
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

I. Introduction

T
o define mobility policies, the decision makers 

need support systems to assist them. In this con-

text, simulation is one of the important tools that 

allow them to test strategies and multiple sce-

narios without impacting the real traffic [1], [17], [25], 

[39]. However, transportation systems are becoming 

progressively complex as they are increasingly com-

posed of smart and mobile entities. Indeed, passen-

gers mobile devices and connected vehicles allow 

passengers and vehicles to have up-to-date informa-

tion and their behavior is now related to this infor-

mation. It is now possible to provide passengers with 

optimal itineraries and also to update these itinerar-

ies in real-time, following the dynamic status of the 

networks (congestions, breakdowns, accidents, etc.). 

Providing passengers with traffic information has 
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Abstract—Modeling and simulation play an important role in transportation networks analysis. With the 

widespread use of personalized real-time information sources, the status of the simulation depends heav-

ily on individual travelers reactions to the received information. As a consequence, it is relevant for the 

simulation model to be individual-centered, and agent-based simulation is the most promising paradigm 

in this context. Information is now personalized, and the simulations have to take into account the interac-

tion of individually guided passengers. In this paper, we present a multiagent simulation model to observe 

and assess the effects of real-time information provision on the passengers in transit networks. These 

effects are measured by simulating several scenarios according to the ratio of connected passengers to a 

real-time information system. We represent the passengers and the vehicles as agents in the system. We 

analyze the simulated scenarios following their effect on the passengers travel times. The information pro-

vided to the connected passengers is based on a space-time representation of the transportation networks. 

Results show that real-time personalized information may have an increasingly positive impact on overall 

travel times following the increasing ratio of connected passengers. However, there is a ratio threshold 

after which the effect of real-time information becomes less positive.
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generally a positive effect on them and improves traffic 

by alleviating congestion and reducing waiting and travel 

times. However, the broadcast of traffic information and 

the individual guidance of passengers might have adverse 

effects and impact negatively the traffic status.

These possible side effects have been listed in [28]. The 

authors state that three phenomena could be observed as 

a side effect of the use of advanced traveler information 

systems. First, when passengers receive too much informa-

tion, they tend to ignore this information and try to find an 

itinerary on their own (oversaturation). Second, if the same 

itineraries are provided to passengers who have the same 

transportation preferences, congestion might be created 

(concentration). Finally, if the same alternative is provided 

to too many passengers, the original congestion could be 

simply moved to another location (overreaction).

In this paper, we focus on public transportation net-

works and we evaluate the advantages and the limits of the 

provision to passengers of real-time traffic, notably in dis-

turbed conditions. In this context, simulation is one of the 

important tools that allow strategies testing and multiple 

scenarios [1], [17]. Simulations can be used to validate the 

impact of the use of cooperative systems [19], to test chang-

es in traffic after the introduction of new mobility services, 

such as carpooling, dial a ride, etc.

Our proposal is based on the multiagent paradigm, which 

is relevant paradigm for the design and implementation of 

transportation applications. In [4], the authors state multiple 

reasons to use multiagent systems in transportation appli-

cations. Among other arguments, the authors indicate that 

the solving of several transportation problems with multia-

gent systems is natural and intuitive. The simulation of pas-

sengers mobility for instance is particularly suitable for an 

agent-based design. Indeed, the objective in this kind of sim-

ulations is to take into account human behaviors, interacting 

in an open, dynamic and complex environment [6]. In this 

application, passengers perceive individual information, and 

make individual decisions, while being situated in and inter-

acting with an environment (the transportation network and 

the information sources) on which they have partial and in-

complete information. This configuration obeys the general 

definitions of agents as entities that: i) are situated in some 

environment, ii) that are capable of autonomous action on it 

[36], iii) that can perceive this environment and iv) that have 

a partial and incomplete perception of it [14].

In this paper, we propose an agent-based traffic simula-

tor for transit networks. Built on top of the Repast Simphony 

platform, it allows to represent vehicles and travelers move-

ments on the networks. It also represents information flows 

between agents and between the operator and the agents. 

The simulator allows us to simulate and evaluate the effects 

of real-time traveler information on transit networks.

The primary objective of this work is to verify the effect 

of the use of real-time information, including personalized 

information, on the transportation network status. Our re-

sults validate the fact that this impact is positive to a cer-

tain extent. However, it also points out that, starting from a 

certain ratio of equipped travelers with smartphones, per-

sonalized information is no longer beneficial.

This paper is structured as follows. In section II, we 

present the previous proposals for the evaluation of the 

effects of information on passengers and we discuss the 

choice of the simulation platform. In section III, we detail 

the simulation platform that we propose. We present the 

data and parameters of the simulation. We also describe 

the agent behaviors and the itineraries calculation. In sec-

tion IV, we describe the management of information flows 

and disturbances in the simulation, using a space-time 

representation of the environment. In section V, we de-

scribe the configuration of our experimental study and we 

provide the results. We finally conclude and describe some 

further work we are conducting.

II. State of the Art

A. Impact of Passenger Information

The effects of information on passengers travel and trans-

portation networks have been generally investigated in 

the literature using either surveys or simulations. Works 

that use surveys investigate the passenger’s experience 

feedback (e.g. [8], [12] and [30]) and generally concern 

small scales (in terms of number of passengers and net-

work size). This is due to the difficulty and the high cost of 

studies with a big number of passengers. The findings of 

these studies are more reliable because they are based on 

actual observations, but they are not easily generalizable 

because they are limited in time and space and concern a 

small number of observations. For these reasons, a large 

number of works have chosen simulation as an evaluation 

tool. Simulation is able to extend the experimentation field 

and makes it possible to test a big number of scenarios. 

Scenarios can integrate different levels of information and 

different network conditions. In the following, we present 

the simulation proposals for evaluating the effects of pas-

senger information on transit networks.

In [11], the authors simulate the passenger’s decision 

process after the reception of real-time information. This 

process is in charge of the computation and the choice 

of the passenger’s itinerary and its execution. In [9], the 

passenger decision model is divided into two sub-models: 

the generator of the set of choices and the itinerary choice 

model. In [16], the authors also use a dynamic itinerary 

choice model to manage the passenger decision process. 

In [15], the authors propose a passengers information mod-

el that manages the information provision to passengers 

in the simulation model. In this approach, the personal-

ized information resulting from the use of smartphones 

is not directly considered. The equipped passengers are 
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represented as entities with a high access level to real-

time information (e.g. in [9] and [13]). Different levels of 

information are generally used in the experimentations 

as in [13] where 6 access levels to real-time information 

are studied. Results reported in [11] and in [9] show that 

providing more comprehensive real-time information may 

lead to path choice shifts and time savings. They recom-

mend to provide real-time information at the station level 

to enable more informed decisions and gains in travel time.

Individual real-time information on smartphones is not 

explicitly considered in the literature. Indeed, the real-

time information evaluated in the studied works concern 

only localized information (screen displays and voice 

messages in the stops and stations). This kind of informa-

tion differs from personalized information, accessible via 

smartphones, that assist passengers during their move-

ments by providing specific information about their itiner-

ary. This kind of information represents an increasingly 

important element in the advanced travelers information 

systems and plays a significant role in modern transporta-

tion systems. In the work presented in this paper, we con-

sider the equipped passengers as a distinct category, with a 

specific behavior. We analyze the results according to the 

two types of passengers (equipped and non-equipped).

Results reported in the literature also concern small 

networks or only some couples of origins-destinations. 

The results in the work presented in this paper concern 

the data of a big network with thousands of edges. We also 

consider thousands of passengers representing up to 25% 

of the real population of the considered network.

B. Choice of the Simulation Platform

Since we desire to model individual and heterogeneous be-

haviors of passengers, we choose the multiagent paradigm 

for the system modeling. Several multiagent simulators 

for passenger mobility exist in the literature. MATSim [23] 

is a platform for micro-simulation of traffic that is widely 

known and used. AgentPolis [18] is an agent-based plat-

form for multimodal traffic. Miro [10] simulates the urban 

dynamics of a population and proposes a multiagent simu-

lation to test planning scenarios, while Transims [26] rep-

resents travelers movements in multimodal networks and 

assesses the effects of the policy changes in traffic. Howev-

er, none of these proposals considers connected passengers 

and the impact of their level of information on the network. 

In the proposal of this paper, passengers that are connect-

ed to real-time information sources have their routes mon-

itored continuously. Alternatives are also proposed to them 

if they encounter disturbances during their trip.

As a result of this study on existing multiagent simulators 

for passengers mobility, we decide to design and implement 

a new simulator. To design and implement a multiagent 

simulator, there are mainly two possibilities. It is either 

possible to directly use a programming language, or to use 

a  multiagent simulation platform. We choose to use an ex-

isting agent-based platform because the implementation is 

faster and more efficient. Two criteria have guided our plat-

form choice. First, we desire to be able to deploy the simula-

tions on many servers, which is one of our ongoing works. 

The second capacity that we are looking for is the ability 

of the simulation platform to create geospatial models, i.e. 

its ability to handle geographic information. Based on these 

criteria, we have studied multiple agent-based platforms 

such as Jade [5], Mason [22], Gama [31] and Repast Simphony 

[32]. We believe that Repast Simphony is the platform that 

meets most our criteria. The platform integrates a GIS li-

brary (Geotools), and provides advanced geographic servic-

es (graph modeling, shortest paths, visualization of 2D and 

3D data, etc.). It also offers an easy integration of distribu-

tion platforms such as Terracotta and Gridgain. This is why 

the simulator is based on this platform.

III. Multiagent Transit Simulator
Our proposal is an agent-based platform that simulates pas-

sengers mobility. Differently from state of the art approach-

es, the information flows in the network and personalized 

information are considered. Fig. 1 presents the multiagent 

system (MAS), the agents that compose it, the environment 

and the interaction between agents. The passenger agents 

and the vehicle agents are the agents that move on the net-

work. There are two kind of passenger agents: connected 

passenger agents (to a real-time information source) and 

non-connected passenger agents. The local-information 

agents are responsible for sharing disturbances infor-

mation in the network stops. The simulation platform is 

responsible for the planning and the monitoring of the con-

nected passengers trips based on a spatiotemporal network 

(presented in section IV).

The simulator represents itinerary planners, passengers 

and their movements, public transportation vehicles and 

their movements, and information devices. To do so, input 

data and some additional parameters are needed. In Fig. 2, 

we provide the successive steps followed by a simulation. 

A simulation first loads the parameters (the duration of a 

simulation, the number of agents in the simulation, etc.). 

The graphs representing the transportation networks are 

then created (described in section III-A) and the scheduler 

is launched. The scheduler is a central component in the 

simulation since it synchronizes the execution of the agents. 

It schedules the execution of the agents for each tick of 

simulated time. The actions executed in one simulated tick 

of time are considered as being simultaneous. At each tick 

of simulation, the agents are executed in parallel threads1 

(to take advantage of multicore architectures), while the 

scheduler waits for them to finish the execution of the ac-

tions planned for the current tick, before  incrementing the 

1In our experiments, we use 12 cores.
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tick and starting over again. When launched, each agent ex-

ecutes a step method, in which he executes the behaviors 

described later (compute an itinerary, move on the network, 

get available information, wait for a vehicle, etc.). Hence 

there is a main program with a scheduler that controls the 

simulation, launches the agents and synchronizes their ac-

tions, while between each two time ticks, agents are exe-

cuted in parallel. When the simulation ends, we collect the 

results and end the simulation run. The collected results 

concern all the travelers itineraries and some indicators, 

such as the travel times and waiting times for the travelers.

A. Multiagent System

The multiagent system is composed of three types of agents 

(connected passenger agents, non-connected passenger 

agents and vehicle agents) and a planning service.

1) Planning Service
The planning service has the responsibility of calculating 

the itinerary of the connected passenger agents. The ser-

vice always considers the newest known status of the net-

works (described in section III-A 5). An itinerary is made 

of consecutive edges (either in the pedestrian network or 

the public transportation network) together with their cor-

responding visit times.

2) Vehicle Agents
The vehicle agents represent public collective transporta-

tion vehicles that have a defined itinerary and a timetable. 

Vehicles infer their paths from the timetable input data. 

Each vehicle agent moves at each simulation time tick with 

the allowed distance following his current speed. At each 

visited stop, the onboard passengers who have a transfer at 

this stop leave the vehicle and the passengers waiting for 

this vehicle at the stop take him. While moving, the vehicle 

agent moves his onboard passengers to the same coordi-

nates at the same time. At each simulation tick, the vehicle 

agent checks if he has reached his destination (the last stop 

in his itinerary). If so, he is removed from the simulation.

3) Passenger Agents
Passenger agents represent the users of the transit net-

work. There are two types of passenger agents: connect-

ed and non-connected to a real-time information system 

using smartphones. If the passenger is connected, he re-

ceives an itinerary from the planning service. If he is not 

connected, he uses a spatial mental representation of the 

network to compute his path (cf. section IV-D). To travel, 

the passenger agent loops over three states: walking, wait-

ing for a vehicle and being on board of a vehicle, until he 

reaches his destination. When he is on board of a vehicle, a 

passenger agent delegates the control of his movements to 

the corresponding vehicle agent.

4) Agent Movements
Each passenger and each vehicle agent knows the coor-

dinates that he has to sequentially move to, following his 

computed path. Depending on the type of agent and his 

Space-Time Network
Spatial Network Representation

Planning

Service

Connected

Passengers

Non-Connected

Passengers

Local

Information

Vehicle

Itinerary

Transport Networks

FIG 1 Multiagent system model.
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corresponding speed, he can move for only a certain dis-

tance at each simulated tick of time.

5) Itinerary Planning
The itinerary planning of passengers is composed of two 

elements. The first element concerns the walking parts of 

the itinerary, while the second concerns the public trans-

portation parts of the itinerary. Starting from an origin po-

sition, the passenger agent searches for the closest stops 

contained in a geographic circle around him2. The same 

procedure is applied for the destination node. The result is 

two sets So  (for origin stops) and Sd  (for destination stops) 

of public transportation nodes as possible origins and 

destinations, respectively. All the shortest paths between 

, sso d^ h pairs S So d#!  are computed, and the , sso d^ h pair 

corresponding to the shortest path (including the walking 

path) is chosen. The calculation of the public transporta-

tion part of the path is based on a frequency-based shortest 

path method [3].

The public transportation network is composed of nodes 

(the stops) and edges (the links between stops). The costs 

associated with the edges are defined according to the fre-

quencies on these edges. The travel time t ij
k  between two 

nodes i  and j  of the same itinerary k  is equal to the cur-

rent travel time on the edge tij  plus the average waiting 

time in seconds, equal to ( ),k3600 z  with ( )kz  the hour-

ly frequency of the itinerary k.

To avoid having passengers shortest paths with many 

transfers, we need to differentiate the nodes following their 

itineraries (recall that a transportation line is composed 

Main Context

Load Parameters
and Networks

Create Graphs

Launch Scheduler

Scheduler Agent

Launch an Agent on

Each Available CPU

Step

No

Yes

Reached

Destination?

Leave Simulation

All Agents

Executed?No

No

Yes

Yes

Simulation

End?

Increment Tick

Collect Results

End Computation

FIG 2 Steps of a simulation.

2The radius of the circle is inferred from passengers profiles (the accepted 
walking distance) when they exist. It is otherwise set to a default value, 500 
meters for instance.
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of a set of itineraries). We modify the public transporta-

tion network as follows (cf. Fig. 3). Let ,s s1 2G H be an edge 

in the original public transportation graph. Let it1  and it2  

be two itineraries using this edge. We create four new ver-

tices: :it s1 1  and :it s1 2  that are connected with the edge 

that belongs to ;it1  and :it s2 1  and :it s2 2  that are connected 

with the edge that belongs to it2 . We also create four new 

edges : , : , : , : , : , :it s it s it s it s it s it s1 1 2 1 2 1 1 1 1 2 2 2G H G H G H  

et : , :it s it s2 2 1 2G H, that we call transfer edges and which 

cost is equal to the average pedestrian travel time between 

the two stops (if any). With this graph, shortest paths will 

encourage passengers to stay on the same vehicle, and a 

transfer is proposed when it is either impossible or too costly 

to stay on the same vehicle or the same line. Finally, the A*  

shortest path algorithm is applied on the resulting network.

After applying the shortest path algorithm, the planning 

service interrogates the stops of the best found itinerary 

to infer the sequence of vehicles that the passenger agent 

will have to take and sends back the result to the passenger 

agent.

IV. Passenger Information Integration
In this section, we describe the integration of passenger 

information in the simulation.

A. Space-Time Representation of the Environment

The notification about disturbances in public transporta-

tion networks and the replanning of routes of passengers is 

a complex task. Indeed, the changes in the itineraries and 

travel times are exogenous to the agents and these latter do 

not know a priori where and when they may occur.

On the one hand, we have the real-time information 

providers that produce dynamic information. In the other 

hand, we have passenger agents who are potentially inter-

ested in this information. The broadcast of dynamic infor-

mation to all passengers agents is a simple and intuitive 

method for the matching of passengers and information 

providers, but this method is expensive because it gener-

ates unnecessary processing and uses unnecessary band-

width. It would also directly lead to the oversaturation 

adverse effect described in the introduction.

Several approaches exist in the literature for matching 

agents who don’t know each other a priori (e.g. middle-

agents [35] and recommendation systems [34]). We adopt 

an environment-centered approach, which focuses on 

the shared data and allows for the selection of relevant 

information by the agents without having to know or to 

maintain knowledge about the emitters of these data. Our 

environment-based approach is based on a representation 

model of the transportation environment in the form of a 

space-time network. This representation has been used 

in the past in different applications: dial a ride, vehicle 

routing, etc. [37], [38]. In our application, the multiagent 

space-time environment represents the state of the public 

transportation network through time. This environment is 

the main interlocutor for connected passenger agents and 

is active, in the sense that it stores information and triggers 

reaction when relevant events occur.

Consider the transportation network ( , ),G V E=  

with a node set {( )}, { , ..., }V v i N0i= =  and an edge set 

( , ) | , , .E v v v V v V v vi j i j i j!! != " ,  Let D  and T  be two 

matrices of costs, ( )D dij= " , and ( ) ,T tij= " ,  of dimen-

sions N N#  (the link ( , )v vi j  has dij  as distance and tij
as travel time). The space-time representation of the mul-

tiagent environment is made of H  copies of ,G  where H

depends on the considered time frame for the application3: 

s1
it1

it1:s1

it2:s1 it2:s2 it2:s3

it1:s2 it1:s3

it1

it2 it2

s2 s3

Original Stop

Itinerary 1

Pedestrian Itineraries

Itinerary 2

New Stop

FIG 3 Network Transformation.
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3For instance, if we consider a timeframe of two hours, and a discretized 
time of one minute, H = 120.
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( ) ( ( ), ( ))G t V t E t= , with ( )V t  the set of nodes at time t

and ( )E t the set of directed links at time t  with t H0 # #

(cf. Fig. 4). The cost matrix T  becomes ( )tT  to be time-

related as well. At each progression of time, the t0  version 

of the space-time network is deleted, t1  becomes t0  and 

tH  is created.

This structure is generic and may have a different se-

mantics depending on the considered application. The tem-

poral copies of G  are generally not identical. Indeed, for 

road networks, we can have different travel times between 

two copies to reflect the traffic state. In crisis management, 

edges and nodes may be present in a copy and absent in 

another copy to reflect the expansion of a crisis. Edges can 

be absent to reflect vehicles’s timetables and disturbance 

situations, as in the application of this paper.

An agent who wish to be informed by only changes oc-

curring on a node v of the network during a period ranging 

from t1  to t2  have to register with nodes ( , ), ,( , ) .v t v t1 2f" ,

As we show in the following, with this representation of 

the environment, every dynamic modification of the trans-

portation offer is directly reported to the only concerned 

agents, which avoids massive dissemination of information 

to all the system agents.

In the following, we describe the use of this structure to 

inject disturbances and disseminate general and person-

alized information to both connected and non-connected 

passengers.

In the simulator, we have implemented the space-time 

network in the form of a map (cf. Table. I). The keys to the 

map are the edges of the spatial graph. The correspond-

ing values are sorted lists of times related to start times of 

vehicles from the origin node of the edge. To each time val-

ue we associate a pair , ,vehicle agentsG G HH  correspond-

ing to the concerned vehicle and all the agents who have 

subscribed to the corresponding space-time edge. When 

a vehicle’s timetable changes, the concerned edges are 

identified. Then the map is requested with these edges as 

keys, and the , ,vehicle agents fG G HH  pairs corresponding 

to the old visit times are retrieved from the map. Finally, 

all the agents in the lists are notified about the changes. 

The agents that may subscribe to space-time edges are lo-

cal information agents and connected passenger agents, as 

described in the following.

B. Local Information Agents

Local information agents represent devices that broadcast 

traffic information on screens or through voice announce-

ments at the stops. The information broadcasted by the lo-

cal information agents concern events generally occurring 

elsewhere in the network. To get this information, local in-

formation agents subscribe to the space-time edges of the 

public transportation lines that they are interested in. In 

our experiments, the local information agents subscribe to 

the lines that pass by their stop. Indeed, we make the real-

istic choice to broadcast on stops the only information that 

concerns the lines passing by them. Otherwise, the amount 

of information in the stops would be too difficult to dis-

play on the screens or to enounce through voice messages. 

When dealing with different networks, the choice of the 

subscription strategy can be adapted in consequence. Only 

passenger agents present in a stop can perceive the locally 

broadcasted information.

C. Connected Passengers Behavior

Passengers that are connected to a real-time information 

source receive their calculated path from the planning 

service. When they receive the computed path, connected 

passengers interact with the space-time network. Indeed, 

to be aware of the only traffic events that concern him, a 

passenger agent subscribes to the edges of the space-time 

that form his itinerary (that he received from the planning 

service). When the path of the passenger is impacted by a 

disturbance, the information is received from the space-

time network. The planning process is executed again, 

and the planning service will base his calculation on the 

new configuration and the new status of the network.

D. Non-Connected Passengers Behavior

Passengers that are not connected to a real-time informa-

tion source ground their path calculation on a personal view 

of the network. They follow the calculated path and wait at 

the programmed stops. They deviate from their path in two 

cases. Either they are actually caught in a disturbance; or 

they are informed about a disturbance, via announcements 

in the stop. If they receive such an alert, they integrate the 

modifications in their mental view of the transportation 

network, and calculate a new path using that view.

E. Injecting Disturbances

To verify the effects of real-time information on passen-

gers, both with personalized information and with local 

information, we need to model disturbances. Indeed, as 

indicated in the state of the art, information is most impor-

tant in case of disturbances, when passengers need to find 

new routes and need to be oriented on the network. Distur-

bances are reflected by modifying the space-time network. 

Indeed, to inject delays in the model, we dynamically mod-

ify visit times of the vehicles while to model breakdowns 

Edge Time  , , ,Vehicle gentsA fG G H H

t 1 , , , ,Vehicle agent agent1 1 3 fG G H H

t 1 , , , ,Vehicle agent agent2 4 8 fG G H H

t 2 … 

… … 

 Table I. Implementation of the space-time graph in the simulator.
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and disconnections, we delete all the concerned space-

time edges. When the timetable of a vehicle is modified, 

all the concerned agents are notified of the change in their 

plan. These agents are unsubscribed of these space-time 

edges, and the planning service calculates new itineraries 

for them, with new subscriptions.

F. Temporal Model of the Simulation

The concurrent execution of agents, especially with a par-

allel scheduler, necessitates the synchronization of their 

access to the transportation environment, to avoid incoher-

ent states of the network due to simultaneous modification. 

Thus, the calls to the movement methods on the network 

are synchronized: passenger and vehicle agents, once they 

take their movement decision, move sequentially (while in 

the same time tick). Other considerations concerning the 

execution order of the agents have also to be taken into ac-

count. Indeed, the main interactions between agents are 

performed between:

 ■ passenger agents and vehicle agents at the stops;

 ■ passenger agents and local information agents at the 

stops;

 ■ connected passenger agents and the planning service;

 ■ connected passenger agents and the space-time net-

works.

The order in which agents are activated by the schedul-

er might alter the coherent outcome of these interactions. 

On the one side, since the vehicles arrive at the stops and 

look for passenger agents who plan to take him, there is a 

risk that a passenger agent who wants to take the vehicle 

is not yet at the stop, not because he is late, but because 

the scheduler has not activated him yet for the current 

simulation time tick. For this reason, passenger agents are 

activated by the scheduler first, before the vehicle agents. 

On the other side, incoherences in passengers reactions 

to disturbances might also occur. For instance, we could 

have passengers who react immediately to disturbances, 

while others only react at the next time tick, because the 

disturbance injection is performed in the middle of agents 

execution for a simulation time tick. To avoid this situa-

tion, disturbances and their impact on the space-time net-

work and on the local information agents are performed 

in priority before activating passenger and vehicle agents.

V. Experiments and Results

A. Setup

The experiments are executed with the data of the city 

of Toulouse in France (cf. Fig. 5). We choose this French 

city because we have detailed data about its network and 

a description of the travel patterns of the region [27]. The 

data come from Tisséo-SMTC, the public transporta-

tion authority of the Greater Toulouse. The public trans-

portation network of Toulouse is composed of 80 lines, 

359  itineraries and 3,887 edges. Frequencies and edges
costs are updated hourly. The multiagent system is made 

of 18,180 vehicles and from 5,000 to 30,000 passengers. 

We define the number of ticks per simulation to 5,000 for 

a journey from 6 am to 2 am. Every simulated tick corre-

sponds to approximately 14 seconds. The origins and des-

tinations of passengers are randomly chosen in a way that 

is coherent with travel patterns of the region (the origins-

destinations generation method is described in [21]). We 

haveexecutedthesimulationsonaPCunderWindows 7
with a processor Intel Xeon CPU E5-2630 (12 cores at 

2 Ghz)with50GBofmemory.
Previous works have shown that traveler information has 

little impact in case of small disturbances. For this reason, 

we decide to use serious disturbances instead in the form 

of complete disconnection of edges. In every simulation, we 

have generated 5 random edge disconnections on the net-

work during the whole simulation (one disconnection every 

233 real time minutes approximately). Every disconnection 

lasts 250 simulated ticks (slightly less than one hour in real 

time). Due to edge disconnections, some passengers can-

not find an itinerary to their destination anymore, because 

edges disconnection impacts network connectivity. In the 

following results, these passengers are not considered4. 

Disturbances are random but concern only a certain num-

ber of edges which we have considered as significant to dis-

connect: the edges through which pass at least 5 different 

itineraries. The 5 randomly disconnected edges are chosen 

between 21 candidate edges that satisfy this requirement.

B. Scenarios

We consider six different information level scenarios (cf. Ta-

ble II) and each one is executed 25 times. The first scenario 

is “the reference configuration” (to which we compare all the 

others) where no up-to-date information are provided to the 

passengers, neither local nor personalized. They only have 

FIG 5 Screenshot of a simulation execution (Toulouse city).

4The ratio of passengers without itinerary is stable, around 5% in all the 
simulations.
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the static description of the network and timetables. In the 

second scenario, only local information are given. The new 

travel times are available for the only passengers that are 

present in the considered stop. We do not consider any con-

nected passenger in this scenario. In the remaining scenari-

os (3, 4, 5 and 6), local information are provided to passengers 

at the stops, and personal information is only available for 

the connected passengers. We consider 20%, 50%, 80% then 

100% of connected passengers respectively in these scenar-

ios. In the scenarios with local information (all the simula-

tions except the reference configuration), we have placed 

local information agents in all the stops of the network. We 

report the average travel times for the passengers.

Every scenario is executed 25 times. Indeed, for each 

information level scenario, we consider increasing num-

ber of travelers: 1,000, 5,000, 10,000, 20,000 and 30,000 

passengers, and every configuration (scenario and num-

ber of travelers) is executed 5 times to verify that the 

simulations are unbiased and results are reliable. The 

increasing number of simulated travelers (1,000, 5,000, 

10,000, 20,000 and 30,000) can be seen as an increasing 

precision for the same simulation. That means that, with 

1,000 simulated travelers for instance, each traveler agent 

represents around 100 human travelers, with 5,000 simu-

lated travelers, each traveler agent represents 20 human 

travelers, and so on5. We report the average results and the 

observed standard deviations.

In case of disturbances, vehicle capacity limitation is 

one of the main causes of passengers delays. Thus, vehicle 

capacities have to be chosen carefully to avoid simulation 

bias. Indeed, if vehicle capacity is too big, the effect of dis-

turbances might be underestimated. On the contrary, if ve-

hicles capacity is too small, it can artificially amplify the 

impact of disturbances by introducing a big waiting time in 

the stops. Since we simulate a fraction of the real number 

of passengers, we adapt the bus capacity proportionally to 

this fraction. We base our calculation on the 2010 annual 

data of the bus network of Tisseo [33]. Our goal is to have 

an equivalent ratio between the daily passengers number, 

the number of available places in the vehicles (seating and 

standing) and the daily number of passengers. The result of 

this adaptation is reported in the Table III.

C. Results

The results are reported in Table IV 

in which we provide the calculated 

average and the observed standard 

deviations ( ).v  Results are report-

ed in Fig. 6. The x-axis represents 

the different equipment rates, from 

0% to 100%. The z-axis represents 

the number of considered passen-

gers (1,000, 5,000, 10,000, 20,000 

and 30,000). The y-axis represent 

the improvement rates. The curve 

represents the improvement rate in travel times in com-

parison with the reference configuration (with no infor-

mation). It means that every point in the curve represents 

the improvement rate of the concerned simulation w.r.t 

the scenario with no information at all. Recall that the sce-

nario with 0% connected passengers is the scenario where 

only local information is provided, which is different from 

the reference scenario in which there is no information 

at all. As we said earlier, we execute several simulations 

of every (equipment rate, number of passengers) pair to 

verify that the curve shape is not due to the origin-desti-

nation choices or from the difference in the injected dis-

turbances, which are stochastic. Fig. 7 provides a sample 

result with 30,000 passengers, with a trend curve associ-

ated to the average values to facilitate the interpretation. 

As we see it in the table, the standard deviations are very 

Passengers Number Vehicles Capacity

1,000 1

5,000 4

10,000 8

20,000 17

30,000 25

 Table III. The bus capacities in the simulator.

1,000 5,000 10,000 20,000 30,000 

0% 0.45% (0.03%) 1.45% (0.1%) 7.56% (0.25%) 5.43% (0.52%) 3.44% (0.33%) 

20% 3.56% (0.23%) 8.25% (0.57%) 7.97% (0.26%) 8.43% (0.8%) 10.57% (1%) 

50% 5.15% (0.33%) 12.21% (0.84%) 15.64% (0.52%) 11.62% (1.1%) 14.40% (1.36%) 

80% 8.99% (0.58%) 11.63% (0.8%) 16.3% (0.54%) 10.43% (0.99%) 12.35% (1.17%) 

100% 4.95% (0.32%) 10.24% (0.71%) 12.99% (0.43%) 8.2% (0.79%) 8.82% (0.84%) 

 Table IV. Synthesis of travel time improvement (Average (Standard deviation)).

Scenarios Local Information Personal Information

Reference No No

1 Yes No

2 Yes 20%

3 Yes 50%

4 Yes 80%

5 Yes 100%

 Table II. Information level in each scenario.

5The average number of travelers in the considered region is 100,000 hu-
man travelers.
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low and do not question the trends of 

the curves.

Compared to the scenario with-

out information, all scenarios im-

prove the travel times. The lowest 

improvement (0.45%) is related to 

the scenario with 1,000 passengers 

and 0% of connected passengers and 

the highest one (16.3%) is related to 

the scenario with 10,000 passengers 

and 80% of connected passengers. It 

is clear that the reference scenario 

(without information) provides the 

worst average travel time, since all 

the improvement values are posi-

tive. Indeed, in this scenario pas-

sengers have the information about 

a disturbance when they are already 

blocked somewhere in the network. 

As a consequence, they look for al-

ternative paths and use concur-

rently the rest of the transportation 

network. By doing so, they might 

miss vehicles because of their capac-

ity constraints. They also could get stuck in another dis-

turbance. The scenario 2, with local information and no 

personalized information, provides better results than the 

reference scenario. In this scenario, the passenger does 

not have necessarily to be present at the stops impacted 

by the disturbance to know that something is wrong. The 

passenger has the information when he visits a stop where 

local information is provided. However, this information is 

provided to him with a certain delay. Furthermore, since 

the path of the passenger is grounded on his partial vision 

of the network, he can head towards another disturbance.

The following scenarios, which integrate gradually 

more and more connected travelers, provide better re-

sults until 50% of connected passengers for scenarios 

with 5,000, 20,000 and 30,000 passengers and until 80% 

for scenarios with 1,000 and 10,000 passengers. In these 

scenarios, the alternative paths are immediately computed 

and provided to the passengers. These paths are also based 

on the latest status of the network. As a consequence, the 

passengers avoid the disturbed zone early and do not risk 

to head towards another disturbance. The connected pas-

senger does not have to be present at a stop where local in-

formation is provided, he receives a notification and a new 

plan immediately. However, this improvement is maximal 

at 50% of connected passengers for some scenarios and at 

80% for others. After these thresholds, the improvement 

rate becomes lower with more connected passengers. In 

the scenarios where the majority of passengers is con-

nected, in case of disturbances, the concerned passengers 

receive simultaneously new up-to-date plans. In this case, 

when they apply their new plans, they are faced with ve-

hicles capacity constraints and will see their average travel 

times increase.

Starting from scenario 4, the results start to become 

worse. Indeed, with 80% of connected passengers for sce-

nario 5 and 100% of connected passengers for scenario 6, 

most or all of the passengers get personal real-time infor-

mation about disturbances in real-time and new up-to-

date plans are generated simultaneously. The consequence 

is that the passengers face capacity constraints of the vehi-

cles and see their mean travel times increase. The results 
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are 15% worse for scenario 4 compared to scenario 3, and 

23% worse for scenario 5 compared to scenario 4.

Normally, the provision of real-time personalized in-

formation is supposed to have a positive impact, especially 

for connected passengers. To verify this impact on the only 

connected passengers, we provide the same results, but 

this time we differentiate improvement rates according to 

the passenger agent type (connected versus non-connect-

ed). The two example results are reported in the Figures 8 

and 9. We report in this figures the observed average val-

ues.

Every figure represents the improvements in travel 

times for a concerned number of passengers. The red 

part of the vertical bars of each figure represent the im-

provements for the non-connected passengers and the 

blue part represents the improvements for the connected 

passengers. Thus, for the scenarios with 0% of connected 

passengers, the improvement is ensured exclusively by 

the non-connected passengers and for the scenarios with 

100% of connected passengers, the improvement is totally 

ensured by the connected passengers.

Results show that the improvement in travel times for 

the connected passengers follow the same trend that the 

curves in the figures 6 and 7, i.e. a growing improvement 

until a certain threshold before becoming lower.

However, this time, the maximum improvement is 

reached systematically at 50% of connected passengers. 

The improvement oversupply for the scenarios with 1,000 

and 10,000 passengers and 80% of connected passengers is 

actually provided by the non-connected passengers.

The improvement rate for the non-connected passen-

gers is quite stable between the scenarios with the same 

number of passengers. Thus, it is between 0.45% and 6.8% 

for 1,000 passengers, between 1.4% and 5.7% for 5,000 

passengers, between 5.5% and 7.6% for 10,000 passen-

gers, between 0.1% and 5.9% for 20,000 passengers, and 

between 2.2% and 8% for 30,000 passengers. Their curves 

don’t follow a particular trend because their behavior is 

not directly impacted with the increase of the information 

level of other agents. Probably, the differences come from 

the (nondeterministic) processing order of the passenger 

agents when vehicles arrive at stops. If the number of pas-

sengers in a stop exceeds the vehicle capacity, no type of 

passengers is privileged to board. That is probably what 

gives this variations of the non-connected passengers’ 

travel times.

D. Computational Complexity

The average execution times of our simulations are report-

ed in Fig. 10. Computation times are correlated with the 

number of simulated travelers. Indeed, we have executed 

several simulations with vehicles only, and they were al-

ways very fast. Based on these results, we believe that we 

should further optimize our traveler agents, notably re-

garding the shortest paths computation.

In our experiments, we have chosen to execute several 

series of experiments, increasing the number of considered 

passengers. As we can see it, using bigger scales comes 

with a computational and resources cost. The different 

scales in our application provide the same conclusions: an 

increase of the benefits from personalized information, 
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followed by a decrease. This fact suggests that there is no 

need, for this specific application, to use huge numbers 

of travelers.

E. Discussion

The most important result reported in this paper concerns 

the lower improvement in the passengers travel times 

starting from a certain ratio of connected passengers. 

This result may seem paradoxical, since it is intuitively 

expected that the average travel times continuously de-

crease when the ratio of connected passengers increases. 

In reality, this result is coherent with previous theoreti-

cal studies performed by [28] for road networks. Indeed, 

the phenomenon observed in this paper could be seen as 

a materialization of concentration and overreaction. Con-

centration is the consequence of a uniform perception of 

the network status by the passengers. The more connected 

passengers we have, the more uniform their perception 

will be. In our system, this uniform perception is stored 

in the space-time network, and indeed at 100% of equip-

ment rate, all passengers have the exact same view of the 

network status. Overreaction is similar to concentration 

but is related to received traffic information, which make 

a fraction of the passengers transfer the congestion from 

one region to another. The more connected passengers in 

the system, the more substantial is the fraction that would 

follow the same paths and transfer the congestion. Conges-

tion is mainly materialized by passengers who cannot take 

a vehicle because of capacity constraints. However, this 

relatively negative impact of information provision starts 

at very high threshold of connected passengers. Before that 

threshold, as it is the case in nowadays transportation sys-

tems, providing real-time personalized information does 

have an absolutely positive impact on the network status.

VI. Conclusion
Surveys provide interesting results about the impact of 

passengers information on the status of transportation 

networks. Conducting such surveys on large scale is very 

costly, and simulation is an interesting tool to achieve such 

large-scale evaluation of the impact of passengers informa-

tion. In this paper, we have provided the main components 

of a multiagent simulator for passenger mobility. This ap-

plication allowed us to simulate information exchange and 

its effects on public transportation networks. The effects 

of two types of information (local information and person-

alized information) are measured by simulating different 

scenarios, and varying the ratio of connected passengers. 

Experiments have been executed on real scenario data 

from the city of Toulouse, France. The primary objective 

of this work was to verify the effect of the use of real-time 

information, including personalized information, on the 

transportation network status. Our results validate the in-

tuition that this impact is positive to a certain extent. How-

ever, we also found out that, starting from a certain ratio of 

equipped travelers with smartphones, personalized infor-

mation is no longer beneficial.

In the near future, we plan to run experiments with 

hundreds of thousands of passengers to verify, among 

other objectives, that the results reported in this paper are 

still valid with real volumes of passengers, and without ad-

aptation of vehicles capacities. In this context, the distri-

bution of the simulation platform on the cloud [7], [29] is 

an ongoing work [24]. We are also expanding this work to 

multimodal networks and studying the use of powerful dy-

namic pathfinding algorithms like D*Lite [20]. Indeed, the 

frequency-based shortest path algorithm is fast and repre-

sents realistically the current path choices by the travel-

ers, but is not necessarily optimal. In addition, we plan to 

integrate learning processes in the behavior of the traveler 

agents, which would also impact the itineraries calcula-

tion. The consideration of passengers preferences, other 

than the minimization of travel times (as in, e.g. [2]) is also 

interesting and is currently under investigation.  Finally, 

the optimization of the passengers information strate-

gies by the network operators is a main perspective of this 

work. Indeed, from a certain threshold of connected pas-

sengers, the operators can decide to optimize the informa-

tion provided to passengers for a best management of their 

assignment on the network. Two interesting problems 

arise in this context. First, assigning travelers dynami-

cally on different itineraries, taking into account real-

time disturbances is an interesting optimization problem 

to tackle. Second, the compliance of passengers with the 

instructions, especially in this context (i.e. providing dif-

ferent itineraries for the same origin, destination and de-

parture time) is interesting to verify. Again, surveys about 

this compliance level would be very useful.
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