal power-
allocation policy; it can be obtained by maximizing
subject to for each fading state, for some choice
of . We want to show that such amust also be unique. We
show by induction on that must be uniquely specified.
Let be a fading state for which ; in this fading
state, user 1 must be decoded first (which means it is last in
the priority ordering). Then from the greedy power-allocation
algorithm, we see that in this fading state, the total received
power must be that value of such that , i.e.,

Thus is uniquely specified. Now assume that are
uniquely specified. Let be a fading state where .
In this fading state, the total received power from users

must be the value of such that

since only users can be decoded before user .
Hence must satisfy

By the induction hypothesis, are uniquely specified
and hence so is . This completes the proof of uniqueness
of the power price vector .

APPENDIX C
PROOF OF LEMMA 4.4

i) Without loss of generality, we assume

so that the decoding order is . Let
be arbitrary. We define a sequence of power prices

and from these construct another vector of
prices . We shall show that satisfies the conditions of the
lemma. For , we take to be power prices of a
fictitious channel in which only users are present.
Further, we extend the definition of the channel to allow the
price of the power of the user decoded last to be zero, and
the power allocated to that user to be infinite. With ,
we consider a single user channel with and ;
user 1 occupies the channel alone. With this reward and

price, it is clear that is infinite. With ,
we have a two user channel, with and

. It is clear that here and
. Note that by taking small we can ensure

that and . This becomes the inductive
hypothesis: suppose that with
we have for all .
Then set , and note that for any

this gives a new channel with users. Provided
, we must have that

By choosing small we can ensure that
and . Note that . By induction,
we terminate with for which

and , for all , and
. Again, by choosing small, and

, we can ensure that both
and . This establishes part i) of the
lemma.

ii) One can construct such a in a manner analogous to
that in part i).

APPENDIX D
PROOF OF THEOREM 6.3

We first show by induction on the following claim.
If is the component to be increased at step, then for

all : 1) if , then ; 2) if
, then and ; 3) if

, then .
For , only case 3) can occur so that the claim is

true by definition of . Assume the claim is true at step
. The th component is updated to , and all

the other components remain unchanged. For , 1) if
, then by the inductive hypothesis,

and by Fact 1, , so that we
have ; 2) if ,
then by the inductive hypothesis, and

, so that together with Fact 2, this implies that
; 3) if , then by

the inductive hypothesis and the definition of the algorithm,
.

Consider now the three possibilities in which theth
component can be updated.

i) : in this case, the algorithm termi-
nates since by the above, all the other components
either reach the peak constraint (case 1)) or satisfies

(cases 2) and 3)).
ii) for some . In this

case, for some

such that , and the claim holds for step
.

iii) : If there exists an such that

, then will satisfy
and the claim now holds for step . If
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no such exists but there is ansuch that ,
then will be chosen to satisfy

for all such that , and the claim
again holds for step . Otherwise, the algorithm
terminates. Thus in all cases, either the algorithm
terminates or the claim holds for step . This
proves the claim.

We see from above that the algorithm terminates either via
case i) or case iii). In case iii), the final point satisfies

for

for

for

In case iii), satisfies and for all . Thus,
in either case, satisfies the Kuhn–Tucker conditions and is
an optimal point.

We can also see from the above that if a component has
already been increased, the only situation when the algorithm
returns to that component is in case iii), when another compo-
nent has reached its peak value. This implies that the event of
the algorithm returning to some component that has already
been increased can happen at mosttimes, and hence the
algorithm must terminate after at most steps.
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