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
 

Abstract—With the rapid advancement and widespread 

applications of information technology in the manufacturing shop 

floor, a huge amount of real-time data is generated, providing a 

good opportunity to effectively respond to unpredictable 

exceptions so that the productivity can be improved. Thus, how to 

schedule the manufacturing shop floor for achieving such a goal is 

very challenging. This work addresses this issue and a new 

multi-agent-based real-time scheduling (MARS) architecture is 

proposed for an Internet of Things (IoT)-enabled flexible job shop. 

Differing from traditional dynamic scheduling strategies, the 

proposed strategy optimally assigns tasks to machines according 

to their real-time status. A bargaining-game-based negotiation 

mechanism is developed to coordinate the agents so that the 

problem can be efficiently solved. To demonstrate the feasibility 

and effectiveness of the proposed architecture and scheduling 

method, a proof-of-concept prototype system is implemented with 

Java agent development framework (JADE) platform. A case 

study is used to test the performance and effectiveness of the 

proposed method. Through simulation and comparison, it is 

shown that the proposed method outperforms the traditional 

dynamic scheduling strategies in terms of makespan, critical 

machine workload, and total energy consumption. 

 
Index Terms—Multi-agent, Internet of Things, Flexible job shop, 

Real-time scheduling 
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I. INTRODUCTION 

N today‘s highly competitive marketplace, manufacturing 
enterprises have to face enormous challenges such as the 

increased diversity in customer demands, globalized market, 
and environmental pressures [1][2]. With these challenges, to 
be competitive, a manufacturing system should have good 
flexibility, quick response, and fault-tolerant capability. 
Production scheduling plays an important role for a 
manufacturing system to improve productivity and 
responsiveness. A well-operated manufacturing system can 
increase capacity utilization and reduce lead time so as to 
increase profit gain [3][4]. Thus, in recent years, production 
scheduling has attracted great attention [5]-[17], especially for 
flexible job shop scheduling problems [18]. 

With a severely competitive market environment, traditional 
scheduling strategies with all tasks and manufacturing 
resources being controlled by a distribution system are no 
longer effective for an open, flexible, demand-driven, and 
reconfigurable manufacturing system [19]. The traditional 
scheduling strategies are intrinsically inflexible and not able to 
respond effectively to exceptional events (e.g., machine 
breakdowns and rush orders) and cannot adapt to unforeseen 
dynamic situations. 

With the recent advancement of information technology, 
artificial intelligence (AI) has been developed prosperously. As 
an AI tool, multi-agent technology has been regarded as one of 
the most promising approaches for solving production 
scheduling problems and attracts great researchers‘ attention 
[20]. Unlike a traditional scheduling strategy driven by a 
centralized scheduler, a multi-agent-based scheduling system 
supports distributed scheduling, which is realized by 
autonomous agents. These agents collaborate and cooperate 
dynamically to optimize both local and global objectives [21]. 
Recently, investigations have been made by a number of 
scholars on multi-agent-based dynamic scheduling [22][23]. 
However, most of these researches mainly focus on the 
architectures of multi-agent systems (MAS) and negotiation 
protocols among the agents, as well as the application of 
distributed features of MAS for task allocation in a traditional 
manufacturing shop floor [24]. Few of them consider the 
real-time-data-based interaction between machines and other 
distributed resources in an IoT-enabled flexible job shop. As a 
result, often the performance of efficiency is degraded and 
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more energy is consumed by the production processes mainly 
due to the unpredictable exceptions [25]. 

Recently, the rapid progress of information technology (e.g. 
radio frequency identification-RFID) provides shop floor with 
rich real-time data for better operational management [26][27]. 
With these technologies being adopted, real-time-data-based 
traceability, visibility, and interoperability can be realized to 
improve the performance of shop floor planning, monitoring, 
and control. At present, by extending the IoT technologies such 
as RFID to manufacturing environment [28]-[30], real-time 
data have become more accessible and ubiquitous, contributing 
to a big data environment [31][32]. Thus, in a real-world 
manufacturing environment, the real-time data streams coming 
from IoT make it possible for one to discard the existing 
scheduling approaches and adopt the multi-agent-based 
dynamic scheduling techniques. More recently, great attention 
has been paid to the real-time-data-based optimization issue for 
shop floor in both academia and industry. For example, Zhang 
et al. [33] put forward a dynamic optimization method for shop 
floor material handling (DOM-SMH) based on real-time and 
multi-source manufacturing data. Zhang et al. [34] also 
proposed a dynamic optimization model for flexible job shop 
scheduling (DOM-FJSS) based on real-time data for cloud 
manufacturing (CMfg). 

Although significant advancements have been achieved in 
using the real-time data for performance improvement, there 
are unsolved issues for how to apply real-time data-driven 
decision to MARS problem in a manufacturing big data 
environment due to the increasing process complexity, 
unpredictable exceptions, etc. These issues are summarized as 
follows. 

(1) How to design a new and effective MARS architecture 
based on real-time data to implement real-time scheduling for 
an IoT-enabled flexible job shop. Recently, in many studies, 
multi-agent technology is adopted to deal with the dynamic 
scheduling problem 35]. However, how to integrate the 
real-time manufacturing information between the 
multi-agent-based dynamic scheduling system and the 
manufacturing execution system is still an open issue. This 
implies that, during the manufacturing execution stage, the 
real-time manufacturing information cannot be well captured 
such that manufacturing tasks are assigned to machines without 
considering their real-time status and processing capability. 
Thus, designing a new MARS architecture based on real-time 
data for the real-time-data-based scheduling system is critical 
and necessary for applications. Moreover, in designing an 
MARS architecture, it is better to use JADE as a platform, 
because of its advantages such as simplicity, code compactness, 
and graphical user interface. 

 (2) How to design a new multi-agent-based real-time task 
allocation strategy to implement real-time scheduling based on 
real-time data in an IoT-based manufacturing environment. In 
the existing multi-agent-based dynamic scheduling methods, a 
dynamic scheduling approach focuses on dynamic dispatching 
rules [36] and event-driven rescheduling policies [37]. Between 
them, event-driven rescheduling policies are used by most of 
the methods. By such methods, an action is triggered to respond 

to an exceptional event that changes the current system status. 
Then, the current schedule is revised to adapt to the new status 
caused by the exceptional events. By doing so, it may result in a 
new schedule that is totally different from the original one [38]. 
Thus, some operations that have not started yet under the 
previous schedule at the time of rescheduling may change their 
starting time sharply, which strongly affects the execution of 
other operations that are scheduled based on the original 
schedule and brings instability and undermines the process 
continuity [39]. Therefore, a new multi-agent-based real-time 
task allocation strategy should avoid or reduce the influence of 
the unpredictable exceptions based on the real-time data in an 
IoT-enabled flexible job shop. 

 (3) How to design a new negotiation mechanism for the 
MARS in an IoT-enabled flexible job shop. In general, there are 
many negotiation modes available. The most commonly used 
negotiation mechanisms are the contract net protocol (CNP) 
[40] and its modified versions [41]. However, both of these two 
protocols are communication intensive. A heavy 
communication load hinders the agents to respond to 
unpredictable exceptions in a dynamic scheduling system and 
makes agents spend more time for processing messages than 
focusing on decision making. This is especially true for a 
manufacturing shop floor in the internet of manufacturing 
things (IoMT) environment with the vast amount of data 
concurrency and exchange. Game theory-based negotiation 
mechanism can provide a useful framework for analyzing MAS. 
In both the bargaining game and the MAS, agents are 
considered to exhibit rational decision making, have 
asymmetric information, and work together to improve or 
maximize their utilities. Therefore, a bargaining-game-based 
negotiation mechanism is necessary to reduce the 
communication burden among the agents and improve the 
problem-solving efficiency. 

To address the above-mentioned challenges, by taking the 
advantages of IoT and considering the requirements of 
real-time data-driven optimal decision making of a real-time 
scheduling system, a new MARS architecture is presented in 
this study to provide a new paradigm by extending the IoT to 
manufacturing field. Under this architecture, sensors can be 
embedded in the manufacturing resources such as operators, 
machines, pallets, materials, etc. Then, they can interact with 
each other during the execution stage. The exchanged 
information and their status can thus be tracked. Based on the 
real-time information from the resources, a multi-agent-based 
real-time task allocation strategy is proposed to timely 
eliminate the influences caused by exceptional events in the 
shop floor. The proposed method for the scheduling problem is 
computationally efficient, since by this method only one 
operation is selected for assigning to one machine at a time. In 
addition, compared with the traditional negotiation mechanism, 
the bargaining-game-based negotiation mechanism developed 
in this work can improve the interaction ability between agents 
and enhance the communication efficiency. 

The rest of the study is organized as follows. Section II 
reviews the related literature. After the architecture of MARS is 
developed in Section III, Section IV presents each agent model. 
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The bargaining-game-based solution is given in Section V. In 
Section VI, a case study is used to verify the feasibility and 
applicability of the designed architecture of MARS, and an 
instance is tested to prove the effectiveness of the proposed 
method. Finally, conclusions and recommendations are 
summarized in Section VII. 

II. LITERATURE REVIEW 

As above mentioned, in this section, we briefly review the 
studies that are relevant to game-theory-based MARS problem 
in an IoT-enabled flexible job shop. They are classified into two 
categories: multi-agent-based scheduling and game theory for 
scheduling.  

A. Multi-agent-based scheduling 

Multi-agent technology has been reported to be very 
successful in a wide range of scheduling applications [42]. 
Shaw [43] pioneered the use of agents for flexible 
manufacturing system scheduling and factory control. Parunak 
[44] was another earliest one who developed a 
multi-agent-based manufacturing control system, which 
assigns an agent to each node in a control hierarchy. In recent 
years, MAS has been widely adopted in manufacturing 
applications because of its flexibility, reconfigurability, and 
scalability [45]. Multi-agent technology has also been 
considered to be one of the most promising approaches to the 
scheduling problem of complex and flexible manufacturing 
systems due to its distributed, autonomous, and dynamic 
nature. 

Nowadays, more and more researchers and practitioners 
attempt to solve dynamic scheduling problems using the 
multi-agent technology. A recent survey on multi-agent-based 
scheduling was presented by Perez-Gonzalez and Framinan 
[46]. Savino et al. [47] studied the multiple-objective flow shop 
modeling and dynamic scheduling problem by using MAS in a 
production context that is characterized by diversified and 
high-volume production mix. Zhang and Wong [21] studied the 
flexible job shop scheduling/rescheduling problem under a 
dynamic environment with different types of disruptions. They 
developed a hybrid MAS negotiation mechanism and proposed 
an ant colony optimization approach. By these studies, many 
novel ideas are proposed for the applications of the multi-agent 
technology in dynamic scheduling. It is demonstrated that the 
agent technology is effective for solving complicated 
scheduling problems. Moreover, MAS has been successfully 
applied to dynamic flow shop scheduling [48][49], dynamic job 
shop scheduling [50][51], integrated planning and scheduling 
[52][53], dynamic flexible manufacturing systems [54], and 
automated guided vehicle (AGV) systems [55][56]. These 
studies show that multi-agent technology has been widely 
applied to resolve dynamic scheduling problems for traditional 
manufacturing shop floor. 

 With the development of science and technology, advanced 
technologies and management methods can be used to optimize 
the production processes and make a manufacturing shop floor 
intelligent. In recent years, RFID has been widely applied for 
supporting production and scheduling in manufacturing shop 

floor, where manufacturing resources with RFID facilities 
being attached are converted into smart manufacturing objects 
that are able to sense, interact, so that an IoMT environment is 
realized. With the vast amount of data that are produced and 
exchanged concurrently, the states of a manufacturing shop 
floor under the IoMT environment change dynamically in a 
real-time way [28]. The above-mentioned techniques in the 
existing studies for the traditional manufacturing shop floor are 
not able to adapt to such an IoMT environment. Thus, 
multi-agent-based dynamic scheduling should fully consider 
the real-time information exchange among the agents under the 
IoMT environment.  

In addition, to the best of the authors‘ knowledge, research 
reports on multi-agent-based dynamic scheduling by using 
JADE are quite limited and many studies focus on the 
interaction of agents only and do not consider the 
implementation issues. By a rigorous literature search, it is 
found that only a handful of studies fall into this topic. Among 
them, the work done by Wang et al. [57] seems to be the most 
relevant one. They proposed a multi-agent-based approach with 
a filtered-beam-search-based heuristic algorithm being 
integrated to solve the dynamic scheduling problem in a 
flexible manufacturing system (FMS) shop floor based on 
JADE platform. Then, Chen and Chen [54] used multi-agent 
technology to construct a multi-section flexible manufacturing 
system model. Then, with dispatching rules being combined, 
the manufacturing environment is simulated based on the 
JADE framework. However, none of these studies considers 
the real-time manufacturing information of the shop floor.  

B. Game theory for scheduling 

The early game theory studies appeared in the economics 
literature introduced in the book ―the theory of games and 
economic behavior‖ by Rowland [58]. Then, Nash extended the 
results and proposed the concept of Nash equilibrium (NE). In 
the few decades followed, many studies have been done, and 
most of them focus on the subject of medicine, economics, 
communication, and cloud manufacturing [59]-[61]. Currently, 
game theory is becoming more and more popular and has been 
gradually introduced to deal with production scheduling 
problems [62]. Game theory can be classified into cooperative 
and non-cooperative games. By using the cooperative game, 
Calleja et al. [63] studied the single machine job scheduling 
problem, where clients could have more than one job to be 
processed and a job could be of interest for different players 
using cooperative games. Han et al. [64] studied the flexible 
flow shop scheduling problem with component altering times 
(FFSP-CAT), which is a specific form of a flexible flow shop 
scheduling problem with sequence dependent setup time in a 
practical scenario. They constructed a repeated cooperative 
model and provided a theoretical analysis of a game. By using 
the non-cooperative game, Zhou et al. [65] constructed a 
game-theory-based mathematical model to schedule jobs in 
networked manufacturing environments, a new scheduling 
problem. Zhang et al. [34] put forward a dynamic optimization 
model for flexible job shop scheduling based on game theory 
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and a new real-time scheduling strategy and method are 
proposed. 

It can be seen from the above literature that there are many 
studies on scheduling problems from the viewpoint of game 
theory. However, only few of them use multi-agent technology. 
Diepl and Reaidy [66] investigated the means of co-ordination 
in a production system based on a hierarchical MAS using 
game theory. Reaidy et al. [67] proposed a negotiation 
methodology based on a MAS for heterarchical and complex 
manufacturing control systems. Agnetis et al. [68] addressed a 
deterministic scheduling problem, where two agents compete 
for the usage of a single machine. A significant shortcoming of 
these studies is that they describe only the coordination 
problem among the multiple agents from the viewpoint of 
software construction without quantitatively analyzing the 
interaction among the agents. Moreover at present, the existing 
work seldom focuses on the FJSS problem, especially in the 
real-time FJSS problem using bargaining game. Therefore, 
from the MARS point of view in a flexible job shop, the 
existing research is still at an infant stage and considerable 
progress has yet to come. 

To address the above challenges, this study proposes a new 
MARS architecture to implement real-time data-driven 
optimization approach in an IoT-enabled flexible job shop 
based on the JADE framework using bargaining game. This 
study differs from the existing work in the literature in two 
folds: (1) a multi-agent-based real-time scheduling approach 
based on JADE platform is proposed, which takes the 
advantage of the real-time manufacturing information for an 
IoT-enabled flexible job shop; and (2) a 
bargaining-game-based coordination mechanism for MARS is 
developed by analyzing the interaction among the agents in a 
flexible job shop. The implementation of the proposed 
approach is expected to increase productivity, as well as 
flexibility and responsiveness for an IoT-enabled flexible job 
shop. 

In addition, the authors‘ previous study has been conducted 
on the subject of game theory-based flexible job shop 
scheduling [25]. This study is different from the authors‘ 
previous one as follows. 

(1) The authors‘ previous work used the dynamic game 
theory to deal with the conflict and competition among the 
multiple objectives in a multi-objective flexible job shop 
scheduling problem. In that study, a non-cooperative game is 
played only once and there is no binding contract, the payoff of 
each player in the Nash equilibrium solution may have less 
benefit than the other non-Nash equilibrium solution, resulting 
in non-collective rationality. With this observation, this study 
develops a bargaining-game-based coordination mechanism for 
the real-time scheduling in the flexible job shop to overcome 
the shortcoming of the previous work. 

(2) Our previous work focused on multi-objective 
optimization method and was not for shop scheduling 
optimization from the viewpoint of a distributed system, while 
this study proposes a multi-agent-based real-time scheduling 
approach based on the JADE platform with the real-time 

manufacturing information being taken into consideration for 
an IoT-enabled flexible job shop. 

III. OVERVIEW OF MARS BASED ON REAL-TIME DATA 

This study mainly discusses the multi-agent-based real-time 
FJSS problem in a discrete manufacturing environment. The 
objective of the proposed MARS is to implement the interactive 
perception of distributed manufacturing resources by extending 
automatic identification (auto-ID) technologies and using 
multi-agent technology to process real-time scheduling and 
thus achieve real-time optimization of manufacturing tasks 
based on the real-time status of the machines. 

A. The MARS strategy 

In this study, a new MARS strategy is proposed. For better 
understanding, traditional scheduling strategies and the MARS 
strategy based on real-time data are described as follows, 
respectively. 

By a traditional scheduling strategy, all the tasks are 
centrally assigned to the corresponding machines by a 
distribution system. The decision model is centralized, and 
machines do not interact with other distribution resources. As a 
result, the real-time state information of the distribution 
resources has not been considered. Hence, often a deviation 
between a plan and its execution is inevitable because of 
unpredictable exceptions. Moreover, the computational 
complexity is high as the number of tasks and machines 
increases. 

With the MARS strategy based on the real-time data, by 
using multi-agent technology, each machine automatically 
sends its real-time state information to the system and requests 
tasks for processing. Tasks continually interact with machines. 
Then, tasks can be assigned to the most appropriate machines 
according to the real-time status of the machines. Since the task 
allocation is done in a real-time information-driven way and an 
allocation strategy is started only for the machines according to 
their real-time status. Thus, the deviation between a plan and its 
execution resulting from a traditional scheduling strategy can 
be largely eliminated via the MARS strategy. 

B. The overall architecture of MARS 

Based on the MARS strategy, an overall architecture of 
MARS for a flexible job shop is designed as seen in Fig. 1. It 
consists of two layers: the JADE middleware layer and the 
multi-agent layer. The JADE middleware layer provides a 
JADE runtime environment such that the agent registration, 
management, and interaction can be realized. Each running 
instance in the JADE runtime environment is called a container 
and it can contain several agents. The set of active containers is 
called a platform. There is a special container that is active all 
the time in the platform and it is called the main container. All 
other containers register into the main container as soon as they 
start. Once the platform is activated, the JADE default agents, 
including agent management system (AMS) and directory 
facilitator (DF) are instantiated. The AMS agent acts as a 
supervisor that controls the use of other agents to the platform; 
while the DF agent provides a default yellow page service in the 
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platform. In this study, there is a single main container only in 
the platform on which the agents are executed. 

The multi-agent layer includes a number of application 
agents to fulfill the real-time scheduling based on real-time data 
of the shop floor. They are machine agent (MA), task agent 
(TA), task pool agent (TPA), real-time scheduling agent (RSA), 
and real-time monitor agent (RMA). Each type of agents can be 
implemented in the JADE platform. The main functions of 
these agents are described as follows. 

 
Fig.1. The Architecture of MARS 

(1) The MA is responsible for capturing the real-time data 
sensed from auto-ID devices such as RFID and processing the 
complex real-time data such that they are understood as 
meaningful manufacturing information. Then, the 
corresponding agents can know the real-time status and 
available capacity of the manufacturing resources at any time.  

(2) The TA is used to capture information of all tasks and 
send such information to TPA. If new tasks arrive, TA can 
capture this information timely and inform the TPA about the 
relevant conditions.  

(3) The TPA is responsible for picking out the first 
unprocessed manufacturing operation of each task from the TA 
and publishing these available operations into the RSA timely. 

(4) The RMA is responsible for capturing and processing the 
real-time production execution information of the shop floor 
and sending the real-time manufacturing information to the 
RSA. During the production execution, disturbances and 
changes of the shop floor processes are timely tracked and 
traced. 

(5) The RSA provides a mathematic model and 
bargaining-game-based algorithm to optimally schedule the 
start time and finish time of each operation of each task 
according to the sensed real-time shop floor information. 

The above five types of agents acquire related data by 
exchanging messages with each other. A message contains the 
following fields: the sender of the message, a list of receivers, 
the communicative act type, the message content expression, 
the content language, and the ontology. JADE provides the 
agent with communication language called Agent 
communication language message (ACLMessage). Messages 
exchanged by agents have a format specified ACL defined by 
the foundation for intelligent physical agents (FIPA) 
international standard for agent interoperability. A message in 
JADE can be implemented as an object of the 

jade.lang.acl.ACLMessage class that defines methods for 
handling all fields of a message. 

C. The implementation of MARS 

The implementation of MARS is the actual process of the 
interactions among the agents during real-time scheduling stage. 
Through auto-ID technologies, the real-time data can be 
captured by the MAs. Then, during the manufacturing 
execution stage, a task can be assigned to a most appropriate 
machine according to the machines‘ real-time status and 
available capability. The detailed process is described as 
follows. 

When tasks are released to the shop floor for processing, the 
TA first captures all the specifications and processing 
conditions of each task. Further, this information is transferred 
to the TPA, which picks out the first unprocessed operation of 
each task and sends this information to the RSA. In this way, 
resources that are able to process these specified operations are 
known. At the same time, each MA automatically sends the 
real-time available capability information of corresponding 
machines to the RSA and the capable resources compete to 
process these operations. Consequently, the operations interact 
with the MAs continuously in the RSA. Thus, an operation can 
be assigned to the most suitable MA in an optimal way by using 
the bargaining game according to their real-time available 
capacity. Each time, only one operation is optimally assigned to 
the requested MA. MAs continuously send the request for new 
operations before all tasks are finished, which is released by the 
TPA. At the production execution stage, the RMA captures the 
real-time execution information of the shop floor and then 
sends real-time manufacturing information to the RSA. 
Therefore, if an exceptional event occurs, the manufacturing 
environment can be reconfigured. The RSA can decide the 
MAs that can continue to deal with the available operations or 
the tasks that should be removed or joined. 

IV. MULTI-AGENT MODELS 

A. Machine Agent model 

Fig. 2 shows an MA model. It is responsible for wrapping the 
applications of manufacturing resources to capture the 
real-time data of manufacturing resources by adopting auto-ID 
and sensor technologies. Then, it processes the captured 
real-time data such that they can be understood as useful and 
meaningful manufacturing information. At each time t, the 
MAs actively send the real-time available capability 
information of a machine to the RSA for a machine to compete 
for processing the available operations according to their 
real-time status. An MA includes four modules, namely sensor 
manager, data sensing and capturing, data processing, and 
intelligent modules. The functions are described as follows. 
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Fig.2. Machine Agent model 

1) Sensor manager 
This module is responsible for connecting and centrally 

managing the heterogeneous types of sensors for capturing the 
real-time data of manufacturing resources. First, it is used to 
register and manage (remote start, pause, stop, etc.) the 
behavior of sensors installed on a machine. Second, it is used to 
monitor and control the status of each registered sensor. Third, 
it is used to manage the capturing functions of each sensor and 
improve the sensing capability of each sensor. If a sensor 
breaks down, MAs can stop its behavior and send a message to 
the RMA. 
2) Data sensing and capturing 

This module is responsible for sensing and capturing the 
real-time data of the registered sensors installed on the 
manufacturing resources during the production process. 
Through the communication protocol and relationships in the 
registry, it can capture and transmit the sensed data from the 
sensors to the repository. 
3) Data processing 

This module is responsible for processing the insignificant 
data captured by registered sensors to form useful and 
meaningful information. Although real-time data record the 
real-time status of manufacturing resources, they need to be 
processed to provide useful and meaningful information. It can 
establish the mapping relation and mechanism such as rules and 
standard output data schemas to translate the real-time data to 
be meaningfully understood. 
4) Intelligent module 

Based on the useful and meaningful information, each MA 
can actively send the real-time available capability information 
and real-time status to the RSA and decide whether to compete 
for processing the tasks from the TPA. 

B. Task Agent model 

The TA is responsible for capturing the real-time 
information of each task and sending the information to the 
TPA. The TA model is shown in the top of Fig. 3. When tasks 
are released to the shop floor for processing, specifications and 
processing conditions of each task are registered by the TA. 
These specifications include task ID, the materials for the task, 
the hardness of the material, a list of geometrical features, 
feature relationships, estimated removal volume, tolerance, 
chip breakability, and surface quality requirements and so on. 
The processing conditions include different processing time 

and cutting power of each operation on different machines. 
Then, this real-time task information is transferred to the TPA.  

 
Fig.3. Task Agent and Task Pool Agent model 

C. Task Pool Agent model 

Based on the real-time task information from the TA, the 
TPA is used to pick out the available operations and publish 
these operations to the RSA at each time t. As seen in the lower 
part of Fig. 3, the work logic of the TPA includes three stages. 

At the beginning, the TPA establishes a task pool and puts 
the first unallocated manufacturing operation of each task into 
it after receiving the real-time task information from the TA. 
Then, these available operations in the task pool are published 
into the RSA and each MA automatically sends its real-time 
status and requests to undertake the available operations from 
the RSA. If the previous operation in the RSA is submitted to 
the processing queue of a machine, the RSA informs the TPA 
and a new operation that belongs to the next manufacturing step 
is added into the task pool and then published into the RSA 
again. This process is repeated until all operations are added to 
the processing queue of appropriate machines. 

D. Real-time Monitor Agent model 

The RMA plays a key role for capturing the real-time 
execution information and sending it to the RSA. Fig. 4 shows 
the work logic of an RMA. There are mainly two modules in 
the RMA. 

 
Fig.4. Real-time Monitor Agent model 
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1) Real-time WIP visibility and traceability service 

(RTWIP-VTS) 

RTWIP-VTS acts as a core in the RMA. On the one hand, it 
is responsible for establishing WIP instance by extracting the 
necessary information or updating the changed information 
from or to heterogeneous EISs (Enterprise Information Systems) 
through data source service. On the other hand, it is also 
responsible for modeling the dynamic behavior of a 
manufacturing system and processing the real-time execution 
information from a large amount of the low-level events 
captured by MAs. Here, the critical event model can extract the 
key information from the above low-level events to form 
high-level events. Through these high-level events, the 
information from the corresponding equipment such as 
dynamical status and produced WIP items can be monitored. 

The inputs include BOM, schedule, process plans, and 
real-time execution information captured by relevant MAs. The 
outputs are the real-time manufacturing information related to 
produced products, consumed materials, exceptions, etc. of 
individual manufacturing resources, and the overall real-time 
production progress and production disturbances, etc. of the 
entire shop floor. 
2) Data source service 

The objective of data source service is to build a bridge for 
communication between the RMA and heterogeneous EISs. It 
provides data uploading, downloading, query, processing, and 
updating functions for sharing and integrating data between the 
RTWIP-VTS and other services or EISs. Due to the difficulties 
of information exchanging among the heterogeneous EISs, 
XML data with industrial standards are adopted for 
standardization to provide standardized schemas for 
manufacturing elements. The inputs of this module are the 
parameters of the data source of the EISs, while the outputs are 
the standard information based on XML schemas. 

E. Real-time Scheduling Agent model 

The RSA is designed to implement the real-time scheduling. 
At each time t, its inputs include the real-time capability 
information from MAs, available operations from the TPA, and 
real-time manufacturing information from the RMA. Its 
outputs are the task queues of the machines. Two modules, 
namely problem formulation module and solving module are 
involved in the RSA.  
1) Problem formulation module 

The FJSS problem can be formulated as follows. There is a 
set of n tasks to be processed on a set of m machines. Task i 
consists of a sequence of ni operations. Each operation Oij of 
task i can be processed by some capable machines. The FJSS 
problem is to optimally assign the operations to machines and 
sequence the operations assigned to each machine such that the 
given criteria are satisfied. 

Based on the notation listed in Table I, a mathematic 
formulation for the problem is built, which is described as 
follows. 

TABLE I 
NOTATIONS 

Notations Description 

n the total number of tasks 

m the total number of machines 

ni the total number of operations of task i 
M={M1,M2,…,Mm} the set of machines 

Oij the jth operation of task i 
Cij the completion time of Oij 

CM the maximal completion time of the machines 

Wk the workload of Mk 

WM the critical machine workload, which is the machine 
with the heaviest workload 

E the total energy consumption of production 

xijk 1, if Mk is selected for Oij; 0, otherwise 

P0k the idle power of Mk (kW) 
Pk the cutting power of Mk (kW) 
tIk the total idle time of Mk 

tijk the processing time of Oij on Mk 

Objective function: 

1Min =Max [1, ], [1, ]M ij if C C i n j n                 (1)

 
2

1 1

Min Max{ } Max{ ( )}
inn

M k ijk ijk

i j

f W W t x
 

              (2)

3 0
1 1 1 1

Min ( ) ( )
inm n m

k ijk ijk k Ik

k i j k

f E P t x P t
   

               (3) 

Subject to: 

, , 1 , , , ,

,

2, ,

0 1,2, ,

i j i j i j k i j k i

i j

C C t x j n

C i n

   

 
             (4)  

( )

1 ,
ij

ijk

k M O

x i j


                       (5) 

For Objectives (1)–(3), f1 represents makespan or the 
maximal completion time of the machines, f2 represents the 
critical machine workload, and f3 represents the total energy 
consumption for producing the tasks. These objectives are 
changed as scheduling result changes. Hence, by minimizing 
these objectives, an optimal schedule can be obtained at each 
time t. Inequality (4) ensures the operation precedence 
constraints. Constraint (5) guarantees that an operation is 
assigned to one and only one machine. 
2) Bargaining-game-based solving module 

It follows from the above formulation that the 
multi-agent-based real-time scheduling problem is a 
multi-objective optimization problem (MOP). A general MOP 
can be summed up in the following common mode: 

1

1

2

min/ max ( )

min/ max ( )

min/ max ( )

. . ( ) 0, 1, ,

( ) 0, 1, ,

i

k

j

l

f x

f x

f x

s t g x j m

h x l m









  


 

                   (6) 

where 1( , , )
n

x x x X   is a decision variable, X is the 

variables space, ( ), ( 1,2, , )if x i k  is a cost function，

( )jg x and ( )
l

h x  together refer to as the constraints. 

 For the MOP (Equation (6)), ( ), ( 1,2, , )if x i k  can be 

regarded as the k players in a bargaining game. The decision 
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strategy space S equals to a variable space X . The payoff 
function for each player is fi(x). The bargaining game 
equilibrium solution can be seen as a solution for the MOP. 
Thus, this module is used to calculate the optimal solution by 
adopting the bargaining game. The bargaining-game-based 
solution includes players, strategies, and payoff design, and a 
bargaining game equilibrium solution. The details of the 
bargaining-game-based solution are described next. 

V. BARGAINING-GAME-BASED SOLUTION IN RSA 

A. Bargaining game model 

The multi-agent-based real-time scheduling problem 
addressed in this study can be seen as an N-person bargaining 
game with complete information. Bargaining game is defined 
as that decision-makers solve the profit distribution problem 
through consultation. To build a bargaining game model, three 
elements should be determined: players, strategies, and payoff, 
which can be described as: 

{ ; ; } 1,2,3i i iG F S U i                          (7) 

where Fi is the set of players who participate in the bargaining 
game. In the problem addressed in this work, the three 
objectives correspond to three players. Here, players take 
actions sequentially, and the choice made by the former player 
has an impact on the selection made by the latter. 

Si is the actions or strategies adopted by Player i. In this 
problem, the available operations from the RSA to the 
strategies of this game are denoted as strategy profile, meaning 
that the first unprocessed manufacturing operations of the tasks 
are strategies for players at each time t. 

Ui is the payoff function for Player i. In the addressed 
problem, the utility functions for the three players are the first, 
second, and third objective functions, respectively.  

B. The bargaining-game-based real-time scheduling method 

At each time t for a real-time schedule, a 
bargaining-game-based real-time scheduling method is 
triggered in the RSA such that the operations can be assigned to 
the most suitable MA according to the real-time available 
capability information of the MAs. At each time t, the 
problem-solving procedure is described as follows. 

Step 1: MAs are assigned to the three objectives in turn. For 
example, MA[1] is for f1 and MA[2] for f2 and so on. In a 
real-world manufacturing system, the number of MAs is greater 
than three, so we can assign MA[4] to f1 and MA[5] to f2 until 
all MAs are assigned to an objective. 

Step 2: Three objectives correspond to three players. Each 
player tries to select the most appropriate operations such that 
the goal of maximizing its payoff is achieved according to the 
results of the negotiation. Here, there are many stages in the 
bargaining game, and each stage has one player or one MA[i] to 
make a decision. Therefore, each MA that is assigned to fi can 
choose an available operation from the RSA. 

Step 3: Calculate the utility functions u1(s), u2(s) and u3(s) for 
Players 1, 2, and 3 according to Eqs. (1) - (3) from each feasible 
strategy combination, respectively. 

Step 4: Find the bargaining game equilibrium solution, 
which is described in detail in Part C of Section V. Then, the 
available operations in the RSA are assigned to the most 
suitable MAs in an optimal way according to their real-time 
status.  

Step 5: At the next time t (t=t+1), repeat Steps 1 - 4 until all 
the tasks are assigned. 

When exceptional events (e.g., machine breakdown, change 
of the order, etc.) occur in a real-time, the influences of the 
exceptions can be timely reduced and eliminated through 
changing the players or the strategies of the bargaining game.  

C. Bargaining game equilibrium solution 

Sub-game perfect Nash equilibrium (SPNE) is broadly 
considered and applied as the solution for N-person 
non-cooperative dynamic game. An SPNE point is an N-tuple 
of strategies, one for each player, such that anyone who 
deviates from it unilaterally cannot possibly improve its 
expected payoff. Compared with the dynamic game, bargaining 
game is a process of value creating and redistributing, and the 
final agreement allows players to get a higher payoff than 
bargaining before. Watson [69] has presented the standard 
solution for bargaining problem. However, he focused on a 
two-player case only. In this section, an algorithm based on the 
solution of Watson is put forward to search for the bargaining 
game equilibrium solution with three players.  

Let V denote the set of payoff vectors defining the players‘ 
alternatives for the bargaining game. 

1 2{ ( ), ( ), , ( ), , ( )} 1,2,3k n

i i i iV u s u s u s u s i              (8) 

1 2 3{ , , }k k k ks s s s  

Let d denote the payoff vector associated with the default 
outcome, which describes what happens if the players fail to 

reach an agreement, d V . In this paper, d is given by
*( )iu s  

and 
* * * *

1 2 3( , , )s s s s  is one SPNE solution for the bargaining 

game. 

Let 
*( )ku s  denote the maximized joint value for the 

bargaining game.  
3

*

1

( ) max ( )k k

i

i

u s u s


                                 (9) 

There are cases where the default payoff is the largest one, 

i.e., 
*( )ku s  is the default payoff. 

Let p denote the surplus of an agreement, which is defined as 
the difference between the joint value of the contract and the 
one obtained when the players do not reach an agreement. We 
have 

3
* *

1

( ) ( )k

i

i

p u s u s


                                (10) 

Let i be the proportion of p obtained by Player i. When an 

agreement is reached such that each player obtains the final 
payoff as: 

*( ) ( )final k

i i iu s u s p                             (11) 

0i   
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3

1

1i

i




  

Let t denote the contracted monetary transfer. 
*| ( ) ( ) |final k k

i it u s u s                             (12) 

Thus, a bargaining solution can be computed by the 
algorithm briefly summarized in Fig. 5.  

By this algorithm, the bargaining game equilibrium solution 

s
k is found. For Player i, the payoff is ( )final k

iu s . The 

contracted monetary transfer between the players is t. In 
addition, this algorithm can be extended to find bargaining 
game equilibrium solutions for the N-person bargaining game. 

 
Fig.5. Solution procedure 

VI. CASE STUDY 

To demonstrate the applicability and efficiency of the 
proposed approach for MARS, a proof-of-concept prototype 
system is built on the JADE platform with the Netbeans 8.0 
development environment. The bargaining-game-based 
real-time scheduling method is coded in Java and is 
encapsulated into the RSA. Experimental simulations are 
conducted in the prototype system on Intel Core i5 3.10 GHz 
PC with 8GB RAM memory. Simulation results with 
comparisons are also given. 

A. Case Scenario 

The case scenario is about an FMS. For simplicity of 
understanding and without loss of generality of principle, basic 
manufacturing resources are selected for configuring a practical 
proof-of-concept demonstration. As shown in the lower part of 
Fig. 6, this demo manufacturing environment consists of the 
following main components, namely a raw material area and a 
finished product area for storing materials, WIP and finished 
products; a manufacturing area with eight machines and tasks 
to be processed. Each machine is capable of active sensing, 
interaction, and self-decision. In order to acquire real-time data 
during the manufacturing execution stage, tags are attached to 
some types of manufacturing resources. 

The JADE-platform-based MAS is constructed as seen in the 
upper part of Fig. 6. An MA can capture the real-time data of 
the shop floor by equipping auto-ID devices. Then, the 
real-time capability and execution information of the 
manufacturing resources can be timely sensed by the RSA and 

RMA, respectively. The TA receives tasks from EISs as soon as 
production orders are released into the shop floor. It records the 
information of tasks and sends to the TPA. The TPA picks out 
the available operations of each task and publishes these 
available operations into the RSA. Then, the RSA optimally 
schedules the start time and finish time of each operation of 
each task according to the sensed real-time shop floor 
information. The RMA gets the necessary manufacturing 
information relevant to the production orders from EISs and 
real-time execution information from the MA. 

 
Fig.6. Diagram of the case scenario 

To simulate this case scenario, a simple experimental system 
is established according to the case scenario as shown in Fig.7. 
The experimental system is composed of two Industrial 
Personal Computers (IPCs), a number of RFID readers, and a 
mass of tags. These readers are connected to the IPCs and each 
reader connects six antennas. The antennas are placed in the 
corresponding locations for capturing real-time data from 
different manufacturing resources. These tags are grouped into 
five types, namely equipment, operators, pallets, critical tools, 
and WIP items to simulate the real-time events of machines, 
automatic guided vehicles (AGVs), industrial robots (IRs), 
operators, pallets, tools, materials, WIP items, and finished 
products. The real-time status of machines, AGVs, IRs, 
operators, pallets, tools, materials, WIP items, and finished 
products can be easily captured from their tags or a special 
strategy.   

 
Fig.7.Simulation experiment of the case scenario 

B. Experimental trials 

Based on the above-mentioned prototype system, this section 
illustrates the MARS through a simulation example. 
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// Algorithm for bargaining game equilibrium solution 
Input: A bargaining game procedure. 
Start 
Step 1. Calculate the maximized value  by determining the 

value sk that maximizes ; 

Step 2. Determine an SPNE according to each player‘s utility using 
backward induction. The contents of the SPNE solution are 
described in the authors‘ previous paper [25]. 

Step 3. Player i obtains the payoff 

where  is player i‘s default payoff.  

Step 4: Calculate t to find the transfer that achieves the required split of 
the surplus. 
END 

Outputs: sk and . 

javascript:void(0);
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The scheduling problem is based on Kacem‘s instance [70], 
where there are eight machines for processing eight tasks with 
totally  27 operations. Compared with Kacem‘s instance, to 
optimize the total energy consumption for completing these 
tasks, we present the cutting power required for the operations 
on different machines. The detailed information about the tasks 
is shown in Table II. In Table II, (x/y) in Row Oij and Column 
Mk mean the time taken for processing operation ‗j‘ of task ‗i‘ 
by machine ‗k‘ is ‗x‘ and its cutting power is ‗y‘. For example, 
(3/1.8) in row O11 and column M2 means that the time taken for 
processing operation ‗1‘ of task ‗1‘ on machine ‗2‘ is ‗3‘, and 
its cutting power required is ‗1.8‘. Table III gives the power 
required when a machine is idle, which is abstracted from 
research work developed by [71]. The time unit is defined as 
hours, and the cutting power unit is defined as kWs. 

TABLE II 
THE INSTANCE OF MARS 

 
TABLE III [71] 

IDLE POWER OF MACHINES 

Mk M1 M2 M3 M4 M5 M6 M7 M8 

Idle 
power 
[kW] 

0.995 1.485 1.91 0.6 0.43 0.56 0.47 0.72 

In this case, based on real-time data, the execution procedure 
for MARS includes mainly five steps as shown in Fig. 8 and it 
is described in detail as follows. 

At the beginning, when an operator comes to a machine and 
starts it up, the information relevant to this machine is sensed. 
The MAs capture the real-time manufacturing data. Then, each 
MA automatically sends its real-time available capability 
information to the RSA and real-time execution information to 
the RMA.  

When the tasks are released into the system, processing 
details for all operations are captured by the TA and are put into 
the TPA. Then, the TPA picks up the first unprocessed 
manufacturing operation of each task and put them into the 
RSA.  

Consequently, the RSA knows the real-time capability 
information from MAs and the available operation information 
from the TPA. Thus, the available operations interact with 
MA[i] continuously and can be assigned to the most suitable 

machines in an optimal way using bargaining game as 
described in Section V according to their real-time status. Here, 

1
3i  . 

 
Fig.8. The procedure of real-time production scheduling based on the 

multi-agent technology 

These steps are repeated until all the operations are assigned 
to certain machines for processing. Table IV shows the 
procedure of real-time scheduling at each time t. 

TABLE IV 
THE PROCEDURE OF REAL-TIME SCHEDULING WITHOUT CONSIDERING THE 

EXCEPTIONAL EVENTS 

 
During the production execution stage, the real-time 

execution information of the shop floor is captured by the RMA 
and sent to the RSA. If exceptions occur, the RSA can be 
certainly noticed the change caused by such exceptions 
according to the dynamic manufacturing environment. Thus, 
the RSA can respond to them timely such that the influence 
brought by the exceptions can be greatly reduced or even 
eliminated. 

To validate the effectiveness in responding to the exceptional 
events under the real-time shop floor environment by the 
proposed MARS method, we compare it with several 
traditional dynamic scheduling methods, including complete 
reactive scheduling method. By the complete reactive 
scheduling method, operations are assigned to machines 
according to a specific assignment rule. Then, once a machine 
becomes available and there are operations in its waiting queue, 
it chooses the operations with the highest priority to process 
based on a heuristic priority dispatching rule. 

Tasks Processes M1 M2 M3 M4 M5 M6 M7 M8

J1

O11 5/1.3 3/1.8 5/3.2 3/1.1 3/1.1 - 10/0.8 9/1.1

O12 10/1.3 - 5/3.4 8/3.2 3/0.8 9/0.8 9/0.9 6/1.3

O13 - 10/1.8 - 5/1.4 6/0.7 2/0.9 4/1.2 5/1.3

J2

O21 5/1.6 7/2.1 3/2.6 9/1.5 8/1.2 - 9/1.1 -

O22 - 8/2.4 5/2.4 2/1.6 6/1.4 7/1.2 10/1.3 9/1.4

O23 - 10/2.3 - 5/1.5 6/0.9 4/1.8 1/1.4 7/1.3

O24 10/1.4 8/1.8 9/2.4 6/3.2 5/0.8 7/1.7 - -

J3

O31 10/2.1 - - 7/1.5 6/0.7 5/1.6 2/1.3 4/1.2

O32 - 10/1.9 6/2.6 4/1.6 8/1.2 9/1.7 10/1.4 -

O33 1/1.4 4/2.5 5/4.2 6/1.4 -
10/1.

3
- 7/0.8

J4

O41 3/1.3 1/2.4 6/3.2 5/2.1 9/1.3 7/1.7 8/1.3 4/1.1

O42 12/1.4 11/2.6 7/4.2 8/3.2 10/1.5 5/0.8 6/1.2 9/1.3

O43 4/1.4 6/3.7 2/3.2 10/1.5 3/0.8 9/0.7 5/1.4 7/1.8

J5

O51 3/1.3 6/1.2 7/2.4 8/1.2 9/0.8 - 10/1.3 -

O52 10/1.2 - 7/2.8 4/2.1 9/1.3 8/0.7 6/1.3 -

O53 - 9/3.2 8/3.2 7/1.8 4/1.2 2/1.2 7/1.4 -

O54 11/2.1 8/1.6 - 6/1.7 7/1.5 5/1.3 3/1.3 6/1.3

J6

O61 6/1.4 7/1.7 1/4.2 4/1.6 6/0.8 9/1.4 - 10/1.3

O62 11/1.3 - 9/3.2 9/1.4 9/0.9 7/0.9 6/1.3 1/1.3

O63 10/1.4 5/2.1 9/2.4 10/1.5 11/1.2 - 10/1.2 -

J7

O71 5/1.1 4/2.2 2/3.2 6/1.3 7/1.3 - 10/0.8 -

O72 - 9/2.5 - 9/1.4 11/0.8 9/1.6 10/1.3 5/1.4

O73 - 8/2.4 9/4.2 4/1.2 8/1.2 6/2.1 - 10/1.6

J8

O81 2/1.4 8/3.2 5/2.2 9/1.4 - 4/1.2 - 10/1.8

O82 7/1.3 4/1.7 7/2.9 8/1.4 9/1.1 - 10/1.3 -

O83 9/1.4 9/3.2 - 8/1.2 5/0.8 6/1.3 7/1.4 1/1.3

O84 9/1.7 - 3/4.1 7/1.2 1/0.9 5/1.4 8/0.9 -

J9

O9,1 5/1.3 7/2.4 8/3.2 5/1.1 5/1.1 - 7/1.6 4/1.2

O9,2 4/1.6 7/2.3 14/2 4/1.2 3/1.3 6/1.1 - 10/1.3

O9,3 5/1.2 4/2.2 6/3.2 11/1.3 7/2.1
13/1.

3
5/1.3 5/1.5

J10

O10,1 2/1.6 - 4/3.5 - 7/2.2 5/3.2 4/1.8 6/3.5

O10,2 8/4.3 - 8/2.1 1/3.6 - 5/4.3 8/2.9 7/3.4

O10,3 7/7.1 3/2.2 - 4/1.5 8/4.1 1/1.5 8/2.2 4/0.8

Output

1 2 3 4 50 8 10 119 12 13 1476
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Real-time 
Capability 

Information

Real-time Execution 
Information

Exceptional 
Evens

Product details  of tasks

Available process 
information

Real-time manufacturing data

Product details of all processes

Gantt chart

Tasks

Machines

Time Idle machines Optional process(es) Real-time scheduling result(s)

0
{M1,M2,M3,M4,M5,M6,M7,

M8}

{O11, O21, O31, O41, O51, 

O61,O71,O81 }

O51→ M1; O71→ M2; O21→ M3; O61→ M4; 

O11→ M5; O81→ M6; O31→ M7; O41→ M8

1 None None None

2 {M7} {O32} None

3 {M1,M3,M5,M7} {O12, O22, O32, O52} O22→ M3; O12→ M5; O52→ M7

4 {M1,M2,M4,M6,M8} {O32, O42,O62, O72, O82} O82→ M2; O32→ M4; O42→ M6; O62→ M8

5 {M1, M8} {O63, O72} O72→ M8

6 {M1,M5} {O13, O63} None

7 {M1,M5} {O13, O63} None

8 {M1,M2,M3,M4,M5 } {O13, O23, O33, O63, O83} O33→ M1; O63→ M2; O83→ M5

9 {M1,M3,M4,M6,M7} {O13, O23, O43, O53} O43→ M1; O13→ M4; O53→ M6; O23→ M7

10 { M3,M7,M8} {O24, O73} None

11 { M3, M6,M7,M8} {O24, O54, O73} O54→ M7

12 {M3, M6, M8} {O24,O73} None

13 {M1,M2,M3,M5,M6, M8} {O24,O73,O84} O24→ M5; O84→ M6

14 {M1,M2,M3,M4, M7,M8} {O73} O73→ M4
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Two popular priority dispatching rules are employed. They 
are shortest processing time (SPT) and first-in-first-out (FIFO). 
Also, we consider two machine assignment rules for 
comparison. The first one finds the available machine with the 
minimum processing time for an operation and then that the 
operation is assigned to this machine. The second one assigns 
an operation to its alternative machine which has the minimum 
workload currently. We call them MAR1 and MAR2 in short. 

To make comparisons, the simulation results for the three 
test cases are summarized in Tables V- VII. For Test Case 1, 
two exceptions happen during the production execution stage, 
i.e., M1 and M6 are broken down at time t1=4 and t2=6, they are 
repaired at time t3=6 and t4=8, respectively. For Test Case 2, 
rush Tasks 9 and 10 are added at time t5=2 and t6 =4, 
respectively. For Test Case 3, four exceptions occur, i.e., M1 

and M6 are broken down at time t7=4 and t8=6, and they are 
repaired at time t9=6, t10=8, respectively; furthermore, two rush 
Tasks 9 and 10 are added at time t11 =2 and t12 =4, respectively. 

TABLE V 
TEST CASE 1 

Scheduling methods CM [hour] WM [hour] E [kW·h] 
MAR1+SPT 24 22 242.02 

MAR1+ FIFO 24 22 216.97 
MAR2+ SPT 25 23 249.26 
MAR2+ FIFO 23 22 226.85 

Proposed method 18 16 156.12 
TABLE VI 

TEST CASE 2 
Scheduling methods CM [hour] WM [hour] E [kW·h] 

MAR1+SPT 39 34 364.72 
MAR1+ FIFO 30 27 387.62 
MAR2+ SPT 35 31 410.68 
MAR2+ FIFO 32 27 374.49 

Proposed method 20 20 191.44 
TABLE VII 
TEST CASE 3 

Scheduling methods CM [hour] WM [hour] E [kW·h] 
MAR1+SPT 25 23 299.50 

MAR1+ FIFO 27 27 301.26 
MAR2+ SPT 32 29 368.92 
MAR2+ FIFO 31 31 328.42 

Proposed method 25 23 217.92 

The simulation results for Case 1 are given in Table V. The 
scheduling results obtained by our methods have better 
solutions compared to the traditional dynamic scheduling 
method. For the solutions obtained by the proposed method, CM 
is 18 hours, while it is 23 and 25 hours for the best and worst 
ones obtained by the traditional dynamic scheduling method. 
The maximum improvement is 28.0% and the minimum 
improvement is 21.7%. The minimum and maximum values of 
WM obtained by the traditional dynamic scheduling method are 
22 hours and 23 hours, respectively. Thus, the proposed method 
improves WM by 27.3% and 30.4%, respectively, for its 
minimum and maximum values than the traditional one. 
Compared with the traditional dynamic scheduling method, the 
proposed method reduces E for the maximum value by 249.26 
kW·h and the minimum value by 216.97 kW·h, i.e., reduces it 
by 37.4% and 28.0%, respectively.  

The simulation results from test Case 2 are given in Table VI. 
It can be seen that, for CM, it is 20 hours by the proposed 
method, while, by the traditional dynamic scheduling method, 

it is 30 hours and 39 hours for the best and worst values. Thus, 
by the proposed method, it is improved by 33.3% and 48.7%, 
respectively. For WM, by the proposed method, it is 20 hours, 
which means that, compared with the traditional dynamic 
scheduling method, the minimum improvement is 11.1% and 
the maximum improvement is 41.2%, respectively. In addition, 
for E, by the proposed method, it is 191.44 kW·h, which means 
that compared with the traditional dynamic scheduling method, 
a 47.6-53.4% improvement in the total energy consumption of 
production is achieved. 

Test Case 3 can be seen as a variation of test Cases 1 and 2, 
where certain machines are broken down and rush orders are 
added at the same time. The simulation results are given in 
Table VII. It can be observed that the values of CM and WM 
obtained by the proposed method are the best values obtained 
from the traditional dynamic scheduling method. However, 
compared with the worst ones obtained by the traditional 
dynamic scheduling method, by the proposed method, it is 
improved by 21.9% and 25.8%, respectively. In terms of the 
total energy consumption, the proposed method also achieves 
better performance than the traditional dynamic scheduling 
method. 

Thus, it follows from the above simulation results that, by the 
advanced IoT technology and optimization method, the critical 
performance indices for the MARS problem can be 
significantly improved. Also, the proposed method contributes 
to the sustainable development of manufacturing industry, 
especially in MARS. 

VII. CONCLUSIONS 

Recently, auto-ID technology has been widely adopted in the 
manufacturing shop floor. Such an automatic data collection 
approach brings new opportunities for better operations of shop 
floor at the one hand. However, it presents new challenges at 
the other hand. For example, how to develop a 
real-time-data-based real-time scheduling system for 
improving the performance of shop floor planning, execution, 
and control is a new issue and there is no applicable method. In 
this study, to address this issue, an architecture of MARS for a 
flexible job shop is presented to provide a new paradigm for 
manufacturing enterprises to enhance the efficiency of 
real-time scheduling so that the influence of exceptional events 
can be reduced. Based on this architecture, a 
bargaining-game-based real-time scheduling strategy is 
proposed to implement real-time scheduling. Finally, a 
prototype system is built and implemented on the JADE 
platform. Experimental trials are simulated to demonstrate the 
efficiency and effectiveness of the proposed approach. 
Compared with the best results obtained by MAR2+FIFO for 
Test Case 1, MAR1+FIFO for Test Case 2, and MAR1+SPT for 
Test Case 3, the proposed MARS improves makespan by 
21.7%, 33.3%, and 0%, critical machine workload by 27.3%, 
25.9%, and 0%, and total energy consumption by 31.2%, 50.6%, 
and 27.2%, respectively, under the real-time shop floor 
environment. 

The contributions of this work can be summarized as 
follows. 
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 A new MARS architecture is proposed and implemented 
on the JADE platform such that an effective real-time 
scheduling method in the IoT-based manufacturing 
environment is developed. 

 A new multi-agent-based real-time allocation strategy to 
optimally assign operations to machines is proposed to 
implement the real-time scheduling in the IoT-based 
manufacturing environment. 

 A bargaining-game-based real-time scheduling method is 
designed in the RSA to further improve the production 
efficiency and reduce the processing cost. 

Future research is necessary to focus on the improvement of 
methodology for solving the real-time production scheduling 
problem with more objectives and practical constraints. In 
addition, how to integrate the advantages of multi-agent and 
auto-ID technologies to accomplish integrated process planning 
and real-time scheduling in a flexible job shop is another issue 
for future work. 
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