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Multiagent Optimization System for Solving the
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Abstract—The multiagent optimization system (MAOS) is a
nature-inspired method, which supports cooperative search by the
self-organization of a group of compact agents situated in an en-
vironment with certain sharing public knowledge. Moreover, each
agent in MAOS is an autonomous entity with personal declarative
memory and behavioral components. In this paper, MAOS is re-
fined for solving the traveling salesman problem (TSP), which is a
classic hard computational problem. Based on a simplified MAOS
version, in which each agent manipulates on extremely limited
declarative knowledge, some simple and efficient components for
solving TSP, including two improving heuristics based on a gener-
alized edge assembly recombination, are implemented. Compared
with metaheuristics in adaptive memory programming, MAOS is
particularly suitable for supporting cooperative search. The exper-
imental results on two TSP benchmark data sets show that MAOS
is competitive as compared with some state-of-the-art algorithms,
including the Lin–Kernighan–Helsgaun, IBGLK, PHGA, etc., al-
though MAOS does not use any explicit local search during the
runtime. The contributions of MAOS components are investigated.
It indicates that certain clues can be positive for making suitable
selections before time-consuming computation. More importantly,
it shows that the cooperative search of agents can achieve an over-
all good performance with a macro rule in the switch mode, which
deploys certain alternate search rules with the offline performance
in negative correlations. Using simple alternate rules may prevent
the high difficulty of seeking an omnipotent rule that is efficient
for a large data set.

Index Terms—Cooperative systems, multiagent systems, opti-
mization methods, traveling salesman problems (TSPs).

I. INTRODUCTION

THE TRAVELING salesman problem (TSP) [1], [2] is a
classic combinatorial optimization problem. Although it

can be easily formulated, it exhibits various interesting aspects
of hard computational problems and has often served as a
touchstone for novel approaches [3]–[6]. Moreover, TSP has
various applications, such as very large scale integration (VLSI)
design [7], rearrangement clustering [8], predicting protein
functions [9], etc.

Due to the NP-hardness in a strong sense [10], various
heuristic procedures [1], [2], [11], such as construction and
local search (LS) strategies, have been applied for solving TSP
instances with near-optimal solutions in reasonable amounts
of running time. Representative LS strategies include 2-, 3-
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[12], and 5-opt [13], the Lin–Kernighan heuristic (LK) [12],
etc. Some simple metaheuristics, such as restart [14], [15] and
iterated LS (ILS) [16]–[19], are also widely used.

Recombination search (XS) has been first introduced in a
genetic algorithm (GA) [20]. For TSP, domain-specific XS
strategies have been proposed from position- and order-based
[21]–[23] to edge-based variants [24]–[29].

Various metaheuristics have been proposed, which may use
common search strategies, such as construction, LS, XS, etc.,
as their components for solving TSP. Typical examples include
ILS [16]–[19], GAs [20], [30], ant colony optimization (ACO)
[31], [32], particle swarm optimization (PSO) [33], [34], etc.

Most state-of-the-art algorithms use certain LS heuristics,
particularly LK variants, as the major search components dur-
ing the runtime. For example, the LK–Helsgaun (LKH) [15]
itself is an LK variant. In genetic LS (GLS) [27], [30], [35],
[36], XS strategies are chained with LS strategies for producing
high-quality solutions. Hence, among existing XS strategies,
edge assembly crossover (EAX) [28], [37] attracts our interest
since it had demonstrated its efficiency in certain selected TSP
instances without resorting to the power of LS.

The multiagent optimization system (MAOS) [38] is a
nature-inspired method, which addresses the self-organization
[39] of agents working with limited declarative knowledge [40]
and simple procedural knowledge under ecological rationality
[41]. Specifically, agents explore in parallel [33], [42], based
on socially biased individual learning (SBIL) [43], [44] and
indirectly interact with other agents through sharing public in-
formation [45] organized in the environment (ENV) [46], [47].
Recently, MAOS has been applied to some hard problems
[38], [48]. For TSP, the experiments on MAOS with an EAX
variant have produced some primary encouraging results [48].

In this paper, MAOS is refined to implement simple and
efficient knowledge components for solving TSP. In Section II,
a simplified MAOS with limited memory specifications and
simplified rules is described in a formalized form. In Section III,
some existing knowledge components for TSP, particularly
search behaviors and related auxiliary data structures, are de-
scribed. In Section IV, MAOS is implemented with simple
and efficient components for solving TSP. In Section V, the
experimental results by MAOS cases on some TSP instances
are presented and compared with some existing algorithms. In
the last section, this paper is concluded.

II. MAOS

In this section, a multiagent optimization framework, in
symbolic representation, is described. Afterward, a simplified
MAOS version is defined based on the framework.
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A. Symbolic Representation

The general problem-solving capability arises from the inter-
action of declarative and procedural knowledge [49], [50].

Basic declarative and procedural knowledge components are
represented in units called chunks and rules, respectively [49].
A chuck aggregates a small amount of information, and a rule
specifies a certain action on certain information.

Moreover, macro components or modules may be organized
by a combination of elemental knowledge components.

Each knowledge component is an object that can be defined
by its actual type and certain setting parameters. Moreover,
each action in a rule or a macro component has an interface with
input/output parameters. Each component or parameter has a
name. Each parameter has a formal type. Each type [51] is used
for designating a specific organization structure.

For any two types, one type is defined as compatible with
another type if it is an instance, i.e., a child type, of another
type. Hence, the actual type of each valid parameter value must
be compatible with the formal type of the parameter. Two types
are not considered as compatible if they are different, unless
there is an explicit declaration.

For a chunk, its actual type is a specific data structure. For
a rule (R), its actual type is represented as RI_NAME

I_KEY [38],
where the tags, i.e., I_KEY and I_NAME, designate the high-
level interface with specific formal input/output parameters and
the low-level realization, respectively. Any rules with a same
I_KEY are compatible with a parameter in the formal type
RI_KEY. Here, RI_KEY is also called an abstract rule.

For each module, the relations between its elemental compo-
nents and their input/output parameters are hard-coded. Hence,
a whole system can be symbolically described by all its setting
parameters in scripts, where each actual parameter value may
be an instance of a knowledge component or a value in a
primitive data type. However, the number of setting parameters
in such a system is not necessarily high since many components
and parameters can be fixed in default values.

Such a system has the following features: 1) It allows for
reusing and understanding of existing knowledge components;
2) the system may be locally improved by preferring those
nondominated components with simplicity and efficiency, and
3) some knowledge components can be incrementally embed-
ded into the system by using certain macro modes.

B. Multiagent Framework

The multiagent framework consists of a group of NP au-
tonomous agents. Each agent has a compact solving ability. The
agents cooperatively search in an ENV [47], [48] for achieving
a common intention of finding high-quality solution(s), based
on the internal representation (IR) [48] of an optimization task,
and related world knowledge [50].

The framework runs in iterative learning cycles. By running
as a Markov chain process, the system behavior in the tth
cycle only depends on the system status in the (t − 1)th cycle.
For convenience, during a run, t = 0 and t > 0 are called the
initialization and the runtime stages, respectively.

Moreover, a chunk is called a runtime chunk if it is long-term-
stored, retrieved and updated during the runtime. Each runtime

chunk aggregates certain particularities of potential solutions
[52] of IR [48]. All rules and modules that are applied on the
runtime chunks are also called behaviors.

1) Problem Representation: The IR [48] of an optimization
task encapsulates certain basic knowledge of the task, which
will be further processed for making solution(s) available [50].
Specifically, IR consists of a landscape for providing global
structural information and certain auxiliary knowledge compo-

nents associated with local structural information.
The landscape paradigm has been used for search in general

[53]. Formally, a landscape is represented by a tuple, i.e., 〈SR,
RM 〉. SR is called the representation space, containing all
potential solutions to be searched, where each is called a state

(�x). The quality-measuring rule (RM ) measures which one has
a better quality between any two valid states in the SR.

For a normal task, there is a cost function fC(�x), which is
to be minimized, for every state �x ∈ SR. Then, the quality can
be measured by a simple RO

M rule [48], where ∀�xa, �xb ∈ SR, if
there is fC(�xa) ≤ fC(�xb), then �xa has a better quality than �xb,
and RO

M returns TRUE; else, it returns FALSE.
2) Agent: Each agent is a socially situated autonomous en-

tity [42], [54]. Here, autonomy [54] indicates that an entity is
able to control its own declarative and procedural knowledge
components. Moreover, each agent is capable of generating
new promising states, subjects to the limitations of available
knowledge.

Each agent has several basic characteristics, as follows.
First, each agent possesses a personal long-term memory

(LTM), called MA. The memory stores some private runtime
chunks. For an entity, each chunk in its LTM is persistent during
its lifetime unless the memory is modified by itself. Most real-
world animals possess LTM. The personal LTM supports indi-

vidual learning [43], [44], which allows each entity to acquire
knowledge during its lifetime by utilizing its past experience.
In a group, individual learning allows agents to explore, in
parallel, novel experiences in a large diversity.

Second, each agent refers to runtime chunks in public knowl-
edge (MS), which is organized in an ENV from the outside
world of the agent [46]. Many species, including human beings
[55], have evolved the capability for enhancing their group
fitness [45] through social learning [56], [57], i.e., obtaining
adaptive knowledge from their communities. Social learning
also has its ecological significance for circumventing the in-
hibitory effects of individual learning [44].

Third, each agent can affect the outside world [46], which
is realized by simply sharing a part of its knowledge to the
ENV, i.e., at least one of the chunks in its MA is nonprivate
[45] and can be accessed by the outside world in the read-
only mode.

Finally, the law of behavior is SBIL [43], [44] or cultural
learning [58], i.e., a mix of reinforced practices of lifetime
experiences and available public information [45], which has
been adopted by many species for adaptive foraging [44].
As one of the fast-and-frugal heuristics in ecological ratio-
nality [41], it presents the following: 1) gains most of the
advantages of both individual and social learnings [56] and
2) boosts collective properties by allowing adaptive experiences
to be accumulated over many generations [56].
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The solving capability is owned by a rudimentary central
executive (CE) [48], [59] module. Specifically, CE performs a
generate-and-test behavior [42], [60] for searching promising
states, which contains a generating part, a testing part, and a
solution-extracting part, under the support of a buffer memory,
called MG, which will be cleaned at the end of each cycle.
Under the law of SBIL, the generating part creates new chunks
and stores it into MG by using the knowledge in both MA

and MS . Afterward, the testing part updates MA by using the
chunks in MG. The solution-extracting part just extracts all
state(s) in MG, which has no influence on the efficiency of
the problem-solving process. Moreover, it is assumed that the
generating part performs a rather deliberative behavior, while
the testing part only produces a rather reactive behavior.

3) ENV: The ENV [46], [47] plays significant roles for
supporting the solving capability of all agents.

First, ENV maintains all available world knowledge [50] and
physical supports [47]. For example, it keeps a central clock
that helps synchronize the behaviors, if necessary.

Second, the ENV serves as a task-dependent domain,
namely: 1) It holds the IR of the optimization task, which
encapsulates all problem-dependent knowledge, and 2) it recog-
nizes candidate solution(s) for the task, which is simply realized
by storing a quasi-solution state (�x∗), with the best quality
among all promising states generated by agents for each single-
objective optimization problem.

Finally, ENV also manages resources and services [47] for
all agents according to their protocols. First, it provides the
initial chunks in MA of all agents by a memory-initialization

module so that each agent itself can be designed in a simple
way. Second, it organizes the corresponding MS for every
agent according to all available public knowledge [45], [61]
by an interactive center (IC), through a protocol with all
agents.

4) Interaction: Here, each agent may only directly interact
with IC, in which the interaction protocol between them is
based on an interface of two read-only information flows, i.e.,
1) the nonprivate knowledge of the agent shared to IC, and
2) the corresponding MS of the agent referred from IC. In
principle, each agent and IC can be designed independently
once the corresponding protocol is defined. It also implies
that agents may be realized in a heterogeneous way, while
the interaction protocol should be defined in a way that the
realization of IC is not too complicated, particularly as there
are multiple agents.

During the runtime, IC uses the nonprivate knowledge shared
by all agents to update its private runtime chunks, and such
knowledge will be organized as the MS of each agent. Thus,
agents indirectly interact with their peers through the medium
role of IC. In fact, IC may act as a social memory [62], [63],
where agents can share their past experiences for achieving
emergent behavior by the self-organization of them [39].

C. Simplified System

Fig. 1 shows a simplified MAOS, which includes one of the
agents and the ENV it roams. The agents are homogeneous
in the sense that they have the same internal structure, which

Fig. 1. One of the agents and the ENV it roams.

means that all agents are interacted with the ENV in the
same way.

Given an IR, the chunks in three memories, including MA,
MG, and MS , and, afterward, the nonprivate chunk(s) in MA,
are specified in advance. Then, other components of MAOS
may be implemented in a rather independent way.

1) Basic Knowledge Components: As an extremely limited
version, both MA and MG contain only one chunk for holding
the states �xA and �xG, respectively, and MS contains only one
chunk, i.e., the state set XS , which contains a set of states in
SR. Then, �xA is exactly the only nonprivate knowledge to be
accessed by IC.

The IC is designed in a centralized way [48]. It summarizes a
state set, i.e., XS = {�xA(i)|i ∈ [1, NP ]Z}, where each �xA(i) is
referred from the MA of the ith agent, by a basic coordinating

rule (RO
CO, and then, the same XS is shared by all the agents.

The memory-initialization module simply generates totally
NP states in the MA of agents. Here, it is reduced to an initial

search rule (RIS), which generates each state independently.
The solution-extracting part is reduced as a trivial rule, which

simply exports each �xG directly.
The generating rule (RG) is the major search rule during t >

0. It generates �xG by using two input sources, i.e., �xA and XS .
The testing rule (RT ) simply replaces �xA by the generated

�xG once a specific criterion is satisfied. Due to its simplicity,
the RT may determine nontrivial properties of the �x

(t)
A [48].

There are two simple RT versions: 1) the direct RT (RD
T ),

which does the replacement directly, and b) the better

RT (RG
T ), which does the replacement as RM (�x

(t)
G , �x

(t)
A ) ≡

TRUE. Hence, �x
(t)
A stores the most recent and the best states

ever obtained by an agent as RD
T and RG

T are used, respectively.
The usage of search rules is a direct way of obtaining

potential solutions. From a narrow perspective, a search rule
is defined as a rule outputting a potential new state in SR.

Both RIS and RG can be considered as search rules working
during the runtime, respectively. However, RT is not a search
rule because it does not produce any new state.

The RG rule may be decomposed into a filter and a search
rule, where the filter may serve as a simple knowledge lens [64]
for the purpose of organizing the desired declarative knowledge
while suppressing the irrelevant.

A macro mode is called generic if it can embed with some
kernel and auxiliary rules, and the type of such a macro rule is
the intersection of the types of all kernel rules.
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As a macro search rule, each kernel rule is a search rule. With
macro search modes, we may only concern with those basic
search rules. Then, various advanced macro search rules can be
developed by applying different macro modes multiple times to
embed existing search rules into them.

2) Execution Process: The simplified MAOS version is
executed as follows.

At the initialization stage (t = 0), the states in MA of all
agents are to be supplied by the RIS rule in the ENV, i.e.,

IR
RIS−−−−→

{

�x
(0)
A(i)|i ∈ [1, NP ]Z

}

(1)

where �x
(0)
A(i) is the �xA of the ith agent at t = 0.

During the runtime stage (t > 0), each cycle contains two
sequential clock steps [48], i.e., C_PRE and C_RUN steps.

At the C_PRE step, the ENV itself is activated for executing
some preparation operations by its components, if necessary.
Specifically, the RO

CO in IC is executed to organize the X
(t)
S .

Then, at the C_RUN step, every agent is activated once for
executing its rules. For the ith agent, it performs that

�x
(t)
A(i), X

(t)
S

RG−−−−→ �x
(t)
G(i)

RT−−−−→ �x
(t+1)
A(i) . (2)

For each exported �xG, if there is RO
M (�xG, �x∗) ≡ TRUE, then

the �xG is recognized as the quasi-solution state, i.e., �x∗.
The system is terminated if an optimal solution is found or if

a specific overall cutoff criterion (RCCO) is satisfied.
In summary, the simplified version has one overall setting

parameter, i.e., NP , and four rules, i.e., RIS, RG, RT , and
RCCO. Each rule may also have certain setting parameters.
Moreover, some rules may be decomposed into suitable macro
forms in order to utilize some existing knowledge components.

D. Related Works and Advantage of MAOS

Here, we compare the current MAOS to some related works.
Then, we have a discussion on the advantage of MAOS.

1) Previous MAOS Versions: The current framework is de-
veloped based on both the compact [38] and extended [48]
versions. Since the compact version, a multiagent framework
with a rudimental symbolic representation is formed. In the
extended version, there are four changes: 1) IR is introduced
for general search, including TSP; 2) clock steps are used for
synchronizing behaviors in each clock; 3) a CE is taken into
account for situating the generate-and-test behavior during the
runtime; and 4) a fixed memory specification is applied for
avoiding the complex management on declarative knowledge
elements, as well as supporting an efficient search strategy.

In the current framework, there are four refinements:
1) The symbolic representation is associated with type system
for easy reusing and understanding of the knowledge com-
ponents; 2) a memory-initialization module is formally used,
since the initialization may also have a nontrivial effect on the
solving process; 3) an IC is formally introduced for managing
the public information so that IC and agents can be flexibly
designed according to an interaction protocol between them;
and 4) a buffer memory (MG) is defined for formally separating
the three parts of the generate-and-test behavior.

In the simplified version, MG only contains one state; thus,
the testing behavior is simpler than both the previous versions,
and the generating behavior itself simply becomes a search
rule. Moreover, using generic macro search rules to embed with
some basic search rule is particularly stressed.

2) Population-Based Algorithms: GA [20], ACO [31], [32],
and PSO [33], [34] are three major examples.

GA simulates the evolution process. Each individual is a
basic entity only containing a chromosome, which is not op-
erated by the individual itself. Apparently, a population of
these chromosomes forms the public information. Then, “the

invisible hand” manipulates the population by using some
evolutionary operators, such as selection, crossover, mutation,
inheritance, etc. Instead, MAOS simulates the cultural learning
process by a group of autonomous agents. Moreover, the sim-
plified MAOS may directly use a rich pool of existing search
operators proposed by GA researchers, if necessary.

ACO simulates the stigmergy mechanism in ant colonies.
Each ant can be seen as an agent with simple behaviors;
however, it differs from the agent in MAOS in that it does not
possess a personal declarative memory. The pheromone trails

laid down by the ants serve as the public information and can
be implemented in the IC of MAOS with a suitable protocol.
Without memory, an ant may only perform reflex behaviors. It
may be interesting to know if any efficient strategies may be
introduced once each ant possesses its personal memory.

PSO is a swarm-intelligence-based method. It has been
implemented into the compact MAOS version [38], in which
each particle is an agent. Each particle uses three chunks in
its personal memory, and these chunks are associated with
the search behavior based on a social–psychological princi-
ple. However, PSO is not supported in the simplified MAOS
since it is still difficult to find competitive PSO variants for
solving TSP.

3) Advantage of MAOS for Cooperative Search: As a sim-
ple multiagent system, MAOS may possess the potentials of
parallelism, robustness, scalability, etc. [65]. Moreover, it is
a bottom–up way to study social strategies [66]. However,
here, we are only concerned with the advantage of MAOS
in facilitating cooperative searches as compared with existing
metaheuristics in adaptive memory programming (AMP) [52].

Cooperative search [67]–[69] consists of a search performed
by multiple algorithms which share certain chunks during the
runtime. With cooperation, statistical correlations among the
performance of the individual algorithms will be introduced,
which helps the cooperative portfolio, particularly as the offline
performance of the individual algorithms are in negative corre-
lations [67], to achieve better results than when the individual
algorithms are independent of each other [67].

Many existing metaheuristics, including ILS, ACO, GA,
etc., can be unified under the name of AMP [52] or a more
sophisticated version called multiagent metaheuristic architec-
ture (MAGMA) [68]. It should be mentioned that an agent
in MAGMA could be actually reduced to a search behavior
since it does not possesses a personal memory. With a symbolic
representation, AMP may be seen as rule-based heuristics.
However, it is difficult to represent MAOS in AMP since AMP
lacks a way of distinguishing the owners of runtime chunks.
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In AMP/MAGMA, all the runtime chunks are stored as
public information, and they have the primary importance to all
search behaviors. It means that AMP/MAGMA only supports
the cooperative search of its behaviors on public information.
Thus, it should be very careful in adding/removing a behavior,
since the change may have a significant impact on the whole
system.

In MAOS, for each agent with autonomy, the runtime chunks
from its personal memory and from the public information in IC
have the primary and secondary importance, respectively. Thus,
cooperative search may emerge in two different levels, i.e., the
agent and the group levels.

For the agent level, the cooperation can be achieved if an
agent deploys several alternate search rules, particularly in a
macro realization of the generating part, during the runtime.
From a perspective of multiple sequential learning cycles, the
individual algorithms, i.e., the alternate rules, cooperate with
others on the MA of each agent in an interleaving way.

For the cooperation, the sharing information in the personal
memory of an agent has the primary importance for the agent.
For an agent in MAOS, the alternative search rules may be
embedded independently for identifying, in advance, if their
offline performances are in negative correlations. Moreover,
the testing part may prevent certain high-risk results into its
personal memory. Furthermore, the risk will be isolated in the
agent only if an unexpected result occurs.

For the group level, the cooperation is applied on the group
of agents. Each agent itself can be seen as an individual algo-
rithm, and the agents cooperate with their peers only on public
information in IC in a parallel way.

For the cooperation, the sharing information in IC has the
secondary importance to each agent in the group. Thus, it
does not have a great impact on the whole group, even as to
add/remove heterogeneous agents. While the agents explore
in parallel, the search process may be accelerated by their
cooperation.

The group level is an inherent mechanism within MAOS.
However, the agent level requires an agent using macro modules
explicitly, as in the simplified MAOS version, which may be
easily supported by the symbolic representation.

III. TSP DOMAIN KNOWLEDGE

The implementation of MAOS depends on the problem do-
main knowledge, which is described as follows. First, the IR of
TSP is defined. Second, some auxiliary data structures, which
are eligible for improving the search efficiency, are introduced.
Third, some related search rules are described.

A. IR

For TSP [2], there is a graph with V nodes (or cities) and
a cost matrix DO = (djk), in which djk is the length of an
edge that connects between cities j and k(j, k ∈ [1, V ]Z). Here,
we are only concerned with the symmetric TSP, which has
djk ≡ dkj for the edges. The objective is to find a minimal-
cost Hamiltonian tour, which passes through each node once
and only once.

The representation space (SR) contains all possible states,
where each state �x represents a tour, which is a permutation
{x(1), x(2), . . . , x(V )} of the integer values from 1 through V .

The cost function fC(�x) to be minimized is represented as

fC(�x) = dx(V )x(1)
+

V −1
∑

j=1

dx(j)x(j+1)
. (3)

Normally, the distance metric is defined as the number of
different edges between any two tours [70].

The cost matrix DO itself is the sole source associated with
local structure information. For example, it can be used for
building some candidate sets and for determining the relative
cost changes for certain local moves, which are performed on
valid tours, intermediate reference structures (REFs), etc.

B. Auxiliary Data Structures

Auxiliary data structures, e.g., reference structures (REFs)
and candidate sets, are eligible for improving search efficiency.

1) REF: Some search strategies may use infeasible interme-
diate REFs, which are strongly associated with local structural
information. For TSP, each REF may contain one or more
disjointed graph elements in certain patterns, such as tour
segment [25], [27], subcycle [11], [15], [28], stem-and-cycle
(S&C) structure [71], etc.

Each REF can be modified into a valid tour by suitable
reactive operations. Some graph elements can be preprocessed
into simple elements. For example, each S&C structure can be
transformed into a subcycle or segment. The REF in multiple
tour segments (REFSM) can be reconnected by randomly [29]
or greedily [25], [27] inserting all missing edges. The REF in
disjointed subcycles (REFCM) can be turned into a valid tour
by iteratively joining any two subcycles [15], [28].

2) Candidate Set: For TSP, a complete graph has totally
(V 2 − V )/2 edges; however, most of the edges will not occur
in good tours [2]. Thus, it is reasonable to focus on promising
edges. One simple way is to use an edge set, which is called a
candidate set (EC) [15], as a static sparse graph for restricting
the search.

A simple example of EC is the nearest neighbor subgraph
(NNS) [2], which keeps the nearest knni(knni > 0) neighbors
for each node as candidates, based on the input matrix.

Usually, a minimum 1-tree shares many edges with an opti-
mal tour. The length of the minimum 1-tree is often used as the
lower bound [72], since it is a relaxation of TSP. In Lagrangian
relaxation [15], [2], there is a penalized matrix Dπ = (d′jk),
where d′jk = djk + πj + πk, by associating each node j with
a value πj in a penalty array (�π). Intuitively, the transformed
problem with Dπ may be easily solved if it has a smaller length
of the minimal 1-tree, which can be improved by applying a
subgradient optimization [72] to �π. However, it might be rather
time consuming to obtain a good �π array [15], which requires
one to solve minimum 1-trees many times, and each needs a
time complexity O(V 2) by Prim’s algorithm.

Helsgaun have estimated the chances of a given edge being a
member of a high-quality tour by using an α matrix [15]. The α
matrix can be calculated [15] in a time complexity O(V 2) and
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a space complexity O(V ) based on a given input matrix, where
each edge (j, k) has a corresponding αjk value, which is equal
to the minimum length as a 1-tree is required to contain this
edge minus the length of a minimal 1-tree. Thus, it is intuitive
that an edge is more promising to belong to an optimal tour if it
has a smaller α value [15].

Two α matrices, i.e., Dα and Dα&π , are calculated by using
DO and Dπ as the inputs, respectively. For example, the EC in
the LKH [15] uses Dα&π as its input matrix.

C. Types of Search Rules

Some types of search rules, which are frequency-used in
existing algorithms, are defined based on the differences in their
input parameters and internal features.

Scratch search rule (RSS) generates a new state from scratch.
Hence, it actually has an equivalent type with the RIS rule.

As a child type of RSS, construction search rule (RCS) sim-
ply assigns the value of each part of a state once and only once.

Incumbent search rule uses one incumbent state as the input
and searches its neighborhoods. It has two child types. The first
is perturbation search (RPS), also called mutation in GA [20]
or kick–move in ILS [18]. The second is the LS rule (RLS). The
difference is that RLS intends to improve the quality, which is
capable of exploiting a landscape, while RPS tries to move to
a state with a distance away from the current state, which is
useful for escaping from local optimum.

The XS rule (RXS), which is similar to the crossover in
GA [20], uses two parent states. An implicit advantage is that
the distance between �xO and each parent may be adaptively
controlled by the distance of two parents.

Set-guided search rule (RSGS) uses two parents; one is a
state, and another is a state set. It has an equivalent type with
the RG rule. An example is an Inver-over operator [24].

All the aforementioned types can be easily embedded into the
RG rule with corresponding filters on their input information.

D. Generic Macro Search Rules

The chained macro mode has been used in some existing
algorithms. Here, a macro rule contains a chain of two rules,
i.e., a kernel and a RLS rule, where a chain means that the input
of a latter rule is exactly the output of a former rule.

Apparently, chained with the RLS rule introduces a greedy
search feature for the macro rule. A simple way of realizing a
high-quality RSS rule is to use an RCS as the kernel rule [30].
In GLS [27], [30], [35], [36], the major search rule is a chained
macro search rule by using an RXS rule, which is normally not
inherently greedy, as the kernel rule.

It may also increase the search capability if the kernel rule is
an incumbent search rule, particularly as the RLS rule does not
allow uphill moves. For example, in ILS [18], the major search
rule uses a perturbation search rule as the kernel rule.

E. Basic Search Rules

1) Construction Search: The construction search rule
(RCS) starts with a partial tour and adds the remaining nodes

one by one until the tour is complete. Here, two basic require-
ments are considered.

First, if there are multiple tours to be constructed, the diver-
sity among these constructed tours should be large to provide
enough information for search strategies.

The randomized RCS rule (RR
CS) is a simple RCS version,

which constructs a state �x in the SR at random.
Second, each constructed tour should have a small distance

to a good tour to contain positive information [15].
The probabilistic RCS rule (RP

CS) uses a candidate set
(EC:CS) and DO as its inputs. A probability matrix is ini-
tialized as pij = d−2

ij ∀i, j. Then, each state is constructed
by adding a city as the next city based on roulette selection
from the remaining cities in (EC:CS) or else the remaining city
with the maximum probability once all the cities in (EC:CS)
were used.

2) LS: Well-studied LS strategies include r-opt variants,
such as 2-, 3- [12], 5-opt [13], [15], etc., and multistage variants
[10]. Some LS strategies may also use infeasible REFs, e.g., the
two-stage moves with infeasible 2- [11], [13] and 3-opt [15],
and the ejection chain algorithm [71] uses S&C for generating
ejection moves.

As a simple LS, 3-opt systematically examines sequential ex-
changes (at most, three edges) in a positive gain criterion [12].
The full 3-opt version requires the examination of the O(V 3)
exchanges. In this paper, two 3-opt versions are considered.
The R3OC

LS rule simply adopts a static candidate set (EC:LS)
for restricting the moves, and the R3OS

LS rule incorporates one
more speed-up technique, i.e., don’t look bits [73] associated
with each node.

3) XS: The XS rule (RXS) generates a state �xO by using
two parent states, i.e., �xP1 and �xP2.

Each tour is a permutation, as in some other problems, such
as flow-shop scheduling [29], quadratic assignment problem
[32], etc. Some order-based XS strategies try to preserve the
order and position information, such as cycle crossover [23],
partially mapped crossover [21], etc. Certain rules, e.g., maxi-
mal preservative crossover (MPX) [22], may also use edges as
auxiliary information.

For TSP, each tour may serve as a restrict sparse graph [74].
In fact, edge information is more straightforwardly for guiding
the search than order and position information [29].

Edge-based XS strategies try to utilize the positive edge
information. For convenience, an edge is called external if it is
not contained in the union edge set of both parents (EU ). One
basic idea is that any edge in (EU ) can be freely introduced
as the edge of �xO. An extreme example is edge exchange
crossover (EXX) [26], which does not add any external edges.
Another basic idea is that good external edges should be also
taken in account since (EU ) does not necessarily contain all
the edges belonging to, at least, an optimal tour, even as (EU )
comes from many high-quality states [74]. Certainly, the quality
of �xO may be rather low if the probability of introducing
unpromising external edges is high.

Many edge-based XS strategies work in two sequential steps:
1) selects a subset of the edges in (EU ) into a REF, and
2) modifies the REF into �xO. Only the second step may
introduce certain external edges into �xO.
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Most existing strategies use the REF in multiple tour seg-
ments (REFSM), although they may work under different
classes, such as intersection, union, partition, etc.

The intersection class directly uses the intersection edge sets
of both parents as the REFSM. A famous example is distance-
preserving crossover [27].

The union class uses the union edge sets of parents for
constructing tour segments. In edge recombination [29], tour
segments are constructed by considering node degrees.

The partition class is realized as follows. First, the nodes
are partitioned into different groups. For each parent tour, each
group is associated with a subgraph with corresponding edges
connecting the nodes within the group. Second, the REFSM is
formed by a union set of all groups from different parents. A
typical example is natural crossover [25].

A few edge-based XS strategies utilize the intermediated
REF in disjointed subcycles (REFCM). Most of them belong
to the family of the EAX [28].

The probability of introducing low-quality edges by joining
subcycles in REFCM is much lower than that by connecting
segments in REFSM, as both kinds are realized in greedy
mechanisms, since the former has more choices. Joining may
be applied on all nodes in subcycles, while connecting can only
happen on the two end nodes of each segment.

IV. IMPLEMENTATION

For convenience, certain template(s) may be specified in
advance, and certain basic MAOS case(s) can be defined by
implementing all rules; then, all related cases can be described
by applying local modification(s) on the basic cases.

Two simple improving heuristics are taken into account,
based on a generalized edge assembly recombination (GEAX)
for enhancing the overall search performance.

A. GEAX

The GEAX is a generalization of EAX [28], [37], which is
realized as follows.

Step 1) Design an auxiliary set, called AB-Set, where each
is called an AB-cycle (EAB) [28], which is an
even-length cycle with A-Edges (EA) and B-Edges

(EB), by tracing different edges of �xP1 and �xP2

alternately. It is realized in two substeps.
Step 1.1) Build the AB-library by using �xP1 and �xP2. As

each AB-Cycle is identified, it is stored into the
AB-Library, and the edges that compose it are no
longer used [28]. This procedure is repeated until
no AB-Cycle could be extracted or the number of
AB-Cycles has achieved an upper value (NABL).

Step 1.2) Design the AB-Set by an AB-selecting rule
(RSAB), which selects some AB-Cycles from the
AB-Library.

Step 2) Generate multiple candidate states by using both the
�xP1 and the AB-Set, where each AB-Cycle in the
AB-Set is used for guiding the kick–move on �xP1 in
two substeps [28].

Step 2.1) Kick the �xP1 into a REFCM structure, called EO,
which contains disjointed subcycles covering all
nodes, by using each AB-Cycle. First, �xP1 is
copied as the initial EO. Then, all A and B-Edges
in the AB-Cycle are removed from and added
to the EO. Thus, all the edges introduced in the
EO, i.e., the B-Edges, are selected from the EP2,
based on the definition of the AB-Cycle.

Step 2.2) Modify the REFCM structure into a valid tour. It
is achieved by joining two subcycles iteratively,
which is accelerated by a candidate set (EC:XS).
While there are multiple subcycles, the subcycle
with the minimal number of edges is selected as
the base one, and then, a greedy two-exchange
with maximum local gain is used for merging it
with any other one, where an edge is systemati-
cally selected in the EC:XS.

Step 3) Choose one state among the candidate states as
the �xO by a state-competing rule, which is simply
realized by associating each candidate state �xc with
the competing function (fcomp) to be minimized
[48], i.e.,

fcomp(�xc) =
fC(�xc) − fC(�xP1)

DIS(�xP1, �xc)CD
(4)

where DIS(�xP1, �xc) reflects the distance between
�xP1 and �xc and CD is the diffusion coefficient,
which may determine the velocity of information
diffusion [48]. The DIS(�xP1, �xc) function is ap-
proximately estimated as |EAB|/2, i.e., a half of
the number of edges in the corresponding AB-
Cycle [37].

The fcomp integrates both the high-quality criterion [75]
and the distance requirement [18], [27], [70]. If CD = 0, it
represents the high-quality criterion only, as in EAX-1AB [28]
and some of its variants [75], [76]. As CD < 0, it also prefers
high-quality states that are far away from the incumbent state,
as in the fitness-distance-based diversification [18]. As CD >
0, it prefers high-quality states closer to the incumbent state.
If CD = 1, it represents the criterion employed in EAX-Dis
[37]. In [48], CD = 1.5 is used for slowing down information
diffusion.

The inherent greedy feature is achieved by two aspects. First,
�xP1 is kicked into REFCM by introducing the edges in �xP2

(Step 2.1), while the REFCM can be turned into a valid tour
with a few promising external edges (Step 2.2). Second, there
is an iterative child generation (ICG) [18], [75] (Step 2), i.e., the
competition among multiple independent candidate trials. Such
a simple competing algorithm portfolio may reduce the heavy-
tailed distributions of individual trials [14], [67]. In fact, ICG
has shown its efficiency in ILS [18], and it may perform better
than 2-opt as it works with EAX [75].

In summary, GEAX has four variable parts, i.e., CD, NABL,
RSAB, and EC:XS, where NABL is fixed as 100 in this paper.

The random GEAX (GEAX.R) uses the random RSAB

rule (RR
SAB), where totally NMT AB-Cycles are randomly
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chosen from the AB-Library and any repeated AB-Cycles are
discarded.

Some existing EAX variants can be represented by GEAX
cases. For example, EAX-Dis [37] is the GEAX.R case with
CD = 1 if the potential difference in EC:XS is not considered.

B. Simple Improving Heuristics

Under limited time and resources, animals make inferences
about specific domains in the real world with simple heuristics
by utilizing certain imprecise knowledge [41].

1) Sorting-Based AB-Cycle Selection: The first heuristic is
applied into the process of ICG [18], [75] so as to utilize
imprecise positive clues before generating candidate states.

For GEAX, some AB-Cycles are obtained in Step 1.1), where
each AB-Cycle leads to a candidate state. However, the random
RSAB rule does not utilize any information available at the
stage.

Each AB-Cycle (EAB) is associated with the function fclue

fclue(EAB) =
∑

len(EB) −
∑

len(EA) (5)

where
∑

len(E) represents the sum of length of all edges in E.
Hence, the fclue value is the delta length of total edges between
�sP1 and the intermediate REFCM structure to be generated by
the EAB at Step 2.1). Intuitively, an AB-Cycle with a smaller
fclue value may carry an imprecise positive clue, although some
new edges will be included later to modify the REFCM into a
valid tour at Step 2.2).

The sorting RSAB rule (RS
SAB) is proposed at Step 1.2),

where totally NMS AB-Cycles in the AB-Library with the
minimal fclue values are selected as the members of AB-Set.
Certainly, if NMS is larger than the size of the AB-Library, then
all the elements in the AB-Library become the members of the
AB-Set.

The sorting GEAX (GEAX.S) simply differs from GEAX.R
in that the former uses RS

SAB instead of RR
SAB at Step 1.2)

of GEAX.
2) Switch Macro Mode: The second heuristic is the generic

macro search rule in switch mode. The switch macro mode
takes multiple kernel rules in the same I_KEY as the alternate
rules, which may have different I_NAME tags, and only runs
one of them, which is selected by a deploying rule (RDEP) [42],
i.e., a simple task-switching schedule [77], at each activation.

If RG or at least one of its components (e.g., RXS) is realized
in the switch mode, then agents may run alternative RG rules at
each cycle. For each agent, all the alternate RG rules cooperate,
at least, by its personal knowledge during multiple cycles.
Thus, the switch macro mode supports the cooperative search
of multiple alternative search rules in the agent level.

C. Standard Template

The standard MAOS template, which employs NP compact
agents, has the following specific components.

The RIS rule is simply a macro scratch search rule in chained
mode. It is organized as a tuple 〈RCS, RLS〉, i.e., a chain of a
construction search rule (RCS) and an LS rule (RLS).

The RG rule is decomposed as a tuple 〈RSP, RXS〉, which
contains a state-picking rule (RSP) and an XS rule (RXS). For
the RXS rule, a basic requirement is that it is a greedy strategy.
The RXS rule uses two input sources, i.e., �xP1 and �xP2, where
�xP1 = �xA and �xP2 is filtered from XS by the RSP rule. For the
RXS rule, �xP1 and �xP2 can be seen as the incumbent state and
the guiding information, respectively.

Moreover, the macro search rule in switch mode is applied on
the RXS rule. The macro RXS rule contains an RDEP rule and
several alternate RXS rules. If there is only one alternate RXS

rule, then the macro RXS is reduced to the alternate RXS.
Organized by simple components with specific roles, the

MAOS template tends to tailor to the “big valley” [70] in the
TSP landscape, which suggests that better local minima tend
to have a smaller distance to the closest optimum by sharing
common partial structures [17], [19], i.e., edges or segments.

At the initialization stage, the RCS is to construct states with
both quality and diversity, and the RLS is to improve the quality
of each state for reaching the “big valley.” Then, during the
runtime, as the basic intuition behind ILS [16]–[18], agents
explore in parallel, where each high-quality state �xA(i) may
serve as the incumbent state for searching global optimum in
its neighborhood with a short distance.

Moreover, the high-quality tours in XS tend to concentrate
on a very small subspace around the optimal tour(s) [32], which
may lead to two positive effects: 1) The union of edges in high-
quality tours may be seen as a restrict graph. The graph may
cover most or even all edges in an optimal tour while it is quite
sparse, due to the large number of shared edges among high-
quality tours [74]. The sparse restrict graph may serve as a
dynamic guiding information for facilitating the search process.
It has been shown in ILS [16] that cost-restricted kicks can be
more effective than blind kicks, particularly for large instances,
and b) the edge set may represent pseudobackbone frequencies
[19], although it is NP hard to find the exact backbone [78].
Compared with the pheromone matrix [31], [32], the edge set
provides not only the frequency of edges but also the frequency
of many tour segments, for belonging to high-quality tours.
Through picking the partial information by the RSP rule, it is
able to utilize the pseudobackbone frequencies implicitly.

D. Standard Case

The standard case (#STD) is defined based on the standard
template, where the NP will be specified at each time it is used.

For RIS, it is implemented as 〈RP
CS, R3OS

LS 〉. For RT , RG
T is

used. For the macro RXS rule, the GEAX.R is employed as
the alternate RXS rule, which has CD = 1.0 and RR

SAB with
NMT = 20. Basically, GEAX.R is equivalent to EAX-Dis [37]
if the difference in EC:XS is not considered.

For RDEP, the randomized RDEP rule (RR
DEP) is realized by

selecting one of the alternate rules at random [42].
An identical candidate set (EC:STD) is employed for restrict-

ing the search of all related behavioral rules, i.e., RCS, RLS, and
RXS. Specifically, EC:STD is realized in the NNS mode [2],
which has knni = 20 and has DO as its default input matrix.

For RSP, the randomized RSP rule (RR
SP) is considered,

which picks one of the states from the given XS at random.
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For RCCO, the RMC
CCO rule is used, which is terminated if the

maximum number of cycles (TMAX) is achieved or if no further
improvement on the solution quality occurs for TCON cycles.
Here, TMAX and TCON are fixed as 500 and 100, respectively.

For each tour, the most straightforward Array representation
[79] is used by both the RCS and RLS rules, while the doubly

linked list representation [79], which has a similar time com-
plexity with the Array representation, is used by GEAX since it
is convenient for representing the REFCM structure.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The MAOS is coded in JAVA, and was run by JRockit JVM
1.5 on a 1.5-GHz Itanium 2 processor with 1-G memory.

Two benchmark sets are used; the first is all 21 instances with
1000 ≤ V < 3000 nodes in the TSP library (TSPLIB) [80],
and the second is all 22 instances with 3000 ≤ V < 6000 in
the VLSI data set [7]. Using a set of instances with nodes in
a range may bring a lesser bias on the average performance
than by using some selected instances. For each instance, ten
independent runs (NR) were performed.

There are three indices for the performance of an algorithm.
The first is the success rate (ps), which is estimated by NS/NR,
where NS is the number of times optimal states were found.
The second is the relative percentage deviation (RPD) above
the best known solution (f ∗). The third is the running time
(tr) in seconds, which may be influenced by different machine
configurations. Both ps and RPD are related to the solution
quality, although they are based on different viewpoints.

A. Contributions of Components and Parameters

The contributions of the MAOS components are evaluated
on the TSPLIB instances by using RPD–Time diagrams for
indicating the Pareto efficiency of both performance indices.
For each case, NP = 10, 30, 50, 100, and 300 are tested.

Fig. 2 shows the results by #STD using different RT and
RIS components. For RT , #STD|RT.D simply uses RD

T instead
of RG

T , which removes the quality control. It produces similar
performance with #STD, which means that the employed RXS

has an inherent greedy feature in a strong sense.
For initialization, the #STD|CS.RND uses RR

CS instead of
RP

CS, and #STD|LS.3OC uses R3OC
LS instead of R3OS

LS . In fact,
the tuple 〈RR

CS, R3OC
LS 〉 has been used in [48] for initialization,

where R3OC
LS has shown its advantage as compared with the 2-

opt [48]. Fig. 2 shows that #STD achieves highly dominating
performance than both #STD|LS.3OC and #STD|CS.RND.

Table I lists the average information at t = 0 for all three
cases under NP = 10, 100, and 1000, where RPD0 and tr0
are RPD and tr at t = 0, respectively, and rT0 = tr0/tr. It can
be seen that #STD achieves much lower rT0 than both of the
others. It reduces both RPD0 and tr0 significantly by using RP

CS

instead of RR
CS, which indicates the high advantage of using

suitable RCS heuristics, even with simple input information.
With R3OS

LS , which simply incorporates don’t look bits [73] into
R3OC

LS , the initialization requires much less tr0, although it also
produces worse RPD0. Certainly, it still leaves a large space for
improving the RIS since the initialization costs more than 32%

Fig. 2. Results by #STD using different RT and RIS rules.

TABLE I
AVERAGE RESULTS AT THE INITIALIZATION STAGE (t = 0)

of the total running time. For investigating the performance of
RXS, it is expected that the RIS to be introduced may reduce
rT0, while it is not too sophisticated.

Here, the tr0 is mainly consumed by the RLS. The Array
representation may be replaced by the two-level tree [79],
which may drop the time complexity of per Flip from O(V )
to O(

√
V ), while having no impact on its outputs. It has also

been declared that the “segment list” version [30] may make it
twofold faster than the conventional two-level tree. Moreover,
more sophisticated RLS may be considered, concerning the
overall performance. For example, 5-opt [13] may achieve bet-
ter performance than 3-opt, which has been the basic move in
LKH [15] and PHGA [30]. The chained LK (CLK) [16], which
has been used in some algorithms [36], may also be considered.

Figs. 3 and 4 show the results by using different NMT values
for RR

SAB and different CD values for GEAX.R, respectively.
Fig. 3 shows that the performance of #STD is quite stable for

NMT varied from 10 to 50 and only becomes worse as NMT

is smaller, such as NMT = 5, 3, and 1. Hence, the choice of
NMT is quite flexible. Moreover, it also suggests the advantage
of ICG [18], [75].

Fig. 4 shows that varying CD from −1.0 to 2.0 does not
introduce a great difference, although the case with CD = −1.0
seems slightly worse, which may be due to two possible rea-
sons. The first is that the multiagent framework may facilitate
the preservation of the diversity of positive clues in public
information [58], as explored by the agents in parallel, where
each of them possesses a private memory and only picks a piece
of public information for biasing its search. The second is that
the GEAX worked in the biased style may keep a local diffusion
effect, since most AB-Cycles are in small sizes and some edges
may be brought back by the greedy joining mechanism. Aside
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Fig. 3. Results by #STD using different NMT values for the RSAB rule.

Fig. 4. Results by #STD using different CD values for the GEAX.R.

from this, a larger CD value may be considered for achieving
better performance if a longer running time is available.

Fig. 5 shows the results by using candidate sets (EC:STD)
in the NNS mode, which are derived under four input ma-
trices, i.e., DO(#STD), Dα(#STDα), Dπ(#STDπ), and
Dα&π(#STDα&π), respectively. The penalty array (�π) for
obtaining Dπ of each TSBLIB instance comes from the LKH
1.3 [15]. It shows that using Dα, Dπ , and Dα&π as inputs of
candidate sets may bring on a better performance than using
DO. However, it should be careful to use �π by counting the
high time complexity for finding a suitable one [15].

B. Performance Improvements

For further investigating the performance of MAOS cases
with improving heuristics, #STDα is taken as a basic case.

The case #STDα|S simply uses GEAX.S, which has NMS =
10 for the RS

SAB rule, as the RXS rule to be used.
The case #STDα|S&R deploys two alternate RXS rules, i.e.,

the GEAX.R in #STDα and the GEAX.S in #STDα|S, by
the RR

DEP rule. It is equivalent to a macro RG rule with two
alternate RG rules, where each uses one of the RXS rules.

Fig. 5. Results by #STD using candidate sets in different input matrices.

Fig. 6. Results by #STD and #STDα in different RXS’s, on TSPLIB
instances.

Fig. 6 and 7 show the results of four MAOS cases, i.e., #STD,
#STDα, #STDα|S, and #STDα|S&R, which are applied on
the TSPLIB and VLSI instances, respectively.

First, it shows that the #STDα|S performs quite well on
both RPD and tr for the TSPLIB instances. Hence, the sorting
criterion by RS

SAB may indeed catch certain positive clues for
achieving fewer trials in ICG.

Second, it also shows that #STDα|S produces worse results
for the VLSI data set as NP is large. Hence, the MAOS cases
with GEAX.R and GEAX.S are in negative correlations [67],
where each is particularly good at one of the data sets.

Thirdly, it demonstrates the efficiency of #STDα|S&R on
both data sets. The #STDα|S&R case achieves a similar per-
formance with the better one of #STDα and #STDα|S. As
NP is larger than 100, the cooperative search by GEAX.R and
GEAX.S even produces better performance than the search by
GEAX.R or GEAX.S alone for the VLSI data set.

Such a cooperative search may imply a different viewpoint
for designing algorithms, since the offline performance of each
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Fig. 7. Results by #STD and #STDα in different RXS’s, on VLSI data set.

TABLE II
RUNNING TIMES OF THE GREEDY HEURISTIC [1] ON DIFFERENT CPUS

alternate rule can be accumulated during the solving process.
Instead of seeking for an omnipotent rule for a full set of tasks,
which might be extremely difficult, if not impossible, the macro
rule for deploying simple alternate rules in negative correlations
may be considered. Moreover, only a part of the new alternate
rules need to be implemented for covering those new tasks that
are difficult for existing alternate rules, as the domain structure
features of tasks may change over time.

C. Comparisons With Other Algorithms

It is difficult to compare the running times of various algo-
rithms on different executing conditions, including both ma-
chine configurations and programming platforms.

A simple way to roughly compare the difference on various
machine configurations is to execute a same benchmark code
[1]. Table II summarizes the running times of the C code of a
greedy heuristic [1]. The rCPU values mean that the 1.5-GHz
Itanium 2 is about 2.82 and 2.72 times faster than the 933-MHz
Pentium III [30] and the 500-MHz Alpha [1], respectively.

Moreover, both the JAVA and C benchmark codes of Sci-
Mark 2.0 were executed on the 1.5-GHz Itanium 2 by using
JRockit 1.5 and GCC 3.3.3 (with −O2 option) and obtained
the composite scores of 170.63 and 185.08 (higher is better),
respectively. It indicates that the performance gap between
JAVA and C is really close. For simplicity, the small gap is not
considered in the comparisons.

For the two CPUs with rCPU values in Table II, we compare
the normalized running times. For other CPUs compared in
this paper, we simply compare the real running times; however,
the readers may also achieve a rough normalization since such
CPUs are faster than the 933-MHz Pentium III in Table II.

TABLE III
RESULTS BY LKH, IBGLK, AND PHGA ON TSPLIB INSTANCES

The performance of MAOS on the TSPLIB instances are
compared with three algorithms, i.e., LKH [15], IBGLK [19],
and PHGA [30]. All the algorithms are coded in C. The times
of IBGLK and PHGA were normalized to 500-MHz Alpha [19]
and 933-MHz Pentium III [30], respectively, and the time of
LKH was measured on a 933-MHz Pentium III [30].

The IBGLK [19] combines iterated LK algorithms with the
pseudobackbone frequencies by considering two techniques:
1) construct pseudobackbone by using samples of local minima
and 2) alternate between BGLK and regular LK once each of
them fails. It has outperformed the three LK versions.

The LKH [15] has been one of the most powerful LK
variants, which considers a powerful set of two-stage moves and
utilizes Dα&π as the input matrix of a candidate set. The results
tested in [15] did not count the time for obtaining suitable �π
arrays and missed one of the instances, i.e., d2103. Hence,
the results tested in [30], which were performed on the UNIX
version of LKH 1.3 [15], are considered.

The PHGA [30] is a multipopulation hybrid GA, which uses
a variant of the MPX [22].

Some speed-up techniques, such as candidate set, don’t

look bits [73], and the two-level tree [79] tour representation,
are used. Moreover, PHGA represents tours in the “segment
list” version [30] of the two-level tree and uses Helsgaun’s
5-opt [15].

Table III summarizes the performance indices of LKH [30],
IBGLK [19], and PHGA [30], for the TSPLIB instances.

Table IV lists the results of #STDα|S&R with NP = 300,
500, and 1000 for the TSPLIB instances, where the TRUN

means the actual running cycles. With NP = 1000, MAOS can
achieve ps > 0 for all the instances and ps = 100% for 19
instances.

When comparing Table IV with Table III, the MAOS with
NP = 300 achieves performance 1.44 times higher for the ps,
6.71 times lower for the RPD, and 2.10 times faster for the
normalized running time than that of LKH; the MAOS with
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TABLE IV
RESULTS BY #STDα|S&R WITH DIFFERENT NP ’s

ON TSPLIB INSTANCES

TABLE V
RESULTS BY LKH-V 10 AND #STDα|S&R CASES ON VLSI DATA SET

NP = 500 achieves performance 46.92 times lower for the
RPD and 16.64 times faster for the normalized running time
than that of IBGLK; and the MAOS with NP = 1000 achieves
performance 1.01 times higher for the ps, 2.63 times lower for
the RPD, and 6.89 times faster for the normalized running time
than that of PHGA.

Table V compares the results of LKH-V 10 [7] and the
#STDα|S&R with NP = 150, 1000 for the instances in VLSI
data set, where RPDB means the best RPD. LKH-V 10 [7]
is the best of ten runs of LKH, each with V iterations, on
AMD Athlon 1900+ processor (1.6 GHz) [7]. The MAOS
with NP = 1000 achieves performance 3.00 times lower for the
RPD and 13.65 times faster for the real running time than that

TABLE VI
RESULTS BY #STDα|S&R AND TWO EAX VARIANTS

ON TSPLIB INSTANCES

of LKH-V 10. Moreover, LKH-V 10 can be viewed as ten runs
of LKH-V . Then, for LKH-V , its RPDB is exactly the RPD of
LKH-V 10, and its running time is 1/10 of the tr of LKH-V 10.
The MAOS with NP = 150 achieves performance 4.64 times
lower for the RPDB and 9.21 times faster for the real running
time than that of LKH-V .

Table VI compares the results of the #STDα|S&R with
NP = 300 and two prominent EAX variants, i.e., EAX-Dis
[37] and HeSEA [36]. Only HeSEA [36] integrates an advanced
LS strategy, i.e., a CLK [16] with an ICG in family competition.
The comparison is not complete since the two EAX variants
were only tested on five and seven selected instances for the
21 TSPLIB instances, with 1000 ≤ V < 3000. For EAX-Dis,
it is coded in C++ and was run on a 1.7-GHz Xeon processor.
For HeSEA, it is coded in C and was executed on a 1.2-GHz
Pentium IV processor. For the five selected TSP instances,
#STDα|S&R achieves performance 1.08 times higher for the
ps, 4.83 times lower for the RPD, and 5.17 times faster for the
real running time than that of EAX-Dis [30]. For the seven
selected TSP instances, #STDα|S&R obtains slightly worse
ps than HeSEA on u1432 and u2152 and the same ps(= 1.00)
as HeSEA on other five instances, and achieves performance
4.67 times faster than HeSEA for the real running time.

Unlike many state-of-the-art metaheuristics [15], [27], [30],
including some EAX variants, such as HeSEA [36], current
MAOS versions do not use explicit LS strategies, particularly
the LK variants, during the runtime. In fact, The MAOS cases
are good at certain TSP instances, while LS strategies may be
good at some other TSP instances. For example, LKH is good
at u2319, u1432, pr1002, etc., while the MAOS cases are good
at si1032, d1291, vm1748, etc.

There are two ways to implement LS strategies into MAOS.
The first is to chain RXS with RLS, as in GLS. The second is
to consider RLS rules as alternate rules in the macro RXS rule
in switch mode, since RLS can be seen as a special RXS, which
uses only one parent as the incumbent state.

Due to the machine memory limitation, the MAOS cases
are evaluated on some TSP instances with V < 6000 only.
For tackling large-scale instances, it may be interesting to
incorporate MAOS with some edge-locking approaches [5],
[81], which may reduce those instances into smaller ones by
locking certain edges, e.g., the common segments in tours [30].

VI. CONCLUSION

The MAOS is organized with a group of agents self-
organizing in the ENV, where they indirectly cooperate with
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others through an IC. In the simplified MAOS version, each
agent possesses extremely limited declarative knowledge and
simple procedural rules. Moreover, using generic macro search
rules to embed with some basic search rule is addressed. MAOS
may be particularly suitable for supporting cooperative search.

The implementation of MAOS focuses on utilizing simple
and efficient components for tailoring to the problem domain.
Moreover, two simple improving heuristics are taken into ac-
count based on a GEAX.

The experimental results on both the TSPLIB instances and
the VLSI data set demonstrate that MAOS is competitive with
some state-of-the-art algorithms, including LKH, PHGA, and
IBGLK, in both the solution quality and the running time.

The characteristics of the components and parameters of
MAOS are investigated based on the overall performance. The
advantage of two simple improving heuristics is also shown. In
particular, with the macro rule in switch mode, which deploys
alternate rules with offline performance in negative correla-
tions, agents may achieve better performance than with each
alternate rule alone. It may prevent the difficulty of finding an
omnipotent rule for tackling a full set of tasks.

Future works may be performed on the following topics:
1) search for new alternate rules that are particularly good for
some difficult problem instances; 2) study online strategies for
adaptive deployment of alternate rules during the runtime; and
3) apply MAOS to other hard computational problems.
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