

Multiagent and Bargaining-Game-Based Real-

Time Scheduling for Internet of Things-Enabled

Flexible Job Shop

Jin Wang, Yingfeng Zhang, Yang Liu and Naiqi Wu

The self-archived postprint version of this journal article is available at Linköping

University Institutional Repository (DiVA):

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-157554

N.B.: When citing this work, cite the original publication.
Wang, J., Zhang, Y., Liu, Y., Wu, N., (2019), Multiagent and Bargaining-Game-Based Real-Time
Scheduling for Internet of Things-Enabled Flexible Job Shop, IEEE Internet of Things Journal, 6(2),
2518-2531. https://doi.org/10.1109/JIOT.2018.2871346

Original publication available at:
https://doi.org/10.1109/JIOT.2018.2871346
Copyright: Institute of Electrical and Electronics Engineers (IEEE)
http://www.ieee.org/index.html
©2019 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse
any copyrighted component of this work in other works must be obtained from the
IEEE.

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-157554
https://doi.org/10.1109/JIOT.2018.2871346
http://www.ieee.org/index.html
http://twitter.com/?status=OA%20Article:%20Multiagent%20and%20Bargaining-Game-Based%20Real-Time%20Scheduling%20for%20Internet%20of%20Things...%20http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-157554%20via%20@LiU_EPress%20%23LiU

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2871346, IEEE Internet of

Things Journal

 1



Abstract—With the rapid advancement and widespread

applications of information technology in the manufacturing shop

floor, a huge amount of real-time data is generated, providing a

good opportunity to effectively respond to unpredictable

exceptions so that the productivity can be improved. Thus, how to

schedule the manufacturing shop floor for achieving such a goal is

very challenging. This work addresses this issue and a new

multi-agent-based real-time scheduling (MARS) architecture is

proposed for an Internet of Things (IoT)-enabled flexible job shop.

Differing from traditional dynamic scheduling strategies, the

proposed strategy optimally assigns tasks to machines according

to their real-time status. A bargaining-game-based negotiation

mechanism is developed to coordinate the agents so that the

problem can be efficiently solved. To demonstrate the feasibility

and effectiveness of the proposed architecture and scheduling

method, a proof-of-concept prototype system is implemented with

Java agent development framework (JADE) platform. A case

study is used to test the performance and effectiveness of the

proposed method. Through simulation and comparison, it is

shown that the proposed method outperforms the traditional

dynamic scheduling strategies in terms of makespan, critical

machine workload, and total energy consumption.

Index Terms—Multi-agent, Internet of Things, Flexible job shop,

Real-time scheduling

Manuscript received March 16, 2018; revised June 16, 2018; accepted

September 12, 2018. This work was supported in part by the National Natural
Science Foundation of China under Grant 51675441, the Fundamental
Research Funds for the Central Universities under Grant 3102017jc04001, the
111 Project Grant of NPU under Grant B13044, and the Science and
Technology development fund (FDCT) of Macau under Grant 106/2016/A3.
(Corresponding authors: Yingfeng Zhang and Niaqi Wu.)

J. Wang is with the School of Mechanical Engineering, Northwestern
Polytechnical University, Xi‘an, Shaanxi 710072, china, and also with the
School of Mechanical Engineering, Xi‘an Aeronautical University, Xi‘an,
Shaanxi 710077, China (e-mail: wj19852004@qq.com).

Y. F. Zhang is with the School of Mechanical Engineering, Northwestern
Polytechnical University, Xi'an, Shaanxi 710072, China (e-mail:
zhangyf@nwpu.edu.cn).

Y. Liu is with the Department of Management and Engineering, Linköping
University, SE-581 83 Linköping, Sweden (email: yang.liu@liu.se).

N. Q. Wu is with the Institute of Systems Engineering, Macau University of
Science and Technology, Macau, China, and also the national key laboratory of
precise electronic manufacturing technology and equipment, Guangdong University of

Technology, Guangzhou 510006, China (e-mail: nqwu@must.edu.mo).
Copyright (c) 2012 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

I. INTRODUCTION

N today‘s highly competitive marketplace, manufacturing
enterprises have to face enormous challenges such as the

increased diversity in customer demands, globalized market,
and environmental pressures [1][2]. With these challenges, to
be competitive, a manufacturing system should have good
flexibility, quick response, and fault-tolerant capability.
Production scheduling plays an important role for a
manufacturing system to improve productivity and
responsiveness. A well-operated manufacturing system can
increase capacity utilization and reduce lead time so as to
increase profit gain [3][4]. Thus, in recent years, production
scheduling has attracted great attention [5]-[17], especially for
flexible job shop scheduling problems [18].

With a severely competitive market environment, traditional
scheduling strategies with all tasks and manufacturing
resources being controlled by a distribution system are no
longer effective for an open, flexible, demand-driven, and
reconfigurable manufacturing system [19]. The traditional
scheduling strategies are intrinsically inflexible and not able to
respond effectively to exceptional events (e.g., machine
breakdowns and rush orders) and cannot adapt to unforeseen
dynamic situations.

With the recent advancement of information technology,
artificial intelligence (AI) has been developed prosperously. As
an AI tool, multi-agent technology has been regarded as one of
the most promising approaches for solving production
scheduling problems and attracts great researchers‘ attention
[20]. Unlike a traditional scheduling strategy driven by a
centralized scheduler, a multi-agent-based scheduling system
supports distributed scheduling, which is realized by
autonomous agents. These agents collaborate and cooperate
dynamically to optimize both local and global objectives [21].
Recently, investigations have been made by a number of
scholars on multi-agent-based dynamic scheduling [22][23].
However, most of these researches mainly focus on the
architectures of multi-agent systems (MAS) and negotiation
protocols among the agents, as well as the application of
distributed features of MAS for task allocation in a traditional
manufacturing shop floor [24]. Few of them consider the
real-time-data-based interaction between machines and other
distributed resources in an IoT-enabled flexible job shop. As a
result, often the performance of efficiency is degraded and

Multi-agent and Bargaining-game-based
Real-time Scheduling for Internet of
Things-enabled Flexible Job Shop

Jin Wang, Yingfeng Zhang, Member, IEEE, Yang Liu, and Naiqi Wu, Senior Member, IEEE

I

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2871346, IEEE Internet of

Things Journal

 2

more energy is consumed by the production processes mainly
due to the unpredictable exceptions [25].

Recently, the rapid progress of information technology (e.g.
radio frequency identification-RFID) provides shop floor with
rich real-time data for better operational management [26][27].
With these technologies being adopted, real-time-data-based
traceability, visibility, and interoperability can be realized to
improve the performance of shop floor planning, monitoring,
and control. At present, by extending the IoT technologies such
as RFID to manufacturing environment [28]-[30], real-time
data have become more accessible and ubiquitous, contributing
to a big data environment [31][32]. Thus, in a real-world
manufacturing environment, the real-time data streams coming
from IoT make it possible for one to discard the existing
scheduling approaches and adopt the multi-agent-based
dynamic scheduling techniques. More recently, great attention
has been paid to the real-time-data-based optimization issue for
shop floor in both academia and industry. For example, Zhang
et al. [33] put forward a dynamic optimization method for shop
floor material handling (DOM-SMH) based on real-time and
multi-source manufacturing data. Zhang et al. [34] also
proposed a dynamic optimization model for flexible job shop
scheduling (DOM-FJSS) based on real-time data for cloud
manufacturing (CMfg).

Although significant advancements have been achieved in
using the real-time data for performance improvement, there
are unsolved issues for how to apply real-time data-driven
decision to MARS problem in a manufacturing big data
environment due to the increasing process complexity,
unpredictable exceptions, etc. These issues are summarized as
follows.

(1) How to design a new and effective MARS architecture
based on real-time data to implement real-time scheduling for
an IoT-enabled flexible job shop. Recently, in many studies,
multi-agent technology is adopted to deal with the dynamic
scheduling problem 35]. However, how to integrate the
real-time manufacturing information between the
multi-agent-based dynamic scheduling system and the
manufacturing execution system is still an open issue. This
implies that, during the manufacturing execution stage, the
real-time manufacturing information cannot be well captured
such that manufacturing tasks are assigned to machines without
considering their real-time status and processing capability.
Thus, designing a new MARS architecture based on real-time
data for the real-time-data-based scheduling system is critical
and necessary for applications. Moreover, in designing an
MARS architecture, it is better to use JADE as a platform,
because of its advantages such as simplicity, code compactness,
and graphical user interface.

 (2) How to design a new multi-agent-based real-time task
allocation strategy to implement real-time scheduling based on
real-time data in an IoT-based manufacturing environment. In
the existing multi-agent-based dynamic scheduling methods, a
dynamic scheduling approach focuses on dynamic dispatching
rules [36] and event-driven rescheduling policies [37]. Between
them, event-driven rescheduling policies are used by most of
the methods. By such methods, an action is triggered to respond

to an exceptional event that changes the current system status.
Then, the current schedule is revised to adapt to the new status
caused by the exceptional events. By doing so, it may result in a
new schedule that is totally different from the original one [38].
Thus, some operations that have not started yet under the
previous schedule at the time of rescheduling may change their
starting time sharply, which strongly affects the execution of
other operations that are scheduled based on the original
schedule and brings instability and undermines the process
continuity [39]. Therefore, a new multi-agent-based real-time
task allocation strategy should avoid or reduce the influence of
the unpredictable exceptions based on the real-time data in an
IoT-enabled flexible job shop.

 (3) How to design a new negotiation mechanism for the
MARS in an IoT-enabled flexible job shop. In general, there are
many negotiation modes available. The most commonly used
negotiation mechanisms are the contract net protocol (CNP)
[40] and its modified versions [41]. However, both of these two
protocols are communication intensive. A heavy
communication load hinders the agents to respond to
unpredictable exceptions in a dynamic scheduling system and
makes agents spend more time for processing messages than
focusing on decision making. This is especially true for a
manufacturing shop floor in the internet of manufacturing
things (IoMT) environment with the vast amount of data
concurrency and exchange. Game theory-based negotiation
mechanism can provide a useful framework for analyzing MAS.
In both the bargaining game and the MAS, agents are
considered to exhibit rational decision making, have
asymmetric information, and work together to improve or
maximize their utilities. Therefore, a bargaining-game-based
negotiation mechanism is necessary to reduce the
communication burden among the agents and improve the
problem-solving efficiency.

To address the above-mentioned challenges, by taking the
advantages of IoT and considering the requirements of
real-time data-driven optimal decision making of a real-time
scheduling system, a new MARS architecture is presented in
this study to provide a new paradigm by extending the IoT to
manufacturing field. Under this architecture, sensors can be
embedded in the manufacturing resources such as operators,
machines, pallets, materials, etc. Then, they can interact with
each other during the execution stage. The exchanged
information and their status can thus be tracked. Based on the
real-time information from the resources, a multi-agent-based
real-time task allocation strategy is proposed to timely
eliminate the influences caused by exceptional events in the
shop floor. The proposed method for the scheduling problem is
computationally efficient, since by this method only one
operation is selected for assigning to one machine at a time. In
addition, compared with the traditional negotiation mechanism,
the bargaining-game-based negotiation mechanism developed
in this work can improve the interaction ability between agents
and enhance the communication efficiency.

The rest of the study is organized as follows. Section II
reviews the related literature. After the architecture of MARS is
developed in Section III, Section IV presents each agent model.

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2871346, IEEE Internet of

Things Journal

 3

The bargaining-game-based solution is given in Section V. In
Section VI, a case study is used to verify the feasibility and
applicability of the designed architecture of MARS, and an
instance is tested to prove the effectiveness of the proposed
method. Finally, conclusions and recommendations are
summarized in Section VII.

II. LITERATURE REVIEW

As above mentioned, in this section, we briefly review the
studies that are relevant to game-theory-based MARS problem
in an IoT-enabled flexible job shop. They are classified into two
categories: multi-agent-based scheduling and game theory for
scheduling.

A. Multi-agent-based scheduling

Multi-agent technology has been reported to be very
successful in a wide range of scheduling applications [42].
Shaw [43] pioneered the use of agents for flexible
manufacturing system scheduling and factory control. Parunak
[44] was another earliest one who developed a
multi-agent-based manufacturing control system, which
assigns an agent to each node in a control hierarchy. In recent
years, MAS has been widely adopted in manufacturing
applications because of its flexibility, reconfigurability, and
scalability [45]. Multi-agent technology has also been
considered to be one of the most promising approaches to the
scheduling problem of complex and flexible manufacturing
systems due to its distributed, autonomous, and dynamic
nature.

Nowadays, more and more researchers and practitioners
attempt to solve dynamic scheduling problems using the
multi-agent technology. A recent survey on multi-agent-based
scheduling was presented by Perez-Gonzalez and Framinan
[46]. Savino et al. [47] studied the multiple-objective flow shop
modeling and dynamic scheduling problem by using MAS in a
production context that is characterized by diversified and
high-volume production mix. Zhang and Wong [21] studied the
flexible job shop scheduling/rescheduling problem under a
dynamic environment with different types of disruptions. They
developed a hybrid MAS negotiation mechanism and proposed
an ant colony optimization approach. By these studies, many
novel ideas are proposed for the applications of the multi-agent
technology in dynamic scheduling. It is demonstrated that the
agent technology is effective for solving complicated
scheduling problems. Moreover, MAS has been successfully
applied to dynamic flow shop scheduling [48][49], dynamic job
shop scheduling [50][51], integrated planning and scheduling
[52][53], dynamic flexible manufacturing systems [54], and
automated guided vehicle (AGV) systems [55][56]. These
studies show that multi-agent technology has been widely
applied to resolve dynamic scheduling problems for traditional
manufacturing shop floor.

 With the development of science and technology, advanced
technologies and management methods can be used to optimize
the production processes and make a manufacturing shop floor
intelligent. In recent years, RFID has been widely applied for
supporting production and scheduling in manufacturing shop

floor, where manufacturing resources with RFID facilities
being attached are converted into smart manufacturing objects
that are able to sense, interact, so that an IoMT environment is
realized. With the vast amount of data that are produced and
exchanged concurrently, the states of a manufacturing shop
floor under the IoMT environment change dynamically in a
real-time way [28]. The above-mentioned techniques in the
existing studies for the traditional manufacturing shop floor are
not able to adapt to such an IoMT environment. Thus,
multi-agent-based dynamic scheduling should fully consider
the real-time information exchange among the agents under the
IoMT environment.

In addition, to the best of the authors‘ knowledge, research
reports on multi-agent-based dynamic scheduling by using
JADE are quite limited and many studies focus on the
interaction of agents only and do not consider the
implementation issues. By a rigorous literature search, it is
found that only a handful of studies fall into this topic. Among
them, the work done by Wang et al. [57] seems to be the most
relevant one. They proposed a multi-agent-based approach with
a filtered-beam-search-based heuristic algorithm being
integrated to solve the dynamic scheduling problem in a
flexible manufacturing system (FMS) shop floor based on
JADE platform. Then, Chen and Chen [54] used multi-agent
technology to construct a multi-section flexible manufacturing
system model. Then, with dispatching rules being combined,
the manufacturing environment is simulated based on the
JADE framework. However, none of these studies considers
the real-time manufacturing information of the shop floor.

B. Game theory for scheduling

The early game theory studies appeared in the economics
literature introduced in the book ―the theory of games and
economic behavior‖ by Rowland [58]. Then, Nash extended the
results and proposed the concept of Nash equilibrium (NE). In
the few decades followed, many studies have been done, and
most of them focus on the subject of medicine, economics,
communication, and cloud manufacturing [59]-[61]. Currently,
game theory is becoming more and more popular and has been
gradually introduced to deal with production scheduling
problems [62]. Game theory can be classified into cooperative
and non-cooperative games. By using the cooperative game,
Calleja et al. [63] studied the single machine job scheduling
problem, where clients could have more than one job to be
processed and a job could be of interest for different players
using cooperative games. Han et al. [64] studied the flexible
flow shop scheduling problem with component altering times
(FFSP-CAT), which is a specific form of a flexible flow shop
scheduling problem with sequence dependent setup time in a
practical scenario. They constructed a repeated cooperative
model and provided a theoretical analysis of a game. By using
the non-cooperative game, Zhou et al. [65] constructed a
game-theory-based mathematical model to schedule jobs in
networked manufacturing environments, a new scheduling
problem. Zhang et al. [34] put forward a dynamic optimization
model for flexible job shop scheduling based on game theory

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2871346, IEEE Internet of

Things Journal

 4

and a new real-time scheduling strategy and method are
proposed.

It can be seen from the above literature that there are many
studies on scheduling problems from the viewpoint of game
theory. However, only few of them use multi-agent technology.
Diepl and Reaidy [66] investigated the means of co-ordination
in a production system based on a hierarchical MAS using
game theory. Reaidy et al. [67] proposed a negotiation
methodology based on a MAS for heterarchical and complex
manufacturing control systems. Agnetis et al. [68] addressed a
deterministic scheduling problem, where two agents compete
for the usage of a single machine. A significant shortcoming of
these studies is that they describe only the coordination
problem among the multiple agents from the viewpoint of
software construction without quantitatively analyzing the
interaction among the agents. Moreover at present, the existing
work seldom focuses on the FJSS problem, especially in the
real-time FJSS problem using bargaining game. Therefore,
from the MARS point of view in a flexible job shop, the
existing research is still at an infant stage and considerable
progress has yet to come.

To address the above challenges, this study proposes a new
MARS architecture to implement real-time data-driven
optimization approach in an IoT-enabled flexible job shop
based on the JADE framework using bargaining game. This
study differs from the existing work in the literature in two
folds: (1) a multi-agent-based real-time scheduling approach
based on JADE platform is proposed, which takes the
advantage of the real-time manufacturing information for an
IoT-enabled flexible job shop; and (2) a
bargaining-game-based coordination mechanism for MARS is
developed by analyzing the interaction among the agents in a
flexible job shop. The implementation of the proposed
approach is expected to increase productivity, as well as
flexibility and responsiveness for an IoT-enabled flexible job
shop.

In addition, the authors‘ previous study has been conducted
on the subject of game theory-based flexible job shop
scheduling [25]. This study is different from the authors‘
previous one as follows.

(1) The authors‘ previous work used the dynamic game
theory to deal with the conflict and competition among the
multiple objectives in a multi-objective flexible job shop
scheduling problem. In that study, a non-cooperative game is
played only once and there is no binding contract, the payoff of
each player in the Nash equilibrium solution may have less
benefit than the other non-Nash equilibrium solution, resulting
in non-collective rationality. With this observation, this study
develops a bargaining-game-based coordination mechanism for
the real-time scheduling in the flexible job shop to overcome
the shortcoming of the previous work.

(2) Our previous work focused on multi-objective
optimization method and was not for shop scheduling
optimization from the viewpoint of a distributed system, while
this study proposes a multi-agent-based real-time scheduling
approach based on the JADE platform with the real-time

manufacturing information being taken into consideration for
an IoT-enabled flexible job shop.

III. OVERVIEW OF MARS BASED ON REAL-TIME DATA

This study mainly discusses the multi-agent-based real-time
FJSS problem in a discrete manufacturing environment. The
objective of the proposed MARS is to implement the interactive
perception of distributed manufacturing resources by extending
automatic identification (auto-ID) technologies and using
multi-agent technology to process real-time scheduling and
thus achieve real-time optimization of manufacturing tasks
based on the real-time status of the machines.

A. The MARS strategy

In this study, a new MARS strategy is proposed. For better
understanding, traditional scheduling strategies and the MARS
strategy based on real-time data are described as follows,
respectively.

By a traditional scheduling strategy, all the tasks are
centrally assigned to the corresponding machines by a
distribution system. The decision model is centralized, and
machines do not interact with other distribution resources. As a
result, the real-time state information of the distribution
resources has not been considered. Hence, often a deviation
between a plan and its execution is inevitable because of
unpredictable exceptions. Moreover, the computational
complexity is high as the number of tasks and machines
increases.

With the MARS strategy based on the real-time data, by
using multi-agent technology, each machine automatically
sends its real-time state information to the system and requests
tasks for processing. Tasks continually interact with machines.
Then, tasks can be assigned to the most appropriate machines
according to the real-time status of the machines. Since the task
allocation is done in a real-time information-driven way and an
allocation strategy is started only for the machines according to
their real-time status. Thus, the deviation between a plan and its
execution resulting from a traditional scheduling strategy can
be largely eliminated via the MARS strategy.

B. The overall architecture of MARS

Based on the MARS strategy, an overall architecture of
MARS for a flexible job shop is designed as seen in Fig. 1. It
consists of two layers: the JADE middleware layer and the
multi-agent layer. The JADE middleware layer provides a
JADE runtime environment such that the agent registration,
management, and interaction can be realized. Each running
instance in the JADE runtime environment is called a container
and it can contain several agents. The set of active containers is
called a platform. There is a special container that is active all
the time in the platform and it is called the main container. All
other containers register into the main container as soon as they
start. Once the platform is activated, the JADE default agents,
including agent management system (AMS) and directory
facilitator (DF) are instantiated. The AMS agent acts as a
supervisor that controls the use of other agents to the platform;
while the DF agent provides a default yellow page service in the

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2871346, IEEE Internet of

Things Journal

 5

platform. In this study, there is a single main container only in
the platform on which the agents are executed.

The multi-agent layer includes a number of application
agents to fulfill the real-time scheduling based on real-time data
of the shop floor. They are machine agent (MA), task agent
(TA), task pool agent (TPA), real-time scheduling agent (RSA),
and real-time monitor agent (RMA). Each type of agents can be
implemented in the JADE platform. The main functions of
these agents are described as follows.

Fig.1. The Architecture of MARS

(1) The MA is responsible for capturing the real-time data
sensed from auto-ID devices such as RFID and processing the
complex real-time data such that they are understood as
meaningful manufacturing information. Then, the
corresponding agents can know the real-time status and
available capacity of the manufacturing resources at any time.

(2) The TA is used to capture information of all tasks and
send such information to TPA. If new tasks arrive, TA can
capture this information timely and inform the TPA about the
relevant conditions.

(3) The TPA is responsible for picking out the first
unprocessed manufacturing operation of each task from the TA
and publishing these available operations into the RSA timely.

(4) The RMA is responsible for capturing and processing the
real-time production execution information of the shop floor
and sending the real-time manufacturing information to the
RSA. During the production execution, disturbances and
changes of the shop floor processes are timely tracked and
traced.

(5) The RSA provides a mathematic model and
bargaining-game-based algorithm to optimally schedule the
start time and finish time of each operation of each task
according to the sensed real-time shop floor information.

The above five types of agents acquire related data by
exchanging messages with each other. A message contains the
following fields: the sender of the message, a list of receivers,
the communicative act type, the message content expression,
the content language, and the ontology. JADE provides the
agent with communication language called Agent
communication language message (ACLMessage). Messages
exchanged by agents have a format specified ACL defined by
the foundation for intelligent physical agents (FIPA)
international standard for agent interoperability. A message in
JADE can be implemented as an object of the

jade.lang.acl.ACLMessage class that defines methods for
handling all fields of a message.

C. The implementation of MARS

The implementation of MARS is the actual process of the
interactions among the agents during real-time scheduling stage.
Through auto-ID technologies, the real-time data can be
captured by the MAs. Then, during the manufacturing
execution stage, a task can be assigned to a most appropriate
machine according to the machines‘ real-time status and
available capability. The detailed process is described as
follows.

When tasks are released to the shop floor for processing, the
TA first captures all the specifications and processing
conditions of each task. Further, this information is transferred
to the TPA, which picks out the first unprocessed operation of
each task and sends this information to the RSA. In this way,
resources that are able to process these specified operations are
known. At the same time, each MA automatically sends the
real-time available capability information of corresponding
machines to the RSA and the capable resources compete to
process these operations. Consequently, the operations interact
with the MAs continuously in the RSA. Thus, an operation can
be assigned to the most suitable MA in an optimal way by using
the bargaining game according to their real-time available
capacity. Each time, only one operation is optimally assigned to
the requested MA. MAs continuously send the request for new
operations before all tasks are finished, which is released by the
TPA. At the production execution stage, the RMA captures the
real-time execution information of the shop floor and then
sends real-time manufacturing information to the RSA.
Therefore, if an exceptional event occurs, the manufacturing
environment can be reconfigured. The RSA can decide the
MAs that can continue to deal with the available operations or
the tasks that should be removed or joined.

IV. MULTI-AGENT MODELS

A. Machine Agent model

Fig. 2 shows an MA model. It is responsible for wrapping the
applications of manufacturing resources to capture the
real-time data of manufacturing resources by adopting auto-ID
and sensor technologies. Then, it processes the captured
real-time data such that they can be understood as useful and
meaningful manufacturing information. At each time t, the
MAs actively send the real-time available capability
information of a machine to the RSA for a machine to compete
for processing the available operations according to their
real-time status. An MA includes four modules, namely sensor
manager, data sensing and capturing, data processing, and
intelligent modules. The functions are described as follows.

Task ID

J1

Geometrical
features

Feature
relationships

②Task Agent

12i

2 1

12n

j

i j 2

Available processes

③Task pool Agent

Machine Agent

Bargaining
Game

Machine Agent

Machine Agent

Machine Agent

Available process

Machine Perceive Processes Actively

⑤Real-time Scheduling Agent

Data
sensing

capturing

Sensor
manager

Data
processing

①Machine Agent [i] ④Real-time Monitor Agent

Data Source Service

Get Information Update Information

Real-time WIP Visibility

and Traceability Service

Real-time
Capability Information Real-time Execution Information of Shop Floor

Real-time
Manufacturing Information

Task[i]

Task

JADE Middleware

A
ge

nt
 C

o
m

m
un

ic
at

io
n

C
ha

nn
el

A
ge

nt

A
M

S
D

F

The Real-time Production Data of Shop Floor

Real-time

Data

M
ul

ti-
ag

e
nt

Ji

Available process

Available process

Available process

Intelligence

M
ai

n-
co

nt
ai

ne
r

Multi-agent

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2871346, IEEE Internet of

Things Journal

 6

Fig.2. Machine Agent model

1) Sensor manager
This module is responsible for connecting and centrally

managing the heterogeneous types of sensors for capturing the
real-time data of manufacturing resources. First, it is used to
register and manage (remote start, pause, stop, etc.) the
behavior of sensors installed on a machine. Second, it is used to
monitor and control the status of each registered sensor. Third,
it is used to manage the capturing functions of each sensor and
improve the sensing capability of each sensor. If a sensor
breaks down, MAs can stop its behavior and send a message to
the RMA.
2) Data sensing and capturing

This module is responsible for sensing and capturing the
real-time data of the registered sensors installed on the
manufacturing resources during the production process.
Through the communication protocol and relationships in the
registry, it can capture and transmit the sensed data from the
sensors to the repository.
3) Data processing

This module is responsible for processing the insignificant
data captured by registered sensors to form useful and
meaningful information. Although real-time data record the
real-time status of manufacturing resources, they need to be
processed to provide useful and meaningful information. It can
establish the mapping relation and mechanism such as rules and
standard output data schemas to translate the real-time data to
be meaningfully understood.
4) Intelligent module

Based on the useful and meaningful information, each MA
can actively send the real-time available capability information
and real-time status to the RSA and decide whether to compete
for processing the tasks from the TPA.

B. Task Agent model

The TA is responsible for capturing the real-time
information of each task and sending the information to the
TPA. The TA model is shown in the top of Fig. 3. When tasks
are released to the shop floor for processing, specifications and
processing conditions of each task are registered by the TA.
These specifications include task ID, the materials for the task,
the hardness of the material, a list of geometrical features,
feature relationships, estimated removal volume, tolerance,
chip breakability, and surface quality requirements and so on.
The processing conditions include different processing time

and cutting power of each operation on different machines.
Then, this real-time task information is transferred to the TPA.

Fig.3. Task Agent and Task Pool Agent model

C. Task Pool Agent model

Based on the real-time task information from the TA, the
TPA is used to pick out the available operations and publish
these operations to the RSA at each time t. As seen in the lower
part of Fig. 3, the work logic of the TPA includes three stages.

At the beginning, the TPA establishes a task pool and puts
the first unallocated manufacturing operation of each task into
it after receiving the real-time task information from the TA.
Then, these available operations in the task pool are published
into the RSA and each MA automatically sends its real-time
status and requests to undertake the available operations from
the RSA. If the previous operation in the RSA is submitted to
the processing queue of a machine, the RSA informs the TPA
and a new operation that belongs to the next manufacturing step
is added into the task pool and then published into the RSA
again. This process is repeated until all operations are added to
the processing queue of appropriate machines.

D. Real-time Monitor Agent model

The RMA plays a key role for capturing the real-time
execution information and sending it to the RSA. Fig. 4 shows
the work logic of an RMA. There are mainly two modules in
the RMA.

Fig.4. Real-time Monitor Agent model

Tag

Tag

TagOperator

Tag

Tag

Tag Reader

Tag

Tag

Tag

Tag

Tag

Tagmachine Reader

Wireless

Sensor manager

Data sensing and capturing

Data processing

Registry

Repository

Meaningful Information

Machine Agent

C
o

m
p

et
e

Task

Task

Task

Task

…

…

…

Initial information

Intelligent
module

Status

Active

Machine 2

Machine m

Machine 1

P
ro

c
esses

The first unallocated
manufacturing processes

12…i

… 2 1

12…n

j

T
ask

 p
o

ol

… j n…

1i

1

1n

j

2

2

2

…

…

…

Processing queue of the machine

Task Pool Agent

MA [1] MA [2] MA [n]

Real-time Scheduling Agent

InformPublish

Available processes

…

…

Task Agent

Cutting

power

Processing

time

Processing

queue

 Taski

{ , , …, , …, }
Real-time task information

Each task {Task1, Task2, …, Taski, …,Taskn}

...

Real-time status

Get production
data

Establish WIP
instance

Critical event
model

Get real-time
information

Shop-Floor Level

Critical Event

Cell Level

Complex Event

Resource Level

Basic Event

Critical Event

Complex
Event

Complex
Event

Complex
Event

Material Distribution
Event

WIP Circulate
Event

Process
Event

Quality Detection
Event

Storage
Event

MA (1) MA (2) MA (i)

Machine Agents

Real-time execution information

Real-time WIP Visibility and Traceability Service

… …

R
e
a
l-

ti
m

e
 M

o
n

it
o
r
 A

g
e
n

t

① ② ④③

EISs

Data Source Service

Dynamic information nodes

BOM Scheduler CAPP

Get information Update information

Data uploading or updating

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2871346, IEEE Internet of

Things Journal

 7

1) Real-time WIP visibility and traceability service

(RTWIP-VTS)

RTWIP-VTS acts as a core in the RMA. On the one hand, it
is responsible for establishing WIP instance by extracting the
necessary information or updating the changed information
from or to heterogeneous EISs (Enterprise Information Systems)
through data source service. On the other hand, it is also
responsible for modeling the dynamic behavior of a
manufacturing system and processing the real-time execution
information from a large amount of the low-level events
captured by MAs. Here, the critical event model can extract the
key information from the above low-level events to form
high-level events. Through these high-level events, the
information from the corresponding equipment such as
dynamical status and produced WIP items can be monitored.

The inputs include BOM, schedule, process plans, and
real-time execution information captured by relevant MAs. The
outputs are the real-time manufacturing information related to
produced products, consumed materials, exceptions, etc. of
individual manufacturing resources, and the overall real-time
production progress and production disturbances, etc. of the
entire shop floor.
2) Data source service

The objective of data source service is to build a bridge for
communication between the RMA and heterogeneous EISs. It
provides data uploading, downloading, query, processing, and
updating functions for sharing and integrating data between the
RTWIP-VTS and other services or EISs. Due to the difficulties
of information exchanging among the heterogeneous EISs,
XML data with industrial standards are adopted for
standardization to provide standardized schemas for
manufacturing elements. The inputs of this module are the
parameters of the data source of the EISs, while the outputs are
the standard information based on XML schemas.

E. Real-time Scheduling Agent model

The RSA is designed to implement the real-time scheduling.
At each time t, its inputs include the real-time capability
information from MAs, available operations from the TPA, and
real-time manufacturing information from the RMA. Its
outputs are the task queues of the machines. Two modules,
namely problem formulation module and solving module are
involved in the RSA.
1) Problem formulation module

The FJSS problem can be formulated as follows. There is a
set of n tasks to be processed on a set of m machines. Task i
consists of a sequence of ni operations. Each operation Oij of
task i can be processed by some capable machines. The FJSS
problem is to optimally assign the operations to machines and
sequence the operations assigned to each machine such that the
given criteria are satisfied.

Based on the notation listed in Table I, a mathematic
formulation for the problem is built, which is described as
follows.

TABLE I
NOTATIONS

Notations Description

n the total number of tasks

m the total number of machines

ni the total number of operations of task i
M={M1,M2,…,Mm} the set of machines

Oij the jth operation of task i
Cij the completion time of Oij

CM the maximal completion time of the machines

Wk the workload of Mk

WM the critical machine workload, which is the machine
with the heaviest workload

E the total energy consumption of production

xijk 1, if Mk is selected for Oij; 0, otherwise

P0k the idle power of Mk (kW)
Pk the cutting power of Mk (kW)
tIk the total idle time of Mk

tijk the processing time of Oij on Mk

Objective function:

1Min =Max [1,], [1,]M ij if C C i n j n   (1)

2

1 1

Min Max{ } Max{ ()}
inn

M k ijk ijk

i j

f W W t x
 

    (2)

3 0
1 1 1 1

Min () ()
inm n m

k ijk ijk k Ik

k i j k

f E P t x P t
   

    (3)

Subject to:

, , 1 , , , ,

,

2, ,

0 1,2, ,

i j i j i j k i j k i

i j

C C t x j n

C i n

   

 
 (4)

()

1 ,
ij

ijk

k M O

x i j


  (5)

For Objectives (1)–(3), f1 represents makespan or the
maximal completion time of the machines, f2 represents the
critical machine workload, and f3 represents the total energy
consumption for producing the tasks. These objectives are
changed as scheduling result changes. Hence, by minimizing
these objectives, an optimal schedule can be obtained at each
time t. Inequality (4) ensures the operation precedence
constraints. Constraint (5) guarantees that an operation is
assigned to one and only one machine.
2) Bargaining-game-based solving module

It follows from the above formulation that the
multi-agent-based real-time scheduling problem is a
multi-objective optimization problem (MOP). A general MOP
can be summed up in the following common mode:

1

1

2

min/ max ()

min/ max ()

min/ max ()

. . () 0, 1, ,

() 0, 1, ,

i

k

j

l

f x

f x

f x

s t g x j m

h x l m









  


 

 (6)

where 1(, ,)
n

x x x X  is a decision variable, X is the

variables space, (), (1,2, ,)if x i k is a cost function，

()jg x and ()
l

h x together refer to as the constraints.

 For the MOP (Equation (6)), (), (1,2, ,)if x i k can be

regarded as the k players in a bargaining game. The decision

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2871346, IEEE Internet of

Things Journal

 8

strategy space S equals to a variable space X . The payoff
function for each player is fi(x). The bargaining game
equilibrium solution can be seen as a solution for the MOP.
Thus, this module is used to calculate the optimal solution by
adopting the bargaining game. The bargaining-game-based
solution includes players, strategies, and payoff design, and a
bargaining game equilibrium solution. The details of the
bargaining-game-based solution are described next.

V. BARGAINING-GAME-BASED SOLUTION IN RSA

A. Bargaining game model

The multi-agent-based real-time scheduling problem
addressed in this study can be seen as an N-person bargaining
game with complete information. Bargaining game is defined
as that decision-makers solve the profit distribution problem
through consultation. To build a bargaining game model, three
elements should be determined: players, strategies, and payoff,
which can be described as:

{ ; ; } 1,2,3i i iG F S U i  (7)

where Fi is the set of players who participate in the bargaining
game. In the problem addressed in this work, the three
objectives correspond to three players. Here, players take
actions sequentially, and the choice made by the former player
has an impact on the selection made by the latter.

Si is the actions or strategies adopted by Player i. In this
problem, the available operations from the RSA to the
strategies of this game are denoted as strategy profile, meaning
that the first unprocessed manufacturing operations of the tasks
are strategies for players at each time t.

Ui is the payoff function for Player i. In the addressed
problem, the utility functions for the three players are the first,
second, and third objective functions, respectively.

B. The bargaining-game-based real-time scheduling method

At each time t for a real-time schedule, a
bargaining-game-based real-time scheduling method is
triggered in the RSA such that the operations can be assigned to
the most suitable MA according to the real-time available
capability information of the MAs. At each time t, the
problem-solving procedure is described as follows.

Step 1: MAs are assigned to the three objectives in turn. For
example, MA[1] is for f1 and MA[2] for f2 and so on. In a
real-world manufacturing system, the number of MAs is greater
than three, so we can assign MA[4] to f1 and MA[5] to f2 until
all MAs are assigned to an objective.

Step 2: Three objectives correspond to three players. Each
player tries to select the most appropriate operations such that
the goal of maximizing its payoff is achieved according to the
results of the negotiation. Here, there are many stages in the
bargaining game, and each stage has one player or one MA[i] to
make a decision. Therefore, each MA that is assigned to fi can
choose an available operation from the RSA.

Step 3: Calculate the utility functions u1(s), u2(s) and u3(s) for
Players 1, 2, and 3 according to Eqs. (1) - (3) from each feasible
strategy combination, respectively.

Step 4: Find the bargaining game equilibrium solution,
which is described in detail in Part C of Section V. Then, the
available operations in the RSA are assigned to the most
suitable MAs in an optimal way according to their real-time
status.

Step 5: At the next time t (t=t+1), repeat Steps 1 - 4 until all
the tasks are assigned.

When exceptional events (e.g., machine breakdown, change
of the order, etc.) occur in a real-time, the influences of the
exceptions can be timely reduced and eliminated through
changing the players or the strategies of the bargaining game.

C. Bargaining game equilibrium solution

Sub-game perfect Nash equilibrium (SPNE) is broadly
considered and applied as the solution for N-person
non-cooperative dynamic game. An SPNE point is an N-tuple
of strategies, one for each player, such that anyone who
deviates from it unilaterally cannot possibly improve its
expected payoff. Compared with the dynamic game, bargaining
game is a process of value creating and redistributing, and the
final agreement allows players to get a higher payoff than
bargaining before. Watson [69] has presented the standard
solution for bargaining problem. However, he focused on a
two-player case only. In this section, an algorithm based on the
solution of Watson is put forward to search for the bargaining
game equilibrium solution with three players.

Let V denote the set of payoff vectors defining the players‘
alternatives for the bargaining game.

1 2{ (), (), , (), , ()} 1,2,3k n

i i i iV u s u s u s u s i  (8)

1 2 3{ , , }k k k ks s s s

Let d denote the payoff vector associated with the default
outcome, which describes what happens if the players fail to

reach an agreement, d V . In this paper, d is given by
*()iu s

and
* * * *

1 2 3(, ,)s s s s is one SPNE solution for the bargaining

game.

Let
*()ku s denote the maximized joint value for the

bargaining game.
3

*

1

() max ()k k

i

i

u s u s


  (9)

There are cases where the default payoff is the largest one,

i.e.,
*()ku s is the default payoff.

Let p denote the surplus of an agreement, which is defined as
the difference between the joint value of the contract and the
one obtained when the players do not reach an agreement. We
have

3
* *

1

() ()k

i

i

p u s u s


  (10)

Let i be the proportion of p obtained by Player i. When an

agreement is reached such that each player obtains the final
payoff as:

*() ()final k

i i iu s u s p  (11)

0i 

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2871346, IEEE Internet of

Things Journal

 9

3

1

1i

i






Let t denote the contracted monetary transfer.
*| () () |final k k

i it u s u s  (12)

Thus, a bargaining solution can be computed by the
algorithm briefly summarized in Fig. 5.

By this algorithm, the bargaining game equilibrium solution

s
k is found. For Player i, the payoff is ()final k

iu s . The

contracted monetary transfer between the players is t. In
addition, this algorithm can be extended to find bargaining
game equilibrium solutions for the N-person bargaining game.

Fig.5. Solution procedure

VI. CASE STUDY

To demonstrate the applicability and efficiency of the
proposed approach for MARS, a proof-of-concept prototype
system is built on the JADE platform with the Netbeans 8.0
development environment. The bargaining-game-based
real-time scheduling method is coded in Java and is
encapsulated into the RSA. Experimental simulations are
conducted in the prototype system on Intel Core i5 3.10 GHz
PC with 8GB RAM memory. Simulation results with
comparisons are also given.

A. Case Scenario

The case scenario is about an FMS. For simplicity of
understanding and without loss of generality of principle, basic
manufacturing resources are selected for configuring a practical
proof-of-concept demonstration. As shown in the lower part of
Fig. 6, this demo manufacturing environment consists of the
following main components, namely a raw material area and a
finished product area for storing materials, WIP and finished
products; a manufacturing area with eight machines and tasks
to be processed. Each machine is capable of active sensing,
interaction, and self-decision. In order to acquire real-time data
during the manufacturing execution stage, tags are attached to
some types of manufacturing resources.

The JADE-platform-based MAS is constructed as seen in the
upper part of Fig. 6. An MA can capture the real-time data of
the shop floor by equipping auto-ID devices. Then, the
real-time capability and execution information of the
manufacturing resources can be timely sensed by the RSA and

RMA, respectively. The TA receives tasks from EISs as soon as
production orders are released into the shop floor. It records the
information of tasks and sends to the TPA. The TPA picks out
the available operations of each task and publishes these
available operations into the RSA. Then, the RSA optimally
schedules the start time and finish time of each operation of
each task according to the sensed real-time shop floor
information. The RMA gets the necessary manufacturing
information relevant to the production orders from EISs and
real-time execution information from the MA.

Fig.6. Diagram of the case scenario

To simulate this case scenario, a simple experimental system
is established according to the case scenario as shown in Fig.7.
The experimental system is composed of two Industrial
Personal Computers (IPCs), a number of RFID readers, and a
mass of tags. These readers are connected to the IPCs and each
reader connects six antennas. The antennas are placed in the
corresponding locations for capturing real-time data from
different manufacturing resources. These tags are grouped into
five types, namely equipment, operators, pallets, critical tools,
and WIP items to simulate the real-time events of machines,
automatic guided vehicles (AGVs), industrial robots (IRs),
operators, pallets, tools, materials, WIP items, and finished
products. The real-time status of machines, AGVs, IRs,
operators, pallets, tools, materials, WIP items, and finished
products can be easily captured from their tags or a special
strategy.

Fig.7.Simulation experiment of the case scenario

B. Experimental trials

Based on the above-mentioned prototype system, this section
illustrates the MARS through a simulation example.

JADEMessage Transport System

DF Agent AMS

Real-time
Scheduling AgentMachine Agent

Real-time
Monitor Agent

Task Pool Agent

Task Agent

R
ea

l-
ti

m
e

D
at

a

Real-time Capability
Information

Task[i]

Tasks
Exceptional Evens

Real-time Execution
Information

T
as

ks

M
an

u
fa

ct
u

ri
n

g

In
fo

rm
at

io
n

ERP/MRP/SCM/….

Raw Material

Area

Manufacture Area Finished Product

Area

Shop Floor

Tag

Pallet

Workpiece

RFID Tag

Antenna

Screen of the

proof-of-
concept

prototype
system

Reader

// Algorithm for bargaining game equilibrium solution
Input: A bargaining game procedure.
Start
Step 1. Calculate the maximized value by determining the

value sk that maximizes ;

Step 2. Determine an SPNE according to each player‘s utility using
backward induction. The contents of the SPNE solution are
described in the authors‘ previous paper [25].

Step 3. Player i obtains the payoff

where is player i‘s default payoff.

Step 4: Calculate t to find the transfer that achieves the required split of
the surplus.
END

Outputs: sk and .

javascript:void(0);

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2871346, IEEE Internet of

Things Journal

 10

The scheduling problem is based on Kacem‘s instance [70],
where there are eight machines for processing eight tasks with
totally 27 operations. Compared with Kacem‘s instance, to
optimize the total energy consumption for completing these
tasks, we present the cutting power required for the operations
on different machines. The detailed information about the tasks
is shown in Table II. In Table II, (x/y) in Row Oij and Column
Mk mean the time taken for processing operation ‗j‘ of task ‗i‘
by machine ‗k‘ is ‗x‘ and its cutting power is ‗y‘. For example,
(3/1.8) in row O11 and column M2 means that the time taken for
processing operation ‗1‘ of task ‗1‘ on machine ‗2‘ is ‗3‘, and
its cutting power required is ‗1.8‘. Table III gives the power
required when a machine is idle, which is abstracted from
research work developed by [71]. The time unit is defined as
hours, and the cutting power unit is defined as kWs.

TABLE II
THE INSTANCE OF MARS

TABLE III [71]

IDLE POWER OF MACHINES

Mk M1 M2 M3 M4 M5 M6 M7 M8

Idle
power
[kW]

0.995 1.485 1.91 0.6 0.43 0.56 0.47 0.72

In this case, based on real-time data, the execution procedure
for MARS includes mainly five steps as shown in Fig. 8 and it
is described in detail as follows.

At the beginning, when an operator comes to a machine and
starts it up, the information relevant to this machine is sensed.
The MAs capture the real-time manufacturing data. Then, each
MA automatically sends its real-time available capability
information to the RSA and real-time execution information to
the RMA.

When the tasks are released into the system, processing
details for all operations are captured by the TA and are put into
the TPA. Then, the TPA picks up the first unprocessed
manufacturing operation of each task and put them into the
RSA.

Consequently, the RSA knows the real-time capability
information from MAs and the available operation information
from the TPA. Thus, the available operations interact with
MA[i] continuously and can be assigned to the most suitable

machines in an optimal way using bargaining game as
described in Section V according to their real-time status. Here,

1
3i  .

Fig.8. The procedure of real-time production scheduling based on the

multi-agent technology

These steps are repeated until all the operations are assigned
to certain machines for processing. Table IV shows the
procedure of real-time scheduling at each time t.

TABLE IV
THE PROCEDURE OF REAL-TIME SCHEDULING WITHOUT CONSIDERING THE

EXCEPTIONAL EVENTS

During the production execution stage, the real-time

execution information of the shop floor is captured by the RMA
and sent to the RSA. If exceptions occur, the RSA can be
certainly noticed the change caused by such exceptions
according to the dynamic manufacturing environment. Thus,
the RSA can respond to them timely such that the influence
brought by the exceptions can be greatly reduced or even
eliminated.

To validate the effectiveness in responding to the exceptional
events under the real-time shop floor environment by the
proposed MARS method, we compare it with several
traditional dynamic scheduling methods, including complete
reactive scheduling method. By the complete reactive
scheduling method, operations are assigned to machines
according to a specific assignment rule. Then, once a machine
becomes available and there are operations in its waiting queue,
it chooses the operations with the highest priority to process
based on a heuristic priority dispatching rule.

Tasks Processes M1 M2 M3 M4 M5 M6 M7 M8

J1

O11 5/1.3 3/1.8 5/3.2 3/1.1 3/1.1 - 10/0.8 9/1.1

O12 10/1.3 - 5/3.4 8/3.2 3/0.8 9/0.8 9/0.9 6/1.3

O13 - 10/1.8 - 5/1.4 6/0.7 2/0.9 4/1.2 5/1.3

J2

O21 5/1.6 7/2.1 3/2.6 9/1.5 8/1.2 - 9/1.1 -

O22 - 8/2.4 5/2.4 2/1.6 6/1.4 7/1.2 10/1.3 9/1.4

O23 - 10/2.3 - 5/1.5 6/0.9 4/1.8 1/1.4 7/1.3

O24 10/1.4 8/1.8 9/2.4 6/3.2 5/0.8 7/1.7 - -

J3

O31 10/2.1 - - 7/1.5 6/0.7 5/1.6 2/1.3 4/1.2

O32 - 10/1.9 6/2.6 4/1.6 8/1.2 9/1.7 10/1.4 -

O33 1/1.4 4/2.5 5/4.2 6/1.4 -
10/1.

3
- 7/0.8

J4

O41 3/1.3 1/2.4 6/3.2 5/2.1 9/1.3 7/1.7 8/1.3 4/1.1

O42 12/1.4 11/2.6 7/4.2 8/3.2 10/1.5 5/0.8 6/1.2 9/1.3

O43 4/1.4 6/3.7 2/3.2 10/1.5 3/0.8 9/0.7 5/1.4 7/1.8

J5

O51 3/1.3 6/1.2 7/2.4 8/1.2 9/0.8 - 10/1.3 -

O52 10/1.2 - 7/2.8 4/2.1 9/1.3 8/0.7 6/1.3 -

O53 - 9/3.2 8/3.2 7/1.8 4/1.2 2/1.2 7/1.4 -

O54 11/2.1 8/1.6 - 6/1.7 7/1.5 5/1.3 3/1.3 6/1.3

J6

O61 6/1.4 7/1.7 1/4.2 4/1.6 6/0.8 9/1.4 - 10/1.3

O62 11/1.3 - 9/3.2 9/1.4 9/0.9 7/0.9 6/1.3 1/1.3

O63 10/1.4 5/2.1 9/2.4 10/1.5 11/1.2 - 10/1.2 -

J7

O71 5/1.1 4/2.2 2/3.2 6/1.3 7/1.3 - 10/0.8 -

O72 - 9/2.5 - 9/1.4 11/0.8 9/1.6 10/1.3 5/1.4

O73 - 8/2.4 9/4.2 4/1.2 8/1.2 6/2.1 - 10/1.6

J8

O81 2/1.4 8/3.2 5/2.2 9/1.4 - 4/1.2 - 10/1.8

O82 7/1.3 4/1.7 7/2.9 8/1.4 9/1.1 - 10/1.3 -

O83 9/1.4 9/3.2 - 8/1.2 5/0.8 6/1.3 7/1.4 1/1.3

O84 9/1.7 - 3/4.1 7/1.2 1/0.9 5/1.4 8/0.9 -

J9

O9,1 5/1.3 7/2.4 8/3.2 5/1.1 5/1.1 - 7/1.6 4/1.2

O9,2 4/1.6 7/2.3 14/2 4/1.2 3/1.3 6/1.1 - 10/1.3

O9,3 5/1.2 4/2.2 6/3.2 11/1.3 7/2.1
13/1.

3
5/1.3 5/1.5

J10

O10,1 2/1.6 - 4/3.5 - 7/2.2 5/3.2 4/1.8 6/3.5

O10,2 8/4.3 - 8/2.1 1/3.6 - 5/4.3 8/2.9 7/3.4

O10,3 7/7.1 3/2.2 - 4/1.5 8/4.1 1/1.5 8/2.2 4/0.8

Output

1 2 3 4 50 8 10 119 12 13 1476

M1

M2

M3

M
a
c
h

in
e
s

Time
1615 17 18 19

M4

M5

M6
M7

M8

5

2

4

6

3

8

7

6

3

4

7

52

7

5

5

8

8

3

1

4

2

1

6

1

8

2

Real-time
Capability

Information

Real-time Execution
Information

Exceptional
Evens

Product details of tasks

Available process
information

Real-time manufacturing data

Product details of all processes

Gantt chart

Tasks

Machines

Time Idle machines Optional process(es) Real-time scheduling result(s)

0
{M1,M2,M3,M4,M5,M6,M7,

M8}

{O11, O21, O31, O41, O51,

O61,O71,O81 }

O51→ M1; O71→ M2; O21→ M3; O61→ M4;

O11→ M5; O81→ M6; O31→ M7; O41→ M8

1 None None None

2 {M7} {O32} None

3 {M1,M3,M5,M7} {O12, O22, O32, O52} O22→ M3; O12→ M5; O52→ M7

4 {M1,M2,M4,M6,M8} {O32, O42,O62, O72, O82} O82→ M2; O32→ M4; O42→ M6; O62→ M8

5 {M1, M8} {O63, O72} O72→ M8

6 {M1,M5} {O13, O63} None

7 {M1,M5} {O13, O63} None

8 {M1,M2,M3,M4,M5 } {O13, O23, O33, O63, O83} O33→ M1; O63→ M2; O83→ M5

9 {M1,M3,M4,M6,M7} {O13, O23, O43, O53} O43→ M1; O13→ M4; O53→ M6; O23→ M7

10 { M3,M7,M8} {O24, O73} None

11 { M3, M6,M7,M8} {O24, O54, O73} O54→ M7

12 {M3, M6, M8} {O24,O73} None

13 {M1,M2,M3,M5,M6, M8} {O24,O73,O84} O24→ M5; O84→ M6

14 {M1,M2,M3,M4, M7,M8} {O73} O73→ M4

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2871346, IEEE Internet of

Things Journal

 11

Two popular priority dispatching rules are employed. They
are shortest processing time (SPT) and first-in-first-out (FIFO).
Also, we consider two machine assignment rules for
comparison. The first one finds the available machine with the
minimum processing time for an operation and then that the
operation is assigned to this machine. The second one assigns
an operation to its alternative machine which has the minimum
workload currently. We call them MAR1 and MAR2 in short.

To make comparisons, the simulation results for the three
test cases are summarized in Tables V- VII. For Test Case 1,
two exceptions happen during the production execution stage,
i.e., M1 and M6 are broken down at time t1=4 and t2=6, they are
repaired at time t3=6 and t4=8, respectively. For Test Case 2,
rush Tasks 9 and 10 are added at time t5=2 and t6 =4,
respectively. For Test Case 3, four exceptions occur, i.e., M1

and M6 are broken down at time t7=4 and t8=6, and they are
repaired at time t9=6, t10=8, respectively; furthermore, two rush
Tasks 9 and 10 are added at time t11 =2 and t12 =4, respectively.

TABLE V
TEST CASE 1

Scheduling methods CM [hour] WM [hour] E [kW·h]
MAR1+SPT 24 22 242.02

MAR1+ FIFO 24 22 216.97
MAR2+ SPT 25 23 249.26
MAR2+ FIFO 23 22 226.85

Proposed method 18 16 156.12
TABLE VI

TEST CASE 2
Scheduling methods CM [hour] WM [hour] E [kW·h]

MAR1+SPT 39 34 364.72
MAR1+ FIFO 30 27 387.62
MAR2+ SPT 35 31 410.68
MAR2+ FIFO 32 27 374.49

Proposed method 20 20 191.44
TABLE VII
TEST CASE 3

Scheduling methods CM [hour] WM [hour] E [kW·h]
MAR1+SPT 25 23 299.50

MAR1+ FIFO 27 27 301.26
MAR2+ SPT 32 29 368.92
MAR2+ FIFO 31 31 328.42

Proposed method 25 23 217.92

The simulation results for Case 1 are given in Table V. The
scheduling results obtained by our methods have better
solutions compared to the traditional dynamic scheduling
method. For the solutions obtained by the proposed method, CM
is 18 hours, while it is 23 and 25 hours for the best and worst
ones obtained by the traditional dynamic scheduling method.
The maximum improvement is 28.0% and the minimum
improvement is 21.7%. The minimum and maximum values of
WM obtained by the traditional dynamic scheduling method are
22 hours and 23 hours, respectively. Thus, the proposed method
improves WM by 27.3% and 30.4%, respectively, for its
minimum and maximum values than the traditional one.
Compared with the traditional dynamic scheduling method, the
proposed method reduces E for the maximum value by 249.26
kW·h and the minimum value by 216.97 kW·h, i.e., reduces it
by 37.4% and 28.0%, respectively.

The simulation results from test Case 2 are given in Table VI.
It can be seen that, for CM, it is 20 hours by the proposed
method, while, by the traditional dynamic scheduling method,

it is 30 hours and 39 hours for the best and worst values. Thus,
by the proposed method, it is improved by 33.3% and 48.7%,
respectively. For WM, by the proposed method, it is 20 hours,
which means that, compared with the traditional dynamic
scheduling method, the minimum improvement is 11.1% and
the maximum improvement is 41.2%, respectively. In addition,
for E, by the proposed method, it is 191.44 kW·h, which means
that compared with the traditional dynamic scheduling method,
a 47.6-53.4% improvement in the total energy consumption of
production is achieved.

Test Case 3 can be seen as a variation of test Cases 1 and 2,
where certain machines are broken down and rush orders are
added at the same time. The simulation results are given in
Table VII. It can be observed that the values of CM and WM
obtained by the proposed method are the best values obtained
from the traditional dynamic scheduling method. However,
compared with the worst ones obtained by the traditional
dynamic scheduling method, by the proposed method, it is
improved by 21.9% and 25.8%, respectively. In terms of the
total energy consumption, the proposed method also achieves
better performance than the traditional dynamic scheduling
method.

Thus, it follows from the above simulation results that, by the
advanced IoT technology and optimization method, the critical
performance indices for the MARS problem can be
significantly improved. Also, the proposed method contributes
to the sustainable development of manufacturing industry,
especially in MARS.

VII. CONCLUSIONS

Recently, auto-ID technology has been widely adopted in the
manufacturing shop floor. Such an automatic data collection
approach brings new opportunities for better operations of shop
floor at the one hand. However, it presents new challenges at
the other hand. For example, how to develop a
real-time-data-based real-time scheduling system for
improving the performance of shop floor planning, execution,
and control is a new issue and there is no applicable method. In
this study, to address this issue, an architecture of MARS for a
flexible job shop is presented to provide a new paradigm for
manufacturing enterprises to enhance the efficiency of
real-time scheduling so that the influence of exceptional events
can be reduced. Based on this architecture, a
bargaining-game-based real-time scheduling strategy is
proposed to implement real-time scheduling. Finally, a
prototype system is built and implemented on the JADE
platform. Experimental trials are simulated to demonstrate the
efficiency and effectiveness of the proposed approach.
Compared with the best results obtained by MAR2+FIFO for
Test Case 1, MAR1+FIFO for Test Case 2, and MAR1+SPT for
Test Case 3, the proposed MARS improves makespan by
21.7%, 33.3%, and 0%, critical machine workload by 27.3%,
25.9%, and 0%, and total energy consumption by 31.2%, 50.6%,
and 27.2%, respectively, under the real-time shop floor
environment.

The contributions of this work can be summarized as
follows.

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2871346, IEEE Internet of

Things Journal

 12

 A new MARS architecture is proposed and implemented
on the JADE platform such that an effective real-time
scheduling method in the IoT-based manufacturing
environment is developed.

 A new multi-agent-based real-time allocation strategy to
optimally assign operations to machines is proposed to
implement the real-time scheduling in the IoT-based
manufacturing environment.

 A bargaining-game-based real-time scheduling method is
designed in the RSA to further improve the production
efficiency and reduce the processing cost.

Future research is necessary to focus on the improvement of
methodology for solving the real-time production scheduling
problem with more objectives and practical constraints. In
addition, how to integrate the advantages of multi-agent and
auto-ID technologies to accomplish integrated process planning
and real-time scheduling in a flexible job shop is another issue
for future work.

REFERENCES

[1] D. Lei, Y. Zheng, and X. Guo, ―A shuffled frog-leaping algorithm for
flexible job shop scheduling with the consideration of energy
consumption,‖ Int. J. Prod. Res., vol. 55, no. 11, pp. 3126–3140, 2017.

[2] G. Zhang, Y. Zhang, X. Xu, and R. Y. Zhong, ―An augmented Lagrangian
coordination method for optimal allocation of cloud manufacturing
services,‖ Journal of Manufacturing Systems, pp. 1–12, 2017.

[3] L.-F. Tung, L. Lin, and R. Nagi, ―Multiple-objective scheduling for the
hierarchical control of flexible manufacturing systems,‖ Int. J. Flex.
Manuf. Syst., vol. 11, no. 4, 1999.

[4] H. Z. Jia, J. Y. H. Fuh, A. Y. C. Nee, and Y. F. Zhang, ―Integration of
genetic algorithm and Gantt chart for job shop scheduling in distributed
manufacturing systems,‖ Comput. Ind. Eng., vol. 53, no. 2, pp. 313–320,
2007.

[5] K. L. Choy, Y. K. Leung, H. K. H. Chow, T. C. Poon, C. K. Kwong, G. T.
S. Ho, and S. K. Kwok, ―A hybrid scheduling decision support model for
minimizing job tardiness in a make-to-order based mould manufacturing
environment,‖ Expert Syst. Appl., vol. 38, no. 3, pp. 1931–1941, 2011.

[6] Z. Wu and M. X. Weng, ―Multiagent scheduling method with earliness
and tardiness objectives in flexible job shops,‖ IEEE Trans. Syst. Man,
Cybern. Part B Cybern., vol. 35, no. 2, pp. 293–301, 2005.

[7] N. Q. Wu and M. C. Zhou, ―Schedulability analysis and optimal
scheduling of dual-arm cluster tools with residency time constraint and
activity time variation,‖ IEEE Transactions on Automation Science and
Engineering, vol. 9, no. 1, 203-209, Jan. 2012.

[8] N. Q. Wu and M. C. Zhou, ―Modeling, analysis and control of dual-arm
cluster tools with residency time constraint and activity time variation
based on Petri nets,‖ IEEE Transactions on Automation Science and
Engineering, vol. 9, no. 2, 446-454, Apr. 2012.

[9] N. Q. Wu, F. Chu, C. B. Chu, and M. C. Zhou, ―Petri net modeling and
cycle time analysis of dual-arm cluster tools with wafer revisiting,‖ IEEE

Transactions on Systems, Man, & Cybernetics: Systems, vol. 43, no. 1,
196-207, Jan. 2013.

[10] N. Q. Wu, M. C. Zhou, L. P. Bai, and Z. W. Li, ―Short-term scheduling of
crude oil operations in refinery with high fusion point oil and two
transportation pipelines,‖ Enterprise Information Systems, vol. 10, no. 6,
581-610, May 2016.

[11] L. P. Bai, N. Q. Wu, Z. W. Li, and M. C. Zhou, ―Optimal one-wafer cyclic
scheduling and buffer space configuration for single-arm multicluster
tools with linear topology,‖ IEEE Transactions on Systems, Man, &
Cybernetics: Systems, vol. 46, no. 10, 1456-1467, Oct. 2016.

[12] F. J. Yang, N. Q. Wu, Y. Qao, M. C. Zhou, and Z. W. Li, ―Scheduling of
single-arm cluster tools for an atomic layer deposition process with
residency time constraints,‖ IEEE Transactions on Systems, Man, &
Cybernetics: Systems, vol. 47, no. 3, 502-516, Mar. 2017.

[13] Y. Hou, N. Q. Wu, M. C. Zhou, and Z. W. Li, ―Pareto-optimization for
scheduling of crude oil operations in refinery via genetic algorithm,‖

IEEE Transactions on Systems, Man, & Cybernetics: Systems, vol. 47, no.
3, 517-530, Mar. 2017.

[14] S. W. Zhang, N. Q. Wu, Z. W. Li, T. Qu, and C. D. Li, ―Petri net-based
approach to short-term scheduling of crude oil operations with less tank
requirement,‖ Information Sciences, vol. 417, 247-261, Nov. 2017.

[15] N. Q. Wu, Z. W. Li, and T. Qu, ―Energy efficiency optimization in
scheduling crude oil operations of refinery based on linear programming,‖
Journal of Cleaner Production, vol. 166, 49-57, Nov. 2017.

[16] Q. H. Zhu, M. C. Zhou, Y. Qiao, and N. Q. Wu, ―Petri net modeling and
scheduling of a close-down process for time-constrained single-arm
cluster tools,‖ IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 48, no. 3, 389-400, Mar. 2018.

[17] Y. Qiao, N. Q. Wu, F. J. Yang, M. C. Zhou, and Q. H. Zhu, ―Wafer
sojourn time fluctuation analysis of time-constrained dual-arm cluster
tools with wafer revisiting and activity time variation,‖ IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 48, no. 4,
622-636, Apr. 2018.

[18] L. Shen, S. Dauzère-Pérès, and J. S. Neufeld, ―Solving the flexible job
shop scheduling problem with sequence-dependent setup times,‖ Eur. J.
Oper. Res., vol. 265, no. 2, pp. 503–516, 2018.

[19] M. Gen, W. Zhang, L. Lin, and Y. S. Yun, ―Recent advances in hybrid
evolutionary algorithms for multiobjective manufacturing scheduling,‖
Comput. Ind. Eng., vol. 112, pp. 616–633, 2017.

[20] M. Merdan, T. Moser, W. Sunindyo, S. Biffl, and P. Vrba, ―Workflow
scheduling using multi-agent systems in a dynamically changing
environment,‖ J. Simul., vol. 7, no. 3, pp. 144–158, 2013.

[21] S. Zhang and T. N. Wong, ―Flexible job-shop scheduling/rescheduling in
dynamic environment: a hybrid MAS/ACO approach,‖ Int. J. Prod. Res.,
vol. 55, no. 11, pp. 3173–3196, 2017.

[22] R. Erol, C. Sahin, A. Baykasoglu, and V. Kaplanoglu, ―A multi-agent
based approach to dynamic scheduling of machines and automated guided
vehicles in manufacturing systems,‖ Appl. Soft Comput. J., vol. 12, no. 6,
pp. 1720–1732, 2012.

[23] J. Yuan, ―Multi-agent scheduling on a single machine with a fixed
number of competing agents to minimize the weighted sum of number of
tardy jobs and makespans,‖ J. Comb. Optim., vol. 34, no. 2, pp. 433–440,
2017.

[24] C. Sahin, M. Demirtas, R. Erol, A. Baykasoğlu, and V. Kaplanoğlu, ―A
multi-agent based approach to dynamic scheduling with flexible
processing capabilities,‖ J. Intell. Manuf., 2015.

[25] Y. Zhang, J. Wang, and Y. Liu, ―Game theory based real-time
multi-objective flexible job shop scheduling considering environmental
impact,‖ J. Clean. Prod., vol. 167, pp. 665–679, 2017.

[26] Y. Zhang, S. Ma, H. Yang, J. Lv, and Y. Liu, ―A big data driven analytical
framework for energy-intensive manufacturing industries,‖ J. Clean.
Prod., vol. 197, pp. 57–72, 2018.

[27] Y. Zhang, Z. Guo, J. Lv, and Y. Liu, ―A Framework for Smart
Production-Logistics Systems based on CPS and Industrial IoT,‖ IEEE
Transactions on Industrial Informatics, 2018.

[28] Y. Zhang, G. Zhang, J. Wang, S. Sun, S. Si, and T. Yang, ―Real-time
information capturing and integration framework of the internet of
manufacturing things,‖ Int. J. Comput. Integr. Manuf., vol. 3052, no.
December, pp. 1–12, Aug. 2014.

[29] S. Liu, G. Zhang, and L. Wang, ―IoT-enabled Dynamic Optimisation for
Sustainable Reverse Logistics,‖ Procedia CIRP, vol. 69, no. April, pp.
662–667, 2018.

[30] Y. Zhang, S. Liu, Y. Liu, H. Yang, M. Li, D. Huisingh, and L. Wang,
―The ‗Internet of Things‘ enabled real-time scheduling for
remanufacturing of automobile engines,‖ J. Clean. Prod., vol. 185, pp.
562–575, 2018.

[31] Y. Zhang, S. Ren, Y. Liu, T. Sakao, and D. Huisingh, ―A framework for
Big Data driven product lifecycle management,‖ J. Clean. Prod., vol. 159,
pp. 229–240, 2017.

[32] X. Z. Ren Shan, ―A framework for shopfloor material delivery based on
real-time manufacturing big data,‖ J. Ambient Intell. Humaniz. Comput.,
2018.

[33] Y. Zhang, G. Zhang, W. Du, J. Wang, E. Ali, and S. Sun, ―An
optimization method for shopfloor material handling based on real-time
and multi-source manufacturing data,‖ Int. J. Prod. Econ., vol. 165, pp.
282–292, 2015.

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2871346, IEEE Internet of

Things Journal

 13

[34] Y. Zhang, J. Wang, S. Liu, and C. Qian, ―Game Theory Based Real-Time
Shop Floor Scheduling Strategy and Method for Cloud Manufacturing,‖
Int. J. Intell. Syst., vol. 32, no. 4, pp. 437–463, 2017.

[35] F. Zhao, J. Wang, J. Wang, and J. Jonrinaldi, ―A dynamic rescheduling
model with multi-agent system and its solution method,‖ Stroj.
Vestnik/Journal Mech. Eng., vol. 58, no. 2, pp. 81–92, 2012.

[36] X. Chen, H. Wen Lin, and T. Murata, ―Composite dispatching rule design
for dynamic scheduling with customer-oriented production priority
control,‖ IEEJ Trans. Electr. Electron. Eng., vol. 7, no. 1, pp. 53–61,
2012.

[37] T. Ning, M. Huang, X. Liang, and H. Jin, ―A novel dynamic scheduling
strategy for solving flexible job-shop problems,‖ J. Ambient Intell.
Humaniz. Comput., vol. 7, no. 5, pp. 721–729, 2016.

[38] X.-N. Shen and X. Yao, ―Mathematical modeling and multi-objective
evolutionary algorithms applied to dynamic flexible job shop scheduling
problems,‖ Inf. Sci. (Ny)., vol. 298, no. 219, pp. 198–224, Mar. 2015.

[39] R. Rangsaritratsamee, W. G. Ferrell, and M. B. Kurz, ―Dynamic
rescheduling that simultaneously considers efficiency and stability,‖
Comput. Ind. Eng., vol. 46, no. 1, pp. 1–15, 2004.

[40] N. Kumar, M. K. Tiwari, and F. T. S. Chan, Development of a hybrid

negotiation scheme for multi-agent manufacturing systems, vol. 46, no. 3.
2008.

[41] H. Tehrani Nik Nejad, N. Sugimura, K. Iwamura, and Y. Tanimizu,
―Multi agent architecture for dynamic incremental process planning in the
flexible manufacturing system,‖ J. Intell. Manuf., vol. 21, no. 4, pp. 487–
499, 2010.

[42] P. I. Cowling, D. Ouelhadj, and S. Petrovic, ―Dynamic scheduling of steel
casting and milling using multi-agents,‖ Prod. Plan. Control, vol. 15, no.
2, pp. 178–188, 2004.

[43] M. J.-P. Shaw, ―Distributed Planning in Cellular Flexible Manufacturing
Systems,‖ INFOR, vol. 25, no. 1, pp. 13–25, 1987.

[44] H. V. D. Parunak, ―Manufacturing experience with the contract net,‖ in
Distributed artificial intelligence, 1987, pp. 285–310.

[45] F.-S. Hsieh, ―A hybrid and scalable multi-agent approach for patient
scheduling based on Petri net models,‖ Appl. Intell., vol. 47, no. 4, pp.
1068–1086, 2017.

[46] P. Perez-Gonzalez and J. M. Framinan, ―A common framework and
taxonomy for multicriteria scheduling problems with interfering and
competing jobs: Multi-agent scheduling problems,‖ European Journal of
Operational Research, vol. 235, no. 1. pp. 1–16, 2014.

[47] M. M. Savino, A. Mazza, and G. Neubert, ―Agent-based flow-shop
modelling in dynamic environment,‖ Prod. Plan. Control, vol. 25, no. 2,
pp. 110–122, 2014.

[48] M. M. Savino, A. Brun, and A. Mazza, ―Dynamic workforce allocation in
a constrained flow shop with multi-agent system,‖ Comput. Ind., vol. 65,
no. 6, pp. 967–975, 2014.

[49] A. V. Barenji, R. V. Barenji, D. Roudi, and M. Hashemipour, ―A dynamic
multi-agent-based scheduling approach for SMEs,‖ Int. J. Adv. Manuf.
Technol., vol. 89, no. 9–12, pp. 3123–3137, 2017.

[50] A. Kouider and B. Bouzouia, ―Multi-agent job shop scheduling system
based on co-operative approach of idle time minimisation,‖ Int. J. Prod.
Res., vol. 50, no. 2, pp. 409–424, 2012.

[51] X. Yu and B. Ram, ―Bio-inspired scheduling for dynamic job shops with
flexible routing and sequence-dependent setups,‖ Int. J. Prod. Res., vol.
44, no. 22, pp. 4793–4813, 2006.

[52] H. T. N. Nejad, N. Sugimura, and K. Iwamura, ―Agent-based dynamic
integrated process planning and scheduling in flexible manufacturing
systems,‖ Int. J. Prod. Res., vol. 49, no. 5, pp. 1373–1389, 2011.

[53] N. Mishra, A. Singh, S. Kumari, K. Govindan, and S. I. Ali, ―Cloud-based
multi-agent architecture for effective planning and scheduling of
distributed manufacturing,‖ Int. J. Prod. Res., vol. 54, no. 23, pp. 7115–
7128, 2016.

[54] K. Y. Chen and C. J. Chen, ―Applying multi-agent technique in
multi-section flexible manufacturing system,‖ in Expert Systems with
Applications, 2010, vol. 37, no. 11, pp. 7310–7318.

[55] R. Erol, C. Sahin, A. Baykasoglu, and V. Kaplanoglu, ―A multi-agent
based approach to dynamic scheduling of machines and automated guided
vehicles in manufacturing systems,‖ Appl. Soft Comput. J., vol. 12, no. 6,
pp. 1720–1732, 2012.

[56] Y. Zhang, Z. Zhu, and J. Lv, ―CPS-Based smart control model for
shopfloor material handling,‖ IEEE Trans. Ind. Informatics, vol. 3203, pp.
1–1, 2017.

[57] S. jin Wang, L. feng Xi, and B. hai Zhou, ―FBS-enhanced agent-based
dynamic scheduling in FMS,‖ Eng. Appl. Artif. Intell., vol. 21, no. 4, pp.
644–657, 2008.

[58] E. Rowland, Theory of Games and Economic Behavior, vol. 157, no.
3981. 1946.

[59] X. Sun, Y. Liu, J. Li, J. Zhu, H. Chen, and X. Liu, ―Feature evaluation and
selection with cooperative game theory,‖ Pattern Recognition, vol. 45, no.
8. pp. 2992–3002, 2012.

[60] P. Argoneto and P. Renna, ―Supporting capacity sharing in the cloud
manufacturing environment based on game theory and fuzzy logic,‖
Enterp. Inf. Syst., vol. 10, no. 2, pp. 193–210, 2016.

[61] Y. Liu, L. Zhang, F. Tao, and L. Wang, ―Resource service sharing in
cloud manufacturing based on the Gale–Shapley algorithm: advantages
and challenge,‖ Int. J. Comput. Integr. Manuf., vol. 30, no. 4–5, pp. 420–
432, 2017.

[62] G. Zhou, Z. Xiao, P. Jiang, and G. Q. Huang, ―A game-theoretic approach
to generating optimal process plans of multiple jobs in networked
manufacturing,‖ Int. J. Comput. Integr. Manuf., vol. 23, no. 12, pp. 1118–
1132, 2010.

[63] P. Calleja, A. Est??vez-Fern??ndez, P. Borm, and H. Hamers, ―Job
scheduling, cooperation, and control,‖ Oper. Res. Lett., vol. 34, no. 1, pp.
22–28, 2006.

[64] Z. Han, Y. Zhu, X. Ma, and Z. Chen, ―Multiple rules with game theoretic
analysis for flexible flow shop scheduling problem with component
altering times,‖ Int. J. Model. Identif. Control, vol. 26, no. 1, p. 1, 2016.

[65] G. Zhou, P. Jiang, and G. Q. Huang, ―A game-theory approach for job
scheduling in networked manufacturing,‖ Int. J. Adv. Manuf. Technol.,
vol. 41, no. 9–10, pp. 972–985, 2009.

[66] D. Diepl and J. Reaidy, ―Scheduling agents in a distributed flexible
manufacturing system,‖ in IEEE International Symposium on Industrial
Electronics, 2004, vol. 1, pp. 739–744.

[67] J. Reaidy, P. Massotte, and D. Diep, ―Comparison of negotiation
protocols in dynamic agent-based manufacturing systems,‖ in
International Journal of Production Economics, 2006, vol. 99, no. 1–2,
pp. 117–130.

[68] A. Agnetis, G. Nicosia, A. Pacifici, and U. Pferschy, ―Scheduling two
agent task chains with a central selection mechanism,‖ J. Sched., vol. 18,
no. 3, pp. 243–261, 2015.

[69] J. Watson, Strategy. 2013.

[70] I. Kacem, S. Hammadi, and P. Borne, ―Pareto-optimality approach for
flexible job-shop scheduling problems: Hybridization of evolutionary
algorithms and fuzzy logic,‖ Math. Comput. Simul., vol. 60, no. 3–5, pp.
245–276, Sep. 2002.

[71] Y. He, Y. Li, T. Wu, and J. W. Sutherland, ―An energy-responsive
optimization method for machine tool selection and operation sequence in
flexible machining job shops,‖ J. Clean. Prod., vol. 87, no. C, pp. 245–
254, 2015.

Jin Wang received the B.S. and M.S. degrees in
Mechanical Engineering both from Xi‘an University of
Science and Technology, Xi‘an, China, in 2007 and 2010
respectively.

He is currently working toward the Ph.D. degree in
Mechanical Engineering, Northwestern Polytechnical
University, Xi‘an, China. His research interest is real-time
data-based production management.

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2871346, IEEE Internet of

Things Journal

 14

Yingfeng Zhang (M‘17) received the B.S., M.S., and

Ph.D. degrees in mechanical engineering from Xi'an

Jiaotong University, Xi'an, China, in 1999, 2002, and

2005, respectively. He is currently a Professor with the

Department of Industrial Engineering, Northwestern

Polytechnical University, Xi'an, China. His research

interests include framework and core models of future

intelligent industrial system. He has published over 50

papers in various international journals. He has organized three special issues

of International Journal of Cleaner Production, Journal of Intelligent

Manufacturing, and International Journal of Computer Integrated

Manufacturing. His publications are cited 2000+ by Google scholar.

Yang Liu received his M.Sc. (Tech.) in
Telecommunications Engineering and D.Sc. (Tech.) in
Industrial Management from the University of Vaasa,
Finland, in 2005 and 2010, respectively. He currently
works as a tenured Associate Professor and Doctoral
Supervisor in the Department of Management and
Engineering at Linköping University (Sweden), a
part-time faculty in the Department of Production at
University of Vaasa (Finland), and a Chair Professor at
Jinan University (China). He is appointed

Adjunct/Visiting Professor in multiple other universities. His main research
interests include smart manufacturing, product service innovation, decision
support system, sustainable competitive advantage; control systems,
autonomous robots, signal processing and pattern recognition.

 NaiQi Wu (M‘04–SM‘05) received his B. S. Degree

in Electrical Engineering from Anhui University of

Technology, Huainan, China, in 1982, the M. S. and

Ph. D. Degrees in Systems Engineering both from

Xi‘an Jiaotong University, Xi‘an, China in 1985 and
1988, respectively. From1988 to 1995, he was with

Shenyang Institute of Automation, Chinese Academy

of Sciences, Shenyang, China, and from 1995 to 1998,

with Shantou University, Shantou, China. He moved

to Guangdong University of Technology, Guangzhou,

China in 1998. He joined Macau University of Science and Technology, Taipa,

Macau in 2013. He is currently a Professor at the Institute of Systems

Engineering, Macau University of Science and Technology, Taipa, Macau. His

research interests include production planning and scheduling, manufacturing

system modeling and control, discrete event systems, Petri net theory and

applications, intelligent transportation systems, and energy systems. He is the

author or coauthor of one book, five book chapters, and 140+ peer-reviewed

journal articles. Dr. Wu was an associate editor of the IEEE Transactions on

Systems, Man, & Cybernetics, Part C, IEEE Transactions on Automation

Science and Engineering, IEEE Transactions on Systems, Man, & Cybernetics:

Systems, and editor in chief of Industrial Engineering Journal, and is an

associate editor of Information Sciences and IEEE/CAA Journal of Automatica

Sinica.

	Försättsblad.pdf
	08468024.pdf

