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Multiaccess Fading Channels—Part II:
Delay-Limited Capacities

Stephen V. HanlyMember, IEEE and David N. C. TseMember, IEEE

Abstract—In multiaccess wireless systems, dynamic allocation objective of maximizing the long-term average rates. In Part
of resources such as transmit power, bandwidths, and rates is || we now consider limitations on rate and power allocation
an important means to deal with the time-varying nature of the strategies that can be used due to delay constraints

environment. In this two-part paper, we consider the problem . . " .
of optimal resource allocation from an information-theoretic One way to think about this in the single-user case is to

point of view. We focus on the multiaccess fading channel with identify the Shannon capacity with a “long-term average of
Gaussian noise, and define two notions of capacity dependingmutual information between the user and the receiver” in
on whether the traffic is delay-sensitive or not. In Part I, we the channel. That is why we called the Shannon capacity
have analyzed thethroughput capacity regiorwhich characterizes of a fading channel itghroughput capacityin Part I. On

the long-term achievable rates through the time-varying channel. h her h h . . £ o |
However, the delayexperienced depends on how fast the channel the other hand, there is a notion of “instantaneous mutua

varies. In the present paper, Part Il, we introduce a notion of information” and this can fluctuate as a function of the fading
delay-limited capacityvhich is the maximum rate achievable with  state. Essentially, in the delay-limited case, we restrict our-
delay independeniof how slow the fading is. We characterize the ge|ves to power control strategies such that the instantaneous

delay-limited capacity regiowf the multiaccess fading channel and : : : .
the associated optimal resource allocation schemes. We show thatmUtual information is kept constant at all times. We call

successive decoding is optimal, and the optimal decoding order the maximum gchievable rate t@'fi)"“mimd capacityof
and power allocation can be found explicitly as a function of the the channel. Without such a restriction the throughput of the
fading states; this is a consequence of an underlying polymatroid channel can be increased but at the expense of having the

structure that we exploit. “instantaneous mutual information” fluctuating with the fading
Index Terms—Delay-limited capacity, fading channels, multi- process, leading to delay at the time scale of the channel
access, power control, successive cancellation. variations. While the single-user delay-limited power-control

strategy is simply “channel inversion,” the multiuser problem

is more interesting as it involves tradeoffs between the powers

. . allocated to each of the users to achieve desired rates.

I N Part | [15] of this paper, we studied the problem of tpere are many “delay-sensitive” applications such as voice
optimal dynamic resource allocation for multiaccess fading, 4 \igeo, for which long delays cannot be tolerated. Unless

channels from an information-theoretic point of view. Wene tading is fast on the time-scale of tolerable delay, the

computed the Shannon capacity region of the munmcce{ﬁ?oughput capacity of Part | is not relevant for these appli-

fading channel when the transmitters as well as the receiyefions "our delay-limited capacity is the appropriate limit for
have access to the channel state, and also characterlzedtﬁ e applications

optimal power- and rat_e-allocanon schemes__ _ The notion of “delay limitedness” is implicit in many works.
The Shannon capacity of a channel provides the ultim r example, papers on power control (see Gilhouseal.

limits on the rates that are achievable. The capacity itself i Hanly [9], Yates [16]) assume that a desired signal-to-
not dependent on any delay considerations, and is achieva\LH %rference r,atio must be met for every fading state, and

in an asymptotic sense as delay t(_ends to |nf|n|t_y. Thus Whﬁﬂs means that the user's mutual information is kept constant
we focused on the Shannon capacity of the multiaccess fadmgtime. The formal notion of delay-limited capacity for

channel m_Part l, we found the Shaf_‘”O” limit over the S?r%ultiaccess channels was defined in Hanly and Tse [10],
of all possible rate and power allocation strategies, with tr\]ﬁnere we considered the symmetric case with users having
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transmitters and receiver can track the channel. This theorem Il. DELAY-LIMITED CAPACITY
implies that the extra benefit gained from the transmitters oq iy part I, we focus on the uplink scenario where a set
tracking the channel is fully realized in the ability to allocat®¢ »r ;sers communicate to a single receiver. Consider the
transmit power based on the channel state. In Section Ill, WRcrete-time multiple-access Gaussian channel
use Lagrangian techniques to show that the optimal power
allocation can be obtained by solving a family of optimization M
problems over a set of parallel time-invariant multiaccess Y(n) = Z VHi(n)Xi(n) + Z(n) (1)
Gaussian channels, one for each fading state. Given the =1
Lagrange multipliers, which can be interpreted as pow@mere M is the number of users¥;(n) and H;(n) are the
prices, the problem is that of finding the optimal “powertransmitted waveform and the fading process of difeuser,
allocation as a function of each fading state so as to minimizgspectively, andZ(») is white Gaussian noise with variance
the total power cost. Here, we exploit the polymatroid structur®, We assume that the fading processes for all users are
of the optimization problem to obtain an explicit solution vigointly stationary and ergodic, and the stationary distribution
a greedy algorithm. In Section IV, we turn to the problem dfias a continuous density and is bounded. Usds also
finding an appropriate set of power prices so that a target del@yject to an average transmit power constrairf;ofVe shall
limited rate vector can be met within given power constraintsall H(n) = (H;(n), Hx(n),---,Hy(n)) the joint fading
We present an iterative algorithm which, if the target ratgsrocess.
are achievable, is guaranteed to converge to the right poweSuppose each source codes over a blocklength of’
prices. Moreover, it also solvescall admissiongproblem by symbols, wherel” is the delay, using a codeboak of size
determining if a given set of target rates are indeed achievalglé:” (j.e., at rateR; bits per channel use). Each codewardf
In the remainder of the paper, we will extend the basideith user satisfiefiz||3 < 7'P;. Fix a decoding scheme and
results in several directions. In Section V, we will preser{ssume the messages are chosen with equal probability. Let
greedy power-allocation algorithms when additional powey, (T") be the probability of the event that any user is decoded
constraints are imposed. These results exploit further prdpeorrectly. The following is the definition of the throughput
erties of polymatroids. In Section VI, we relax the delagapacity region when both the transmitters and the receiver
limited requirement in two ways. First, we consider a multiplaave access to the channel states. Characterizing this region
time-scale model, with slow and fast fading, and compuigas our focus in Part I.
the optimal power control when we are delay-limited with . L
respect to the slow fading. Secondly, we consider a frequenc Definition 2.1: The rate-tupleR = (R, ---, Ry) lies in
selective fading channel, in which rates can be allocated £ 'F“e”or of the throughqu capacity regiah{P) if and
the different frequencies, but the sum rate over all frequenc%@ly if fo_r everyc > 0 there exists a delay, ppdebooks, and
must be constant for each fading state. Finally, in Secti&ﬂdeCOdmg scheme such that the probability of eprgfr’)
VII, we explore the implications of these information-theoreti Ies_s thar. More_ove_r, the codewqrds can be chosen as a
results to systems with suboptimal coding and decoding. unction of the realization of the fading processes.
In Hanly and Tse [10], the concept of delay-limited capacity The notion of throughput capacity defined above is a natural
is extended to take advantage of statistical multiplexing: déixtension of that for time-invariant Gaussian channels, where
is not always necessary for power control to be used tates are achieved with arbitrarily long coding delays. How-
ensure that “sufficient mutual information is available at evemver, there is a subtle but important difference between time-
time instant”; this can also be a property of the averagingarying and time-invariant Gaussian channels. In the time-
of the independent fading of a large number of users, evigvariant Gaussian channel, the delay is needed to average
if no power control, or only decentralized power control isut the Gaussian noise to get small error probabilities, and
employed. In the present paper, however, we allow centraliztkils is typically quite short. Thus the capacity is not only an
power control and so do not consider statistical multiplexingpper bound to the achievable performance; it is a useful upper
of fading. bound in the sense that it is possible to achieve rates close to
Our results also provide a link between information theoryapacity with acceptable delay, even for real-time traffic. In
and the theory of networking. Clearly, the power prices (argpical time-varying wireless channels, on the other hand, the
in Part I, rate rewards) have the potential to be tuned by tfeding process is a complex superposition of different effects
network in order to provide control over the radio resourcesome of which can be quite slow. Thus the delay required to
This is indeed our approach in Section 1V, in which a callverage out such fading effects may be much longer than the
admission problem is solved by the adaptation of power pricegceptable delay.
using an algorithm reminiscent of max-min fair bandwidth To this end, we define a second notion of capacity region
allocation algorithms in data networks. In Part |, we employddr time-varying multiaccess channels. L&t be the set of
similar iterative algorithms to control real-time radio resourcell possible joint fading states of the useig, be a given
allocation (see Section IV in Part I). More generally, there distribution on H, and .A(Q) be the set of all stationary,
an economic flavor to our results, as touched on in Section Idigodic fading processes with stationary distributi@n We
and more directly in Part |, Section V. observe from Theorem 2.1 in Part | that the throughput
A word about notation: we will use boldface letters to denoteapacity region of the multiaccess fading channel depends only
vector quantities. on the stationary distribution of the joint fading processes and



2818 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 7, NOVEMBER 1998

not on the correlation structure. The following definition of The intuitive content of the above theorem is that a rate
the delay-limitedcapacity region also has this characteristic.vector (Ry, - - -, Ry;) is achievable in the delay-limited sense

Definition 2.2: A rate vector Ry, - - -, Ry ) lies in the inter- if one can choose a feasible power co_nt_rol policy to_coordlngte

ior of the delay-limited capacity regionC(P), if for every the powers of the users such that sufficient mutual information
' is maintained between the transmitters and the receivall at

€~ 0 there e.X'StS a codlng_ delay” such that for every fading states. Note that this is essentially the information-
fading process ind(Q) there exists codebooks and a decodmﬁ1 . . I
eoretic version of the objective of standard power control

scheme withp.(T) < e. Moreover, the codewords can be

/ o . alsqorithms in which power is allocated to satisfy the signal-
chosen as a function of the realization of the fading PrOCeSSEinterference requirements of all the users. Contrast this

Contrast this with Definition 2.1, where the coding delayith the characterization, in Theorem 2.1 of Part I, for the
can be chosen depending on the specific fading procespughput capacity region, where a rate ve¢®y, - - -, Rys)
the coding delay here has to wotlkiformly for all fading is achievable as long as there is a feasible power control policy
processes with a given stationary distribution. Hence, ratestin provide sufficientlong-term average mutual information,
the delay-limited capacity region can be achieved with delagseraged over all fading states. The “instantaneous” mutual
independenif the correlation structure of the fading. Thusnformation at each fading state, however, fluctuates.
the rates in the delay-limited capacity region are essentially
those that can be achieved by coding that averages out the
white noise but does not average over the fading process. It
is an appropriate limit on the performance for traffic with
stringent delay requirements and when the fading processe}! this section, we will characterize the optimal power
change relatively slowly (due to users at walking speed, féPntrol to achieve points on the boundary of the delay-

I1l. CHARACTERIZATION OF THE
DELAY-LIMITED CAPACITY REGION

example). It should also be noted that the throughput capadifjited capacity regior€,(P). We shall show that successive

region contains the delay-limited capacity region. decoding is always optimal and we shall provide greedy
In Definition 2.2, we only require that there be a codebodggorithms for obtaining the optimal power control. Using

for every realization of every fading process. However, tHBis characterization, we will also provide a necessary and

proof of Theorem 2.3 below shows that we can provide a singigfficient condition forR to be inside the capacity region.

codebook of unit power that we scale by the power control

policy identified in the theorem. This codebook will work nga. Lagrangian Characterization and

matter what fading process is chosen (i.e., for any correlatighptimal Power Allocation

structure). By “power control policy”, we mean the following.

i . spM M ; H

thrﬁt giggﬁracﬁ)?azo:a%?:;ygé@m: (h_;f)?' . Ili\f) %?F;EZI%SS;? re(_}ssi?)r;]tially the set of optimal operating points on the capacity

P;(h) can be interpreted as the transmitter power allocate ’

to useri. Given power control policy?, Ex[P;(H)] is the Definition 3.1: The boundary surface @f;(P) is the set of

average power usage for ugekVe say a power control policy those rates such that no component can be increased with the

is feasiblefor a power constrainP if Ex[P;(H)] < P; foralli. other components kept fixed, while remainingfig( P).

The following theorem provides a characterization of the . . . o
. . . The following lemma gives a Lagrangian characterization

delay-limited capacity region for the case when all the trancsn; the capacity region
mitters and the receiver know the current state of the channel. pacily region.
) . : Lemma 3.2:

Theorem 2.3:Assume that_ the set of pc_JSS|bIe_fad|pg states 1) A rate vectorR" lies inC4(P) if and only if there exists a
‘H is bounded. The delay-limited capacity regiGp(P) is M / -
given by A € Y and a power control polic such that for every joint

fading stateh, P(h) is a solution to the optimization problem

We first define the boundary surface @§(P), which is

Ca(Py=J ) Calh. P(h)) @)

PCF heH

where F is the set of all feasible power control policies
e - . and

satisfying the average power constraints, &y¢h, P) is the

min X - p subject toR" € C,(h, p) (4)
r

capacity region of the time-invariant Gaussian multiaccess Ex[P:i(H)| < P, i=1,---, M
channel, given by
1 Sics hili where P; is the constraint on the average power of user
Cy(h, P) = {R :R(S) < 3 log <1 + ZET) Moreover,P is a power control policy which can achieve the
rate vectorR".
for every S C {1,---,M}}. ©) 2) A rate vectorR" lies on the boundary surface if and
only if there existA as above but with all the average power
Proof: See Appendix A. U constraints holding with equality.

Analogous to Lemma 3.10 of Part I, this lemma reduces
1Here, as in Part |, for any vectarand any subse$ we use the notation the. cqmp_utatmn of the optlmal power control t(? a f_am'ly_ of
v(5) to denote}”, ¢ & vs. optimization problems over a set of parallel time-invariant
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Gaussian channels. As in the analysis of the throughpBt and fading state:, the set ofreceived powerghat can
capacity region, the vectak can be interpreted as a set oupport R*
power pricesreflecting the power constraints. The important
difference is that in this case, we require that the rate vegtor G(R") ={q: qi = hipi, R" € Cy(h,p)}
be in the Gaussian capacity regiép(h, P(h)) for all fading
statesh. This is consistent with the nature of delay-limite
capacities. f(S) = exp (2R*(S)) — 1.

Proof: Since any rate vector inside the capacity region is
dominated by some point on the boundary surface, statemenfpplying Lemma 3.3 in Part |, the optimization problem
2) would imply statement 1). Hence, we will focus on proving4) can be readily solved
statement 2).

ds a contra-polymatroid with rank function

— , 2
First note that since the capacity regiGg(P) is convex, a [exp(2R;)) — 1], if i=1
point R is on the boundary surface of the region if and only ha(1)
if it is a solution to the optimization problem o2 i
; 7 P;(i) =5\h exp| 2 Z ij(k)
A ft - R subject toR € Cy(P) (5) (%) ket
i—1
for some positive vectog. Now consider the set — exp <2Z R;(k)ﬂ , 1=2,--- M
_ . k=1
S ={(R,P): RcCyP)}. (6)

where the permutatiom satisfies
By the concavity of théog function, it can readily be verified \ \
that S is a convex set. ThuR" solves (5) if and only if there Ant) s 2nM) )
exist nonnegative Lagrange multipliekssuch that R*, P) is heqy = 7 Doy

a solution to the problem This optimal point corresponds to successive decoding in

max u-R—\X-P the order given byr, with power allocated to the users such
(R.P)CS that the target delay-limited rate vect&" is achieved. One
. o _can think of the successive decoding ordeas a way to give
Hence,R" is on the boundary surface 6f(P) if and only if  priority to different users in the scheduling of resources; a user
P is a solution to the problem decoded later in the ordering is given higher priority than a
. : . user decoded earlier. This is because users need less transmit
H%n)"PSUbJeCt toR" € Co(P) power to support their target rates when they are decoded
later (note that~ ()}, is in decreasingpriority order). The
scheduling rule here depends on both the power prcard
the current fading state. In fact, this rule is analogous to the

i.e., if and only if there exists a power control poli¢y*
which solves

min A - Eg[P(H)] subject toR* € M, C,(h, P(h)) classicc — y rule in scheduling theory (see, e.g., [14]), as

P both arise from the polymatroid structure of the problem. The

and additional feature in our problem is that the scheduling priority
is a dynamic function of the fading state. Another interesting

Eg[P*(H)] = P. aspect of the solution to the optimization problem (4) is that the

solution depends on the power prick®nly via the decoding
We note that this last optimization problem is equivalersrder. This will simplify our later analysis.
to solving (4) for every fading stath. This completes the  Note that when the power price vectdiis strictly positive,
proof. L then with probabilityl the ordering is uniquely defined since
the fading processes have a continuous stationary distribution.

The vectoru can be interpreted as thate rewardsand Th ith babili h luti h N b
A as thepower prices Thus a point on the boundary of the us W'_t proba llityl, the so utlc_)n to£ e optimization prob-
m (4) is unique. Let us then defil R", A) to be the unique

capacity region is achieved by maximizing the total revend% :
for a given rate reward vectqu. Appropriate power prices average power vector corresponding to the almost surely

have to be chosen such that the average power constraints“afd4€ power-control policy which solves the optimization
satisfied. problem (4). .

The computation of the optimal power control is now In the common case when the fading processes of the
reduced to solving the optimization problem (4). This is sers are independent of each other, the average power vector

linear program but one with an exponentially large numb r(R ,A) has a simple form

of constraints (inM). However, as in Part I, we exploit . oo ;2 A
the polymatroid structure of the problem to provide a simpl&:(&",A) = (exp (2R]) — 1)/ ™ H {P<hk > Tm‘)
greedy solution to this problem. Recall the definitiorcohtra- 0 b ki ¢
polymatroidsin Definition 3.1 of Part I. It is straightforward A, . L ‘

to verify (Corollary 3.13 of Part I) that for a given rate vector +P{ e < )\_ih” exp(2hy) ¢ filhi) dhi- (8)
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This expression can be obtained by noting that the powBr Examples
allocated to usetdepequ only on which users haye vaI%gs 1) Single-User Channel:When M = 1, the delay-limited
greater than that of usérNote that due to the special S”“Ct“r%apacitycd( P) is given by
of the optimal power control policy, the computation of the
average power has been reduced from Mndimensional _
integral to a one-dimensional integral. Ca(P) = llog 14+ _r ) (11)
Combining this with Lemma 3.2, we have the following 2 o2 0°° @dh
characterization of the delay-limited capacity region:

Theorem 3.3:Assume the fading processes of users aThe corresponding power control strategy inverts the channel

independent of each other. Then the rate ve&ldres in the [ﬁ] We note that for some fading distributions, the delay-

delay-limited capacity regio@,(P) if and only if there exists :‘g]jlitr?g(;j capacity may be zero. For example, for Rayleigh

A € RY such that

1 h
= g2 ) = S exn(-2)
(exp(2Ri)—1)/ ”— a
0

hi

and [5° @dh = 00, S0 Cy = 0. The problem is that the

A _
x H {1 + I <)\_ihi> (exp (2Ry) = 1)}fi(hi) dhi < Pis channel is spending a lot of time close to zero. One approach to

e i1 M 9 deal with this is to allow an event of outage when the channel
p=Le, Mo (9) gets too weak. (This is the approach taken by Ozaevl.

h I . licy th hi his r&és di [12] and Cheng [3] for situations where there is no power con-
The power-allocation policy that achieves this réiés given trol.) Thus even for these fading distributions, it is meaningful

by (6). Moreover.R lies on the boundary surface if and Onlyto consider the notion of delay-limited capacity during the

if there existsA such that (9) holds with equality. times when the channel is reasonable, and declare an outage
We can also consider a sBy(R"): this is the S_et_Of average ninerwise. This issue is investigated further in subsequent work
power vectors that can support target delay-limited rdtes by Caireet al [2]. For many other distributions, such as the
€., log-normal distribution for shadow fading, a nonzero delay-
limited capacity is obtained even without the need of allowing

Dy(R") ={P: R" € Ca(P)}. outage.

Note thatD4(R") is the structure in the power space that plays 2) Symmetrical Case [10]: Consider the case when there
the same role as the capacity regigf(P) in the rate space. are M users, the fading of users are identical and independent,
The above results lead to an explicit characterization of tia@d their power constraints are the same. The symmetric delay-
boundary surface aby(R), parameterized by. limited capacityCy is the maximum common rate that can be
achieved, and can be obtained by puttikg= 1 for all ¢ in

Theorem 3.4:Assume the fading processes of users ag@s)_ Simplifying, we find that the capacity satisfies:

independent of each other. Then the following equation giv
an explicit parameterization of the boundary surface of the

region Da(R') by A € RY': fexp (201 [~ e 20 -1 L an
0

h
o2 =

P;(A) = (exp(2R}) — 1) / T

%

Mo

As The optimal power control policy has an interesting form.
X H {1 + Iy, <Thi>(eXp(ZRZ) - 1)}fi(hi) dh;  Namely, users are decoded in the order of decreasing channel
ki ! strengths, with the strongest user decoded first and the weakest
t=1,---,M. (10) userdecoded last. Powers are allocated accordingly. If channel
strength is determined primarily by the distance to the base
It is important to note that the dimension of the boundarStat'c.m’ then th|s'opt|mal decoding order results in the smallest
- T ossible transmit power for the furthest user to support the
surface ofDy(R") is M — 1, which implies that the parameter-", ~™ .
RN . desired rate, as he only has to compete with the background
ization in Theorem 3.4 is onto, but nbtl. Clearly, however, ~~ . :
. . L noise and not the interference from any other user. This
we can normalize\ to provide al—1 parameterization. An . . T .
T X . : roperty is particularly appealing in terms of reducing intercell
example of such a normalization is provided in Section npP -
ihterference, as the furthest user will likely cause the most
Example 3). . . : O
The above results still leave open important questions: interference in an ad!acent cell. Contrast this with the IS—QS
' MA scheme, in which the furthest user has to compete with

how to check algorithmically if a target rate vectd® is . .
. ) . . o O all other users so that his received power has to be the same
achievable, i.e., in the capacity regiép(P), and 2) how to
as that of the closest user.

find the appropriate power pricasf R is indeed in the region.
We will return to these questions in Section IV. But first, let 3) Two-User Capacity Region:When A4 = 2, the bound-
us look at some special cases of Theorem 3.3. ary of the delay-limited capacity region can be directly calcu-
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R2 C. Extreme Points of Boundary Surface

We now extend the characterization of the interior points of
o) p2 the boundary surface dP;(R) to include the extreme points.
Supposel is a set of subsets & = {1,2,---, M} with the
property that all subsets if are nested. By this we mean that
if I, F, € LthenF; C Iy or k5 C Fy. This nesting property
enables us to define a new decoding rule. Let us use successive
decoding, with the ordering determined byas before, except
now all users in any sef’ € £ are decoded after users in
) Fe, for every fading staté. Thus if F; C Fy--- C E, then
P (A\i)ier, is used to determine the ordering of userdvin and
all these users provide interference to usets;inin particular,
users inF; provide interference to the usersia\ F;. By (6),
RI the powers of users i\ F; are not affected by the ordering
C1 . . . . .
of users inf, so the ordering of users ih>\F; is entirely
Fig. 1. A two-user delay-limited capacity region. The curved part is th, i . i . i
boundary surface. The points and p» are the two extreme points of the aetgrmme.d b)(;\Z)ZEFé\F}' lndfucnvely’()‘Z);,EF”\F’PHIS ITSEd
surface. The poinp; corresponds to giving absolute priority to user 1, i.e.Fo et?rmme t e OI’. ering or users Fh\ n—1, @n a the
decoding user 1 after user 2 at every fading state. At this point, user 1 gi8ers inf;, provide interference to the users k¥. It is not
rateCy = Llog(1+ fz—ll). And vice versafor point p2. Note that all other difficult to show that all extreme points of the boundary surface
points in the capacity region but not on the curved boundary are domina@fiDd(R*) are obtained in this way. For the two-user example
by some point on the boundary. . . . )
in Fig. 1, the extreme points agg and p-.
Let us also extend the notion & (R", \) in the following
lated by solving (9). Letx = i—; Then the boundary is the way.
following parametric curve a& ranges from0 to oo (see the
bottom of this page), where

Definition 3.5: Given R,A € R} and £, a set of nested
subsets ofF, we denote the power vector characterized by
(R,A, L) by P(R, ), L).

OO 2
A, = / %fm(h) dh, m=1,2 Note thatP(R, A) is not an extreme point of the boundary
o ) N surface ofD,(R), but is still representable in this notation
g
By = / TF“’(X)fl(h) dh P(R,\) = P(R A\, {E}).
oo 2 . . . .
Bo(\) = / %Fl()\h)fQ(h) dh. We shall have use for this extension in Section IV.
0

D. Further Remarks Concerning the Coding Theorem

The parametei can be viewed as a prioritization between We would like to remark on the decoding schemes to
the two users. As\ — 0, B1(A) — A;, and B2(A) — 0 s0 achieve points on the boundary of the delay-limited capacity
Ry(\) — 3log(1+ A%). This is the delay-limited capacity of region. Consider a channel in which the fading stafeis
user 2 when it is given strict priority over user 1 in all fadindixed at level h for all time. It follows immediately from
states (i.e., decoded last), and this is the best rate user 2 @nthat if users are allocated powers ®(h) then R* is
get. Similarly, as\ — oo, Bi(A) — 0, andBa2(A\) — A so achievable by successive decoding. We conclude that if the
Ri(\) — 3log(1+ ,%)- This is the delay-limited capacity of fading is sufficiently slow that it does not change during
user 1 when it is given strict priority in all fading states, anthe blocklength then the optimal solution is to do successive
this is the best rate user 1 can get. Poin between these decoding with powers allocated as in (6). This separation of
two extremes, the decoding order of users 1 and 2 chandiese-scales assumption may be quite reasonahlé(i) is a
depending on the fading state. See Fig. 1 for an illustratioslow-fading process in relation to the tolerable coding delay
Note that in this two-user case, we can parameterize tfeeg., shadow fading). lH(n) changes during the blocklength
boundary surface of,(P) by A € R,. We will comment then the optimal power control is still given by (6): it as if
on whether this can be done in the geneldluser case in successive decoding were being employed as far as power
Appendix B. control was concerned, and we shall say that the optimal

Ri(\) = BQ()\)Pl — Bl()\)PQ — AlAQ + \/(Bl()\)PQ — BQ()\)Pl + A1A2)2 + 4A1A2B2()\)P1
1N =zlog |1+
241 By(A)
_ Bl()\)pg — BQ()\)pl — AlAQ =+ \/(BQ()\)pl — Bl()\)pg =+ A1A2)2 =+ 4A1A231()\)p2
Ry(\)==log |1+ 245 B ()
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solution is of “successive decoding type.” If we try to dave can represent all points on the boundary surfad@oR"),
successive decoding, we face the problem that the optintatiuding extreme points, by?(R*, A, £), where/£ is a set of
ordering of the users may change during the blocklength,riested subsets of users giving absolute priority rules that hold
the fading changes. This situation does not arise in the narrespective of the fading state. This was discussed in Section
delay-limited case; successive decoding is optimal as shoWiRC. In general, our algorithm provides the parametersnd

in Part I. It may be possible to extend successive decodidg, and provably converges to the poiRt = P (R", X", £*)
techniques to deal with fading in the delay-limited case (asuch thatP* is an optimal solution to (12).

open problem). In practice, it may be sufficient to update theFirst, it is necessary to develop some notation. Since we
successive decoding order at the start of each code periassume thatR™ is fixed throughout this section, we shall
and make an allowance for the fading that occurs within tregmplify notation and set

blocklength. We would then sacrifice optimality for ease of PO\ = PR\

decoding.
PAL)=P(R )\ L.

IV. AN ITERATIVE ALGORITHM FOR RESOURCEALLOCATION  We call P;(\) the average power of usérat power prices

In the previous section, we have characterized the structdreWhere it is understood that this is the average power to
of the optimal power allocation and used it for an implicifichieve the rate vectd®™ and minimize the total power cost
characterization of the delay-limited capacity regiagP). A-P. Also without loss of generality, we can assume that the
The power priced play a central role as a mechanism througverage power constrait; is 1 for all users, by appropriate
which resource is allocated to the different users. To achielgscaling of the fading processes. Hence, our problem is
a target delay-limited rate vectd®*, we have shown that a .

. . . . inf max F;(A).
simple optimal power control can be obtained, foigiaen A>0 i
power price vectoA. Since the power prices reflect the power We propose the following iterative algorithm for solving

constraints on the USErs, a natural question then is hO\_N tAlS problem. The basic idea is that at any iteration of the
appropriate POWEr: price vecto.r. can be computed for gIVgﬂgorithm, we balance the required average powers of all users
power constral.nts. More specifically, we will be concerne s much as possible by increasing the power prices of the users

with the following problem. with larger average powers. This will result in lowering the

« Is a target delay-limited rate vectdt* achievable under required power of such users by giving them higher priority

a given average power constraiR? If so, what is an in the decoding order in more of the fading states. However,
appropriate power price vector? perfect balancing is not always possible since the required
ower of a user cannot be lowered beyond giving him highest

In the case of independent fading processes, this proble fft)rity (i.e., last in the decoding order) averyfading state.

equivalent to checking if there exisdssuch that inequalities

(9) can be satisfied. From a networking point of view, a Algorithm 4.1:

solution to this problem serves the dual purposescall « Initialization : Start with an arbitrary positive". Set
admissionsand resource allocation It determines if a set of E = 1.

users with specified rate requirements is supportable and if S8 Step k: Increase the power price of the user with the
allocates appropriate amount of resources via the selection of |argest average powe?; ( )\U“)) until its power equals that

the power prices. of another user, keeping the power prices of other users
An equivalent formulation is the optimization problem fixed. Then increase the power pricesbothusers by the
PA(R"\) same factor until the average power of one of them equals
inf max ——~—1"— (12) that of a third user. Repeat the process and consider two
A>01<i<M P
cases.
whereP;(R*, A) is the average power of th¢h user under the 1) The process continues until there are no more users
optimal power control which minimizes the total power cost left. In this case, let the final value of the power
A - P while achieving ratesR*. (In the case of independent prices bex®*V and go to stegk + 1.
fading, P;(R", A) is given by the explicit expression (8).) By 2) The process terminates when the powers of a subset
Lemma 3.2, the target rate vectlif is achievable with power U of users whose prices are being increased do not
constraintsP if and only if the solution to (12) is no greater meet the power of any of the other users, even when
than 1. This optimization problem can also be interpreted the prices of that subset are increased to infinity.
as finding a solution foffair average powers for the users, In this case, perfect balancing of powers between
weighted by the power constraints of the users. the two subsets is impossible, even when absolute
We will provide an iterative algorithm that solves the priority is given to the users in subsét Partition
problem (12). If the infimum in (12) is achieved at a positive the users intd/ and.L, the subset of remaining users.
A", the algorithm will converge to it. If this is not the case, The users i/ from this step on will always be given
then a solution achieving the infimum in (12) must be an absolute priority over users ih. The power prices
extreme point of the boundary surface ®Bf(R") (the set of of each usef in L will be fixed at)\gk) and will not

average power vectors that can supp®@i). More generally, be further adjusted in the algorithm. The algorithm
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is now recursively applied t&/, using their current average powers
power prices as initialization.

After a finite number of iterations of this algorithm, the X
users will be partitioned into subsels, Ls,---, Ly, and H, X
where users irL; is given absolute priority over users i
for ¢ > j and users inH given the highest priority, and such
that no further partitioning off will take place. Let x

H2

K

L= {HvH ULg,HULg 3 UL, - H U LivE}
=1

X

be the absolute priority nesting corresponding to this partition- x L1
ing of the users. We have the following convergence theorem
under a mild condition on the fading distributiohs. 123 45 67 users

Theorem 4.2:Assume that there exists a positive loweFig. 2. The average powers of the users at the start of an iteration of the

: : n) resource-allocation algorithm. Users are currently partitioned into subsets
bounde to the fadmg gains of all the users. N( is the L, L>, and Ha2. Users in Hy have the largest average powers, and are

vector of power prices at iteration, then decoded after users ifia, which are, in turn, decoded after usersiin,
at every fading state. The power prices of the userEinwill be adjusted in
PZ* = lim Pi(,\(")7 /;*) future iterations to further balance their powers; the power prices and average
n—oo powers of users irL; and Lo will stay fixed.

exists for alli, and P* = max; P’ is the optimal value for
the problem (12), i.e., Second, we see from the definition of the algorithm that
.. for eachj, the minimum of the average powers of users in
P = inf max P;(A). H; (high-priority users) must monotonically increase after the
" " . iteration whenL; is formed.
Moreover, 7 = P for every user in H. It can also be seen that for eaghwhen the partitioning
) Proof: First, we observe that for anj the power allo- Hj; and L, occurs, the minimum of the average powers in
cation of the users in the subse does not change after the (gt e greater than the maximum of the average powers
iteration when the subsét; is created._To see that, fix a subset, L,. Combining this with the two observations above, we
Lj, and let(Af)iez, be the power prices of the usersiy  qncyde at any iteration aftdr, is created, the average power

whenLj is created. LeH; = Ly, U---ULg UH thisisthe o any ger inH; must be greater than that of any user in
subset of users which are given higher priority than users jn " | L;. Atypical situation is shown in Fig. 2. In particular,

L; at all fading states. The rest of the usersiin---, Lj—1) 4t any iteration after all ofL,, Lo, ---, Ly are created, the

will be given lower priority than users id; at all fading average powers of any user i must be greater than the
states. The optimal power allocation to userslinat fading inK T
stateh is given by (6) average power of any user Lm]f:%'L]. '

Now, let us investigate the limiting behavior of the powers
of the users inH, the final set of users for which no further

2 i . : :
expl 2 Z R+ ZR;(M splitting occurs. First we observe that the ratio of the power
k=1

a
P

Pﬁi h =
@ ®) rel, prices of the users idf must remain bounded. This follows
- from the assumption that the fading gaihs are bounded,
. = since then (13) implies that whenever the ratio of the prices of
ceole( Y SR } | (13) imp p
k=1

kcH;

one subset of users to those of another subset exceeds a certain
threshold, strict priority will be given to users in the former

i=1, L subset over the latter. But this would contradict the fact that
wherer is an ordering of users in the subdet satisfying th?_r:t will be no further splitting of users iff.
A A
(1) > > 7"(|Lj|) (13) (k) (k+1)
Zo 2 A A
ha(1) ha(L,1) T:

.

o ) ) min,; )\Ek) min,; )\Ek—l—l)

The key point is that the power allocation to userd.inonly

depends on the power prices of userdjnwhich remain fixed e the mapping representing one step of the algorithm updating

after the iteration whetl; is created, but do not depend on the,e power prices of the users iff, normalized by the

power prices of the users of higher priority iy, which will - minimum prices. (Note that the average power of the users

be changed in future iterations (see Section III-C). Thus thgnends only on the normalized prices.) From the continuity

power allocation to users ih; stays fixed oncé; is created. qf the fading distribution, it can be verified that the average
2This assumption is technical and can probably be removed with a md?QVYerS are continuous functions of the normalized prices and

elaborate argument. so isT.
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We now claim thatZ” has a unique fixed point, to whichfind a fair average power requirements for the users, weighted
any sequence of power prices generated by the algorithoy their power constraints. Users in the dét correspond
converges. To see uniqueness, we note thgtrovides a to users whose routes pass through lloitleneck nodeand
tradeoff between powers of users. No point on the boundahave the maximum (weighted) power requirement. In fact,
surface ofD,(R*) strictly dominates another. This is true alsdt can be shown that by applying the algorithm recursively
for powers withinH, if we give strict priority toH. However, to balance the power requirements of users in the subsets
the existence of more than one fixed pointiofvould provide Lq,---, Ly defined above, one can in fact computenin-
such strict dominance of powers # of one point over the max fair solution (see [1] for a corresponding algorithm for
other. This is so, since a fixed point @f must have that bandwidth allocation).
property that the powers of all users th are the same.

Lyapunov technique. Define the Lyapunov functibnb . . .
yap d yap y The constraints on the transmit powers we considered so far

V(A) = max P;(A\, £7) — min P;(A, L) are on their long-ternaveragevalue, and under power control,
icH et the transmit power will vary depending on the fading state. In
for any normalized price vectak, which has the following practice, one often wants to have some shorter term constraints

properties: on the transmit power as well. These constraints may be due to
« V is a continuous function of; regulations, or as a way of imposing a more stringent limit on

« for any \, V(T())) < V()) with equality if and only if how much interference a mobile can cause to adjacent cells.
X is a fixed point ofT". To model such auxiliary constraints, we consider the following

Consider now any particular sequence of power pricd§asible set of power controls:

k) oo ; ; . _ .
(X ))kzjL generatgd by the algorithm. By assumption, the]_—pz{p . Eg[P;(H)] <P, andP;(h)< P, Vi andheH}
sequence is contained in a compact set, and therefore has ac-
cumulation points. Le()\(”*))ioz1 be a subsequence of pointsvhere M is the set of all possible joint fading states of the
converging to an accumulation point'. By the continuity users. Thus in addition to the average power constraints,
of V, we have thatV(A"™*)) | V() *), ask T oo, and by we also have a constraidt;, on the transmit power of the
a sandwich argumeny()\("kJrl)) 1 V(\*) as well. By the ith user in every state. We shall nhow concentrate on the
continuity of 7, AT+ +1 = T(,\("")) — T(A\*) so it follows problem of computing the optimal power control subject to
that V(T(A")) = V(X*), i.e., A" is the unique fixed point of these constraints. _ .
T. Hence the algorithm converges to the unique fixed point of We focus on the capacity region
T, and that for any sequence of power pricé¥ generated PP Py
by the algorithm, the corresponding powér(A*) | £*);c ) Ca(P P) = PLJT ’ﬂH Co(h, P(R)).
converge to a common valug*. e

Thus we have proved that for every usee £ .
Lemma 5.1: A rate vector R lies on the boundary of

Pf = lim P,(A\™, %) CP(P, P) if and only if there exists & € % and a power
_ e control policy? such that for every joint fading state P(h)
exists and is a solution to the optimization problem
P} =P" = max Py for every: € H. min X - p subject toR" € C,(h,p) andp; < B; Vi (14)

Also, for any power price vectok, max;cp F;(A) > P*. and
To see this, assume this it the case. Then there exisks

and n such that En[Pi(H)] = B, i=1M
Pi(X) < P(A"™ £*) for everyi € H. where P; is the constraint on the average power of user
Moreover, P is a power control policy which can achieve the
This is impossible since undet*, users inH are already rate vectorR".
given the highest priority over other users at all fading statesThe proof of this result is similar to that of Lemma 3.2,

and henceP()\("), L*) achieves the minimum total averageand is the analogue of Lemma 6.1 in Part I, and will not be

power cost given here.
(n) To solve the optimization problem (14), we first prove a few
Z AP results about contra-polymatroids.
icH

Definition 5.2: The rank functionf of a contra-polymatroid
is said to bestrictly supermodular if for any subsét 7" such
that neither is a subset of the other

For the reader who is familiar with flow-control problems in
virtual circuit networks, this algorithm may be reminiscent of FE+ D) < HSUT) +£(SNT).
fair bandwidth-allocationalgorithms. Here, the objective is to 3Clearly, if one is a subset of the other, equality must hold.

for users inH. Thus P* = infx-o max; P;(A) and the proof
is complete.
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The following lemma is motivated by a result of Hanly andeasible region. At each stdpof the algorithm, either théth
Whiting [11], which was proved in the context of multiaccessomponent cannot be decreased, in which case the constraint
capacity regions. zr < ag IS tight, or it can be decreased until a constraint
of D(f) corresponding to some subsgtbecomes tight. In
any case, at each stage of the algorithm, we are having
an additional linearly independent constraint becoming tight.
(R/Ioreover, since we are always decreasing the components
of &, subset constraints that become tight will remain tight.
Hence, at termination, there ané linearly independent tight

Lemma 5.3:Let D(f) be a contra-polymatroid with a
strictly supermodular rank functiorf. Consider any vector
z € D(f), and letSy, - -+, S be the subsets corresponding t
the constraints oD(f) that are tight ak, i.e., these constraints
hold with equality ate. Then there exists an orderingsuch

that constraints, ane: is a vertex of the feasible region.

Sr1y C -+ C S Let S;,55,---,5; be the subset constraints that are tight
) at z*. By Lemma 5.3, we can without loss of generality
i.e., they are nested. assume thal$; C --- C S,. Let us now identify the tight

Proof: Take any two tight constraints corresponding t@eak constraints. Consider the partition of the basefsietto
subsetsS; and S;. Suppose neither is a subset of the otheg, g, g, S,-, ... §,—5,_;. Since the tight constraints

Then are all linearly independent, it follows that in each subset
2(S; US;) = 2(8;) + 2(S;) — x(S; N S;) S; —S;_1, at most|S; — S;_1| — 1 elements can correspond
z J/ ? J z J . : . .
to tight peak constraints. But since there ade- J tight peak
< J0S) + £(S5) — f(SinSy)

constraints, in fact exactlys; —S;_;|—1 elements correspond
< f(S;Us;) to peak constraints.

- . Now, the optimization problem of interest is a linear pro-
a contradiction, sincee € D(f). Hence, the subsets corre- ramming problem. Thus to verify the optimality af, it
sponding to the tight constraints must be nested. O 9 gp ’ P y af,

suffices to show that the objective function cannot decrease
Now let a;'s be positive constants, and consider the optalong any of theM edges of the polyhedron that emanate

mization problem from z*. Each edge is obtained by relaxing precisely one of

the tight constraints. We consider the following two cases.

min A -z subject toz € D(f) and; < a; Vi (15) 1) Suppose we relax a tight constraint < az, where

where the vector\ satisfies ke S; — 5,1 for somej. Letm € S; — S;_1 be such that
the corresponding peak constraintriet tight. The edge can
ALz 2 Ay 20. be seen to be along the half-line
We will refer to the constraints; < a; aspeakconstraints. g, +z,, =25 + 2%, zx <z}, = = 27, i £ k,m.

To motivate the algorithm for solving this problem, we first . o
observe that the algorithm given in Lemma 3.3 of Part | (which e first note thak > m. For the purpose of contradiction,
we applied in (6) to solve the same problem but without tH&IPPose instead that < m. The point
peak constraints) can be viewed as a greedy algorithm.
* Initialization : Setargo) = 0 for all <. Setk = 1. o _ _ _ _
 Step k: Increase the value of; until a constraint IS in the feasible region, which means that in thil step
becomes tight. Goto Step + 1 of the algorithm, thekth component can be further decreased
o After M steps, Optima| solution is reached. beyond azz This is a contradiction. Hence; > m. Since
With this interpretation, the following greedy algorithm foth€ coefficients of the objective function satisky, < Ay,

problem (15) can be viewed as a natural generalization to it follows that the objective function cannot decrease moving

case when there are peak constraints: along the edge. _ _
2) Suppose we relax a subset constraint correspondifg to

* * * *
(‘T17"'7‘Tk_67"'7‘Trn+€7"'7$]\4)

Algorithm 5.4: for somej. If j < J, letk € S; — S;_, andm € Sj41 — S
« Initialization : Set xz(o) = q; for all 4. If z(® ¢ D(f) correspond to peak constraints that are not tight*atin this
then stop. Else set = 1. case, the edge can be seen to be along the half-line

« Stepk: Decrease théth component of until a constraint
becomes tight. Go to Step+ 1

* Stop afterM steps. Since \r > A, it follows that the objective function cannot

Theorem 5.51f z(® ¢ D(f), then the optimization problem decrease along this edge. On the other han(j_, # J, let
(15) has an empty feasible region. Otherwise, Algorithm 5% € 57 — Ss—1 be the component corresponding to a peak
terminates at an optimal solution to (15). constraint that is not tight. The corresponding edge is along

Proof: The first statement follows from the easily veri{he half-line
fied fact that ifz,y are two vectors such thgt < z; Vi and
z ¢ D(f), theny & D(f).

Now supposea® € D(f) and the Algorithm 5.4 terminates Clearly, the objective function cannot decrease along this edge.

at the pointz*. We first show thatz* is a vertex of the Hence we conclude that indeed is an optimal solution.d

* * * * .
.’L’k—i-.’L’m,:.’L'k +$m,a xkzxka Ty = T;, Z#kam-

* * .
Ty 2 Ty T =Ty, L#k
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At each stefk, Algorithm 5.4 has to check when a constraingiven power pricea.. Moreover, the polymatroid theory yields
becomes tight. This is equivalent to threembership problem a result of independent interest: an efficient membership test
given a pointz, check ifz is in D(f) or not. For general for the Gaussian capacity region. More concretely, given rate
contra-polymatroids, there is no known efficient combinatoriakector R and power constrainP, to check the exponentially
algorithm to solve this problem (checking every constraiférge number of constraints
of D(f) requires complexity exponential if/.) However, 1 P(s
for the special case of contra-polymatroids with generalized R(S) < Zlog <1 + (2 )>’ ScCE
symmetric rank functions, a very simple test exists. This result 2 g
is due to Federgruen and Groenevelt [5].

one needs only to so%’s in ascending order, and check the
Lemma 5.6 [5]: Supposef is generalized symmetric, i.e., M nested constraints éorresponding to that ordering.

f() = g(y(-)) for some convex increasing function and It should be noted that unlike the optimal power-control

vectory. Given anyz, let o be a permutation o such that schemes for the previous problems we considered in this paper

z z (Parts | and II), the optimal solution for this problem cannot
o) .., < TolM) \ . . .
S in general be achieved by by successive decoding ofMhe
Yo (1) Yo (M) . . . .
users. Due to the auxiliary constraints, the optimal solution is
Thenaz € D(f) if and only if not necessarily on a vertex of the capacity region. However,
m m Rimoldi and Urbanke [13] show that each user can be split into
Zxo(i) >g Zyo(i) Vm=1,---, M. at most two “virtual users,” such that the resulting paan
= = be achieved by successive decoding of at nist virtual

users. Their procedure for calculating the power levels that
define the splitting igreedy a fact that again arises from the
generalized symmetric polymatroid structure of the Gaussian
multiaccess capacity region.

This lemma implies that one only needs to chetk
constraints to determine ¥ is a member ofD(f), instead of
2M _ 1, Combining this lemma with Algorithm 5.4, we can in
fact compute explicitly the value to which thigh component
must be decreased in thigh step of the algorithm. Thus in

the case wherf(-) = g(y(-)), the algorithm now becomes VI. MULTIPLE TIME-SCALE FADING AND
« Initialization : Setz(” = a; for all i. If (0 ¢ D(f) FREQUENCY-SELECTIVE FADING CHANNELS
then stop. Else set = 1. The notions of throughput capacity and delay-limited ca-
« Step k: Let o*) be a permutation on pacity for fading channels can be viewed as two ends of
a spectrum. If we look upon a fading channel as a set
{t-- k=-LEk+1,---, M} of parallel channels, one for each fading state, then the

throughput capacity is the maximum total rate that one can
achieve by an arbitrary allocation of rates and powers over
the parallel channels, subject to a power constraint. The delay-

such that
La)(1) <...< Lo (k) (k—1) < L) (k+1) <...< T (e) (M)

Yor(ry — Yook—1)  Yoork41) Yo (M) |imited capacity, on the other hand, is the maximum total
Then set rate subject to the constraint of a common rate for each of
(k—1) o the parallel channels. Thus one can consider other notions of
25— *i ’ if ¢ 7k capacities where the rate-allocation policy is not as stringent
P maxl (S5 U {RY) — 2(5))], i=k as in the delay-limited b letely arbi
i A y-limited case, but not completely arbitrary as

in the throughput capacity. In this section, we will look at

where two applications of this idea: fading with multiple time-scale
S; = {o™(1),---, (5} dynamics, and frequency-selective fading.
Consider first the situation when the fading processes have
(noting that the element*) (k) does not exist.) two components, one slow and one fast. The slow fading
Go to stepk + 1. might be due to shadowing, for example, and the fast due to
* Stop afterM steps. multipath. We assume that the fast fading is sufficiently fast

Lemma 5.6 implies that at stépof the algorithm, the subsetto average out over the tolerable delay, but that we are delay-
constraints that can become tight are the ones correspondingted with respect to the slow fading. We define a notion of
to the subsets; U {k}, for j =1,2,--- , k—1,k+1,---,M. capacity in this context.

The value that théith component should be decreased to is Let S be the set of joint slow states, aftflthe set of joint
determined by the first of these constraints becoming tiglidding states. Le{S(n), H(n)) be the joint slow state and
The complexity of this algorithm i€ (A?). fading state process, witH(n) having stationary distribution

By observing that the set of feasible received powgrs Q on H. However,conditional onS = s, H has stationary
that support a given rate vectdt™ is a contra-polymatroid distributionQ, onH. A feasible power-allocation policy must
with generalized symmetric rank function, we can immediateBatisfy Es ;[P(S, H)] < P.
apply the above simplified form of Algorithm 5.4 to solve In order to define the notion of capacity we are interested
the optimization problem (14). This gives an efficient wain, we first consider the capacity of an associated channel.
to compute the optimal power allocation at a fading state, f@onsider a channel associated with a slow statand with
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an arbitrary power-allocation policP(s, k). This channel which is equivalent to solving
has unit power, and fading process(n)P;(s, F(n)), where M

we assume thaf'(n) has stationary distributior®, on . max Z(uf(S)Ri(S, h) — X Pi(s, b))
We denote the throughput capacity region for this associated = R(s.k),P(s,h)

channel byC(s, P(s, -)). Now we return to the original channel S Pi(s, h)h;
with bpth s]ow and fast fading, and define tdelay-limited st ZRK@ h) < llog 14 €L (16)
capacity with respect to slow fading = 2 a2
Definition 6.1 for each s, h. The appropriateu*(s) is determined by the
Cds(P) = U ﬂ C(s,P(s,)) condition
PeFses Exis=s[Ri(s,H)| = R;. a7

whereZ is the set of power control policiéB(s, k) for which A greedy algorithm for solving (16) was presented in Theorem
Esu[P(S, H)] = P. 3.14 in Part |. Moreover, an iterative procedure for computing
Alternatively, the definition of thedelay- limited capacity ,+(s) was provided in Algorithm 5.3 of Part I: we start with
with respect to slow fadingcan be formulated in the samegp, arbitraryu(s) and update it until (17) holds.
manner as in Section Il. Definition 6.1 then becomes a|n this section, we have found the minimal cost power
theorem, with a proof along the same lines as the proof ghntrol policy to obtain a consistent mutual information vector
Theorem 2.3. In some sense, this alternative approach is mgreoyer every slow fading state. With this power control, we
robust. However, the approach we have taken is completelyn optain any rate strictly beloR* in a delay-limited fashion
watertight provided one assumes a separation of time scalgfh respect to slow fading. A very important observation is
namely, that the coding time scale is much shorter than thght to obtain this solution we do not need to know the statistics
of the slow fading. of the slow fading at all. This is because we have prescribed
From the point of view of a parallel channel decompositioghe delay-limited ratesR* as a constraint, but not the long-
of the fading channel, our approach here corresponds (9m average power consumption. The average power used is
partitioning the parallel channels into subsets each associaggghinable from the solution to the power control problem, but
with a slow fading state. In the above definition of delayye do not need to know i priori. Moreover, the algorithm
limited capacity for multiple time-scale fading channels, ongat we use to determing(s) does not need to know explicitly
is allowed to do rate allocation among the channels withife conditional distribution of the fading process given the
each subset, but subject to the constraint that the total ratesjgy state, but rather it adapts to changes in these statistics.
each subset (slow state) is the same. Another important point is that successive decoding is
We now consider the problem of resource allocation; thgstimal under our assumption of a separation of time scales
tuning of power prices and rate rewards to achieve a particulggtween the coding time scale, and the slow-fading time scale.
delay-limited bit-rate vector. The dual sBu;(R") is defined Given any slow state, we use successive decoding to achieve
as usual R*, as in Section llI; in this case, the decoding order is a

“ P p = function of the slow state.
Das(R') = {P: B" € Cas(P)} The characterization of the extreme points @f(P) is

In this section, we shall limit ourselves to the characterizatiérll'ghtIy more comp_l|cated, and we do n_ot a“e”?pt I he_rg.
of the extreme points oDy, (R") Clearly, the calculation of the capacity region requires explicit
s .

As in Section Ill, we characterize any point on the boundall§powledge of the statistics of the fading, including the slow

" . . fading.
of Dy(R") by solving the following problem, for every slo L ) . .
a-(R") by solving wing p Very siow Similar reasoning can be applied to the analysis of the

state s delay-limited capacity of frequency-selective fading channels,
mmZ N Emis=s[Pi(s, H)] as defined in Section VII of Part I. Under an assumption
P that the product of the delay spread and the Doppler spread
> Pi(s, H)H; is small, one can look upon the frequency-selective fading
st ZR; < Exis—s llog 14 €L ~ channel as a time-varying channel where, at each fading state,
ier 2 o? a frequency response is specified for each user, representing

the multipath. Thus it can be viewed as a set of parallel
Since the delay-limited capacity region is convex, there exighannels, each one jointly specified by the fading state and
Lagrange multipliergs*(s) for which (R*,P(s,-)) solves the frequency. In order to be delay-limited in this channel,
each user can allocate rates over the different frequencies
N N but the total rate summed over the frequencies must be the
'R Z(“i (8)R; — A/Emis=s[Pi(s. H))) same for each fading state. Thus the resulting optimization
problem is identical to the one studied in the present section
1 by for multiple time-scale fading processes, and hence the optimal
St ZRZ‘ < Enis=s 5 log | 1+ - .2 power allocation for given delay-limited rates can be obtained

i€L from our theory. This ability of being able to perform dynamic
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power allocation over different frequencies is an advantage arid the powers can vary with the fading states. Using results
a wideband system over a narrowband system, especially iforSection 1ll, we see that the optimal successive decoding

delay-sensitive traffic. order at fading stath is in increasingiﬂ, where are power
prices independent of the fading state, chosen to meet the
VIl. POWER CONTROL FOR SUBOPTIMAL SYSTEMS average power constraints. (Ties can be broken arbitrarily.)

F?r independent fading processes, the boundary of the set of

In the previous sectl_ons, we have focysseq on Optm}%asible SIR’s supportable by given average power constraints
power control from an information-theoretic point of VIBW.5.¢ onsists of vectors satisfying

We will now demonstrate that the ideas can also be applied,
in a straightforward manner, to characterize optimal power [ ¢? Ak _
control laws for situations when successive decoding is do?fé/o By H 1+ 1 )\_ihi o  filhi) dhi = B,
but nonideal single-user codes are used so that one is not e
operating at information-theoretic limits.

Consider the multiaccess scenario with users where the for some power prices\. Finally, for a given set of SIR

ﬁth usﬁ r has ? desweq s;?nal—to—lr;tirfegenlc(:e rat'%SIR"O'f requirements and average transmit power constraints, the algo-
ere, the interierence Is the sum of the background noise (th m given in Section IV can be used to determine feasibility

N .
powero?) and that caused by the users whosg signals have BRb to compute a set of appropriate power prices if feasible.
yet been decoded. In general, the SIR requirement of a user

depends on the coding scheme, the data rate, and the error
probability requirement, but we assume that the SIR captures
the quality of service requirement of the user. We now askIn this paper we have shown that any point on the delay-
what is the optimal power control law which maintains thémited capacity region is achievable by solutions of “succes-
SIR requirements of the users? Focus first on a time-invariaive decoding type.” Successive decoding is indeed optimal
multiaccess Gaussian channel where usehas a transmit under the separation of time-scales assumption of Section
power of P,, and a path gaim,,. For a given successivelll-D. Given a set of delay-limited rates, we have used a
decoding orderr, let F(r, e, h) be the set of transmit power Lagrangian characterization of all the possible optimal power
vectorsP = (Py,---, Py) which can support the given SIRvectors to get an explicit parameterization in terms of certain
vectorae = («y,- -+, apg). It is given by “power prices.” Any such optimal solution is obtained by
choosing an appropriate set of power prices, and then solving
R tm)Pr(m a family of power control problems over a set of parallel
Flmoah)=1p: 0%+ (Z)hw((i);w(i) 2 Cn(m) time-invariant Gaussian multiple-access channels, one for each
i<m fading state. We have exploited the polymatroid structure of

Thus if successive decoding is used, the set of transmit poag Multiaccess Gaussian capacity region to provide a simple

vectors that can support a given set of SIR requirementsgreedy solution to each of these power control problems,
is given by despite the fact that there are an exponentially large number

of constraints. It is also shown that the Lagrange multipliers
UJ—" (7, e, h). (18) associated with the power constraints (the power prices) can
= be computed by simple iterative procedures. We have also

Further, if we allow time sharing between different successi\‘}”@dresse‘j the'is'sues of peak power C(')nstra}ints, and extensions

decoding orders, then the set of feasible power vectors9 the delay-limited concept to multiple time-scale fading

enlarged to the convex hull of (18). Call this polytaféh, a). processes, frequency-selective fading, and suboptimal coding
If we let R,,, = L1og(14a,,,), i.e., the single-user capacitySChemes. . _

that can be achieved with a SIR af,,, then we observe that It iS interesting to compare the structure of the optimal

i=1,--,M

?

VIIl. CONCLUSION

the setF(h,a) is the same as schgmes for achieying throughput cgpacities ahd those.for
achieving delay-limited capacities. While successive decoding
Gh,Ry={p: RcCyh.p)} is optimal in both cases, the throughput-optimal schemes main-

. h ¢ ! h that th tain thesamedecoding order at all fading states. However, the
I.e., the set of transmit power vectors such that the rate Vecigfoq of the ysers are dynamically adjusted depending on the

Ris |rr11thehmult|;51ccess Gg;saan ;l:apacrl]ty region. To see t@?ate, and indeed it is possible that a user may be allocated
n(;]t_er: ?]t the o,n yfvelrltex (m, . b) _'Sf_t de p_o;/]ver vetlz_tor 'nh_no rate in some states. For optimal delay-limited schemes, on
which the SIR's of all users are satisfied with equality. Thi§,o oyher hand, the rates are fixed at all fading states, and the

corresponds to the vertex @f(h, R) where the successiveg, . qssive decoding order is adjusted to maintain those target
decoding order isr. Thus the polytope#(h,a) andG(h, R) |'ates with the least power cost.

have the same set of vertices, and hence must be identica

With this identification, we can now apply the machinery
developed earlier to characterize the optimal power control
law to maintain the SIR requirements at all times in a fading
channel, subject to transmit power constraints. We allowLet f(h) be the equilibrium probability density of being
successive decoding at each fading state, where both the oideiading stateh. Without loss of generality, assume that the

APPENDIX A
PROOF OF THEOREM 2.3
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fading of all users is bounded by For eachk, let To prove the converse, suppose tlais an interior point
1 2 of Cy4(P). Recall that we have partitioned the fading state
I =A0, AN 1M space into cube(sEj)f":Af. We consider a sequence of Markov

processes defined of of the following form. Consider

be a partition of the fading state spaige1]". a Markov chain on the “coarse” statds; with transition

First, suppose thak is in the interior ofNuesCy(h. P(h))  probabilities #(E;, ;). We use such a chain to define a
for some power control policy. Let useri generate a random Markov process oftt: conditional on the chain being in coarse
codebook of2™*" codewords of lengtti” by selecting each state £, we select a fading state for the process by using
symbol at random from av(0,1) distribution. Useri then the stationary distribution conditional on the fading being in
transmits in timen, the nth symbol of the appropriate code-£. The process remains in this state for an exponential time
word, scaled by,/7P;(H(n)). Such a set of codewords then-(g) = ExponentialA (E)) and then selects a new coarse
satisfies the power constraift Given this set of codebooks, state according ta. We assume that the Markov process
let p(T") be the conditional probability of decoding any usehas the required stationary distribution 66, by choosing
incorrectly, using maximum-likelihood decoding, under thﬁppropriate()\(E))Eelk. By scaling allA (E;) by a constant,

assumption that the decoder is given the realization we can speed up or slow down the rate of fading while
H = (H(1),H(2), -, H(T)). retaining the required stationary distribution.
’ T For eachT = 1,2, --, let H® be such a fading process

ForS asubsetofl,2,---, M}, letp(S,7T) be the conditional with the following properties. We assume a random variable

probability of decoding any user i incorrectly, conditional H(0) onH with the stationary distribution of the processes we

on correctly decoding the users$ti. The union bound implies require. We assume all fading processes start Hﬁﬁ)(o) =
H(0), T = 1,2,---. The initial sojourn time in statdd (0)

p(T) < ZP(S’ ). of fading H™ is given by mr(H(0)), where rp(E;) =<
s ExponentiglrrA (£75)) and independent oH(0) for all j.
As shown in Gallager [6] The constant gives the “rate of fading” for procesd®.

Let 6 be a fixed, positive constant. By choosing an appropriate
> D Qilzilh

p(5,T) < exp(pTR(S)) zh: F(h) - decreasing sequencer)3>_,, rr | 0, we can ensure that for

Y (z;)5€S° all j

1+p

X [ > Qiles | byply | = k)Y <1+f’>] P(T,70(E;) > T) >1—-6. (20)
(a:z-);iCS _

SinceR € Cy(P), we can choose for eadi and each user

i a code of size2®*, A codeword from usei’s codebook

consists ofT" symbols. LetX(T)(n)n = 1,2,---,T denote

a random, independent selection of codewords for the users,

for any p > 0, whereQ@;(z; | h) is the conditional probability
density ofz; being the codeword of uséy conditional on the
fading beingh. In our case, we obtain

1 Z for which the probability of error in channef” goes to
p(S,T) < f(h)-exp | —p| — TR(S) + 5 > zero withT'. Let p(T) be the probability of error foX "
h ("=1 under fading H®. We note thatX® may be random;

this. Let Q(E) be the subset of the sample space on which
H(0) € E andVT,7r(E) > T. Let @ be uniform on[0, 7],
and independent of all other variables. Define

( %7’1 (n ))]) say, with dependence oH®, although we do not require
log [ 1+* .

By assumptionde such that

£ vi(e.1) = E[(x(")(@) | )]
vh €T R(S) < log (1 * T) e wi(E.7) =E[(X{")*(Q) | [H(0) € E] - (&)
Z(E,T)=V(E,T)P(VT,7+(E) > T | H(0) € E]
Thus +W(E,T)P(T : r(E) < T | H(0) € E).
p(5,T) < exp (=pT(e ~log (1+7))) Then the power constraint is thef’
and hence B
§I) S exp(MIn2 = pT( —log(L+p). (19) 2 NEHETD) < P

By taking p sufficiently small, we have — log (1 + p) > 0

and it follows thatp(7") — 0 asT 1 co. Moreover, we have

in (19) a bound that decays i at a rateindependentof

the correlation structure of the fading process. It follows that Z FEYW(E,T)<
E

R € Cd(P)

By Assumption (20), we have

»

1-6"
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Taking limits along a convergent subsequence, we have that APPENDIX B
PARAMETERIZATION OF BOUNDARY OF CAPACITY REGION

One unsatisfactory feature of Section Il is that we are
Z FEW(E) < P unable to provide an explicit parameterization of the boundary
— 1 M

V(E,T)—V(E) asT T
— surface ofC,(P). Theorem 3.3 suggests a parameterization of

F the boundary surface by € ®}/, and we discuss this further
Now let us define a new fading procelk by below.
The following lemma shows that for any € %4/ there is
H(n)= ZI[H(O) € EJh(E) at least oneR € R4/ such that(A, R) solves (9).
I

Lemma B.1:Definez; = exp (2R;) — 1, and the transfor-
where h(E) is the upper corner of the cubE. Note that mation T by
conditional onH(0), the fading process is deterministic. Let
q(T | Q(F)) be the conditional probability of error for code To(g) = b

. . . L. z( ) - 00 2 .
X in this new fading channel, conditional on the event e (1+Fk (’\A%h)xk)fi(h) dh
Q(E). By construction ki
p(T) > P(QUE))q(T | UE)). Then there exists a fixed point df.

. Proof: T is continuous, and
By assumptionp(T) — 0 asT 1 oo, and hence

P
q(T | QE))— 0, as7 T oo. 0<Ti(z) < o2 [ B gy
0 h

But conditional orf2( E'), we have a a constant fading channel, . .
and a sequence of codes satisfying the power cons¥iay. and hencel” is a mapping from
It follows that for all £ € I,, R € C,(h(E),V(E)).

Define 7} s to be those power-control policies that satisfy H 0 Fi
the power constraingZ; and are piecewise-constant on each o2 |7 @dh
cubic element inl;. Set

D

to itself. By the Brouwer fixed-point theorem, there exists a
Prs(h)= > V(E)[he E]| fixed point for 7" in this set. O

FEely
* It follows that (9) has a solution iR for any positive

and note thaPy, s € F; 5. For any power controP, define . Even if a closed-form parameterization 6§(P) is not
o (k) possible, it would be useful to have a computational procedure
CV(h, P(h)) ={R: ReCy(h™, P(h))} to find a solution to (9). Consider then the following algorithm,
which we might use to try and find such a solution:
Whereﬁgk) = L[kh,] forall i =1,2,---, M. We have shown
that for anys > 0 x — T"(z). (22)

vheH,  ReC]H(h,Prs(h). wherez is the starting point of the algorithm, afit?(x) is the
nth iterate. It is easy to show th@¥ satisfies the monotonicity
property of Section IV in Part I. Thus if has a unique fixed
R € Uper, Nnen égk)(h’P(h)) (21) point thenT™(z) will converge to it from any starting point
z. We leave the problem of establishing the uniqueness of
whereF;, = Fi.o. Now by the first part of the proof, we havethe fixed point of1’ open. It is equivalent to the following

It follows that

that conjecture.
Upcr Naer Colh, P(R)) € Upcr Nuer Cqlh, P(R)) Canjecture 1. _
C Cu(P). 1) Given P, the mappings — A(P,p) is invertible,
- implying that we can parameterize the boundary surface
We have shown in (21) that of C4(P) by A € RY (note, we assume that and
_ . A are appropriately normalized, so that these mappings
Ca(P) € Uper, Nier CF (h, P(R)). are well-defined).

2) Given R*, the mappingh — u(R*,)) is invertible,
But these lower and upper bounds convergeds oo, and implying that we can parameterize the boundary surface
hence of Dy(R*) by p € RV,
Ca(P) = Upcr Nhen Co(h, P(H)). We also conjecture that the analogous results hold in Part I;
that is, the maps\(P,u) and u(R*, X) are invertible in the
This completes the proof. throughput capacity case as well.
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