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Multiaccess Fading Channels–Part II:
Delay-Limited Capacities

Stephen V. Hanly,Member, IEEE, and David N. C. Tse,Member, IEEE

Abstract—In multiaccess wireless systems, dynamic allocation
of resources such as transmit power, bandwidths, and rates is
an important means to deal with the time-varying nature of the
environment. In this two-part paper, we consider the problem
of optimal resource allocation from an information-theoretic
point of view. We focus on the multiaccess fading channel with
Gaussian noise, and define two notions of capacity depending
on whether the traffic is delay-sensitive or not. In Part I, we
have analyzed thethroughput capacity regionwhich characterizes
the long-term achievable rates through the time-varying channel.
However, thedelayexperienced depends on how fast the channel
varies. In the present paper, Part II, we introduce a notion of
delay-limited capacitywhich is the maximum rate achievable with
delay independentof how slow the fading is. We characterize the
delay-limited capacity regionof the multiaccess fading channel and
the associated optimal resource allocation schemes. We show that
successive decoding is optimal, and the optimal decoding order
and power allocation can be found explicitly as a function of the
fading states; this is a consequence of an underlying polymatroid
structure that we exploit.

Index Terms—Delay-limited capacity, fading channels, multi-
access, power control, successive cancellation.

I. INTRODUCTION

I N Part I [15] of this paper, we studied the problem of
optimal dynamic resource allocation for multiaccess fading

channels from an information-theoretic point of view. We
computed the Shannon capacity region of the multiaccess
fading channel when the transmitters as well as the receiver
have access to the channel state, and also characterized the
optimal power- and rate-allocation schemes.

The Shannon capacity of a channel provides the ultimate
limits on the rates that are achievable. The capacity itself is
not dependent on any delay considerations, and is achievable
in an asymptotic sense as delay tends to infinity. Thus when
we focused on the Shannon capacity of the multiaccess fading
channel in Part I, we found the Shannon limit over the set
of all possible rate and power allocation strategies, with the
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objective of maximizing the long-term average rates. In Part
II, we now consider limitations on rate and power allocation
strategies that can be used due to delay constraints.

One way to think about this in the single-user case is to
identify the Shannon capacity with a “long-term average of
mutual information between the user and the receiver” in
the channel. That is why we called the Shannon capacity
of a fading channel itsthroughput capacityin Part I. On
the other hand, there is a notion of “instantaneous mutual
information” and this can fluctuate as a function of the fading
state. Essentially, in the delay-limited case, we restrict our-
selves to power control strategies such that the instantaneous
mutual information is kept constant at all times. We call
the maximum achievable rate thedelay-limited capacityof
the channel. Without such a restriction the throughput of the
channel can be increased but at the expense of having the
“instantaneous mutual information” fluctuating with the fading
process, leading to delay at the time scale of the channel
variations. While the single-user delay-limited power-control
strategy is simply “channel inversion,” the multiuser problem
is more interesting as it involves tradeoffs between the powers
allocated to each of the users to achieve desired rates.

There are many “delay-sensitive” applications such as voice
and video, for which long delays cannot be tolerated. Unless
the fading is fast on the time-scale of tolerable delay, the
throughput capacity of Part I is not relevant for these appli-
cations. Our delay-limited capacity is the appropriate limit for
these applications.

The notion of “delay limitedness” is implicit in many works.
For example, papers on power control (see Gilhousenet al.
[7], Hanly [9], Yates [16]) assume that a desired signal-to-
interference ratio must be met for every fading state, and
this means that the user’s mutual information is kept constant
in time. The formal notion of delay-limited capacity for
multiaccess channels was defined in Hanly and Tse [10],
where we considered the symmetric case with users having
the same rate requirements. In the present paper, we focus
on characterizing the entire delay-limited capacity region and
the associated optimal power control schemes. As in Part I,
we shall exploit the convex and polymatroid structure of this
problem. Again, we find that the optimal solution is always
successive decoding, and that the optimal power control can
be explicitly characterized and has a greedy interpretation.

Part II is organized as follows. In Section II we introduce
the Gaussian, multiaccess, flat fading model and present a
coding theorem for the delay-limited capacity region when
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transmitters and receiver can track the channel. This theorem
implies that the extra benefit gained from the transmitters
tracking the channel is fully realized in the ability to allocate
transmit power based on the channel state. In Section III, we
use Lagrangian techniques to show that the optimal power
allocation can be obtained by solving a family of optimization
problems over a set of parallel time-invariant multiaccess
Gaussian channels, one for each fading state. Given the
Lagrange multipliers, which can be interpreted as power
prices, the problem is that of finding the optimal “power”
allocation as a function of each fading state so as to minimize
the total power cost. Here, we exploit the polymatroid structure
of the optimization problem to obtain an explicit solution via
a greedy algorithm. In Section IV, we turn to the problem of
finding an appropriate set of power prices so that a target delay-
limited rate vector can be met within given power constraints.
We present an iterative algorithm which, if the target rates
are achievable, is guaranteed to converge to the right power
prices. Moreover, it also solves acall admissionsproblem by
determining if a given set of target rates are indeed achievable.

In the remainder of the paper, we will extend the basic
results in several directions. In Section V, we will present
greedy power-allocation algorithms when additional power
constraints are imposed. These results exploit further prop-
erties of polymatroids. In Section VI, we relax the delay
limited requirement in two ways. First, we consider a multiple
time-scale model, with slow and fast fading, and compute
the optimal power control when we are delay-limited with
respect to the slow fading. Secondly, we consider a frequency-
selective fading channel, in which rates can be allocated to
the different frequencies, but the sum rate over all frequencies
must be constant for each fading state. Finally, in Section
VII, we explore the implications of these information-theoretic
results to systems with suboptimal coding and decoding.

In Hanly and Tse [10], the concept of delay-limited capacity
is extended to take advantage of statistical multiplexing: it
is not always necessary for power control to be used to
ensure that “sufficient mutual information is available at every
time instant”; this can also be a property of the averaging
of the independent fading of a large number of users, even
if no power control, or only decentralized power control is
employed. In the present paper, however, we allow centralized
power control and so do not consider statistical multiplexing
of fading.

Our results also provide a link between information theory
and the theory of networking. Clearly, the power prices (and
in Part I, rate rewards) have the potential to be tuned by the
network in order to provide control over the radio resources.
This is indeed our approach in Section IV, in which a call
admission problem is solved by the adaptation of power prices,
using an algorithm reminiscent of max-min fair bandwidth
allocation algorithms in data networks. In Part I, we employed
similar iterative algorithms to control real-time radio resource
allocation (see Section IV in Part I). More generally, there is
an economic flavor to our results, as touched on in Section III,
and more directly in Part I, Section V.

A word about notation: we will use boldface letters to denote
vector quantities.

II. DELAY-LIMITED CAPACITY

As in Part I, we focus on the uplink scenario where a set
of users communicate to a single receiver. Consider the
discrete-time multiple-access Gaussian channel

(1)

where is the number of users, and are the
transmitted waveform and the fading process of theth user,
respectively, and is white Gaussian noise with variance

. We assume that the fading processes for all users are
jointly stationary and ergodic, and the stationary distribution
has a continuous density and is bounded. Useris also
subject to an average transmit power constraint of. We shall
call the joint fading
process.

Suppose each source codes over a blocklength of
symbols, where is the delay, using a codebook of size

(i.e., at rate bits per channel use). Each codewordof
the th user satisfies . Fix a decoding scheme and
assume the messages are chosen with equal probability. Let

be the probability of the event that any user is decoded
incorrectly. The following is the definition of the throughput
capacity region when both the transmitters and the receiver
have access to the channel states. Characterizing this region
was our focus in Part I.

Definition 2.1: The rate-tuple lies in
the interior of the throughput capacity region if and
only if for every there exists a delay , codebooks, and
a decoding scheme such that the probability of error
is less than . Moreover, the codewords can be chosen as a
function of the realization of the fading processes.

The notion of throughput capacity defined above is a natural
extension of that for time-invariant Gaussian channels, where
rates are achieved with arbitrarily long coding delays. How-
ever, there is a subtle but important difference between time-
varying and time-invariant Gaussian channels. In the time-
invariant Gaussian channel, the delay is needed to average
out the Gaussian noise to get small error probabilities, and
this is typically quite short. Thus the capacity is not only an
upper bound to the achievable performance; it is a useful upper
bound in the sense that it is possible to achieve rates close to
capacity with acceptable delay, even for real-time traffic. In
typical time-varying wireless channels, on the other hand, the
fading process is a complex superposition of different effects
some of which can be quite slow. Thus the delay required to
average out such fading effects may be much longer than the
acceptable delay.

To this end, we define a second notion of capacity region
for time-varying multiaccess channels. Let be the set of
all possible joint fading states of the users, be a given
distribution on , and be the set of all stationary,
ergodic fading processes with stationary distribution. We
observe from Theorem 2.1 in Part I that the throughput
capacity region of the multiaccess fading channel depends only
on the stationary distribution of the joint fading processes and
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not on the correlation structure. The following definition of
the delay-limitedcapacity region also has this characteristic.

Definition 2.2: A rate vector lies in the inter-
ior of the delay-limitedcapacity region , if for every

there exists a coding delay such that for every
fading process in there exists codebooks and a decoding
scheme with . Moreover, the codewords can be
chosen as a function of the realization of the fading processes.

Contrast this with Definition 2.1, where the coding delay
can be chosen depending on the specific fading process,
the coding delay here has to workuniformly for all fading
processes with a given stationary distribution. Hence, rates in
the delay-limited capacity region can be achieved with delays
independentof the correlation structure of the fading. Thus
the rates in the delay-limited capacity region are essentially
those that can be achieved by coding that averages out the
white noise but does not average over the fading process. It
is an appropriate limit on the performance for traffic with
stringent delay requirements and when the fading processes
change relatively slowly (due to users at walking speed, for
example). It should also be noted that the throughput capacity
region contains the delay-limited capacity region.

In Definition 2.2, we only require that there be a codebook
for every realization of every fading process. However, the
proof of Theorem 2.3 below shows that we can provide a single
codebook of unit power that we scale by the power control
policy identified in the theorem. This codebook will work no
matter what fading process is chosen (i.e., for any correlation
structure). By “power control policy”, we mean the following.

A power control policy is a mapping such
that given a joint fading state for the users,

can be interpreted as the transmitter power allocated
to user . Given power control policy , is the
average power usage for user. We say a power control policy
is feasiblefor a power constraint if for all .

The following theorem provides a characterization of the
delay-limited capacity region for the case when all the trans-
mitters and the receiver know the current state of the channel.

Theorem 2.3:Assume that the set of possible fading states
is bounded. The delay-limited capacity region is

given by

(2)

where is the set of all feasible power control policies
satisfying the average power constraints, and is the
capacity region of the time-invariant Gaussian multiaccess
channel, given by1

for every (3)

Proof: See Appendix A.

1Here, as in Part I, for any vectorvvv and any subsetS we use the notation
vvv(S) to denote

i2S
vi.

The intuitive content of the above theorem is that a rate
vector is achievable in the delay-limited sense
if one can choose a feasible power control policy to coordinate
the powers of the users such that sufficient mutual information
is maintained between the transmitters and the receiver atall
fading states. Note that this is essentially the information-
theoretic version of the objective of standard power control
algorithms in which power is allocated to satisfy the signal-
to-interference requirements of all the users. Contrast this
with the characterization, in Theorem 2.1 of Part I, for the
throughput capacity region, where a rate vector
is achievable as long as there is a feasible power control policy
to provide sufficientlong-term average mutual information,
averaged over all fading states. The “instantaneous” mutual
information at each fading state, however, fluctuates.

III. CHARACTERIZATION OF THE

DELAY-LIMITED CAPACITY REGION

In this section, we will characterize the optimal power
control to achieve points on the boundary of the delay-
limited capacity region . We shall show that successive
decoding is always optimal and we shall provide greedy
algorithms for obtaining the optimal power control. Using
this characterization, we will also provide a necessary and
sufficient condition for to be inside the capacity region.

A. Lagrangian Characterization and
Optimal Power Allocation

We first define the boundary surface of , which is
essentially the set of optimal operating points on the capacity
region.

Definition 3.1: The boundary surface of is the set of
those rates such that no component can be increased with the
other components kept fixed, while remaining in .

The following lemma gives a Lagrangian characterization
of the capacity region.

Lemma 3.2:
1) A rate vector lies in if and only if there exists a

and a power control policy such that for every joint
fading state , is a solution to the optimization problem

subject to (4)

and

where is the constraint on the average power of user.
Moreover, is a power control policy which can achieve the
rate vector .

2) A rate vector lies on the boundary surface if and
only if there exist as above but with all the average power
constraints holding with equality.

Analogous to Lemma 3.10 of Part I, this lemma reduces
the computation of the optimal power control to a family of
optimization problems over a set of parallel time-invariant
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Gaussian channels. As in the analysis of the throughput
capacity region, the vector can be interpreted as a set of
power pricesreflecting the power constraints. The important
difference is that in this case, we require that the rate vector
be in the Gaussian capacity region for all fading
states . This is consistent with the nature of delay-limited
capacities.

Proof: Since any rate vector inside the capacity region is
dominated by some point on the boundary surface, statement
2) would imply statement 1). Hence, we will focus on proving
statement 2).

First note that since the capacity region is convex, a
point is on the boundary surface of the region if and only
if it is a solution to the optimization problem

subject to (5)

for some positive vector . Now consider the set

By the concavity of the function, it can readily be verified
that is a convex set. Thus solves (5) if and only if there
exist nonnegative Lagrange multiplierssuch that is
a solution to the problem

Hence, is on the boundary surface of if and only if
is a solution to the problem

subject to

i.e., if and only if there exists a power control policy
which solves

subject to

and

We note that this last optimization problem is equivalent
to solving (4) for every fading state. This completes the
proof.

The vector can be interpreted as therate rewardsand
as thepower prices. Thus a point on the boundary of the

capacity region is achieved by maximizing the total revenue
for a given rate reward vector. Appropriate power prices
have to be chosen such that the average power constraints are
satisfied.

The computation of the optimal power control is now
reduced to solving the optimization problem (4). This is a
linear program but one with an exponentially large number
of constraints (in ). However, as in Part I, we exploit
the polymatroid structure of the problem to provide a simple
greedy solution to this problem. Recall the definition ofcontra-
polymatroidsin Definition 3.1 of Part I. It is straightforward
to verify (Corollary 3.13 of Part I) that for a given rate vector

and fading state , the set ofreceived powersthat can
support

is a contra-polymatroid with rank function

Applying Lemma 3.3 in Part I, the optimization problem
(4) can be readily solved

if

(6)
where the permutation satisfies

(7)

This optimal point corresponds to successive decoding in
the order given by , with power allocated to the users such
that the target delay-limited rate vector is achieved. One
can think of the successive decoding orderas a way to give
priority to different users in the scheduling of resources; a user
decoded later in the ordering is given higher priority than a
user decoded earlier. This is because users need less transmit
power to support their target rates when they are decoded
later (note that is in decreasingpriority order). The
scheduling rule here depends on both the power pricesand
the current fading state. In fact, this rule is analogous to the
classic rule in scheduling theory (see, e.g., [14]), as
both arise from the polymatroid structure of the problem. The
additional feature in our problem is that the scheduling priority
is a dynamic function of the fading state. Another interesting
aspect of the solution to the optimization problem (4) is that the
solution depends on the power pricesonly via the decoding
order. This will simplify our later analysis.

Note that when the power price vectoris strictly positive,
then with probability the ordering is uniquely defined since
the fading processes have a continuous stationary distribution.
Thus with probability , the solution to the optimization prob-
lem (4) is unique. Let us then define to be the unique
average power vector corresponding to the almost surely
unique power-control policy which solves the optimization
problem (4).

In the common case when the fading processes of the
users are independent of each other, the average power vector

has a simple form

(8)
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This expression can be obtained by noting that the power
allocated to userdepends only on which users have values
greater than that of user. Note that due to the special structure
of the optimal power control policy, the computation of the
average power has been reduced from an-dimensional
integral to a one-dimensional integral.

Combining this with Lemma 3.2, we have the following
characterization of the delay-limited capacity region:

Theorem 3.3:Assume the fading processes of users are
independent of each other. Then the rate vectorlies in the
delay-limited capacity region if and only if there exists

such that

(9)

The power-allocation policy that achieves this rateis given
by (6). Moreover, lies on the boundary surface if and only
if there exists such that (9) holds with equality.

We can also consider a set : this is the set of average
power vectors that can support target delay-limited rates,
i.e.,

Note that is the structure in the power space that plays
the same role as the capacity region in the rate space.
The above results lead to an explicit characterization of the
boundary surface of , parameterized by .

Theorem 3.4:Assume the fading processes of users are
independent of each other. Then the following equation gives
an explicit parameterization of the boundary surface of the
region by :

(10)

It is important to note that the dimension of the boundary
surface of is , which implies that the parameter-
ization in Theorem 3.4 is onto, but not– . Clearly, however,
we can normalize to provide a – parameterization. An
example of such a normalization is provided in Section III,
Example 3).

The above results still leave open important questions: 1)
how to check algorithmically if a target rate vector is
achievable, i.e., in the capacity region , and 2) how to
find the appropriate power pricesif is indeed in the region.
We will return to these questions in Section IV. But first, let
us look at some special cases of Theorem 3.3.

B. Examples

1) Single-User Channel:When , the delay-limited
capacity is given by

(11)

The corresponding power control strategy inverts the channel
[8]. We note that for some fading distributions, the delay-
limited capacity may be zero. For example, for Rayleigh
fading

and , so . The problem is that the
channel is spending a lot of time close to zero. One approach to
deal with this is to allow an event of outage when the channel
gets too weak. (This is the approach taken by Ozarowet al.
[12] and Cheng [3] for situations where there is no power con-
trol.) Thus even for these fading distributions, it is meaningful
to consider the notion of delay-limited capacity during the
times when the channel is reasonable, and declare an outage
otherwise. This issue is investigated further in subsequent work
by Caireet al. [2]. For many other distributions, such as the
log-normal distribution for shadow fading, a nonzero delay-
limited capacity is obtained even without the need of allowing
outage.

2) Symmetrical Case [10]:Consider the case when there
are users, the fading of users are identical and independent,
and their power constraints are the same. The symmetric delay-
limited capacity is the maximum common rate that can be
achieved, and can be obtained by putting for all in
(9). Simplifying, we find that the capacity satisfies:

The optimal power control policy has an interesting form.
Namely, users are decoded in the order of decreasing channel
strengths, with the strongest user decoded first and the weakest
user decoded last. Powers are allocated accordingly. If channel
strength is determined primarily by the distance to the base
station, then this optimal decoding order results in the smallest
possible transmit power for the furthest user to support the
desired rate, as he only has to compete with the background
noise and not the interference from any other user. This
property is particularly appealing in terms of reducing intercell
interference, as the furthest user will likely cause the most
interference in an adjacent cell. Contrast this with the IS-95
CDMA scheme, in which the furthest user has to compete with
all other users so that his received power has to be the same
as that of the closest user.

3) Two-User Capacity Region:When , the bound-
ary of the delay-limited capacity region can be directly calcu-
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Fig. 1. A two-user delay-limited capacity region. The curved part is the
boundary surface. The pointsp1 and p2 are the two extreme points of the
surface. The pointp1 corresponds to giving absolute priority to user 1, i.e.,
decoding user 1 after user 2 at every fading state. At this point, user 1 gets
rateC1 = 1

2
log (1 +

�P

A
). And vice versafor point p2. Note that all other

points in the capacity region but not on the curved boundary are dominated
by some point on the boundary.

lated by solving (9). Let . Then the boundary is the
following parametric curve as ranges from to (see the
bottom of this page), where

The parameter can be viewed as a prioritization between
the two users. As , , and so

. This is the delay-limited capacity of
user 2 when it is given strict priority over user 1 in all fading
states (i.e., decoded last), and this is the best rate user 2 can
get. Similarly, as , , and so

. This is the delay-limited capacity of
user 1 when it is given strict priority in all fading states, and
this is the best rate user 1 can get. Forin between these
two extremes, the decoding order of users 1 and 2 changes
depending on the fading state. See Fig. 1 for an illustration.
Note that in this two-user case, we can parameterize the
boundary surface of by . We will comment
on whether this can be done in the general-user case in
Appendix B.

C. Extreme Points of Boundary Surface

We now extend the characterization of the interior points of
the boundary surface of to include the extreme points.

Suppose is a set of subsets of with the
property that all subsets in are nested. By this we mean that
if then or . This nesting property
enables us to define a new decoding rule. Let us use successive
decoding, with the ordering determined byas before, except
now all users in any set are decoded after users in

, for every fading state . Thus if , then
is used to determine the ordering of users in, and

all these users provide interference to users in. In particular,
users in provide interference to the users in . By (6),
the powers of users in are not affected by the ordering
of users in , so the ordering of users in is entirely
determined by . Inductively, is used
to determine the ordering of users in , and all the
users in provide interference to the users in . It is not
difficult to show that all extreme points of the boundary surface
of are obtained in this way. For the two-user example
in Fig. 1, the extreme points are and .

Let us also extend the notion of in the following
way.

Definition 3.5: Given and , a set of nested
subsets of , we denote the power vector characterized by

by .

Note that is not an extreme point of the boundary
surface of , but is still representable in this notation

We shall have use for this extension in Section IV.

D. Further Remarks Concerning the Coding Theorem

We would like to remark on the decoding schemes to
achieve points on the boundary of the delay-limited capacity
region. Consider a channel in which the fading stateis
fixed at level for all time. It follows immediately from
(6) that if users are allocated powers in then is
achievable by successive decoding. We conclude that if the
fading is sufficiently slow that it does not change during
the blocklength then the optimal solution is to do successive
decoding with powers allocated as in (6). This separation of
time-scales assumption may be quite reasonable if is a
slow-fading process in relation to the tolerable coding delay
(e.g., shadow fading). If changes during the blocklength
then the optimal power control is still given by (6): it isas if
successive decoding were being employed as far as power
control was concerned, and we shall say that the optimal
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solution is of “successive decoding type.” If we try to do
successive decoding, we face the problem that the optimal
ordering of the users may change during the blocklength, if
the fading changes. This situation does not arise in the non-
delay-limited case; successive decoding is optimal as shown
in Part I. It may be possible to extend successive decoding
techniques to deal with fading in the delay-limited case (an
open problem). In practice, it may be sufficient to update the
successive decoding order at the start of each code period,
and make an allowance for the fading that occurs within the
blocklength. We would then sacrifice optimality for ease of
decoding.

IV. A N ITERATIVE ALGORITHM FOR RESOURCEALLOCATION

In the previous section, we have characterized the structure
of the optimal power allocation and used it for an implicit
characterization of the delay-limited capacity region .
The power prices play a central role as a mechanism through
which resource is allocated to the different users. To achieve
a target delay-limited rate vector , we have shown that a
simple optimal power control can be obtained, for agiven
power price vector . Since the power prices reflect the power
constraints on the users, a natural question then is how an
appropriate power price vector can be computed for given
power constraints. More specifically, we will be concerned
with the following problem.

• Is a target delay-limited rate vector achievable under
a given average power constraint? If so, what is an
appropriate power price vector?

In the case of independent fading processes, this problem is
equivalent to checking if there existssuch that inequalities
(9) can be satisfied. From a networking point of view, a
solution to this problem serves the dual purposes ofcall
admissionsand resource allocation. It determines if a set of
users with specified rate requirements is supportable and if so
allocates appropriate amount of resources via the selection of
the power prices.

An equivalent formulation is the optimization problem

(12)

where is the average power of theth user under the
optimal power control which minimizes the total power cost

while achieving rates . (In the case of independent
fading, is given by the explicit expression (8).) By
Lemma 3.2, the target rate vector is achievable with power
constraints if and only if the solution to (12) is no greater
than . This optimization problem can also be interpreted
as finding a solution forfair average powers for the users,
weighted by the power constraints of the users.

We will provide an iterative algorithm that solves the
problem (12). If the infimum in (12) is achieved at a positive

, the algorithm will converge to it. If this is not the case,
then a solution achieving the infimum in (12) must be an
extreme point of the boundary surface of (the set of
average power vectors that can support). More generally,

we can represent all points on the boundary surface of ,
including extreme points, by , where is a set of
nested subsets of users giving absolute priority rules that hold
irrespective of the fading state. This was discussed in Section
III-C. In general, our algorithm provides the parametersand

, and provably converges to the point
such that is an optimal solution to (12).

First, it is necessary to develop some notation. Since we
assume that is fixed throughout this section, we shall
simplify notation and set

We call the average power of userat power prices
, where it is understood that this is the average power to

achieve the rate vector and minimize the total power cost
. Also without loss of generality, we can assume that the

average power constraint is for all users, by appropriate
rescaling of the fading processes. Hence, our problem is

We propose the following iterative algorithm for solving
this problem. The basic idea is that at any iteration of the
algorithm, we balance the required average powers of all users
as much as possible by increasing the power prices of the users
with larger average powers. This will result in lowering the
required power of such users by giving them higher priority
in the decoding order in more of the fading states. However,
perfect balancing is not always possible since the required
power of a user cannot be lowered beyond giving him highest
priority (i.e., last in the decoding order) ateveryfading state.

Algorithm 4.1:

• Initialization : Start with an arbitrary positive . Set
.

• Step : Increase the power price of the user with the
largest average power until its power equals that
of another user, keeping the power prices of other users
fixed. Then increase the power prices ofbothusers by the
same factor until the average power of one of them equals
that of a third user. Repeat the process and consider two
cases.

1) The process continues until there are no more users
left. In this case, let the final value of the power
prices be and go to step .

2) The process terminates when the powers of a subset
of users whose prices are being increased do not

meet the power of any of the other users, even when
the prices of that subset are increased to infinity.
In this case, perfect balancing of powers between
the two subsets is impossible, even when absolute
priority is given to the users in subset. Partition
the users into and , the subset of remaining users.
The users in from this step on will always be given
absolute priority over users in. The power prices
of each user in will be fixed at and will not
be further adjusted in the algorithm. The algorithm
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is now recursively applied to , using their current
power prices as initialization.

After a finite number of iterations of this algorithm, the
users will be partitioned into subsets and
where users in is given absolute priority over users in
for and users in given the highest priority, and such
that no further partitioning of will take place. Let

be the absolute priority nesting corresponding to this partition-
ing of the users. We have the following convergence theorem
under a mild condition on the fading distributions.2

Theorem 4.2:Assume that there exists a positive lower
bound to the fading gains of all the users. If is the
vector of power prices at iteration, then

exists for all , and is the optimal value for
the problem (12), i.e.,

Moreover, for every user in .
Proof: First, we observe that for any, the power allo-

cation of the users in the subset does not change after the
iteration when the subset is created. To see that, fix a subset

, and let be the power prices of the users in
when is created. Let ; this is the
subset of users which are given higher priority than users in

at all fading states. The rest of the users (in )
will be given lower priority than users in at all fading
states. The optimal power allocation to users inat fading
state is given by (6)

where is an ordering of users in the subset satisfying

(13)

The key point is that the power allocation to users inonly
depends on the power prices of users in, which remain fixed
after the iteration when is created, but do not depend on the
power prices of the users of higher priority in , which will
be changed in future iterations (see Section III-C). Thus the
power allocation to users in stays fixed once is created.

2This assumption is technical and can probably be removed with a more
elaborate argument.

Fig. 2. The average powers of the users at the start of an iteration of the
resource-allocation algorithm. Users are currently partitioned into subsets
L1; L2; and H2. Users inH2 have the largest average powers, and are
decoded after users inL2, which are, in turn, decoded after users inL1,
at every fading state. The power prices of the users inH2 will be adjusted in
future iterations to further balance their powers; the power prices and average
powers of users inL1 andL2 will stay fixed.

Second, we see from the definition of the algorithm that
for each , the minimum of the average powers of users in

(high-priority users) must monotonically increase after the
iteration when is formed.

It can also be seen that for each, when the partitioning
into and occurs, the minimum of the average powers in

must be greater than the maximum of the average powers
in . Combining this with the two observations above, we
conclude at any iteration after is created, the average power
of any user in must be greater than that of any user in

. A typical situation is shown in Fig. 2. In particular,
at any iteration after all of are created, the
average powers of any user in must be greater than the
average power of any user in .

Now, let us investigate the limiting behavior of the powers
of the users in , the final set of users for which no further
splitting occurs. First we observe that the ratio of the power
prices of the users in must remain bounded. This follows
from the assumption that the fading gains are bounded,
since then (13) implies that whenever the ratio of the prices of
one subset of users to those of another subset exceeds a certain
threshold, strict priority will be given to users in the former
subset over the latter. But this would contradict the fact that
there will be no further splitting of users in .

Let

be the mapping representing one step of the algorithm updating
the power prices of the users in , normalized by the
minimum prices. (Note that the average power of the users
depends only on the normalized prices.) From the continuity
of the fading distribution, it can be verified that the average
powers are continuous functions of the normalized prices and
so is .
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We now claim that has a unique fixed point, to which
any sequence of power prices generated by the algorithm
converges. To see uniqueness, we note thatprovides a
tradeoff between powers of users. No point on the boundary
surface of strictly dominates another. This is true also
for powers within , if we give strict priority to . However,
the existence of more than one fixed point ofwould provide
such strict dominance of powers in of one point over the
other. This is so, since a fixed point of must have that
property that the powers of all users in are the same.

To show the existence of a fixed point of, we use the
Lyapunov technique. Define the Lyapunov functionby

for any normalized price vector, which has the following
properties:

• is a continuous function of ;
• for any , with equality if and only if

is a fixed point of .

Consider now any particular sequence of power prices,
generated by the algorithm. By assumption, the

sequence is contained in a compact set, and therefore has ac-
cumulation points. Let be a subsequence of points
converging to an accumulation point . By the continuity
of , we have that , as , and by
a sandwich argument, as well. By the
continuity of , so it follows
that , i.e., is the unique fixed point of

. Hence the algorithm converges to the unique fixed point of
, and that for any sequence of power prices generated

by the algorithm, the corresponding powers
converge to a common value .

Thus we have proved that for every user

exists and

for every

Also, for any power price vector,
To see this, assume this isnot the case. Then there exists
and such that

for every

This is impossible since under , users in are already
given the highest priority over other users at all fading states
and hence achieves the minimum total average
power cost

for users in . Thus and the proof
is complete.

For the reader who is familiar with flow-control problems in
virtual circuit networks, this algorithm may be reminiscent of
fair bandwidth-allocationalgorithms. Here, the objective is to

find a fair average power requirements for the users, weighted
by their power constraints. Users in the set correspond
to users whose routes pass through thebottleneck node, and
have the maximum (weighted) power requirement. In fact,
it can be shown that by applying the algorithm recursively
to balance the power requirements of users in the subsets

defined above, one can in fact compute amin-
max fair solution (see [1] for a corresponding algorithm for
bandwidth allocation).

V. AUXILIARY CONSTRAINTS ON TRANSMIT POWER

The constraints on the transmit powers we considered so far
are on their long-termaveragevalue, and under power control,
the transmit power will vary depending on the fading state. In
practice, one often wants to have some shorter term constraints
on the transmit power as well. These constraints may be due to
regulations, or as a way of imposing a more stringent limit on
how much interference a mobile can cause to adjacent cells.
To model such auxiliary constraints, we consider the following
feasible set of power controls:

and and

where is the set of all possible joint fading states of the
users. Thus in addition to the average power constraints,
we also have a constraint on the transmit power of the
th user in every state. We shall now concentrate on the

problem of computing the optimal power control subject to
these constraints.

We focus on the capacity region

Lemma 5.1:A rate vector lies on the boundary of
if and only if there exists a and a power

control policy such that for every joint fading state,
is a solution to the optimization problem

subject to and (14)

and

where is the constraint on the average power of user.
Moreover, is a power control policy which can achieve the
rate vector .

The proof of this result is similar to that of Lemma 3.2,
and is the analogue of Lemma 6.1 in Part I, and will not be
given here.

To solve the optimization problem (14), we first prove a few
results about contra-polymatroids.

Definition 5.2: The rank function of a contra-polymatroid
is said to bestrictly supermodular if for any subset such
that neither is a subset of the other3

3Clearly, if one is a subset of the other, equality must hold.
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The following lemma is motivated by a result of Hanly and
Whiting [11], which was proved in the context of multiaccess
capacity regions.

Lemma 5.3:Let be a contra-polymatroid with a
strictly supermodular rank function. Consider any vector

, and let be the subsets corresponding to
the constraints of that are tight at , i.e., these constraints
hold with equality at . Then there exists an orderingsuch
that

i.e., they are nested.
Proof: Take any two tight constraints corresponding to

subsets and . Suppose neither is a subset of the other.
Then

a contradiction, since . Hence, the subsets corre-
sponding to the tight constraints must be nested.

Now let ’s be positive constants, and consider the opti-
mization problem

subject to and (15)

where the vector satisfies

We will refer to the constraints as peakconstraints.
To motivate the algorithm for solving this problem, we first
observe that the algorithm given in Lemma 3.3 of Part I (which
we applied in (6) to solve the same problem but without the
peak constraints) can be viewed as a greedy algorithm.

• Initialization : Set for all . Set .
• Step : Increase the value of until a constraint

becomes tight. Goto Step
• After steps, optimal solution is reached.

With this interpretation, the following greedy algorithm for
problem (15) can be viewed as a natural generalization to the
case when there are peak constraints:

Algorithm 5.4:

• Initialization : Set for all . If
then stop. Else set .

• Step : Decrease theth component of until a constraint
becomes tight. Go to Step

• Stop after steps.

Theorem 5.5:If , then the optimization problem
(15) has an empty feasible region. Otherwise, Algorithm 5.4
terminates at an optimal solution to (15).

Proof: The first statement follows from the easily veri-
fied fact that if are two vectors such that and

, then .
Now suppose and the Algorithm 5.4 terminates

at the point . We first show that is a vertex of the

feasible region. At each stepof the algorithm, either theth
component cannot be decreased, in which case the constraint

is tight, or it can be decreased until a constraint
of corresponding to some subsetbecomes tight. In
any case, at each stage of the algorithm, we are having
an additional linearly independent constraint becoming tight.
Moreover, since we are always decreasing the components
of , subset constraints that become tight will remain tight.
Hence, at termination, there are linearly independent tight
constraints, and is a vertex of the feasible region.

Let be the subset constraints that are tight
at . By Lemma 5.3, we can without loss of generality
assume that . Let us now identify the tight
peak constraints. Consider the partition of the base setinto

. Since the tight constraints
are all linearly independent, it follows that in each subset

, at most elements can correspond
to tight peak constraints. But since there are tight peak
constraints, in fact exactly elements correspond
to peak constraints.

Now, the optimization problem of interest is a linear pro-
gramming problem. Thus to verify the optimality of , it
suffices to show that the objective function cannot decrease
along any of the edges of the polyhedron that emanate
from . Each edge is obtained by relaxing precisely one of
the tight constraints. We consider the following two cases.

1) Suppose we relax a tight constraint , where
for some . Let be such that

the corresponding peak constraint isnot tight. The edge can
be seen to be along the half-line

We first note that . For the purpose of contradiction,
suppose instead that . The point

is in the feasible region, which means that in theth step
of the algorithm, the th component can be further decreased
beyond . This is a contradiction. Hence, . Since
the coefficients of the objective function satisfy ,
it follows that the objective function cannot decrease moving
along the edge.

2) Suppose we relax a subset constraint corresponding to
for some . If , let and
correspond to peak constraints that are not tight at. In this
case, the edge can be seen to be along the half-line

Since , it follows that the objective function cannot
decrease along this edge. On the other hand, if , let

be the component corresponding to a peak
constraint that is not tight. The corresponding edge is along
the half-line

Clearly, the objective function cannot decrease along this edge.
Hence we conclude that indeed is an optimal solution.
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At each step , Algorithm 5.4 has to check when a constraint
becomes tight. This is equivalent to themembership problem:
given a point , check if is in or not. For general
contra-polymatroids, there is no known efficient combinatorial
algorithm to solve this problem (checking every constraint
of requires complexity exponential in .) However,
for the special case of contra-polymatroids with generalized
symmetric rank functions, a very simple test exists. This result
is due to Federgruen and Groenevelt [5].

Lemma 5.6 [5]: Suppose is generalized symmetric, i.e.,
for some convex increasing function and

vector . Given any , let be a permutation on such that

Then if and only if

This lemma implies that one only needs to check
constraints to determine if is a member of , instead of

. Combining this lemma with Algorithm 5.4, we can in
fact compute explicitly the value to which theth component
must be decreased in theth step of the algorithm. Thus in
the case when , the algorithm now becomes

• Initialization : Set for all . If
then stop. Else set .

• Step : Let be a permutation on

such that

Then set

if

where

(noting that the element does not exist.)
Go to step .

• Stop after steps.

Lemma 5.6 implies that at stepof the algorithm, the subset
constraints that can become tight are the ones corresponding
to the subsets , for .
The value that the th component should be decreased to is
determined by the first of these constraints becoming tight.
The complexity of this algorithm is .

By observing that the set of feasible received powers
that support a given rate vector is a contra-polymatroid
with generalized symmetric rank function, we can immediately
apply the above simplified form of Algorithm 5.4 to solve
the optimization problem (14). This gives an efficient way
to compute the optimal power allocation at a fading state, for

given power prices . Moreover, the polymatroid theory yields
a result of independent interest: an efficient membership test
for the Gaussian capacity region. More concretely, given rate
vector and power constraint , to check the exponentially
large number of constraints

one needs only to sort ’s in ascending order, and check the
nested constraints corresponding to that ordering.

It should be noted that unlike the optimal power-control
schemes for the previous problems we considered in this paper
(Parts I and II), the optimal solution for this problem cannot
in general be achieved by by successive decoding of the
users. Due to the auxiliary constraints, the optimal solution is
not necessarily on a vertex of the capacity region. However,
Rimoldi and Urbanke [13] show that each user can be split into
at most two “virtual users,” such that the resulting pointcan
be achieved by successive decoding of at most virtual
users. Their procedure for calculating the power levels that
define the splitting isgreedy, a fact that again arises from the
generalized symmetric polymatroid structure of the Gaussian
multiaccess capacity region.

VI. M ULTIPLE TIME-SCALE FADING AND

FREQUENCY-SELECTIVE FADING CHANNELS

The notions of throughput capacity and delay-limited ca-
pacity for fading channels can be viewed as two ends of
a spectrum. If we look upon a fading channel as a set
of parallel channels, one for each fading state, then the
throughput capacity is the maximum total rate that one can
achieve by an arbitrary allocation of rates and powers over
the parallel channels, subject to a power constraint. The delay-
limited capacity, on the other hand, is the maximum total
rate subject to the constraint of a common rate for each of
the parallel channels. Thus one can consider other notions of
capacities where the rate-allocation policy is not as stringent
as in the delay-limited case, but not completely arbitrary as
in the throughput capacity. In this section, we will look at
two applications of this idea: fading with multiple time-scale
dynamics, and frequency-selective fading.

Consider first the situation when the fading processes have
two components, one slow and one fast. The slow fading
might be due to shadowing, for example, and the fast due to
multipath. We assume that the fast fading is sufficiently fast
to average out over the tolerable delay, but that we are delay-
limited with respect to the slow fading. We define a notion of
capacity in this context.

Let be the set of joint slow states, and the set of joint
fading states. Let be the joint slow state and
fading state process, with having stationary distribution

on . However,conditional on , has stationary
distribution on . A feasible power-allocation policy must
satisfy .

In order to define the notion of capacity we are interested
in, we first consider the capacity of an associated channel.
Consider a channel associated with a slow state, and with



HANLY AND TSE: MULTIACCESS FADING CHANNELS–PART II 2827

an arbitrary power-allocation policy . This channel
has unit power, and fading process , where
we assume that has stationary distribution on .
We denote the throughput capacity region for this associated
channel by . Now we return to the original channel
with both slow and fast fading, and define thedelay-limited
capacity with respect to slow fading.

Definition 6.1:

where is the set of power control policies for which
.

Alternatively, the definition of thedelay- limited capacity
with respect to slow fading, can be formulated in the same
manner as in Section II. Definition 6.1 then becomes a
theorem, with a proof along the same lines as the proof of
Theorem 2.3. In some sense, this alternative approach is more
robust. However, the approach we have taken is completely
watertight provided one assumes a separation of time scales,
namely, that the coding time scale is much shorter than that
of the slow fading.

From the point of view of a parallel channel decomposition
of the fading channel, our approach here corresponds to
partitioning the parallel channels into subsets each associated
with a slow fading state. In the above definition of delay-
limited capacity for multiple time-scale fading channels, one
is allowed to do rate allocation among the channels within
each subset, but subject to the constraint that the total rate in
each subset (slow state) is the same.

We now consider the problem of resource allocation; the
tuning of power prices and rate rewards to achieve a particular
delay-limited bit-rate vector. The dual set is defined
as usual

In this section, we shall limit ourselves to the characterization
of the extreme points of .

As in Section III, we characterize any point on the boundary
of by solving the following problem, for every slow
state

s.t.

Since the delay-limited capacity region is convex, there exist
Lagrange multipliers for which solves

s.t.

which is equivalent to solving

s.t. (16)

for each . The appropriate is determined by the
condition

(17)

A greedy algorithm for solving (16) was presented in Theorem
3.14 in Part I. Moreover, an iterative procedure for computing

was provided in Algorithm 5.3 of Part I: we start with
an arbitrary and update it until (17) holds.

In this section, we have found the minimal cost power
control policy to obtain a consistent mutual information vector

over every slow fading state. With this power control, we
can obtain any rate strictly below in a delay-limited fashion
with respect to slow fading. A very important observation is
that to obtain this solution we do not need to know the statistics
of the slow fading at all. This is because we have prescribed
the delay-limited rates as a constraint, but not the long-
term average power consumption. The average power used is
obtainable from the solution to the power control problem, but
we do not need to know ita priori. Moreover, the algorithm
that we use to determine does not need to know explicitly
the conditional distribution of the fading process given the
slow state, but rather it adapts to changes in these statistics.

Another important point is that successive decoding is
optimal under our assumption of a separation of time scales
between the coding time scale, and the slow-fading time scale.
Given any slow state, we use successive decoding to achieve

, as in Section III; in this case, the decoding order is a
function of the slow state.

The characterization of the extreme points of is
slightly more complicated, and we do not attempt it here.
Clearly, the calculation of the capacity region requires explicit
knowledge of the statistics of the fading, including the slow
fading.

Similar reasoning can be applied to the analysis of the
delay-limited capacity of frequency-selective fading channels,
as defined in Section VII of Part I. Under an assumption
that the product of the delay spread and the Doppler spread
is small, one can look upon the frequency-selective fading
channel as a time-varying channel where, at each fading state,
a frequency response is specified for each user, representing
the multipath. Thus it can be viewed as a set of parallel
channels, each one jointly specified by the fading state and
the frequency. In order to be delay-limited in this channel,
each user can allocate rates over the different frequencies
but the total rate summed over the frequencies must be the
same for each fading state. Thus the resulting optimization
problem is identical to the one studied in the present section
for multiple time-scale fading processes, and hence the optimal
power allocation for given delay-limited rates can be obtained
from our theory. This ability of being able to perform dynamic
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power allocation over different frequencies is an advantage of
a wideband system over a narrowband system, especially for
delay-sensitive traffic.

VII. POWER CONTROL FOR SUBOPTIMAL SYSTEMS

In the previous sections, we have focussed on optimal
power control from an information-theoretic point of view.
We will now demonstrate that the ideas can also be applied,
in a straightforward manner, to characterize optimal power
control laws for situations when successive decoding is done
but nonideal single-user codes are used so that one is not
operating at information-theoretic limits.

Consider the multiaccess scenario with users where the
th user has a desired signal-to-interference ratio SIR of.

Here, the interference is the sum of the background noise (with
power ) and that caused by the users whose signals have not
yet been decoded. In general, the SIR requirement of a user
depends on the coding scheme, the data rate, and the error
probability requirement, but we assume that the SIR captures
the quality of service requirement of the user. We now ask
what is the optimal power control law which maintains the
SIR requirements of the users? Focus first on a time-invariant
multiaccess Gaussian channel where userhas a transmit
power of and a path gain . For a given successive
decoding order , let be the set of transmit power
vectors which can support the given SIR
vector . It is given by

Thus if successive decoding is used, the set of transmit power
vectors that can support a given set of SIR requirements
is given by

(18)

Further, if we allow time sharing between different successive
decoding orders, then the set of feasible power vectors is
enlarged to the convex hull of (18). Call this polytope .

If we let , i.e., the single-user capacity
that can be achieved with a SIR of , then we observe that
the set is the same as

i.e., the set of transmit power vectors such that the rate vector
is in the multiaccess Gaussian capacity region. To see this,

note that the only vertex of is the power vector in
which the SIR’s of all users are satisfied with equality. This
corresponds to the vertex of where the successive
decoding order is . Thus the polytopes and
have the same set of vertices, and hence must be identical.

With this identification, we can now apply the machinery
developed earlier to characterize the optimal power control
law to maintain the SIR requirements at all times in a fading
channel, subject to transmit power constraints. We allow
successive decoding at each fading state, where both the order

and the powers can vary with the fading states. Using results
in Section III, we see that the optimal successive decoding
order at fading state is in increasing , where are power
prices independent of the fading state, chosen to meet the
average power constraints. (Ties can be broken arbitrarily.)
For independent fading processes, the boundary of the set of
feasible SIR’s supportable by given average power constraints

’s consists of vectors satisfying

for some power prices . Finally, for a given set of SIR
requirements and average transmit power constraints, the algo-
rithm given in Section IV can be used to determine feasibility
and to compute a set of appropriate power prices if feasible.

VIII. C ONCLUSION

In this paper we have shown that any point on the delay-
limited capacity region is achievable by solutions of “succes-
sive decoding type.” Successive decoding is indeed optimal
under the separation of time-scales assumption of Section
III-D. Given a set of delay-limited rates, we have used a
Lagrangian characterization of all the possible optimal power
vectors to get an explicit parameterization in terms of certain
“power prices.” Any such optimal solution is obtained by
choosing an appropriate set of power prices, and then solving
a family of power control problems over a set of parallel
time-invariant Gaussian multiple-access channels, one for each
fading state. We have exploited the polymatroid structure of
the multiaccess Gaussian capacity region to provide a simple
greedy solution to each of these power control problems,
despite the fact that there are an exponentially large number
of constraints. It is also shown that the Lagrange multipliers
associated with the power constraints (the power prices) can
be computed by simple iterative procedures. We have also
addressed the issues of peak power constraints, and extensions
of the delay-limited concept to multiple time-scale fading
processes, frequency-selective fading, and suboptimal coding
schemes.

It is interesting to compare the structure of the optimal
schemes for achieving throughput capacities and those for
achieving delay-limited capacities. While successive decoding
is optimal in both cases, the throughput-optimal schemes main-
tain thesamedecoding order at all fading states. However, the
rates of the users are dynamically adjusted depending on the
state, and indeed it is possible that a user may be allocated
no rate in some states. For optimal delay-limited schemes, on
the other hand, the rates are fixed at all fading states, and the
successive decoding order is adjusted to maintain those target
rates with the least power cost.

APPENDIX A
PROOF OF THEOREM 2.3

Let be the equilibrium probability density of being
in fading state . Without loss of generality, assume that the
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fading of all users is bounded by. For each , let

be a partition of the fading state space .
First, suppose that is in the interior of

for some power control policy . Let user generate a random
codebook of codewords of length by selecting each
symbol at random from a distribution. User then
transmits in time , the th symbol of the appropriate code-
word, scaled by . Such a set of codewords then
satisfies the power constraint. Given this set of codebooks,
let be the conditional probability of decoding any user
incorrectly, using maximum-likelihood decoding, under the
assumption that the decoder is given the realization

For a subset of , let be the conditional
probability of decoding any user in incorrectly, conditional
on correctly decoding the users in. The union bound implies

As shown in Gallager [6]

for any , where is the conditional probability
density of being the codeword of user, conditional on the
fading being . In our case, we obtain

By assumption, such that

Thus

and hence

(19)

By taking sufficiently small, we have
and it follows that as . Moreover, we have
in (19) a bound that decays in at a rateindependentof
the correlation structure of the fading process. It follows that

.

To prove the converse, suppose thatis an interior point
of . Recall that we have partitioned the fading state
space into cubes . We consider a sequence of Markov
processes defined on of the following form. Consider
a Markov chain on the “coarse” states with transition
probabilities . We use such a chain to define a
Markov process on : conditional on the chain being in coarse
state , we select a fading state for the process by using
the stationary distribution conditional on the fading being in

. The process remains in this state for an exponential time
Exponential and then selects a new coarse

state according to . We assume that the Markov process
has the required stationary distribution on, by choosing
appropriate . By scaling all by a constant,
we can speed up or slow down the rate of fading while
retaining the required stationary distribution.

For each let be such a fading process
with the following properties. We assume a random variable

on with the stationary distribution of the processes we
require. We assume all fading processes start with

. The initial sojourn time in state
of fading is given by , where
Exponential and independent of for all .

The constant gives the “rate of fading” for process .
Let be a fixed, positive constant. By choosing an appropriate
decreasing sequence , , we can ensure that for
all

(20)

Since , we can choose for each and each user
a code of size . A codeword from user’s codebook

consists of symbols. Let denote
a random, independent selection of codewords for the users,
for which the probability of error in channel goes to
zero with . Let be the probability of error for
under fading . We note that may be random;
say, with dependence on , although we do not require
this. Let be the subset of the sample space on which

and . Let be uniform on ,
and independent of all other variables. Define

Then the power constraint is that

By Assumption (20), we have
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Taking limits along a convergent subsequence, we have that

as

Now let us define a new fading processby

where is the upper corner of the cube. Note that
conditional on , the fading process is deterministic. Let

be the conditional probability of error for code
in this new fading channel, conditional on the event

. By construction

By assumption, as , and hence

as

But conditional on , we have a a constant fading channel,
and a sequence of codes satisfying the power constraint .
It follows that for all .

Define to be those power-control policies that satisfy
the power constraint and are piecewise-constant on each
cubic element in . Set

and note that . For any power control , define

where for all . We have shown
that for any

It follows that

(21)

where Now by the first part of the proof, we have
that

We have shown in (21) that

But these lower and upper bounds converge as , and
hence

This completes the proof.

APPENDIX B
PARAMETERIZATION OF BOUNDARY OF CAPACITY REGION

One unsatisfactory feature of Section III is that we are
unable to provide an explicit parameterization of the boundary
surface of . Theorem 3.3 suggests a parameterization of
the boundary surface by , and we discuss this further
below.

The following lemma shows that for any there is
at least one such that solves (9).

Lemma B.1:Define , and the transfor-
mation by

Then there exists a fixed point of.
Proof: is continuous, and

and hence is a mapping from

to itself. By the Brouwer fixed-point theorem, there exists a
fixed point for in this set.

It follows that (9) has a solution in for any positive
. Even if a closed-form parameterization of is not

possible, it would be useful to have a computational procedure
to find a solution to (9). Consider then the following algorithm,
which we might use to try and find such a solution:

(22)

where is the starting point of the algorithm, and is the
th iterate. It is easy to show that satisfies the monotonicity

property of Section IV in Part I. Thus if has a unique fixed
point then will converge to it from any starting point

. We leave the problem of establishing the uniqueness of
the fixed point of open. It is equivalent to the following
conjecture.

Conjecture 1:

1) Given , the mapping is invertible,
implying that we can parameterize the boundary surface
of by (note, we assume that and

are appropriately normalized, so that these mappings
are well-defined).

2) Given , the mapping is invertible,
implying that we can parameterize the boundary surface
of by .

We also conjecture that the analogous results hold in Part I;
that is, the maps and are invertible in the
throughput capacity case as well.
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