
RESEARCH ARTICLE

Multiagent cooperation and competition with
deep reinforcement learning

Ardi Tampuu1☯, Tambet Matiisen1☯, Dorian Kodelja1¤, Ilya Kuzovkin1, Kristjan Korjus1,

Juhan Aru2, Jaan Aru1, Raul Vicente1*

1Computational Neuroscience Lab, Institute of Computer Science, University of Tartu, Tartu, Estonia,

2Department of Mathematics, ETH Zürich, Zürich, Switzerland

☯ These authors contributed equally to this work.

¤ Current address: CEA, LIST, Laboratory of Vision and Content Engineering, F-91191 Gif-sur-Yvette,
France
* raul.vicente.zafra@ut.ee

Abstract

Evolution of cooperation and competition can appear when multiple adaptive agents share a

biological, social, or technological niche. In the present work we study how cooperation and

competition emerge between autonomous agents that learn by reinforcement while using

only their raw visual input as the state representation. In particular, we extend the Deep Q-

Learning framework to multiagent environments to investigate the interaction between two

learning agents in the well-known video game Pong. By manipulating the classical reward-

ing scheme of Pong we show how competitive and collaborative behaviors emerge. We also

describe the progression from competitive to collaborative behavior when the incentive to

cooperate is increased. Finally we show how learning by playing against another adaptive

agent, instead of against a hard-wired algorithm, results in more robust strategies. The pres-

ent work shows that Deep Q-Networks can become a useful tool for studying decentralized

learning of multiagent systems coping with high-dimensional environments.

Introduction

In the ever-changing world biological and engineered agents need to cope with unpredictabil-

ity. By learning from trial-and-error an animal, or a robot, can adapt its behavior in a novel or

changing environment. This is the main intuition behind reinforcement learning [1, 2]. A

reinforcement learning agent modifies its behavior based on the rewards it collects while inter-

acting with the environment. By trying to maximize these rewards during the interaction an

agent can learn to implement complex long-term strategies.

When two or more agents share an environment the problem of reinforcement learning is

notoriously more complex. Indeed, most of game theory problems deal with multiple agents

taking decisions to maximize their individual returns in a static environment [3]. Collective

animal behavior [4] and distributed control systems are important examples of multiple auton-

omous actors in dynamic environments. Phenomena such as cooperation, communication,

and competition may emerge in reinforced multiagent systems.

PLOSONE | https://doi.org/10.1371/journal.pone.0172395 April 5, 2017 1 / 15

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPENACCESS

Citation: Tampuu A, Matiisen T, Kodelja D,

Kuzovkin I, Korjus K, Aru J, et al. (2017) Multiagent

cooperation and competition with deep

reinforcement learning. PLoS ONE 12(4):

e0172395. https://doi.org/10.1371/journal.

pone.0172395

Editor: Cheng-Yi Xia, Tianjin University of

Technology, CHINA

Received:May 9, 2016

Accepted: February 3, 2017

Published: April 5, 2017

Copyright: © 2017 Tampuu et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: All authors gratefully acknowledge the

support of NVIDIA Corporation with the donation of

one GeForce GTX TITAN X GPU used for this

research. RV also thanks the financial support of

the Estonian Research Council via the grant

PUT438 (https://www.etis.ee/Portal/Projects/

Display/e3760907-3178-4863-b7a1-

2c2628d6c67a). The funders had no role in study

https://doi.org/10.1371/journal.pone.0172395
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172395&domain=pdf&date_stamp=2017-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172395&domain=pdf&date_stamp=2017-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172395&domain=pdf&date_stamp=2017-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172395&domain=pdf&date_stamp=2017-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172395&domain=pdf&date_stamp=2017-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172395&domain=pdf&date_stamp=2017-04-05
https://doi.org/10.1371/journal.pone.0172395
https://doi.org/10.1371/journal.pone.0172395
http://creativecommons.org/licenses/by/4.0/
https://www.etis.ee/Portal/Projects/Display/e3760907-3178-4863-b7a1-2c2628d6c67a
https://www.etis.ee/Portal/Projects/Display/e3760907-3178-4863-b7a1-2c2628d6c67a
https://www.etis.ee/Portal/Projects/Display/e3760907-3178-4863-b7a1-2c2628d6c67a


While the distributed nature of learning in multiagent systems offers benefits (e.g., inherent

parallelism, scalability, or robustness versus failure of some of the agents), new challenges such

as how to define good learning goals arise. Also there are few guarantees about the conver-

gence and consistency of learning algorithms [3, 5, 6]. This is so because in the multiagent case

the environment state transitions and rewards are affected by the joint action of all the agents.

Thus, the value of an agent’s action depends also on the actions of the others and hence each

agent must keep track of each of the other learning agents, possibly resulting in an ever-mov-

ing target [3, 5, 6]. In general, learning in the presence of other agents requires a delicate trade-

off between the stability and adaptive behavior of each agent [3, 5, 6].

Due to the astronomic number of possible states in any realistic environment until recently

algorithms implementing reinforcement learning were either limited to simple settings or

needed to be assisted by additional information about the dynamics of the environment [7].

Recently, however, the Swiss AI Lab IDSIA [8] and Google DeepMind [7, 9] have produced

spectacular results in applying reinforcement learning to very high-dimensional and complex

environments such as video games. In particular, [7, 9] demonstrated that AI agents can

achieve superhuman performance in a diverse range of Atari video games. Remarkably, the

learning agent only uses raw sensory input (screen images) and the reward signal (increase in

game score). The proposed methodology, the so called Deep Q-Network (DQN), combines a

convolutional neural network for learning feature representations with the Q-learning algo-

rithm [10]. The fact that the same algorithm was used for learning very different games might

suggest it has potential for more general purpose applications [7, 11].

The present article builds on the work of [7]. Instead of a single agent playing against a

hardcoded algorithm, we explore how multiple agents controlled by autonomous DQNs learn

to cooperate and compete while sharing a high-dimensional environment and being fed only

raw visual input. This is an extension to the existing multiagent reinforcement learning studies

done in simple grid worlds or with agents already equipped with abstract high-level sensory

perception [3, 12, 13]. In particular, using the video game Pong and manipulating the reward-

ing schemes we describe the agents’ emergent behavior with a set of behavioral metrics. We

show that the agents develop successful strategies for both competition and cooperation,

depending on the incentives provided by rewarding schemes. We also tune the rewarding

schemes in order to study the intermediate states in the progression from competitive to col-

laborative behavior. Finally, we illustrate how learning by playing against another learning

agent results in more robust strategies than those achieved by a single agent trained against a

stationary hard-wired algorithm. Agents trained in multiplayer mode perform very well

against novel opponents, whereas agents trained against a stationary algorithm fail to general-

ize their strategies to novel adversaries.

Materials andmethods

Q-learning algorithm

The goal of reinforcement learning is to find the policy π—a set of rules to select an action in

each possible state—that would maximize the agent’s accumulated long term reward in a

dynamical environment. The problem is especially challenging when the agent must learn

without explicit information about the dynamics of the environment or the rewards.

The reinforcement learning problem is usually modeled as a Markov decision process

(MDP) giving rise to a sequence of observed, states, actions and rewards—s0, a0, r1, s1, a1, r2,

s2, . . ., sT. The st is the state of the environment, at the action taken by the agent and rt the

reward received by the agent at time-step t. One episode (game) lasts T time steps, and

Multiagent deep reinforcement learning

PLOSONE | https://doi.org/10.1371/journal.pone.0172395 April 5, 2017 2 / 15

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests:We gratefully acknowledge

the support of NVIDIA Corporation with the

donation of one GeForce GTX TITAN X GPU used

for this research. This does not alter our adherence

to PLOS ONE policies on sharing data and

materials.

https://doi.org/10.1371/journal.pone.0172395


different episodes can be of different length. The goal of the agent is to maximize the sum of

rewards r1 + r2 + . . . + rT (the total game score).

One popular method to solve MDPs is Q-learning [14]. Q-learning is based on estimating

the expected total discounted future rewards (the quality) of each state-action pair under a pol-

icy π:

Qpðst; atÞ ¼ E ½rtþ1 þ grtþ2 þ g2rtþ2 þ . . . þ gT�trT j p�: ð1Þ

Here γ is a discount rate between 0 and 1 that makes future rewards less valuable than

immediate ones and helps to cope with infinite MDPs. The optimal quality value is then

Q�(st, at) = maxπ Qπ(st, at). Hence an optimal policy is easily derived from the optimal values

by selecting the highest valued action in each state, and the problem only amounts to obtaining

accurate Q-values.

Given state s, action a, reward r and next state s0, it is possible to approximate Q�(s, a) by

iteratively solving the Bellman recurrence equation [1]:

Qiþ1ðs; aÞ ¼ E ½r þ g max
a0

Qiðs
0
; a0Þ�: ð2Þ

When the state-action space is small enough for the Q-values to be represented as a lookup

table, this iterative approximation is proved to converge to the true Q-values [15], provided

that all state-action pairs are regularly sampled. However, the combinatorial explosion of the

number of possible states in even a modest-size environment makes this table based imple-

mentation of Q-learning unfeasible. This problem can be partially overcome by function

approximation methods. Instead of storing each Q-value, their aim is to learn a function that

maps state-action pairs to their respective Q-values.

Deep Q-learning algorithm

Deep Q-network (DQN) builds on standard Q-learning by approximating the Q-function

using a non-linear neural network. The neural network, parametrized by θ, is trained to mini-

mize the loss function:

LðyÞ ¼ E ½ðr þ g max
a0

Qðs0; a0; y0Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

target

� Qðs; a; yÞ

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

prediction

Þ
2
� ð3Þ

Notice that the formula closely reassembles the iterative update rule of the Bellmann equa-

tion mentioned above (Eq 2). Essentially, the goal is to minimize the difference between the

current estimation of the Q-value (prediction), and an updated estimate (target) that combines

the obtained reward and an estimation of the quality of the next state.

There is no proof of convergence for Q-learning with non-linear function approximators.

To overcome learning instability, all experiences (s, a, r, s0) are stored in a “replay memory”

and are sampled uniformly as training examples. This ensures that the examples are uncorre-

lated and do not drive the policy to a local minima. Furthermore, a separate target network

(with parameters θ0 in the formula above) is used for estimating the maximal Q-value. The tar-

get network’s weights are updated at certain intervals to be equal with those of the main net-

work. Between updates these target Q-values remain unchanged and provide some much

needed stability.

To balance the exploitation of the current best known Q-values with the exploration of

even better options, DQN uses a simple �-greedy policy that samples a random action with

probability � (instead of always picking the action with maximal Q-value). When � is annealed

Multiagent deep reinforcement learning

PLOSONE | https://doi.org/10.1371/journal.pone.0172395 April 5, 2017 3 / 15

https://doi.org/10.1371/journal.pone.0172395


over time, this simple strategy is known to work just as well as more complex exploration strat-

egies [1].

There exist several possible adaptations of the Q-learning algorithm for the multiagent case

[5]. However, this is an open research area and theoretical guarantees for multiagent model-

free reinforcement learning algorithms are scarce and restricted to specific types of tasks [3, 5].

In practice the simplest method consists of using an autonomous Q-learning algorithm for

each agent in the environment, thereby using the environment as the sole source of interaction

between agents. In this work we use this method due to its simplicity, decentralized nature,

computational speed, and ability to produce consistent results for the range of tasks we report.

Therefore, in our tests each agent is controlled by an independent DQN with architecture and

parameters as reported in [7].

Adaptation of the code for the multiplayer paradigm

We needed to introduce several adaptations to the original code published with [7] to allow

training multiple agents simultaneously. These changes are summarized in supplementary

information (SI) section.

Game selection

We chose to use the Pong game environment in our study for reasons summarized in the SI. In

short, there are three advantages for illustrating our results with Pong: i) the Pong game has a

real-time two player mode, ii) DQNs are good in Pong and iii) the game is well-known and

can be easily understood by the reader.

In Pong each agent corresponds to one of the paddles situated on the left and right side of

the screen (see screenshots in Results section). There are 4 actions that each of the two agents

can take: move up, move down, stand still, and fire (to relaunch the ball or to start the game).

Which action is taken is decided by the corresponding DQN for both agents separately.

Rewarding schemes

A central aim of this work is to study the emergence of different types of collective behavior

depending on how the agents are rewarded.

We adjust the rewarding scheme by simply changing the reward ρ a player receives when

putting the ball past the opponent (when scoring). This essentially means, that we change the

values on the main diagonal of the payoff matrix, given in Table 1. The reward for conceding

is kept fixed at -1. This way we are able create several different games within the same Pong

environment. Examples of the used rewarding schemes are given in the following

subsection�s.

Score more than the opponent (fully competitive). In the traditional rewarding scheme

of Pong, also used in [7], the player who scores a point gets a positive reward of size 1 (ρ = 1).

The player conceding a point is penalized with a reward of -1. This makes it essentially a zero-

Table 1. Rewarding schemes to explore the transition from competitive to the cooperative strategy.

L player scores R player scores

L player reward ρ −1
R player reward −1 ρ

For the cases we study ρ 2 [−1, 1]. Example: with ρ = −0.5, when the left player scores, it receives −0.5
points and the right player receives -1 points.

https://doi.org/10.1371/journal.pone.0172395.t001

Multiagent deep reinforcement learning

PLOSONE | https://doi.org/10.1371/journal.pone.0172395 April 5, 2017 4 / 15

https://doi.org/10.1371/journal.pone.0172395.t001
https://doi.org/10.1371/journal.pone.0172395


sum game, where a positive reward for the left player implies a negative reward of the same

size for the right player and vice versa. Notice that ρ = 1 is the only case where the rewards of

the two players sum up to zero, for all ρ< 1 the sum of rewards is negative.

Loosing the ball penalizes both players (fully cooperative). In this setting we want the

agents to learn to keep the ball in the game for as long as possible. To achieve this, we penalize

both of the players whenever the ball goes out of play—both scoring and conceding lead to a

punitive reward of −1 (ρ = −1). Which of the players lets the ball pass does not matter and no

positive rewards are given.

Transition between cooperation and competition. The above two rewarding schemes

define fully competitive and fully collaborative tasks. To study the behavioral patterns lying

between these two extremes we gradually reduce the reward difference between scoring and

conceding. The reward for conceding is kept fixed at -1, while a set of intermediate values are

given to the ρ parameter.

Training procedure

In all of the experiments we let the agents learn for 50 epochs, 250000 time steps each. We

limit the learning to 50 epochs because the Q-values predicted by the network have stabilized

(see S1 Fig). Due to using a frame skipping technique the agents see and select actions only on

every 4th frame [7]. In this article we always talk about the frames the agents actually see and

so we use “visible frame”, “frame” and “time step” interchangeably.

During the training time, as in [7], the exploration rate (proportion of actions chosen ran-

domly) decreases from an initial 1.0 to 0.05 in the first million time steps and stays fixed at that

value. A more detailed description of the training procedure and parameters can be found in

[7].

After each epoch snapshots of the DQNs are stored to facilitate the future study of the train-

ing process. We also track the average maximal Q-value, which has been previously used as an

indicator of training convergence (see SI).

To guarantee a fair comparison between different rewarding schemes, we need the training

signal to be equally strong in all cases. Rewards are the signal that agents use to evaluate their

performance and that they learn from. For each scheme, we multiply the rewards with a nor-

malization coefficient so that the sum of their absolute values would be equal. The rewarding

schemes and the normalization coefficients are listed in S1 Table.

Collecting the game statistics

To obtain quantitative measures of the agents’ behavior in the Pong environment, we identified

and counted specific events in the game, e.g. bouncing of the ball against the paddle or the

wall. We used Stella [16] integrated debugger to detect the memory locations containing infor-

mation about these events. Based on these counts we defined a set of behavioral metrics listed

below.

The statistics are collected after each training epoch by letting the DQNs (in their current

state) play against each other for 10 games, each game initialized with a different random seed

(In Pong one game consists of multiple exchanges and lasts until one of the agents reaches 21

points.). During this testing phase the exploration rate is set to 0.01. The behavioral measures

we used are the following:

• Average paddle-bounces per point counts how many times the ball bounces between two

players before one of them scores a point. Randomly playing agents almost never hit the ball.

Multiagent deep reinforcement learning

PLOSONE | https://doi.org/10.1371/journal.pone.0172395 April 5, 2017 5 / 15

https://doi.org/10.1371/journal.pone.0172395


Well trained agents hit the ball multiple times in an exchange. Hereafter we refer to this sta-

tistic as paddle-bounces.

• Average wall-bounces per paddle-bounce quantifies how many times the ball bounces from

top and bottom walls before it reaches the other player. It is possible to hit the ball in an

acute angle so that it bounces the walls several times before reaching the other player.

Depending on the strategy, players might prefer to send the ball directly to the other player

or use the wall bounces. Hereafter we refer to this statistic as wall-bounces.

• Average serving time per point shows how long it takes for the players to restart the game

after the ball was lost (measured in frames). To restart the game, the agent who just scored

has to send a specific command (fire). Depending on the rewarding scheme the agents might

want to avoid restarting the game. Hereafter we refer to this statistic as serving time.

Results

Emergence of competitive agents

In the full competitive (zero-sum) rewarding scheme each agent obtains an immediate reward

when the ball gets past the other agent and an immediate punishment when it misses the ball.

Initially the agents fail to hit the ball at all but with training both agents become more and

more proficient. The learning of both agents progresses continuously. Fig 1 summarizes the

evolution of the quantitative descriptors of behavior during training.

Qualitatively we can report that by the end of training both agents play the game reasonably

well. First of all, both players are capable of winning regardless of who was the one to serve.

Secondly, the exchanges can last for a considerable amount of paddle-bounces (Fig 1a) even

after the speed of the ball has increased. Thirdly we observe that the agents have learned to put

the ball back in play rapidly (Fig 1c).

Fig 2 illustrates how the agents’ predictions of their rewards evolve during an exchange. A

first observation is that the Q-values predicted by the agents are optimistic, both players pre-

dicting positive future rewards in most situations. The figure also demonstrates that the agents’

reward expectations correlate well with game situations. More precisely, one can observe that

whenever the ball is travelling towards a player its reward expectation drops and the oppo-

nent’s expectation increases. This drop occurs because even a well trained agent might miss

Fig 1. Evolution of the behavior of the competitive agents during training. (a) The number of paddle-bounces increases
indicating that the players get better at catching the ball. (b) The frequency of the ball hitting the upper and lower walls decreases
slowly with training. The first 10 epochs are omitted from the plot as very few paddle-bounces were made by the agents and the
metric was very noisy. (c) Serving time decreases abruptly in early stages of training- the agents learn to put the ball back into play.
Serving time is measured in frames.

https://doi.org/10.1371/journal.pone.0172395.g001

Multiagent deep reinforcement learning

PLOSONE | https://doi.org/10.1371/journal.pone.0172395 April 5, 2017 6 / 15

https://doi.org/10.1371/journal.pone.0172395.g001
https://doi.org/10.1371/journal.pone.0172395


the ball (at least 5% of the actions are taken randomly during training), resulting in −1 and +1

rewards for the two players respectively.

We also note that the Q-values correlate with the speed of the ball. The faster the ball travels,

the bigger are the ups and downs in Q-values—possibly because there is less time to correct for

a bad initial position or a randommove.

Interestingly, one can also notice that as soon as the serving player has relaunched the ball

its reward expectation increases slightly. This immediate increase in Q-value makes the agents

choose to serve the ball as soon as possible and thus explains the decrease in serving time

(Fig 1c).

See supporting information for a short example video displaying the behavior of the agents

in different game situations and the corresponding Q-values.

Emergence of collaborative agents

In the fully cooperative rewarding scheme both agents receive an immediate punishment

whenever the ball get past either of them. Thus, the agents are motivated to keep the ball alive.

The agents get no positive rewards and the best they can achieve is to minimize the number of

times the ball is lost.

The evolution of the quantitative descriptors of behavior during cooperative training is

shown on Fig 3. The emergent strategy after 50 epochs of training can be characterized by

three observations: (i) the agents have learned to keep the ball for a long time (Fig 3a); (ii) the

Fig 2. A competitive game—game situations and the Q-values predicted by the agents. A) The left
player predicts that the right player will not reach the ball as it is rapidly moving upwards. B) A change in the
direction of the ball causes the left player’s reward expectation to drop. C) Players understand that the ball will
inevitably go out of the play. See supporting information for videos illustrating other game situations and the
corresponding agents’ Q-values.

https://doi.org/10.1371/journal.pone.0172395.g002

Fig 3. Evolution of the behavior of the collaborative agents during training. (a) The number of paddle-bounces increases as the
players get better at reaching the ball. (b) The frequency of the ball hitting the upper and lower walls decreases significantly with
training. The first 10 epochs are omitted from the plot as very few paddle-bounces were made by the agents and the metric was very
noisy. (c) Serving takes a long time—the agents learn to postpone putting the ball into play.

https://doi.org/10.1371/journal.pone.0172395.g003

Multiagent deep reinforcement learning

PLOSONE | https://doi.org/10.1371/journal.pone.0172395 April 5, 2017 7 / 15

https://doi.org/10.1371/journal.pone.0172395.g002
https://doi.org/10.1371/journal.pone.0172395.g003
https://doi.org/10.1371/journal.pone.0172395


agents take a long time to serve the ball (Fig 3c) because playing can only result in negative

rewards; and (iii) the agents prefer to pass the ball horizontally across the field without touch-

ing the walls (Fig 3b).

On Figs 1b and 3b we see that the number of wall bounces decreases with training in both

cases. High values in early stages of training are an artifact of the game—the ball is in many

cases launched at an acute angle and hits the wall once before reaching a player. In early stages

players make only a few touches and the wall-bounce per paddle-bounce ratio is artificially

high. With training agents keep the ball alive longer and this effect is diluted. Notice that in the

case of competitive strategy the wall-bounces ratio remains near 1 even after 50 epochs of

training (Fig 1b), whereas in cooperative mode this measure gradually tends to zero (Fig 1b).

This happens because cooperative agents gradually learn to pass the ball horizontally across

the field. It seems that hitting the ball at acute angles is a characteristic of competitive

behaviour.

On Fig 4 an exchange between collaborative agents is illustrated. Just like the competitive

agents, the collaborative agents learn that the speed of the ball is an important predictor of

future rewards, faster balls increase the risk of mistakes. The clear drop in the predicted Q-val-

ues in situation B compared to situation A is caused by the ball travelling faster in situation B.

In the exchange illustrated on Fig 4 the agents eventually miss the ball. In some exchanges,

however, the players apply a coordinated strategy where both agents place themselves at the

upper border of the playing field and bounce the ball between themselves horizontally (see S2

Fig). Whenever a random action takes them away from the upper edge, they move back

towards the edge in the next time step. Being at the edge of the field minimizes the effect of

random actions—random movements to only one of two directions are possible. Arriving to

this stable situation happens in every game, but not necessarily in every exchange.

See supporting information for a video illustrating the evolution of the agents’ learning pro-

gression towards the final converged behavior and the coordinated strategy.

Progression from competition to cooperation

Besides the two cases described above, we also ran a series of simulations with intermediate

rewarding schemes. Our aim here is to describe the emergent behaviors when the immediate

reward received for scoring a point (ρ) is decreased.

On Fig 5, the quantitative behavioral metrics are plotted for decreasing values of ρ in order

to give a better overview of the trends. S2 Table summarises these results numerically. The sta-

tistics are collected after agents have been trained for 50 epochs and are averaged over 10 game

runs with different random seeds.

Fig 4. Cooperative game—game situations and the Q-values predicted by the agents. A) The ball is
moving slowly and the future reward expectation is not very low—the agents do not expect to miss the slow
balls. B) The ball is moving faster and the reward expectation is muchmore negative—the agents expect to
miss the ball in the near future. C) The ball is inevitably going out of play. Both agents’ reward expectations
drop accordingly. See supporting information for videos illustrating other game situations and the
corresponding agents’ Q-values.

https://doi.org/10.1371/journal.pone.0172395.g004

Multiagent deep reinforcement learning

PLOSONE | https://doi.org/10.1371/journal.pone.0172395 April 5, 2017 8 / 15

https://doi.org/10.1371/journal.pone.0172395.g004
https://doi.org/10.1371/journal.pone.0172395


The average number of paddle-bounces the two agents make in an exchange (Fig 5a, S2

Table) increases abruptly at ρ = 0.75, because the agents sometimes manage to reach the collab-

orative strategy described in section 2.2 and illustrated on S2 Fig. Compared to fully collabora-

tive mode, the ρ = 0.75 agents reach this strategy less frequently.

The number of wall-bounces per paddle-bounce stays high for ρ> 0 and seems to have a

downwards trend when we decrease the reward from scoring from 0 to -1. Above we suggested

that hitting the ball at an acute angle might be a characteristic of aggressive play. In Discussion,

we argue that the observed flat-and-downwards trend agrees with optimal strategies for these

intermediate rewarding schemes.

The average time the agents take to relaunch a game is summarized on Fig 5c. Notice that

when the agent never chooses to relaunch a game, it takes on average 400 timesteps to be

restarted by the random actions. We see that for all ρ� 0 the agents indeed always avoid

relaunching the ball. For ρ> 0 the average serving time increases with decreasing rewards for

scoring. In the Discussion we argue that the observed trends agree with the optimal policies

for these ρ values.

Comparison of agents trained in multiplayer and single-player modes

Training against another adaptive agent is often referred to as self-play and has been associated

with benefits such as evolving more general strategies [17, 18]. Typically agents are first trained

in a supervised manner, learning from examples. Self-play is then used in a second phase of

learning to enhance the performance even further [19]. To demonstrate the benefits of self-

play for DQNs with no supervised pre-training, we now proceed to evaluate our competitive

agents’ capacity to play against new opponents.

First we make our competitive agent trained in multiplayer mode (multiplayer DQN) play

against a DQN agent trained in single-player mode (single-player DQN; trained against the

algorithm built into the Pong game, as in [7]). After each training epoch we match the multi-

player DQN against a single-player DQN trained for the same number of epochs. The average

score differences (points by multiplayer DQNminus points by single-player DQN) of these

games are shown with a red line on Fig 6a. The multiplayer training starts slower than single-

player (negative score difference in early epochs), because neither of the players know how to

play (in single player mode, the Pong algorithm does). Nevertheless, after 50 epochs the multi-

player DQN defeats the single-player DQN with an average score of 21-2.

Fig 5. Progression of behavioral statistics when passing from competitive to collaborative rewarding
scheme. Each blue dot corresponds to the average of one game. Red line depicts the average across games
(also given in S2 Table). (a) The game lasts longer when the agents have a strong incentive to collaborate. (b)
Forcing the agents to collaborate decreases the proportion of angled shots that bounce off the walls before
reaching the opposite player. Notice the two aberrant values for ρ = −0.75 correspond to games where the
agents never reach the collaborative strategy of keeping the ball alive by passing it horizontally. (c) Serving
time decreases when agents receive stronger positive rewards for scoring.

https://doi.org/10.1371/journal.pone.0172395.g005

Multiagent deep reinforcement learning

PLOSONE | https://doi.org/10.1371/journal.pone.0172395 April 5, 2017 9 / 15

https://doi.org/10.1371/journal.pone.0172395.g005
https://doi.org/10.1371/journal.pone.0172395


Secondly we make both multiplayer DQN and single-player DQN play against 4 variations

of a hand-coded algorithm that tries to keep the center of the paddle at the same height with

the ball at all times. The algorithm is restricted to select an action only every N frames, with

N ranging from 1 (new action every frame) to 4 in the four variations we tested against

(HCN=1 .. HCN=4). The chosen action is repeated until the N frames have passed and a new

choice is made. When the action selection is more frequent (N is smaller), tracking of the ball

becomes smoother and missing the ball less likely. Notice that the DQN agents choose

actions every 4 frames (as in [7]).

Fig 6b demonstrates that multiplayer DQN performs better against these new opponents.

Single-player DQN loses on average to all the opponents. The multiagent DQN, loses against

HCN=1 (the strongest opponent) by only an average of 1.3 points. It defeatsHCN=2 by 4.3

points on average and beatsHCN=3 andHCN=4 by a score of 21-2. The blue dotted line on Fig

6a shows that multiagent DQN learns to outperform HCN=4 already in early stages of the train-

ing process (line crossing above 0), whereas single-player DQN (green dotted line) never out-

performs this opponent (nor the others).

In SI we discuss that the single-player DQN has learned to exploit an apparent weakness in

the Pong algorithm, leading to a certain type of overfitting and a less generalizable strategy.

The combination of this learned strategy being inefficient against other opponents and the sin-

gle-player agent itself being prone to making simple mistakes (see SI for more details) leads to

unsatisfying performance against new adversaries. In multiplayer setting such overfitting is

less likely, because both agents are capable of learning from their mistakes.

In all, these results suggest that multiplayer training procedures are less likely to learn very

specialized behaviours that are useful only against a specific opponent. Instead, they develop

more robust strategies.

Discussion

Multiagent reinforcement learning has an extensive literature in the emergence of conflict

and cooperation between agents sharing an environment [3, 12, 13]. However, most of the

Fig 6. Results of games betweenmultiplayer DQN, single-player DQN and four hand-coded
algorithms. The values correspond to an average of 10 games with different random seeds. Score difference
means the points scored by the agent mentioned first minus the points of the agent mentioned second. (a)
Multi and Single DQN’s performance against each other and againstHCN=4 in function of training time. (b)
Scores of Single DQN and Multi DQN agents against 4 versions of a handcoded agent trying to keep the
center of the paddle level with the ball. N refers to the number of frames a selected action is repeated by the
algorithm before selecting a new action (the smaller the better).

https://doi.org/10.1371/journal.pone.0172395.g006

Multiagent deep reinforcement learning

PLOSONE | https://doi.org/10.1371/journal.pone.0172395 April 5, 2017 10 / 15

https://doi.org/10.1371/journal.pone.0172395.g006
https://doi.org/10.1371/journal.pone.0172395


reinforcement learning studies have been conducted in either simple grid worlds or with

agents already equipped with abstract and high-level sensory perception.

In the present work we demonstrated that agents controlled by autonomous Deep Q-Net-

works (DQNs) are able to learn a two player video game such as Pong from raw sensory data.

This result indicates that DQNs might become a useful tool for the decentralized learning of

multiagent systems living a high-dimensional environments without the need of manual fea-

ture engineering.

In particular, we described how the agents learned and developed different strategies under

different rewarding schemes, including full cooperative and full competitive tasks. The emer-

gent behavior of the agents during such schemes was robust and consistent with their tasks.

For example, under a cooperative rewarding scheme the two Pong agents (paddles) discovered

the coordinated strategy of hitting the ball parallel to the x-axis, which allowed them to keep

the ball bouncing between them for a large amount of time. It is also interesting to note that

the serving time, i.e. the time taken by the agent to launch the first ball in a game, was one of

the behavioral variables modified during the learning.

We also notice that single-agent training against a stationary hard-wired algorithm exposes

the DQN to a limited set of opponent behaviors. In the multiagent setting the strategies of

both agents may change considerably during training. This type of training may expose the

agents to a more diverse range of opponent behaviors and game situations, thus making them

more capable of playing well against an unseen adversary.

Discussion of optimal strategies for intermediate rewarding schemes

Here, we give a brief discussion on what the optimal strategies would be under different

rewarding schemes used in this work. In this theoretical discussion, we consider that both

agents are equally skilled and therefore equally likely to win any exchange. In practice we can-

not guarantee such equality in all situations, but we do observe that across games the rewards

are equally distributed. In the following, we divide this discussion of optimal behaviour to two

different phases of the game 1) when the ball is out of play and needs to be served and 2) when

the ball is in play.

In the first case an agent needs to decide if it is beneficial for it to relaunch the game. With

ρ� 0 it is clear that serving is never the optimal choice as any exchange can only lead to nega-

tive rewards. In fact, the average expected reward from an exchange is negative for all ρ< 1,

because the agents are equal and punishments are bigger than rewards. Nevertheless, in case of

ρ> 0, in specific game situations serving might still be the good choice (e.g. when opponent

has placed itself unfavourably are the agent is very likely to score). In general, we would expect

the average serving time to increase with decreasing ρ. For all non-positive ρ we expect the

agents to avoid serving in all situations. This is indeed what we observe on Fig 5c.

Let us now consider the case where the ball has already been put into play. Clearly, in the

case of ρ� 0 an agent should always try to score. Scoring leads to a positive or zero reward and

helps avoid a possible negative reward (conceding) in the future. At the other end of the spec-

trum, with ρ = −1, scoring is punished as strictly as conceding and the only strategy for mini-

mizing losses is to keep the ball alive. As described above, this leads to cooperative behaviour.

With −1< ρ< 0, the best possible strategy is still to keep the ball alive forever, but the

incentive to discover this strategy is reduced. Remember that both agents are independently

trying to maximize their own reward. If the agents are not skillful enough or if the ball is flying

too fast, keeping the ball in play for a long time is not probable. In such case, the optimal strat-

egy for an agent might be to compete for the lesser penalty (ρ instead of −1), instead of trying

to collaborate. By decreasing the reward difference between scoring and conceding we

Multiagent deep reinforcement learning

PLOSONE | https://doi.org/10.1371/journal.pone.0172395 April 5, 2017 11 / 15

https://doi.org/10.1371/journal.pone.0172395


decrease this incentive to compete. We therefore expected the agent to play on average more

cooperatively when ρ is decreased from -0.25 to -1. In our work we suggest that aggressive play

can be estimated by the number of wall-bounces per paddle bounce. This metric (Fig 5b) does

indeed stay equally high for ρ� 0 and has a decreasing trend when ρ is decreased from 0 to -1.

Limitations

We observe that in the fully competitive (zero-sum) rewarding scheme, the agents overesti-

mate their future discounted rewards. The realistic reward expectation of two equally skillful

agents should be around zero, but in most game situations both of our DQNs predict rewards

near 0.5 (Fig 2, videos in supporting information). Overestimation of Q-values is a known bias

of the Q-learning algorithm and could potentially be remedied by using the novel Double Q-

learning algorithm proposed by [20]. Nevertheless notice that biased Q-values do not necessar-

ily mean that the policy would be biased or wrong.

In this work we have used the simplest adaptation of deep Q-learning to the multiagent case,

i.e., we let an autonomous DQN to control each agent. In general, we expect that adapting a

range of multiagent reinforcement algorithms to make use of DQNs will improve our results

and pave the way to new applications of distributed learning in high-dimensional environments.

A larger variety of metrics might have helped us to better describe the behavior of different

agents. More descriptive statistics such as average speed of ball and how often the ball is hit

with the side of the paddle would have required analyzing the screen images frame by frame.

While probably useful quantitative descriptors of behavior, we were limited to the statistics

extractable from the game memory. Some of the above-mentioned descriptors were neverthe-

less used in qualitative descriptions of behaviour.

Future work

In the present work we have considered two agents interacting in an environment such as

Pong with different rewarding schemes leading them towards competition or collaboration.

Ongoing work is devoted to study the feature representation learning achieved by the different

types of agents. In particular, one can make use of guided back-propagation [21] to compare

the visual features that activate the hidden nodes of the DQN controllers of competitive and

cooperative agents.

Using other games such asWarlords we plan to study how a larger number of agents (up

to four) organize themselves to compete or cooperate and form alliances to maximize their

rewards while using only raw sensory information. It would certainly be interesting to analyse

systems with tens or hundreds of agents in such complex environments. This is currently not

feasible with the system and algorithms used here.

Convolutional neural networks have become the much needed high-level computational

framework against which to contrast data-driven hypotheses of visual processing in the brain

[22, 23]. Similarly, we believe that the success (and limitations!) of network architectures

endowed with different capabilities [24–26] provide important insights and constraints for

how other cognitive processes occur in the brain. A future direction of the present approach is

to study of how communication codes [27, 28] and consensus [28–30] can emerge between

interacting agents in complex environments without any a priori agreements, rules, or even

high-level concepts of themselves and their environment.

Supporting information

S1 Fig. Convergence of deep Q-networks. The convergence of Q-values is a known indica-

tor of the convergence of the learning process of a DQN controlling the behaviour of an

Multiagent deep reinforcement learning

PLOSONE | https://doi.org/10.1371/journal.pone.0172395 April 5, 2017 12 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172395.s001
https://doi.org/10.1371/journal.pone.0172395


agent. Hence, we monitor the average maximal Q-values of 500 randomly selected game

situations, set aside before training begins. We feed these states to the networks after each

training epoch and record the maximal value in the last layer of each of the DQNs. These

maximal values correspond to how highly the agent rates its best action in each of the given

states and thus estimates the quality of the state itself. On the figure we illustrate the evolu-

tion of the Q-value of cooperative, intermediate and competitive agents over the training

time.(a) Q-value estimated by the competitive agents, ρ = 1. (b) Q-value estimated by the

intermediate agents, ρ = 0. (c) Q-value estimated by the collaborative agents, ρ = −1.

(TIF)

S2 Fig. Cooperative strategy allowing to keep the ball indefinitely. By placing themselves at

the upper border of the field and bouncing the ball between themselves, the cooperative agents

manage to keep the ball in the game indefinitely.

(TIF)

S1 Text. Adaptation of the code for the multiplayer paradigm.

(PDF)

S2 Text. Game selection.

(PDF)

S3 Text. Comparison of single-player and multiplayer training.

(PDF)

S4 Text. Access to code.

(PDF)

S5 Text. Access to videos of gameplay.

(PDF)

S1 Table. Normalization of rewarding schemes. Rewarding schemes used to explore the

behaviours between competitive and the cooperative strategy. Rewards in columns 2 and 3

must be multiplied with the normalization coefficient given in the 4th column to make the

learning signal equally strong in all rewarding schemes.

(PDF)

S2 Table. Table of behavioral measures for “Progression from competition to collabora-

tion”. Behavioural statistics of the agents as a function of their incentive to score.

(PDF)

S1 File. Data underlying the figures. This archive contains data points that are visualized on

Figs 1, 3, 5 and 6 and S1 and S2 Tables. Figs 2, 4 and S2 are screenshots and no data associated

to them is available.

(ZIP)

Acknowledgments

We would like to thank Andres Laan and Taivo Pungas for fruitful early discussions about

the project. We gratefully acknowledge the support of NVIDIA Corporation with the

donation of one GeForce GTX TITAN X GPU used for this research. We also thank the

financial support of the Estonian Research Council via the grant PUT438. The funders had

no role in study design, data collection and analysis, decision to publish, or preparation of

the manuscript.

Multiagent deep reinforcement learning

PLOSONE | https://doi.org/10.1371/journal.pone.0172395 April 5, 2017 13 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172395.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172395.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172395.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172395.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172395.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172395.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172395.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172395.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172395.s010
https://doi.org/10.1371/journal.pone.0172395


Author Contributions

Conceptualization: RV.

Data curation: DK AT TM.

Formal analysis:DK AT TM.

Funding acquisition: RV.

Investigation: AT TMDK IK KK Juhan Aru Jaan Aru RV.

Methodology: AT TMDK KK IK.

Project administration: RV Jaan Aru.

Software: AT TMDK KK IK.

Supervision: RV Jaan Aru.

Validation: AT TMDK KK IK.

Visualization: AT TMDK KK IK.

Writing – original draft: AT TMDK Jaan Aru RV.

Writing – review & editing: AT TMDK IK KK Juhan Aru Jaan Aru RV.

References
1. Sutton RS, Barto AG. Reinforcement learning: An introduction. MIT press Cambridge; 1998.

2. Poole DL, Mackworth AK. Artificial Intelligence: foundations of computational agents. Cambridge Uni-
versity Press; 2010.

3. Busoniu L, Babuska R, De Schutter B. A comprehensive survey of multiagent reinforcement learning.
Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on. 2008; 38
(2):156–172. https://doi.org/10.1109/TSMCC.2007.913919

4. Sumpter DJ. Collective animal behavior. Princeton University Press; 2010.

5. Schwartz HM. Multi-Agent Machine Learning: A Reinforcement Approach. JohnWiley & Sons; 2014.

6. Wang L, Sun S, Xia C. Finite-time stability of multi-agent system in disturbed environment. Nonlinear
Dynamics. 2012; 67(3):2009–2016. https://doi.org/10.1007/s11071-011-0125-0

7. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, BellemareMG, et al. Human-level control through
deep reinforcement learning. Nature. 2015; 518(7540):529–533. https://doi.org/10.1038/nature14236
PMID: 25719670

8. Koutnı́k J, Cuccu G, Schmidhuber J, Gomez F. Evolving large-scale neural networks for vision-based
reinforcement learning. In: Proceedings of the 15th annual conference on Genetic and evolutionary
computation. ACM; 2013. p. 1061–1068.

9. Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, et al. Playing atari with deep rein-
forcement learning. arXiv preprint arXiv:13125602. 2013;.

10. Lin LJ. Reinforcement learning for robots using neural networks. DTIC Document; 1993.

11. Schaul T, Quan J, Antonoglou I, Silver D. Prioritized Experience Replay. arXiv preprint
arXiv:151105952. 2015;.

12. Tan M. Multi-agent reinforcement learning: Independent vs. cooperative agents. In: Proceedings of the
tenth international conference onmachine learning; 1993. p. 330–337.

13. Claus C, Boutilier C. The dynamics of reinforcement learning in cooperative multiagent systems. In:
AAAI/IAAI; 1998. p. 746–752.

14. Watkins CJCH. Learning from delayed rewards. University of Cambridge England; 1989.

15. Watkins CJ, Dayan P. Q-learning. Machine learning. 1992; 8(3–4):279–292. https://doi.org/10.1023/
A:1022676722315

16. Mott B, Anthony S. Stella: a multiplatform Atari 2600 VCS emulator; 2003.

Multiagent deep reinforcement learning

PLOSONE | https://doi.org/10.1371/journal.pone.0172395 April 5, 2017 14 / 15

https://doi.org/10.1109/TSMCC.2007.913919
https://doi.org/10.1007/s11071-011-0125-0
https://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
https://doi.org/10.1023/A:1022676722315
https://doi.org/10.1023/A:1022676722315
https://doi.org/10.1371/journal.pone.0172395


17. Tesauro G. Temporal difference learning and TD-Gammon. Communications of the ACM. 1995; 38
(3):58–68. https://doi.org/10.1145/203330.203343

18. van der ReeM,Wiering M. Reinforcement learning in the game of Othello: learning against a fixed
opponent and learning from self-play. In: Adaptive Dynamic Programming And Reinforcement Learning
(ADPRL), 2013 IEEE Symposium on. IEEE; 2013. p. 108–115.

19. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, et al. Mastering the game of
Go with deep neural networks and tree search. Nature. 2016; 529(7587):484–489. https://doi.org/10.
1038/nature16961 PMID: 26819042

20. Hasselt HV. Double Q-learning. In: Advances in Neural Information Processing Systems; 2010.
p. 2613–2621.

21. Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M. Striving for simplicity: The all convolutional net.
arXiv preprint arXiv:14126806. 2014;.

22. Yamins DL, DiCarlo JJ. Using goal-driven deep learning models to understand sensory cortex. Nature
neuroscience. 2016; 19(3):356–365. https://doi.org/10.1038/nn.4244 PMID: 26906502

23. Güçlü U, van Gerven MA. Deep neural networks reveal a gradient in the complexity of neural represen-
tations across the ventral stream. The Journal of Neuroscience. 2015; 35(27):10005–10014. https://doi.
org/10.1523/JNEUROSCI.5023-14.2015 PMID: 26157000

24. Mnih V, Heess N, Graves A, et al. Recurrent models of visual attention. In: Advances in Neural Informa-
tion Processing Systems; 2014. p. 2204–2212.

25. Sukhbaatar S, Weston J, Fergus R, et al. End-to-end memory networks. In: Advances in Neural Infor-
mation Processing Systems; 2015. p. 2431–2439.

26. Schmidhuber J. On Learning to Think: Algorithmic Information Theory for Novel Combinations of Rein-
forcement Learning Controllers and Recurrent Neural World Models. arXiv preprint arXiv:151109249.
2015;.

27. Foerster JN, Assael YM, de Freitas N, Whiteson S. Learning to communicate to solve riddles with deep
distributed recurrent q-networks. arXiv preprint arXiv:160202672. 2016;.

28. Skyrms B. Signals: Evolution, learning, and information. OUP Oxford; 2010.

29. Binmore K. Do conventions need to be common knowledge? Topoi. 2008; 27(1–2):17–27. https://doi.
org/10.1007/s11245-008-9033-4

30. Lewis D. Convention: A philosophical study. JohnWiley & Sons; 2008.

Multiagent deep reinforcement learning

PLOSONE | https://doi.org/10.1371/journal.pone.0172395 April 5, 2017 15 / 15

https://doi.org/10.1145/203330.203343
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
http://www.ncbi.nlm.nih.gov/pubmed/26819042
https://doi.org/10.1038/nn.4244
http://www.ncbi.nlm.nih.gov/pubmed/26906502
https://doi.org/10.1523/JNEUROSCI.5023-14.2015
https://doi.org/10.1523/JNEUROSCI.5023-14.2015
http://www.ncbi.nlm.nih.gov/pubmed/26157000
https://doi.org/10.1007/s11245-008-9033-4
https://doi.org/10.1007/s11245-008-9033-4
https://doi.org/10.1371/journal.pone.0172395

