
Auton Agent Multi-Agent Syst
DOI 10.1007/s10458-011-9168-3

Multiagent task allocation in social networks

Mathijs M. de Weerdt · Yingqian Zhang · Tomas Klos

© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract This paper proposes a new variant of the task allocation problem, where the
agents are connected in a social network and tasks arrive at the agents distributed over the net-
work. We show that the complexity of this problem remains NP-complete. Moreover, it is not
approximable within some factor. In contrast to this, we develop an efficient greedy algorithm
for this problem. Our algorithm is completely distributed, and it assumes that agents have only
local knowledge about tasks and resources. We conduct a broad set of experiments to evaluate
the performance and scalability of the proposed algorithm in terms of solution quality and
computation time. Three different types of networks, namely small-world, random and scale-
free networks, are used to represent various social relationships among agents in realistic
applications. The results demonstrate that our algorithm works well and also that it scales well
to large-scale applications. In addition we consider the same problem in a setting where the
agents holding the resources are self-interested. For this, we show how the optimal algorithm
can be used to incentivize these agents to be truthful. However, the efficient greedy algorithm
cannot be used in a truthful mechanism, therefore an alternative, cluster-based algorithm is
proposed and evaluated.

Keywords Task allocation · Social networks · Resource allocation · Distributed algorithm ·

Mechanism design

M. M. de Weerdt (B) · T. Klos
Delft University of Technology, Delft, The Netherlands
e-mail: M.M.deWeerdt@tudelft.nl

T. Klos
e-mail: T.B.Klos@tudelft.nl

Y. Zhang
Department of Econometrics, Erasmus School of Economics, Rotterdam, The Netherlands
e-mail: yqzhang@ese.eur.nl

123

Auton Agent Multi-Agent Syst

1 Introduction

Recent years have seen a significant amount of work on task and resource allocation methods,
which can potentially be applied to many real-world applications. However, interesting appli-
cations where relations between agents play a role require a slightly more general model. Such
situations appear very frequently in real-world scenarios, and recent technological develop-
ments are bringing more of them within the range of task allocation methods. Especially in
business applications, preferential partner selection and interaction is very common, and this
aspect becomes more important for task allocation research, to the extent that technological
developments need to be able to support it.

For example, the development of semantic web and grid technologies leads to increased
and renewed attention for the potential of the web to support business processes [20,48]. As
an example, virtual organizations (VOs) are being re-invented in the context of the grid, where
“they are composed of a number of autonomous entities (representing different individuals,
departments and organizations), each of which has a range of problem-solving capabilities
and resources at its disposal” [48, p. 237]. The question is how VOs are to be dynamically
composed and re-composed from individual agents, when different tasks and subtasks need
to be performed. This would be done by allocating these subtasks to different agents who
may each be capable of performing different subsets of these tasks. Similarly, supply chain
formation (SCF) is concerned with the, possibly ad-hoc, allocation of services to providers
in the supply chain, in such a way that overall profit is optimized [17,60].

Traditionally, such allocation decisions have been analyzed using transaction cost eco-
nomics (TCE) [12], which takes the transaction between consecutive stages of development
as its basic unit of analysis, and considers the firm and the market as alternative structural
forms for organizing transactions. Transaction cost economics has traditionally built on anal-
ysis of comparative statics: the central problem of economic organization is considered to be
the adaptation of organizational forms to the characteristics of transactions. More recently,
TCE’s founding father, Ronald Coase, acknowledged that this is too simplistic an approach
[13, p. 245]: “The analysis cannot be confined to what happens within a single firm. (…)
What we are dealing with is a complex interrelated structure.”

In this paper, we study the problem of task allocation from the perspective of such a
complex interrelated structure. In particular, “the market” cannot be considered as an orga-
nizational form without considering specific partners to interact with on the market [32].
Specifically, therefore, we consider agents to be connected to each other in a social network.
Furthermore, this network is not fully connected: as informed by the business literature, firms
typically have established working relations with limited numbers of preferred partners [27];
these are the ones they consider when new tasks arrive and they have to form supply chains
to allocate those tasks [56]. Other than modeling the interrelated structure between business
partners, the social network introduced in this paper can also be used to represent other types
of connections or constraints among autonomous entities that arise from other application
domains.

Moreover, each agent in our model has a limited amount of resources of different types at
its disposal. Agents may also have tasks to be completed. Each task, with a specified value
on completion, requires some resources for execution. An agent with a task is called a man-

ager, and only its ‘neighboring’ agents are allowed to provide their resources to this task.
These agents are called contractors. The social task allocation problem (STAP) is, given the
set of tasks and the available resources of the agents, to decide which tasks to execute and
which resources of which contractors to supply their resources, such that the total value of
the allocated tasks is maximized.

123

Auton Agent Multi-Agent Syst

This simple framework is able to capture a variety of applications. For example, when
each agent has some reputation in the eyes of other agents, agents may prefer to deal only
with others whose reputation is ‘good enough.’ Only these are then considered as neighbors
in the agent network. Alternatively, consider a disaster rescue scenario, such as in RoboCup
Rescue [19,43]. Emergency events occur in different parts of a city, and different types of
emergency services can cooperate to perform rescue tasks. Geographical proximity deter-
mines which other agents are available for cooperation, while different types of equipment
carried by these services are modeled by the resources in our model.

The results presented in this paper improve and extend upon earlier work by the same
authors [62]. This paper first studies the social task allocation problem in a cooperative set-
ting, where the agents reveal their information truthfully to their neighboring partners. The
main research question in this cooperative setting is the development of a computational
model and efficient algorithm, and the effect of the structure of a social network on its per-
formance. In the next section, we give a formal description of this cooperative social task
allocation problem. Section 3 shows that the complexity of this problem is NP-hard. An exact
method is put forward in Sect. 4.1. Since any exact algorithm is too computationally expen-
sive in practice, Sect. 4.2 proposes a greedy polynomial-time algorithm, which is extended to
a distributed algorithm in Sect. 6. We perform a series of experiments with these algorithms
in different network types in Sect. 5 and 7, respectively.

The experimental results demonstrate that the distributed algorithm works well in this
setting where the information of the available resources among agents is correctly known. In
some situations, especially where multiple organizations or companies are involved, however,
agents are often self-interested. They may not act according to the designed algorithm or pro-
tocol. Such deviations could lead to a very bad performance of the proposed task allocation
algorithm. Thus, in this paper, we also study the social task allocation problem among selfish
agents. The main research problem of this selfish STAP is, how to incentivize self-interested
agents to report their private information correctly, in order to sustain the performance of the
proposed algorithms.

The private information in STAP is the set of available resources of each contractor. We
assume in this paper that only the contractor agents strategize about their private information.
To avoid manipulation by the contractors, we aim to design a truthful mechanism by adding
a payment function to reward agents for the use of their resources. Nisan and Ronen [47]
show that the truthfulness of agents can be guaranteed by so-called VCG mechanisms (see
Definition 8) under the condition that the mechanism is able to compute the optimal solution.
Since many interesting optimization problems are intractable, they showed an alternative
way to achieve a truthful VCG-based mechanism by replacing the exact algorithm with an
approximation [46]. However, they showed that for a certain class of minimization problems
(cost minimization allocation problem), any truthful VCG-based mechanism is either optimal
or can lead to degenerate results, i.e., for any approximation there are instances in which the
result can be arbitrarily far from the optimal solution. Their result suggests that for many
NP-hard problems, developing good polynomial-time VCG-based truthful mechanisms is
not a trivial problem.

We model the STAP as a mechanism design problem in Sect. 8. Section 8.1 proposes an
exact, truthful mechanism with the optimal allocation algorithms introduced in Sect. 4.1. We
then show in Sect. 8.2 that the proposed greedy algorithm is not truthful, and then intro-
duce a polynomial-time truthful mechanism, which relies on the idea of constructing clusters
in the social network that are considered independently. The quality of this approximation
algorithm is tested experimentally in Sect. 8.4.

123

Auton Agent Multi-Agent Syst

Finally, we discuss our approaches by comparing with other existing work in Sect. 9,
followed by our conclusions in Sect. 10.

2 Social task allocation problem

In our framework, we consider agents that need to complete tasks. The completion of a task
yields a certain value, and it requires varying numbers of resources of different types. A task
can be completed only if all required resources of all required types are allocated to that task.
Agents are endowed with these resources. In addition, each agent is connected to a limited
number of other agents, yielding a social network. For the completion of her task, an agent
may enlist the resources of other agents, but only those she’s connected to in the network.
The existence of the network constrains the allocation of resources to tasks. The problem we
consider is to determine which resources to assign to which tasks, in order to maximize the
value of the allocated tasks.

More formally, let A denote a set of m agents that need resources to complete tasks. Let
R = {r1, . . . , rl} denote the collection of the resource types available to the agents in A. Each
agent i ∈ A initially holds a fixed amount of resources for each resource type in R, which
is defined by a resource function: si : R → N. Finally, we assume agents are connected by
a social network.

Definition 1 (Social network) An agent social network SN = (A, AE) is an undirected
graph, where vertices A are agents, and each edge (i, j) ∈ AE indicates the existence of a
social connection between agents i and j .

Suppose a set of tasks T = {t1, t2, . . . , tn} arrives at such an agent social network. Each task
t ∈ T is then defined by a tuple 〈U (t), req(t), loc(t)〉, where U (t) is the value gained if task t

is accomplished, and the function req(t) : R → N specifies the amount of resources required
for the accomplishment of task t , while other combinations of resources do not accomplish
this task. Furthermore, a location function loc : T → A defines the locations (i.e., agents)
of the tasks in the social network. An agent i that is the location of a task t , i.e., loc(t) = i , is
called the manager of task t . The exact assignment of resources to tasks is defined by a task

allocation.

Definition 2 (Task allocation) Given a set of tasks T = {t1, . . . , tn} and a set of agents A

in a social network SN , a task allocation is a mapping o : T × A × R → N. A valid task
allocation in SN must satisfy the following constraints:

– A task allocation must be correct. Each agent i ∈ A cannot use more than its available
resources, i.e., for each r ∈ R,

∑

t∈T o(t, i, r) ≤ si (r).
– Each allocated task must be complete. For each task t ∈ T, either all allocated agents’

resources are sufficient, i.e., for each r ∈ R,
∑

i∈A o(t, i, r) ≥ req(t)(r), or t is not
allocated, i.e., o(t, ·, ·) = 0.

– A task allocation must obey the social relationships. Each task t ∈ T can only be allo-
cated to agents that are (direct) neighbors of agent loc(t) in the social network SN . Each
such agent that can contribute to a task is called a contractor.

The set of all valid task allocations is denoted by O.

We write To to represent the tasks that are complete in o, that is, the tasks to which o assigns
sufficient resources of each required type. The value of o is then the sum of the values of

123

Auton Agent Multi-Agent Syst

Fig. 1 An example instance of
the Social Task Allocation
Problem

a4: t1

a3

a1: t2, t3

a2

a5

a6

t3

t2

a1

a2

a6a4

t1

a3

a5

each task in To, i.e., Uo =
∑

t∈To
U (t). Note that we do not include costs for resources, since

we assume that the resources have already been paid for. Our only goal is to allocate these
resources as efficiently as possible. We thus define the efficient task allocation as follows.

Definition 3 (Efficient task allocation) We say a task allocation o∗ is efficient if it is valid
and Uo∗ is maximized, i.e., o∗ = arg maxo∈O Uo.

The social task allocation problem is then defined as follows.

Definition 4 (Social task allocation problem) Given a set of agents A that are connected by
a social network SN = (A, AE), a finite set of tasks T need to be allocated to the agents.
The goal of this social task allocation problem (STAP) is to find the efficient task allocation
o∗.

Furthermore, in this paper we focus on a situation where all knowledge about the problem
is local. In particular, initially a task and its value are only known to the task’s manager, and
each agent only knows the resources it has available itself.

Figure 1 shows an example instance of the STAP. In this figure, the oval nodes represent
agents, while edges represent relations between pairs of agents. There are six agents, with a
total of three tasks: task t1 at agent a4, and tasks t2 and t3 at agent a1. This makes agents a1

and a4 managers, while all agents can act as contractor. The squares in the figure represent
resources, with different shades of gray for different types. Resources required by tasks are
stacked from right to left, while the resources agents are endowed with are stacked from left
to right. In this instance, agent a1 does not own all the resources of all types required for
executing the two tasks assigned to it, so it will have to procure these from other agents.
Candidate contractors for agent a1 are all agents except a5 and a6, because agent a1 is not
connected to those agents. Agent a1 might enlist the help of agents a3 and a4 to supply the
two required resources of the medium-gray type. However, agent a4 would then not any-
more be able to obtain the resource of that type that it requires for executing its task t1. In
general situations, the number of agents, tasks, and resource types becomes larger, but the
combinatorial and difficult nature of the problem is already intuitively recognizable from this
example.

123

Auton Agent Multi-Agent Syst

3 Complexity results

In a general task allocation problem (TAP), there are a center with multiple tasks and agents
with resources. The center can allocate its tasks to every agent in the system as long as the
agent has the required resources. Thus, we can view the TAP as a social task allocation
problem with a fully connected network. Shehory and Kraus [52] argued (informally) that
the TAP is NP-complete. The complexity comes from the fact that we need to evaluate an
exponential number of subsets of the task set. When the center has only one task to allocate,
the TAP becomes easy to solve [52]. We may consider the TAP as a special case of the STAP

by assuming agents are fully connected, and then conclude that the STAP is also NP-com-
plete. However, this does not give sufficient insights into the hardness of our problem, since
in the STAP (i) typically several agents hold tasks (instead of only one in the TAP [52]); and
(ii) agents are connected by some social network, which is never fully connected. In fact,
because of the latter, the TAP is strictly speaking not a special case of the STAP.

Therefore, in the following, we show that in the presence of a social network with several
agents holding tasks, the social task allocation problem STAP is NP-complete, even when
each agent has no more than 1 task, the utility of each task is 1, and the quantity of all required
and available resources is 1. We then show that the STAP remains hard for very restricted
classes of networks, i.e., trees.

Theorem 1 Given the social task allocation problem with an arbitrary social network, as

defined in Definition 4, the problem of deciding whether a task allocation o with utility more

than k exists is NP-complete even when each agent has no more than 1 task, the utility of

each task is 1, and the quantity of all required and available resources is 1.

Proof We first show that the problem is in NP. Given an instance of the problem and an
integer k, we can verify in polynomial time whether an allocation o is a valid allocation and
whether the utility of o is greater than k.

We now prove that the STAP is NP-hard by showing that Maximum Independent Set

(MIS) ≤P STAP. Given an undirected graph G = (V, E) and an integer k, we construct a
network G ′ = (V ′, E ′) which has an efficient task allocation with k tasks of utility 1 allocated
if and only if G has an independent set of size k.

An instance of the following construction is shown in Fig. 2. For each node vi ∈ V and
each edge e j ∈ E in the graph G, we create a vertex agent ai and an edge agent a′

j in

G ′. Both vertex agents and edge agents are nodes in G ′. When vi was incident to e j in G

we correspondingly add an edge e′ in G ′ between ai and a′
j . We assign each agent in G ′

one resource. This resource is related to the node or the edge in the graph G, i.e., for each
vi ∈ V, sai

(vi) = 1, and for each e j ∈ E, sa′
j
(e j) = 1. Each vertex agent ai in G ′ has a

task ti that requires a set of neighboring resources, i.e., req(ti)(vi) = 1 and for each e in
{e ∈ E | ∃u∈G(u, vi) ∈ E}, req(ti)(e) = 1. There is no task on the edge agents in G ′. We
define utility 1 for each task.

Taken an instance of MIS, suppose there is a solution of size k, i.e., a subset N ⊆ V such
that no two vertices in N are joined by an edge in E and |N | = k.N specifies a set of vertex
agents AN in the corresponding graph G ′. Given two agents a1, a2 ∈ AN we now know that
there is no edge agent ae connected to both a1 and a2. Thus, for each agent a ∈ AN , a assigns
its task to the edge agents which are connected to a. All other vertex agents a′ /∈ AN are not
able to assign their tasks, since the required resources of the edge agents are already used by
the agents a ∈ AN . The set of tasks of the agents AN (|AN | = k) is thus the set of tasks that
can be allocated. The utility of this allocation is k.

123

Auton Agent Multi-Agent Syst

Fig. 2 MIS can be reduced to STAP. The left figure is an undirected graph G, which has the optimal solutions
{v1, v4} or {v2, v3}. The figure on the righthand side represents the constructed instance of the STAP, where
the tasks ti are managed by the agents ai and require the following resources. Task t1 requires v1, e1, and e3,
task t2 requires v2, e1 and e2, task t3 requires v3, e3, and e4, and task t4 requires v4, e2, and e4. The optimal
allocation here is either {t1, t4} or {t2, t3}

Fig. 3 The general task
allocation problem with a fully
connected network can be
reduced to the social task
allocation problem on a tree

If there is a solution for the STAP with the utility value k, and the allocated task set is N ,
then for MIS, there exists a maximum independent set N of size k in G. An example can be
found in Fig. 2. ⊓⊔

The STAP is NP-complete for arbitrary graphs. In our proof, the complexity comes from
the existence of a social network. One may expect that the complexity of this problem can
be reduced for some networks where the number of neighbors of the agents is bounded by a
fixed constant. We now give a complexity result on this class of networks as follows.

Theorem 2 Let the number of neighbors of each agent in the social network be bounded by

� for � ≥ 3. Computing the efficient task allocation given such a network is NP-complete.

In addition, it is not approximable within �ε for some ε > 0.

Proof It has been shown in [2] that the maximum independent set problem in the case of
the degree bounded by � for � ≥ 3 is NP-complete and is not approximable within �ε for
some ε > 0. Using the similar reduction from the proof of Theorem 1, this result also holds
for the STAP. Since the STAP is as hard as MIS (Theorem 1), it is not possible to give a worse
case bound better than �ε for any polynomial time algorithm, unless P = NP. ⊓⊔

One may wonder whether the above complexity result holds for some special graph struc-
ture, for instance, a tree. It is straightforward to see that any general task allocation problem
can be reduced to the STAP on a tree. Given a task allocation problem, we construct a STAP
instance with one agent who becomes the manager of all tasks but has no resources (agents
a1 in Fig. 3), and a number of neighboring agents (e.g., agents a2, a3, a4, a5) that own the
resources but no tasks. In the example in Fig. 3 agent a1 is the root of a tree. An optimal
solution to the general task allocation problem is the solution to the constructed STAP, and
vice versa. Since the general task allocation problem is NP-complete [52], we conclude that
the social task allocation on a tree also remains NP-complete.

123

Auton Agent Multi-Agent Syst

4 Algorithms for social task allocation

In this section, we first show how to solve STAP optimally. Due to the complexity of the
problem, an optimal, exact algorithm unavoidably runs in exponential time. Therefore, exact
algorithms may not always be suitable for large-scale problems. We thus also propose a
heuristic that can be used to tackle such large real-world problems.

4.1 Optimal solution

An optimal task allocation should incorporate the restrictions posed by the social network. For
this NP-complete problem we use a straightforward translation to an integer linear program-
ming (ILP) problem to solve this problem. For the ILP formulation we introduce two types
of variables: the binary variables y j ∈ {0, 1} for 1 ≤ j ≤ n describe whether or not task j is
allocated, and the integer variables xi jk (∀i, j, k, where 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ l)
denote the amount of resources of type k agent i supplies to task j . The ILP formulation then
looks as follows.

Maximize

n
∑

j=1

y j · U (t j)

subject to having sufficient resources of each type for each chosen task from the neighboring
agents, i.e.,

∀ j, k(1 ≤ j ≤ n, 1 ≤ k ≤ l)
∑

{i∈[1,m]|(i,loc(t j))∈AE}

xi jk ≥ y j · req(t j)(rk),

and not using more resources than there are available, i.e.,

∀i, k(1 ≤ i ≤ m, 1 ≤ k ≤ l)

n
∑

j=1

xi jk ≤ rsc(i)(rk).

Solving this ILP results in an optimal solution, but we can only give a worst case upper bound
on the run time of solving this ILP that is exponential in the number of variables, i.e., the
number of tasks, agents, and the resource types.

Clearly, we cannot expect this ILP to always be able to find solutions for larger problem
sizes. Hence, we now present a polynomial-time algorithm for the STAP.

4.2 Centralized greedy algorithm

A greedy algorithm ranks tasks with respect to some measure expressing how promising a
task is, and then tries to allocate tasks in the order of their ranking. A decision to allocate a
task is not reconsidered, which makes such an algorithm quite fast. If allocating the task is
feasible, it is inserted; if not, it is removed from the current selection of tasks. Feasibility of a
selection of tasks is checked by translating the problem to a (polynomially solvable) network
flow instance (see Algorithm 1).

We consider the following rankings based on the social structure as well as on the value
and the number of resources of a task.

Efficiency The first heuristic is based on the idea of a greedy approximation for 0–1 knap-
sack [14]. In such an approximation for knapsack all items are ranked on their relative value.
This approximation even has a theoretical bound: the resulting allocation is never more than

123

Auton Agent Multi-Agent Syst

Algorithm 1 Centralized greedy task allocation algorithm (GTA).
1. Sort all tasks from all managers according to some ranking heuristic. Denote the sorted tasks by

t ′1, t ′2, . . . , t ′n , and the current selection of tasks by T ′ = ∅.
2. For i = 1, . . . , n do:

(a) T ′ ← T ′ ∪ {t ′
i
}.

(b) Test if T ′ is feasible as follows. Create a network flow problem:
i. Create a source s and a sink s′.

ii. For each agent j ∈ A and each resource type r ∈ R, if s j (r) > 0, create an agent-resource
node ar

j
, and an edge from s to this node with capacity s j (r).

iii. For each task t ∈ T ′ and each resource type r ∈ R, if req(t)(r) > 0, create a task-resource
node tr , and an edge from this node to s′ with capacity req(t)(r).

iv. For each agent j ∈ A and each resource type r , connect the agent-resource nodes ar
j

to the

task-resource nodes tr if tasks t are direct neighbors of j , i.e., {t ∈ T ′ | (j, loc(t)) ∈ AE}.
Give this connection unlimited capacity.

(c) Solve the maximum flow problem for the created flow network. If the maximum flow is equal to
∑

t∈T ′
∑

r∈R req(t)(r), the current combination of tasks is feasible. Otherwise remove task t ′
i

from T ′.

3. Output the task set T ′ and the current allocation.

twice as bad as the optimal allocation. For the STAP the relative value of a task is the ratio of
its utility and its resources. We call this the efficiency of a task.

Definition 5 The efficiency e of a task t ∈ T is defined by the utility of this task divided by
the sum of all required resources: e(t) = U (t)

∑

r∈R req(t)(r)
.

The heuristic then ranks the tasks in order of descending efficiency. With such a ranking on
efficiency we can leverage the idea of the knapsack approximation also to give a guarantee
on the quality of the greedy centralized allocation algorithm.

Proposition 1 The greedy allocation algorithm (GTA) with the efficiency heuristic is a l · K -

approximation algorithm for STAP, where K is the maximum number of resources of one type

a task can require. The run time of GTA is O(l2n2m(m + n)).

Proof In the worst case, the greedy algorithm selects only the most efficient feasible task
t∗ ∈ T with value UGTA = U (t∗), and the use of resources of this task t∗ blocks all other
feasible tasks being allocated. Assume the optimal solution in this case is to select a subset
of all other feasible tasks. So, the value of the optimal solution UOPT is always less or equal
than the sum of the values of all other (feasible) tasks: UOPT ≤

∑

t∈T \{t∗} U (t). Task t∗

takes at least one resource from each task t ∈ T \ {t∗} in order to block t being selected,
and so in the worst case its required resources

∑

t∈R req(t∗, r) is at least |T − 1| = n − 1.

Thus its efficiency is at most U (t∗)
n−1 . The resource requirement of other tasks t �= t∗ is at

most K |R| = Kl, and therefore their efficiency is at least U (t)
Kl

. These tasks should have

a lower efficiency than t∗, so U (t)
Kl

≤ U (t∗)
n−1 , and thus U (t) ≤ U (t∗)·Kl

n−1 . Consequently the
approximation factor is:

UOPT

UGTA
≤

∑

t∈T \{t∗}
U (t∗)·l K

n−1

U (t∗)
= l K .

Concerning the computation time of GTA, sorting the tasks takes O(n log(n)). To check each
set of tasks, it takes O((ml + nl)mnl) to create and solve the maximum flow problem. There
are up to n such task sets to check. Hence, GTA takes O(l2n2m(m + n)). ⊓⊔

123

Auton Agent Multi-Agent Syst

Betweenness Besides the value and the number of resources of a task, it is also important
whether its neighbors can be expected to be able to provide the required resources. This
second heuristic is taken from work on social networks and uses the number of shortest
paths (between any two agents) through an edge or vertex, called the betweenness [24]. The
intuition here is that tasks with a high betweenness must lie somewhere in the center of the
graph and are therefore a good place to start with allocating. To validate this intuition, we
also consider a ranking starting with the task with the lowest betweenness, which we denote
by InvBetweenness.

Clustering Coefficient Another such measure on the neighborhood of a task is the cluster-
ing coefficient of an agent [61]. This is the fraction of the agent’s neighbors that are also
neighbors of each other. This fraction is computed by considering the subgraph of the agent’s
k neighbors, counting the number of connections, and dividing this by the maximal num-
ber of possible connections, i.e., 1

2 k(k − 1). Also based on this measure we consider two
ranking heuristics: Cluster considers tasks in decreasing order of the clustering coefficient of
their manager agent, and InvCluster considers the tasks in increasing order of the clustering
coefficient.

5 Experiments with centralized heuristics

We implemented the centralized greedy heuristics in Java, and compared the results to those
obtained solving the ILP formulation optimally using the GNU Linear Programming Kit [38].
For all experiments we used a PC with a 2.4 GHz AMD Opteron and we allowed the Java
code to use at most 1 GB of memory. The purpose of these experiments is to study the per-
formance of the different heuristics in different social networks. In the experiments, three
different types of networks are used to simulate the social relationships among agents in
potential real-world problems.

Small-world networks are networks where most neighbors of an agent are also connected
to each other. For the experiments we use a method for generating random small-world
networks proposed by Watts et al. [61]. According to their model, networks are generated
starting from a regular ring lattice with m nodes and l edges per node. Each edge is then
randomly rewired with probability p. The probability of rewiring p allows us to determine
the amount of “chaos” and “regularity” in the network. In the experiments, we use a fixed
rewiring probability p = 0.05.

Scale-free networks have the property that a few nodes have many connections, and many
nodes have only a small number of connections. In other words, the degree distribution func-
tion P(m) follows a power-law: P(m) ∼ m−γ , where γ is the scaling parameter. To generate
these networks we use the implementation in the JUNG library of the generator proposed by
Barabási and Albert [6]. The generation mechanism starts with a small number of nodes and
a new node is added to the network at each time step. The new node connects preferentially
to existing nodes with high degree. The preferential attachment is the probability � that new
nodes will be connected to the exiting node i : �(mi) = mi

∑

j m j
.

We also generate random networks as follows. First we connect each agent to a uniform
randomly selected earlier connected agent such that all agents are connected. Next, we ran-
domly add connections (drawing twice from a uniform distribution over agents) until the
desired average degree has been reached.

123

Auton Agent Multi-Agent Syst

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

50

N
u
m

b
e
r

o
f
A

g
e
n
ts

Degree

Random
Scale-free

Small-world

Fig. 4 The histogram of the degrees of agents in networks with 60 agents and an average degree of 4

These three algorithms result in networks with a different distribution of the connections
over the agents. For example, these distributions for several randomly generated networks
with 60 agents and an average degree of 4 are given in Fig. 4. As in this figure, we will often
slightly horizontally offset different plots with respect to the x-axis to prevent overlap of
different graphs’ datapoints and error bars, which makes the plots clearer.

We limit these experiments to 5 resource types, 20 resources per task on average and
n = 80 tasks to make it feasible to compute the optimal solution for every setting we con-
sider within at most 15 min. Each of the required resources (i.e., in total always 20 times the
number of tasks) is given one out of the five types at random, and is also randomly assigned
to one of the tasks. In all experiments the value of a task is drawn uniformly from the interval
between 0 and the number of resources assigned to that task, so as to create a correlation
between the size of a task and its value, with some random noise. The number of resources
available in the network is set by the resource ratio parameter. This parameter determines the
ratio between the number of available resources and the number of required resources (for
each type separately) and defaults to 0.5, allowing at most half of the tasks to be allocated in
a fully connected network.

In the experiments with the centralized greedy algorithm, we compare the five heuristics
(Efficiency, Betweenness, Cluster, InvBetweenness, and InvCluster) to each other and to the
optimal solution in the three networks given above, in networks with sizes varying from 10 to
120 agents (with steps of 10). For each setting, we generate 20 problem instances and com-
pute the average and the standard deviation over these 20 instances. Where we put ‘Quality’
on the y-axis, this is the value of the allocation given by a heuristic divided by the value of
the optimal allocation. Sometimes we use the word ‘Value,’ which is the absolute value of an
allocation. The results for small-world and scale-free networks can be found in Figs. 5 and
6. Here the number of agents is shown on the x-axis, and the y-axis shows the average value
divided by the average optimal value, which we call the (relative) quality of the heuristics.

These figures show that the results on the different networks are quite similar. In par-
ticular the results on random networks are almost equivalent to those on the scale-free net-
works, and therefore not included here. An important observation is that most heuristics work

123

Auton Agent Multi-Agent Syst

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80 100 120

Q
u

a
lit

y

Number of agents

Small-world

Efficiency
Betweenness

Cluster
InvCluster

InvBetweenness

Fig. 5 The quality of the centralized greedy algorithm on small-world networks for the five heuristics

Q
u

a
lit

y

Number of agents

Scale-free

Efficiency
Betweenness

Cluster
InvCluster

InvBetweenness
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80 100 120

Fig. 6 The quality of the centralized greedy algorithm on scale-free networks for the five heuristics

surprisingly well with an average quality of at least 0.5. This is especially surprising, consid-
ering the theoretical hardness (and in particular the approximation-hardness) of the problem.
We believe this can be attributed to the fact that all heuristics exploit the locality that is inher-
ent in this problem. In most problem instances the consequences of a sub-optimal allocation
of a single task does not influence decisions in another part of the network.

Regarding the four heuristics that use the structure of the network, we can see that this
indeed has some effect. For example, starting with tasks that are central in the network (with
a high betweennness or a high clustering coefficient) results in significantly higher quality
solutions over all network types than when using the inverse ranking. However, for larger

123

Auton Agent Multi-Agent Syst

Algorithm 2 Greedy distributed allocation protocol (GDAP).
Each manager a calculates the efficiency e(t) for each of their tasks t ∈ Ta , and then while Ta �= ∅:

1. Each manager a selects the most efficient task t ∈ Ta such that for each task t ′ ∈ Ta : e(t ′) ≤ e(t).
2. Each manager a requests help for t from all its neighbors (of a) by informing these neighbors of the

efficiency e(t) and the required resources for t .
3. Contractors receive and store all requests, and then offer all relevant resources to the manager for the

task with the highest efficiency (ties are broken on the task id). Other managers are informed that no bid
will be made this round.

4. The managers that have received sufficient offers allocate their tasks, and inform each contractor which
part of the offer is accepted. When a task is allocated, or when a manager has received offers from all
neighbors, but still cannot satisfy its task, the task is removed from the task list Ta .

5. Contractors update their used resources. If all resources are used, the agent informs its neighbors and
stops.

networks (with the same number of tasks), the difference is reduced, because the relative
quality of the inverse heuristics is higher there. This effect is caused by the fact that fewer
tasks can be allocated even in the optimal solution, simply because in the larger networks
resources and tasks are spread out more. Because of that, the problem becomes easier, and
the order in which the tasks are considered does not matter so much anymore. It can also be
observed that the clustering coefficient works better on scale-free networks and the between-
ness measure is almost as good as the efficiency measure on small-world networks. Overall,
the efficiency heuristic significantly outperforms all other heuristics in all network types and
reaches a very high average quality of above 0.95.

Besides the heuristics described and evaluated above, we have also experimented with
heuristics such as the number of neighbors of an agent, and the average distance to all other
agents (the bary center), but they did not do any better. Also, a different heuristic could be
used altogether, for example where contractors bid on tasks maximizing their local efficiency,
or a combinatorial variant where contractors can bid on multiple tasks simultaneously. We
leave an investigation of such alternative settings (including their termination criteria) to
future work and continue with the best heuristic found so far.

6 A distributed protocol

We now show how to transform the centralized greedy algorithm into a distributed protocol.
Since the efficiency heuristic works very well, we concentrate on this heuristic. In the distrib-
uted protocol, information on a task is only given to the manager of that task, and resources
are only known to the contractor who controls them. The idea of the protocol is as follows.
All manager agents a ∈ A try to find neighboring contractors to help them with their task(s)
Ta = {ti ∈ T | loc(ti) = a}. They start with offering the task that is most efficient in terms
of the ratio between value and required resources. Out of all tasks offered, contractors select
the task with the highest efficiency, and send a bid to the related manager. A bid consists of
all the resources the agent is able to supply for this task. If sufficient resources have been
offered, the manager selects the required resources and informs all contractors of its choice.
The choice for the set of contractors whose offers are accepted is made randomly.

A more detailed description of this protocol can be found in Algorithm 2. Here it is also
defined how to determine when a task should not be offered anymore, because it is impossible
to fulfill locally. Obviously, a task is also not offered anymore when it has been allocated.
In every iteration, the most efficient task among all managers’ task lists will receive offers

123

Auton Agent Multi-Agent Syst

from all its neighbors, and so this task will be either allocated or removed from the task list
of the related manager, dependent on whether the received resources are sufficient or not.
Therefore this protocol is such that, when no two tasks have exactly the same efficiency,
in every iteration at least one task is removed from a task list. This is ensured by having
contractors choose the task with the lowest task-id in cases where tasks have the same effi-
ciency. The computation and communication complexity of the algorithm then follow from
this observation.

Proposition 2 For a STAP with n tasks and m agents, the run time of the distributed algorithm

is O(n2 +nm), the total number of operations is O(n2m), and the number of communication

messages is O(n2m).

Proof In the worst case, in each iteration exactly one task is removed from a task list, so
there are n iterations. In each iteration in the worst case (i.e., a fully connected network), for
each of the O(n) managers, O(m) messages are sent (i.e., to all m agents). Next the task with
the highest efficiency can be selected by each contractor in O(n). Assigning an allocation
can be done in O(m). This leads to a number of O(nm) operations which can be done in
O(n + m) parallel steps, and O(nm) messages for each iteration. This results in a total of
O(n2m) operations which can be done in O(n2 + nm) parallel steps. The total number of
messages sent is O(n(nm)) = O(n2m). ⊓⊔

We establish the quality of the proposed centralized and distributed algorithms experi-
mentally in next section.

7 Experiments with the distributed protocol

Theoretically it is impossible to establish a fixed worst-case approximation ratio for any poly-
nomial algorithm for STAP, because of the inherent hardness of the problem. We are therefore
interested in showing experimentally in which settings GDAP performs worst, compared to
the optimal solution. The purpose of these experiments is to study the performance of the
distributed algorithm in different problem settings using different social networks. In partic-
ular, we are interested in the influence of the size and degree of the network, the number of
tasks, and the number of resources available on the quality of the solution and the run-time.
Regarding these experiments, we have the following expectations regarding the quality of
the results of GDAP.

1. When the network is better connected (fewer agents or a higher degree), the performance
is better.

2. When there are more resources available, the performance is better.

The reason for these expectations is that when there are many resources, and many combi-
nations of resources possible, the greedy method works fine, because an initial wrong choice
cannot prevent many other tasks to be allocated.

We first ran several exploratory experiments (some of which are reported in [62]), varying
the resource ratio, the degree, and the number of agents for each of the three network types.
From this initial investigation it turned out that GDAP performs worst when only about half
of the required resources is available, when the average degree is 4, and the 80 tasks and
1,600 resources are distributed over about m = 60 agents. We use this setting as the basis of
all of the following experiments.

123

Auton Agent Multi-Agent Syst

1. We vary the number of resources that are available in the network between 10 and 140%
of the number of required resources in steps of 10% (i.e., the resource ratio from 0.1 to
1.4).

2. We vary the average degree of the agents in the generated network between 2 and 30 in
steps of 2.

3. We vary the number of agents from 10 to 120 in steps of 5.
4. We vary the number of tasks from 10 to 120 in steps of 5. Since the number of resources

is always the resource ratio (0.5) multiplied by 20 times the number of tasks, the number
of available resources in this experiment vary from 100 to 1200.

For each of these experiments we measure the value of the computed allocation (the sum of
the values of the completed tasks), as well as the total computation time. Again, ‘Quality’
on the y-axis means normalized value, whereas ‘Value’ means absolute value. To be able to
compare the computation time to that of the optimal algorithm, we measure the total time
required for running the distributed algorithm sequentially.

7.1 Resource ratio

In Fig. 7 the resource ratio is given on the x-axis, and the y-axis is used to express the rela-
tive quality of the GDAP algorithm. Again this quality is determined by dividing the reward
obtained by GDAP by the value of the optimal solution. Again, we slightly offset the plots
for the three networks with respect to the x-axis to prevent overlap and thus make the figure
easier to read. From a ratio of about 0.4 and higher, the quality of GDAP increases for all
three network types almost linearly up to a quality above 0.9. This can be explained by the
fact that when there are more than sufficient resources available, all tasks can be allocated
without any conflicts. For very low resource ratios the results are much less predictable. One
thing we can say is that if resources are really scarce, only a few tasks can be successfully
allocated even by the optimal algorithm and GDAP finds these as well. For example, of the
8 (out of 20) small-world instances with resource ratio of 0.1 where the optimal algorithm
could allocate at least one task, GDAP finds this optimum in 7 cases. As for the different
network topologies, a t-test for the difference between the means (significance level of 0.05)
shows that the small-world instances yield significantly higher relative performance than
both other network types up to a ratio of 0.6, mainly caused by the higher values of the
optimal solutions in the other networks, as can be seen from Table 1.

Both situations with very few resources as well as with abundant resources are relatively
easy to solve for both GDAP as well as the optimal algorithm, in a way reminiscent of the phase
transition in many satisfiability problems like random k-SAT [40] or Distributed CSP [29],
where instances are easy when they are either over- or underconstrained. This is illustrated
by the run time of the optimal algorithm in Fig. 8. Note that in all graphs on run time we use
a logarithmic scale on the y-axis, to be able to include the run time of the optimal algorithm.
(This also explains why the errorbars for the standard deviations are asymmetrical.) In this
setting with a varying resource ratio, we can see that for a resource ratio between 0.2 and 0.8,
the ILP requires much more time than in the other settings. This can be explained by the fact
that the ILP needs to use branch and bound and rounding techniques [57] to find the optimal
solutions. Especially the small-world instances seem to pose a formidable challenge for the
optimal algorithm, whereas for the GDAP algorithm the small-world instances are easiest:
a t-test shows they require significantly less time across almost the entire range of values of
the resource ratio (except for ratio 1.4 for random and 1.2 and 1.4 for scale-free). This can
be explained by the fact that in the small-world networks we generated for our experiments

123

Auton Agent Multi-Agent Syst

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Q
u
a
lit

y

Resource Ratio

Random
Scale-free

Small-world
0.5

0.6

0.7

0.8

0.9

1

Fig. 7 The relative solution quality of GDAP is influenced by the resource ratio

Table 1 The average values of the computed task allocations for resource ratios 0.1–1.4 for GDAP (the first
line) and Optimal (the second line), rounded to three digits

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

Random

17.5 91.5 172 265 341 413 484 527 591 615 685 703 704 755

22.1 142 271 399 498 577 659 697 751 768 808 819 785 816

Scale-free

29.4 111 190 270 340 426 493 553 606 617 670 710 729 718

45.0 176 294 396 495 587 663 716 761 752 787 803 798 776

Small-world

13.2 65.2 169 259 333 413 475 505 583 634 639 685 713 751

13.6 79.8 233 365 462 551 618 671 728 779 760 796 790 821

(with a rewiring probability of 0.05), most agents have about four neighbors (see Fig. 4).
Because of this, many managers can have (locally) the most efficient task according to all
their neighbors and many of them may thus simultaneously (in the same iteration) conclude
that it is impossible to allocate the task for which they have requested. In the other networks,
even if there is only one agent with a high number of neighbors, it may take that many
iterations for all its neighboring managers to give up.

7.2 Degree

For the next experiment we fix the resource ratio to 0.5 and study the quality of GDAP related
to the degree of the social network. The result can be found in Fig. 9. In this figure we can
see that a high average degree leads to better results for GDAP. Obviously, when managers
have many connections, it becomes easier to allocate tasks. An exception is, similar to what

123

Auton Agent Multi-Agent Syst

100

1000

10000

100000

R
u
n
ti
m

e
 (

m
s
)

Resource Ratio

Random - Optimal
Scale-free - Optimal

Small-world - Optimal
Random - GDAP

Scale-free - GDAP
Small-world - GDAP

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Fig. 8 The run time of the optimal algorithm is strongly affected by the resource ratio. A high resource ratio
has relatively short run times for both GDAP and the optimal algorithm. A ratio around 0.5 takes the most
time for the optimal algorithm

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 5 10 15 20 25 30 35

Q
u

a
lit

y

Degree

Random
Scale-free

Small-world

Fig. 9 The quality of GDAP varies with the network degree

we have seen in Fig. 7, that the solution of the GDAP is also relatively good in small-world
instances where the connections are extremely limited (significantly better than both random
and scale-free in instances with degrees 2 and 4). Again this is caused by the low values for
the optimal solution under these conditions.

The results on the run time are not very interesting. GDAP takes about 200 ms on average
and the optimal algorithm about 10,000 ms. The degree does not seriously influence either
of these results.

123

Auton Agent Multi-Agent Syst

150

200

250

300

350

400

450

500

550

600

650

10 20 30 40 50 60 70 80 90 100 110 120

V
a
lu

e

Number of Agents

Random - Optimal
Scale-free - Optimal

Small-world - Optimal
Random - GDAP

Scale-free - GDAP
Small-world - GDAP

Fig. 10 The value of both the optimal allocation and the one produced by GDAP gradually decrease when
the number of agents is increased

7.3 Agents

We are interested in the performance of GDAP when the number of agents m is increased. For
this experiment we kept the average degree at 4. The run time of GDAP is not significantly
influenced by the number of agents. There is, however, a noticeable effect on the quality of
the resulting allocations.

Because all parameters except the number of agents are kept constant, the effect of increas-
ing the number of agents is that the value of the optimal solution decreases (see Fig. 10).
This can be explained by the fact that it becomes harder to assign resources to neighboring
tasks when the agents are more dispersed. To be more precise, with an average degree of 4,
the expected number of agents that can provide resources stays 5 for any number of agents,
while the average number of available resources per agent decreases when we increase just
the number of agents.

Regarding the quality of the allocations produced by GDAP, we see in Fig. 11 that this
is consistently in the range from 0.6 to 0.8 when we vary the number of agents. The most
remarkable observation here is that for larger numbers of agents, the differences between
the network types become more pronounced. In particular, when the networks become large,
GDAP performs significantly better in small-world networks: at 65 agents and above, small
world networks enable significantly higher normalized performance than both random and
(except at 80 agents) scale-free networks. From 110 agents onwards, scale-free networks also
surpass random networks.

Actually, as can be seen in Fig. 10, what happens is that, when the number of agents is
increased, the value of the optimal solution decreases more sharply in small-world networks.
At 45 agents and higher, the value of the optimal solution in the small-world networks is sig-
nificantly lower than in both other types of networks (except at 50 and 60 agents for random
networks). This can be understood by comparing the distribution of the agents’ degrees
(Fig. 12) and the distribution of successfully allocated tasks by the optimal algorithm over

123

Auton Agent Multi-Agent Syst

0.55
20 40 60 80 100 120

Q
u
a
lit

y

Number of Agents

Random
Scale-free

Small-world

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Fig. 11 The quality of GDAP is consistently in the range from 0.6 to 0.8 for varying numbers of agents

0

10

20

30

40

50

60

0 5 10 15 20 25 30

N
u
m

b
e
r

o
f
A

g
e
n
ts

Degree

Random
Scale-free

Small-world

Fig. 12 The average degree distribution of agents in networks with 10–120 agents and an average degree of
4

agents with different degrees (Fig. 13). In random and especially scale-free networks the few
agents with high degree can allocate almost all their tasks, whereas there are no agents with
a high degree in the small-world network (see Fig. 12). This is further confirmed by Fig. 14.
Interestingly, we can thus conclude that the agents in the scale-free network who are in the
tail of the degree distribution (with a high degree), become more important when the network
grows.

7.4 Tasks

The number of tasks mostly influences the run time (see Fig. 15), but does not seem to influ-
ence the quality of GDAP significantly (see Fig. 16). The ratio of the value of the solutions
produced by GDAP to that of the optimal solutions quickly converges to around 0.7 for

123

Auton Agent Multi-Agent Syst

0

5

10

15

20

25

30

0 5 10 15 20 25 30

N
u
m

b
e
r

o
f
T

a
s
k
s

Degree

Random
Scale-free

Small-world

Fig. 13 The average number of successfully allocated tasks by all agents of a given degree in networks with
10–120 agents and an average degree of 4

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

N
u
m

b
e
r

o
f

T
a
s
k
s
 p

e
r

A
g
e
n
t

Degree

Random
Scale-free

Small-world

Fig. 14 The average number of tasks successfully allocated by a single agent of a given degree in networks
with 10–120 agents and an average degree of 4

increasing number of tasks. Regarding the run time, we again see that the run time of the
optimal algorithm has a very large standard deviation, which is caused by a few instances
with comparatively long run times. We also see that the general trend is that run time depends
exponentially on the number of tasks up to where the number of tasks is approximately equal
to the number of agents. To the computations of the ILP it seems to matter whether an agent
has any task at all, but the effect of having one or more tasks does not seem to make a
difference. In contrast, the run time of GDAP is almost linear in the number of tasks.

7.5 Skewed value-distribution for tasks

Apart from the experiments discussed above, we have studied the performance of GDAP
in many other settings, for example by varying the number of resources types, the number
of resources per tasks or combinations of each of the discussed parameters. The results of
such additional experiments could always be explained by a direct extrapolation of the trends
observed above. Still, we present one additional setting in this section. From the way the
algorithm works, i.e., preferring tasks with a high efficiency, we expect the value of tasks

123

Auton Agent Multi-Agent Syst

100

1000

10000

100000

1e+06

0 20 40 60 80 100 120

R
u
n
ti
m

e
 (

m
s
)

Number of Tasks

Random - Optimal
Scale-free - Optimal

Small-world - Optimal
Random - GDAP

Scale-free - GDAP
Small-world - GDAP

Fig. 15 The run time of the optimal algorithm and GDAP increases with the number of tasks

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100 120

V
a

lu
e

Number of Tasks

Random - Optimal
Scale-free - Optimal

Small-world - Optimal
Random - GDAP

Scale-free - GDAP
Small-world - GDAP

Fig. 16 The value of both GDAP and the optimal algorithm both increase with the number of tasks

to have a significant effect on the results. In all of the above experiments we have used a
straightforward distribution of the value of all tasks. In this section we investigate the effect
of dramatically altering this distribution.

To study the robustness against different distributions of the value of tasks, we generate
instances where the task value distribution is different: 40% of the tasks gets a 10 times
higher benefit. This appeared to have no significant effect on the run time altogether, so we
focus on the effect on the quality of the solutions relative to the optimal solutions. We again
varied the resource ratio and the degree (Fig. 17), the number of agents and the number of

123

Auton Agent Multi-Agent Syst

Q
u
a
lit

y

Resource Ratio

0 5 10 15 20 25 30

Q
u
a
lit

y

Degree

Random - Skewed
Scale-free - Skewed

Small-world - Skewed
Random - Normal

Scale-free - Normal
Small-world - Normal

0.5

0.6

0.7

0.8

0.9

1

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Fig. 17 The quality of GDAP for a normal and a skewed task value distribution related to the resource ratio
and the degree

tasks (Fig. 18). From all of these graphs we can observe that the results for this “skewed” task
value distribution are significantly better on average. We argue that this can be explained by
the greedy nature of GDAP, which causes the tasks with high efficiency to be allocated first.
In this heterogeneous setting, the differences between the efficiency of tasks are larger, and
the greedy choice is therefore more often equal to the optimal choice.

7.6 Summary

We summarize the performance of the greedy distributed allocation protocol (GDAP) based
on the experimental results.

– GDAP works well in all the settings we tested. In addition, as what we expected, its per-
formance is improved when the network is better connected, or when there are sufficient
resource available. More specifically, when the average network degree is greater than
10 (see Fig. 9), or the resource ratio is over 1 (see Fig. 7), GDAP consistently returned
the solutions with a quality over 0.8, regardless of the network types.

– The worst-case performance ratio of GDAP is about 0.6, which occurs with the problem
instances where the network degree is small (around 4) and only less than half of the
required resources is available in the network.

123

Auton Agent Multi-Agent Syst

Q
u
a
lit

y

Number of Agents

Q
u
a
lit

y

Number of Tasks

Random - Skewed
Scale-free - Skewed

Small-world - Skewed
Random - Normal

Scale-free - Normal
Small-world - Normal

0.5

0.6

0.7

0.8

0.9

1

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

0 20 40 60 80 100 120

Fig. 18 The quality of GDAP for a normal and a skewed task value distribution related to the number of
agents and the number of tasks

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 15 20 25 30

Q
u
a
lit

y

Cluster Size

Similarity
BFS
Betweenness

Fig. 19 The quality of the cluster-based algorithm increases for larger cluster sizes and a fixed number of
tasks (80) and agents (60)

123

Auton Agent Multi-Agent Syst

– Compared to the network degree and the resource ratio, the number of tasks or agents
does not influence the quality of GDAP significantly. However, when resources are more
sparsely distributed, GDAP works better with small-world networks relative to the opti-
mal solution (Fig. 11, 18).

– In fact, we have seen that the optimal solution in general has a lower value for small-
world networks than for random and especially scale-free networks when resources are
scarce, because the few agents with a high degree can still allocate some of their tasks,
while there are no such agents in the generated small-world networks.

– The experimental results confirm that the run-time of GDAP (Proposition 2) increases
only slowly with the number of agents, and the number of tasks (Fig. 15).

– GDAP seems to work even better in more heterogeneous settings, such as when the
values of the tasks differ a lot in the network (see Fig. 17, 18).

Based on these results, we expect that the proposed GDAP is able to give high qual-
ity solutions for a wide range task allocation problems and handle large problem instances
efficiently.

8 Mechanism design for STAP

A high quality task allocation can only be found if the agents report their available resources
truthfully. Since we cannot always rely on the agents to be honest, we treat the problem as
a mechanism design problem so that every agent is incentivized to report its true resources,
no matter what strategies other agents use.

We give a brief summary of the relevant mechanism design concepts below, but for a more
elaborate introduction please see [45] or [54]. In a mechanism design setting, we provide
a method that determines an outcome, in our case, a valid task allocation o ∈ O, given
the inputs (the strategies) from the contractor agents and all public knowledge. A typical
assumption for a mechanism design problem is that some of the information is private. In
this paper we consider the setting where the contractor agents have private information.

This private information or type si of a contractor agent is the description of the resources
it has available, i.e., si : R → N. The set of all such functions is called its type space S. The
type space of all m agents is defined by Sm . We use s = (s1, . . . , sm) ∈ Sm to denote the
type profile of the agents. We sometimes denote s by (si , s−i), where s−i denotes the types of
all contractors except i . Different from some other mechanism design problems, we assume
in this problem setting that using a resources does not incur additional costs (compared to
having them but not using them). This situation occurs in for example grid computing, but
also in many companies, because the hardware and/or the employees need to be paid anyway.

The revelation principle [41] says that for any coordination mechanism any equilibrium
can also be achieved by a truthful direct-revelation mechanism. A direct revelation mecha-
nism is one where the strategy space of the agents is exactly their type space. In our study
we therefore define the strategy space A to be equal to the type space S, and search for a
mechanism such that none of the contractor agents can improve its utility by manipulating
the report of its type, i.e, a truthful mechanism (see Definition 7).

Besides the strategies of the contractor agents, part of the input for the mechanism consists
of public information. In our case, this is a social network and a set of tasks. We use Z to
denote this public parameter space of the social task allocation problem. Each z ∈ Z is a
tuple (SN ,T).

123

Auton Agent Multi-Agent Syst

When the mechanism receives inputs a = (a1, . . . , am) ∈ Am and z, it selects an allo-
cation o = O(z, a) with some allocation algorithm O . In addition, assume the mechanism
computes payments (p1(z, a), . . . , pm(z, a)) for all contractor agents. The result for agent
i , called its utility, is the sum of the valuation vi that i gets from the resulting allocation o

with its type si and the payment it receives from the mechanism:

ui (a) = vi (si , o) + pi (z, a).

In the STAP, we define the valuation of agent i as its fair share of the utilities of the tasks it
helps to fulfill.

vi (si , o) =
∑

t∈To

∑

r∈R

o(t, i, r) · e(t). (1)

For example, if an agent i contributes 3 out of 6 resources of different types for a task t with
value 10, then o(t, i, r) = 1 whenever r is one of these types. The valuation of i in this case
is then 3 · e(t). This efficiency (Definition 3) is e(t) = u(t)

∑

r∈R req(t,r)
= 10

6 , so vi (si , o) = 5.

The utility ui is what agent i aims to maximize. The social welfare W (o) of the system is
the sum of the valuations of the contractors in the allocation o, i.e., W (o) =

∑m
i=1 vi (ai , o).

We use this to define the mechanism design problem for social task allocation formally.

Definition 6 (Mechanism design for STAP) Given the parameter space Z , the strategy space
A and the social welfare function W , the mechanism design problem for STAP is to find a
mechanism M = (O, p) that consists of an allocation function O : Z × Am → O, and a
payment function pi : Z × Am → R such that the selected output o ∈ O maximizes the total
social welfare W (o).

A mechanism is efficient if it maximizes the social welfare. Such a mechanism design
problem is called a utilitarian mechanism design problem [46]. We now show that the goal
of this mechanism design problem is exactly the same as the optimization criterium for the
STAP, i.e., the utility of all allocated tasks To.

U (To) =
∑

t∈To

U (t) =
∑

t∈To

∑

r∈R

req(t)(r) · e(t)

=
∑

i∈A

∑

t∈To

∑

r∈R

o(t, i, r) · e(t)

=

m
∑

i=1

vi (ai , o) = W (o)

Thus, when an algorithm for STAP gives the optimal solution, it also outputs the optimal social
welfare for the mechanism, as long as agents report their private information truthfully, i.e.,
if the mechanism is truthful.

Definition 7 (Truthful) Given an output algorithm O , a (direct) mechanism is truthful if
A = S, and for any parameter z ∈ Z , for any strategy profile a ∈ Am , for any agent i with
type si ∈ S it holds that

ui (si , a−i) = vi (si , O(z, si , a−i)) + pi (z, si , a−i)

≥ ui (ai , a−i) = vi (si , O(z, ai , a−i)) + pi (z, ai , a−i)

123

Auton Agent Multi-Agent Syst

Informally, agent i is never worse off by revealing its true private type si to the mech-
anism, no matter what strategies other agents play. Truthful mechanisms can be achieved
with carefully designed payment functions, such as the Groves mechanism [26]. It has been
shown that truthfulness can be guaranteed by a Groves mechanism if the mechanism is able
to compute the optimal solution [46].

Definition 8 (Groves mechanism [46]) A mechanism M = (O, p) is a Groves mechanism
if:

1. The allocation function O(z, a) maximizes the total welfare according to a, i.e. for all
a, O(z, a) ∈ arg maxo∈O(z,a) W (o).

2. The payment of agent i is calculated as follows: pi (z, a) = −vi (ai , O(z, a)) +

W (O(z, a)) + h(a−i), where h is an arbitrary function of a−i .

In the following, we first discuss a Groves mechanism for the STAP allocation algorithm
that maximizes the objective function.

8.1 Exact truthful mechanism

Consider the following Groves mechanism using an optimal algorithm.

Definition 9 ([MOPT for STAP) The optimal task allocation mechanism consists of

– A task allocation algorithm OPT: Let z = (SN ,T) be an instance of STAP. First the
mechanism center announces a set of tasks T—required resources (type and demand),
utilities and locations—that need to be allocated to all contractor agents. Next the con-
tractors declare their types a to the center. The center then finds the efficient allocation
o = OPT(z, a) using the ILP translation.

– A payment function pOPT: The payment of an agent is its marginal contribution to the
society, i.e.,

pOPT
i (z, ai , a−i) = −vi (ai , o) + W (o) − W (o−i) (2)

where o−i = OPT(z, a−i) is the efficient allocation computed by OPT without i’s
participation. This is also called the Clarke pivot payment or Clarke’s tax [54].

Because this exact mechanism is based on the Groves mechanism, it almost automatically
inherits properties such as being efficient and truthful. An agent has no incentive to not fully
state its available resource types and amounts, since the utility of an agent is its marginal
contribution to the society: suppose an agent states less resources, the total number of allo-
cated tasks will be no more than when it fully states its available resources. Thus the marginal
contribution of the agent to the social welfare would then be no more, since the resulting
efficient allocation has lower utilities. Therefore the agent will derive a lower utility due to
its incomplete report.1

Corollary 1 The mechanism MOPT = (OPT, pOPT) is a truthful and efficient mechanism,

where agents always receive non-negative utilities by participating in the game, i.e., agents

are individually rational (IR). In addition, the mechanism gives no payment to agents that

do not get any allocated tasks.

1 In this paper we do not address the case that an agent overstates its resources. Such misreports have been
studied in for example [36].

123

Auton Agent Multi-Agent Syst

This statement is a corollary of the truthfulness, IR, and optimality results of Groves
mechanisms with a Clarke pivot payment (VCG mechanisms) that use an optimal allocation
rule, see e.g., [54].

An additional desirable property would be that the payments for each task in total is exactly
the same as the value of that task. This property is called budget balancedness. However, it
follows directly from Myerson and Satterthwaite [42] that it is impossible to achieve budget
balancedness together with efficiency and individual rationality for a truthful mechanism. In
this paper we therefore do not place this additional requirement, but focus on how to obtain
efficient solutions in polynomial time. Truthfulness is very important in this respect, because
otherwise the mechanism may make decisions based on incorrect information.

8.2 A computationally efficient truthful mechanism

The exact mechanism for STAP, MOPT, is truthful and efficient. However, it takes exponential
time to compute the allocation and the payment. Obviously, this is not feasible when the
problem size is large. In this section, we first show that a mechanism using the greedy
algorithm cannot be truthful. We then develop a truthful polynomial-time mechanism by
splitting the problem into sub-problems that each can be solved optimally in polynomial
time.

Proposition 3 No Groves mechanism is truthful with the greedy task allocation algorithm

GTA.

Proof We show that for a specific instance the Groves mechanism cannot incentivize a
contractor to declare all its available resources truthfully if the greedy task allocation al-
gorithm is used. Without loss of generality we assume that h(a−i) = 0. Thus, pi (z, a) =

−vi (ai , GTA(z, a)) + W (GTA(z, a)).
Consider a problem instance with tasks t1, t2 and t3. Task t1 requires resources {r1, r2, r3};

task t2 requires {r2, r4}; and t3 requires {r3, r5}. All three tasks are connected to contractors
i and j , where i has resources {r1, r4, r5}, and j owns {r2, r3}. Let the utilities of the tasks
be U (t1) = 15, U (t2) = 8, and U (t3) = 8. Thus the efficiencies are 5, 4, and 4, respectively.
Suppose that agent j is truthfully reporting its resources {r2, r3}. We now compare two
situations. When i also declares its type truthfully to the mechanism, i.e. {r1, r4, r5}, then
according to the greedy algorithm, the resulting allocation is o1 = GTA(z, s j , si) with To1 =

{t1}, because t1 has the highest efficiency. The payment then is pi (z, s j , si) = −vi (si , o1) +

W (o1). So in this case, the utility that i receives by declaring truthfully is ui (s j , si) =

vi (si , o1) + pi (z, s j , si) = W (o1) = 15.
Consider now a case where i mis-reports (ai �= si) its resources, i.e., {r4, r5}. In this case

t1 cannot be allocated. The greedy algorithm then outputs the allocation o2 = GTA(z, s j , ai)

and To2 = {t2, t3}. The utility of i then becomes ui (s j , ai) = vi (si , o2)−vi (ai , o2)+W (o2) =

(4 + 4) − (4 + 4) + 16. Since ui (s j , ai) > ui (s j , si), agent i is better off by lying about its
available resources. This mechanism is not truthful. ⊓⊔

Clearly, another approach is required to obtain a polynomial algorithm that is also truth-
ful. The idea is to create sub-problems that can be solved in such a way that the resulting
mechanism is truthful and the quality of the resulting solutions is still quite good. To achieve
truthfulness, we should divide the problem in a way that does not depend on the declared
types of the agents. In addition, we would like the algorithm to be computationally feasible. In
most applications, this means that the algorithm should be polynomial in at least the number
of agents m and the number of tasks n (for a fixed number of resource types).

123

Auton Agent Multi-Agent Syst

Algorithm 3 Cluster-based algorithm CLS.

Input: a set of agents A, tasks T, a network SN = (A, AE) and a cluster size c.
Output: a task allocation and its value.
While there are tasks and agents left, execute the following lines.

1. Find a cluster C of agents and their tasks of size at most max{c, log n} using a polynomial-time clustering
method that does not use private information of the agents.

2. Compute the task allocation for C using the optimal algorithm OPT.
3. Remove C from the problem.

The idea of the cluster-based algorithm we present below is thus to find a partitioning of the
given social network into several disjoint subnetworks (or clusters) so that each subnetwork
is small enough to be solved by the optimal algorithm using ILP described in Sect. 4.1. Given
a STAP with n tasks and m agents, we partition the graph so that each cluster C contains at
most log n tasks and log m agents when n and m are large. For smaller numbers of tasks we
limit the number of tasks per cluster by a fixed number c. Pseudocode of this algorithm is
given in Algorithm 3.

Proposition 4 Given a STAP with n tasks, m agents, l resource types, and the degree of

the network bounded by �, the cluster-based algorithm CLS is polynomial in m, n,�, and

exponential in l. When the number of resource types l is bounded by a constant, CLS is a

polynomial-time algorithm.

Proof In this proof we show that the asymptotic run-time is polynomial; we therefore ignore
the case that log n < c in the following. Given that the clustering method is polynomial, the
run time is mainly determined by the computation of the optimal solution for each cluster.
Recall that the ILP can be solved in time exponential in n, m, and l. In each cluster, the size of
the input for the ILP is reduced by restricting the number of tasks and agents. More precisely,
in each cluster the number of variables in the ILP formulation is O(log(n) log(m)l), therefore,
computing the solution for each cluster using ILP takes: eO(log(n) log(m)l) = O

(

m · n · 2l
)

.
This algorithm is thus fixed-parameter tractable in l [44]. In other words, when the number

of resource types l is bounded by a constant, the computation time of CLS after clustering

is O
(

n
log n

)

· O(mn) = O
(

n2m
log n

)

, which is polynomial. ⊓⊔

The cluster-based algorithm can be used to define a truthful mechanism as follows.

Definition 10 (A cluster-based mechanism MCLS) A cluster-based mechanism MCLS =

(CLS, PCLS) works as follows.

– Let z = (SN ,T) be an instance of STAP. First, the mechanism partitions the agent
network according to Algorithm 3, Steps 1–4.

– After one cluster C j is formed, the agents in this cluster are asked to submit their private
types a to the mechanism. Based on the declared types, the mechanism uses the task
allocation algorithm CLS to get the optimal allocation o j of this cluster (Algorithm 3,
Step 2).

– A payment function pCLS calculates the payment to the agents in each cluster C j based
on the same payment function as used by the OPT mechanism (Definition 9), i.e.,

pCLS
i (z, ai , a−i) = −vi (ai , o j) + W (o j) − W (o

j
−i).

The mechanism calculates the allocation and the payment for each cluster. Agents are
asked to submit their types after the clusters are formed. Therefore, agents’ private types will

123

Auton Agent Multi-Agent Syst

not influence the partitioning process, i.e. they cannot manipulate in order to enter “good”
clusters. When the mechanism divides the network into several clusters, it uses only the public
information—the network structure and the information of the tasks, no private information
of agents is involved in this stage, and each agent can only belong to one cluster. Indeed,
we will show this is the key fact which ensures that the mechanism is truthful even when a
sub-optimal allocation algorithm (CLS) is used.

Theorem 3 The mechanism MCLS = (CLS, pCLS) is truthful, individually rational and

gives no payment to agents that do not get any allocated tasks.

Proof The cluster-based algorithm (Algorithm 3) removes some edges between agents and
tasks, and divides the network into disjoint clusters. Given a problem instance z, as a result of
partitioning, the set of “allowable” allocations given the type space of agents a is restricted

to � = ω1 ∪ . . . ∪ ωk where ω j = {o
j
1, o

j
2, . . .} denotes the set of allowable allocations

in cluster C j . Note that � is a subset of the allowable outputs O in the exact mechanism:
� ⊆ O. Each agent is only in one cluster after partitioning.

The declarations of the agents will not influence the partitioning process. Next we prove
that for each cluster, truth-telling is always in the best interests of all agents. For this we use
a similar proof as for the exact mechanism (Theorem 1).

Given an agent i in the cluster C j , we define the true type of i by si and any other type
by ai . Let o j = CLS(z, si , a−i), and ô j = CLS(z, ai , a−i), o j , ô j ∈ ω j , respectively. The
difference δ of the utility that i will receive by declaring si and ai is:

δ = ui (si , a−i) − ui (ai , a−i) = W (o j) − W (ô j).

Since we use the optimal algorithm OPT to find the optimal allocation in every cluster, o j is
the best allocation over ω j , i.e., o j = arg maxo′ j ∈ω j

W (o′ j). Therefore, W (o j)−W (ô j) ≥ 0,
i.e., agents are better off by report their types truthfully. The truthfulness result holds for all
clusters. In addition, since the network is partitioned without the knowledge of the contractor
agents’ private information, the contractors cannot manipulate the mechanism in order to
enter different clusters. Similarly, we can show the mechanism is individually rational. ⊓⊔

8.3 Clustering heuristics

Finding a graph partitioning where a minimal number of connections is broken is NP-hard
for more than two clusters (so when the cluster size c < 1

2 m, where m is the number of
agents) [21]. In this paper we therefore limit ourselves to evaluating the quality of the task
allocation where the clusters are determined heuristically. We discuss three examples of such
heuristics.

Breadth-first clustering The first heuristic repeatedly performs a breadth-first search in the
(remaining) graph until as many agents are visited as are allowed in a cluster. A next cluster
is formed starting from the agent that was about to be visited in the previous cluster. When
there is no such unvisited agent, a starting agent is randomly selected from the remaining
unvisited agents. This heuristic is very efficient and runs in O(m2) time, but can even be
implemented to run in linear time.

Clustering using the betweenness of agents For the second heuristic we again use the
betweenness measure described in Sect. 4.2. This measures the number of shortest paths
(between any two agents) through an edge [24]. The intuition now is that when an edge
connects two clusters, it usually has a high betweenness. By repeatedly removing the edge

123

Auton Agent Multi-Agent Syst

with the highest betweenness, at some point the graph falls apart into separate components
(clusters). This heuristic continues to do so for each cluster that is larger than the allowed
maximum. The run time of this method requires m times computations of all-pair-shortest
paths. Our implementation uses the betweenness implementation from the Jung graph library
for each connection in AE , which in itself is fairly inefficient; the heuristic in total runs in
O(|AE |(m2 + m|AE |)) time.

Clustering using efficiency and the similarity of the neighborhood of tasks The final heuristic
comes from the consideration that tasks which connect to the same contractor agents should
end up in the same cluster, because these interactions between tasks are the core of our prob-
lem. We would like to keep as many of these interactions in the sub-problems to maintain a
certain level of quality.

For this heuristic, we start with the most efficient task, which has the highest utility for
using resources. The tasks are divided in such a way that those in one cluster are more
related to each other than to tasks outside of the cluster. The similarity of a task t to a
cluster C is measured by the number of mutual contractor agents they are connected to:
sim(t, C) =

∑

t ′∈C |mutual(t, t ′)|, where

mutual(t, t ′) =

{

i ∈ A

∣

∣

∣

∣

((i, loc(t)) ∈ AE or i = loc(t)) and
((i, loc(t ′)) ∈ AE or i = loc(t ′))

}

After we find a cluster C with at most max{c, log n} tasks, we limit the number of con-
tractor agents in C by keeping only the agents which have most connections to the tasks in C .
To distribute the contractor agents evenly over the n

log n
clusters, we add at most q contractor

agents to each cluster, where q = min
{

log(m),
m·max{c,log n}

n

}

, so for small problems we just

use q = mc
n

. In this way, the size of each cluster k is bounded by max{c, log n} + q .
Sorting the set of tasks on efficiency takes O(n log n). For a cluster C , computing the

similarity of one task to C is bounded by O(log n�). This similarity is calculated for at most
O(n) tasks. This is repeated for each task to be added to the cluster. Thus, determining one

cluster takes O
(

n(log n)2�
)

. As there are in total at most O
(

n
log n

)

clusters to be found, the

computation time for this clustering heuristic is: O
(

n log n + n2 log n�
)

= O
(

n2 log n�
)

.
These (truthful) cluster-based algorithms may bring some undesired performance losses,

depending on the clustering used. As we cannot guarantee the performance theoretically,
in the next section, we show the performance of this polynomial-time mechanism MCLS

experimentally on these three different clustering heuristics.

8.4 Experiments on selfish social task allocation

To evaluate both the quality and the run time of the cluster-based algorithm, we compare
the clustering heuristics in two settings. First we study the effect of the cluster size (i.e., the
number of tasks in one cluster) on quality and run time in the default setting of 60 agents and
80 tasks, and then we give some results on quality and run time for larger problem sizes.

8.4.1 Effect of cluster size

For the default setting with 80 tasks, half of the required resources available, an average
degree of 4, 1,600 resources ratio, and 60 agents, we vary the cluster size from 5 to 30 in
steps of 5 and measure both the runtime and the quality compared to the optimal solution.

123

Auton Agent Multi-Agent Syst

5 10 15 20 25 30

R
u
n
 T

im
e
 (

m
s
)

Cluster Size

Optimal
Similarity
BFS
Betweenness

100

1000

10000

100000

1e+06

Fig. 20 The run time of the cluster-based algorithm stays approximately constant for increasing cluster sizes
and a fixed number of tasks (80) and agents (60)

The results on the quality comparison averaged over all three network types can be found
in Fig. 19. The quality of all three heuristics increases with the cluster size, which is not
surprising, given that an optimal algorithm is used for each cluster. The figure also shows
that the performance of the betweenness heuristic is significantly worse than the other two
heuristics. For the other two heuristics the cluster-based algorithm performs reasonably well
with a quality between 0.3 for small clusters up to 0.65 when the cluster size is around 30.

The computation time required for these results stays approximately constant for increas-
ing cluster sizes and a fixed number of tasks and agents, as illustrated by Fig. 20. In addition,
this figure illustrates the long computation time required for the betweenness heuristic; it
almost takes as long as running the optimal algorithm.

8.4.2 Scalability

When the number of tasks grows and the cluster size stays the same, the cluster-based algo-
rithm will create more clusters. To see the effect of this on quality and computation time, we
run an experiment with 60 agents, a cluster size of 15, while varying the number of tasks from
10 to 120 (and thus the number of clusters from 1 to 8). The results of this experiment can be
found in Figs. 21, 22, and 23. Surprisingly, when the number of tasks is at least 40, the relative
quality is approximately constant between 0.3 and 0.4 for random and scale-free networks,
and between 0.6 and 0.7 for small-world networks (see Fig. 21), which is all significantly
lower than the performance of GDAP. The difference in performance of the cluster-based
algorithm in small-world networks can be explained by the fact that a small-world network
by construction is already a bit clustered, and therefore the loss of quality by ignoring some
of the relations is less severe. Only for a small number of tasks, we see the (positive) effect
of having fewer clusters.

This can be seen even more clearly from Fig. 22. When there are very few tasks and 60
agents, on average only one task can be allocated (in the optimal solution). Both the BFS and
the similarity heuristic obtain this optimal result, because they create clusters around the few

123

Auton Agent Multi-Agent Syst

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20 40 60 80 100 120

Q
u
a
lit

y

Number of Tasks

Small-world
Random
Scale-free

Fig. 21 On average over all heuristics the small-world networks are best suited for the clustering algorithm

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100 120

Q
u

a
lit

y

Number of Tasks

GDAP
Similarity
BFS
Betweenness

Fig. 22 The quality of the similarity heuristic stays constant around 0.4, while both BFS and betweenness
slowly increase with the number of tasks (beyond 40 tasks)

available tasks. The betweenness heuristic only considers the agent network and therefore
performs very bad here.

The results on the run time (Fig. 23) give another reason for not using betweenness in this
way; for some problems the clustering heuristic uses more time than the optimal algorithm.
Besides this, the run time results behave as expected, requiring significantly more time when
there are more tasks.

To see the effect of an increasing network size, we also run the cluster-based algorithm on a
setting with 80 tasks and with a maximum cluster size of 15, but varying the number of agents

123

Auton Agent Multi-Agent Syst

R
u

n
 T

im
e

 (
m

s
)

Number of Tasks

Optimal
Similarity
BFS
Betweenness

100

1000

10000

100000

1e+06

20 40 60 80 100 120

Fig. 23 The run time of the cluster-based algorithm increases with the number of tasks because the number
of clusters increases

from 10 to 120. Changing the number of agents while keeping the number of tasks constant
hardly has any interesting effect on the runtime, but regarding the quality we can make the
following observations, based on Fig. 24. This figure contains the results for the similarity
and BFS heuristics on all three networks (we left out betweenness for clarity and because it
is dominated in both run time and quality). The figure shows that increasing the size of the
network slightly reduces the quality of the clustering algorithm using the BFS heuristic. When
these networks grow while keeping the number of tasks the same, the clusters constructed
using BFS contain a decreasing portion of the available tasks and resources, making it hard
to find good overall solutions. However, the similarity heuristic has a stable performance on
both the scale-free and random networks, significantly outperforming the BFS heuristic in
such networks with over 90 agents. Even more striking, however, is that the quality of the
similarity heuristic in small-world networks keeps increasing with the size of the network.
This increase can be partly explained by the decrease in the absolute optimal value for small-
world networks with a large number of agents and a fixed (small) number of tasks, as we
discussed in Sect. 7.3. In addition, the main difference between the similarity heuristic and
BFS is that the similarity heuristic puts tasks with similar requirements together in the same
cluster. This seems to pay off mostly in large networks where tasks and resources are scarce.

From these results we conclude that networks in which it is harder to find good clus-
ters, such as random and scale-free networks, may need another type of heuristic to break
the problem down into good independent and manageable parts. We leave finding such an
alternative heuristic for future work.

9 Related work

Task allocation in multiagent systems has been investigated by many researchers in re-
cent years with different assumptions and emphases, ranging from centralized methods to

123

Auton Agent Multi-Agent Syst

0.1
20 40 60 80 100 120

Q
u
a
lit

y

Number of Agents

Small-world - Similarity
Small-world - BFS
Random - Similarity
Random - BFS
Scale-free - Similarity
Scale-free - BFS

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 24 The quality of the cluster-based algorithm (averaged over all three heuristics) for small-world net-
works is more or less stable, but decreases on random and scale-free networks with the number of agents

distributed ones, fully cooperative agents to self-interested settings, taking the relations be-
tween agents into account, or assuming full connectivity. In this section we aim to provide
a guideline to such literature related to task allocation in social networks. First we discuss
recent developments in computing task allocations when all agents are connected. Then we
concentrate on the relation of these approaches to using auctions for similar allocation prob-
lems. We conclude this section with an overview of related work that takes relations between
agents into account.

9.1 Allocations with fully connected agents

Shehory and Kraus [52] study how to allocate tasks that require cooperation among a set of
agents. Such a set of agents is called a coalition, and in fact this is thus strongly related to the
problem of coalition formation. In coalition formation usually stability is the primary goal,
versus the problem of optimizing the value of the allocated tasks, as in our work. A recent
paper by Dunne et al. [16] provides a thorough analysis of the computational complexity of
this problem of finding stable coalitions, which they call coalitional resource games.

In our setting we concentrate on maximizing the value of the allocated tasks, in a way
similar to work by Kraus et al. [34,35], where they study the case where the tasks need to
be executed by self-interested agents under time constraints (i.e., a discount of the utility of
a task per auction round). They focus on finding strategies for distributing revenues fairly
among agents that are close to a notion of stability. There are no theoretical guarantees on
stability or incentive compatibility provided, but they perform experiments with up to 15
agents and 5 tasks, that show that the strategies are close to stable. We believe their work pro-
vides an interesting alternative revenue division for the proportional revenue that we use in
our work here. The theoretical counterpart of this work is provided by Manisterski et al. [39],
who show that when budget balancedness is required, efficiency is only possible in specific
settings (such as with only one task). In our setting we do not obtain budget balancedness, but
we provide two generally applicable mechanisms: one that is guaranteed to be efficient, but

123

Auton Agent Multi-Agent Syst

may require exponential running time, and one that is computationally efficient, but where
the performance depends on the cluster size. However, the proposed task allocation protocol
in [34,35] but also the Pareto-optimal approach in [53] is centralized, where one manager is
responsible for the auction of all tasks: announcing the tasks, collecting the proposals, and
allocating the tasks to the agent coalitions. We generalize that model by having each task
managed by a different agent, distributed over the network. The other extreme is to let agents
form and break coalitions completely distributedly, using simple local heuristics. Such an
approach is for example used for forming buyer coalitions in large-scale multiagent systems
by Lerman and Shehory [37] and can also be found in [53].

Focusing more on optimality than stability, a related line of work is on scheduling with
self-interested agents [28,33,47]. The similarity between task allocation and scheduling jobs
on machines is that in both cases resources (machines) are allocated to tasks (jobs). However,
in scheduling the resources (machines) can be used as often as required, and usually all jobs
are allocated. The goal is there to minimize e.g., makespan, lateness (in case of deadline), or
weighted completion time of a schedule allocating all tasks. The difficulty in task allocation
arises exactly from the fact that not all tasks can be allocated and that therefore an optimal
selection of tasks needs to be chosen.

9.2 Auctions for allocation problems

Auctions have been a popular method for realizing distributed task or resource allocation in
multiagent systems [5,25,15,55], among which the Contract Net (or CNP) [55] is probably
the most well-known. In the CNP, the auctioneer sends out a call for proposals, the bidders
submit their bids and the auctioneer then evaluates the bids and determines the winner. Finally
the bidders receive or reject the offer. Many variants of the CNP have been developed for
different problem domains, for instance, in multirobot coordination. Goldberg et al. [25] use
auction-based methods for allocating the tasks to robots. In [5], the authors propose one-shot
auction to tackle the changes in a dynamic environment when allocating tasks with time and
dependency constraints. In their approach, any agent can become an auctioneer and call for
proposals on the task it had accepted earlier in case this task fails (or might fail). The bids from
the agents include a time window and the agents use combinatorial bids (i.e., combinations
of tasks). The auctioneer selects the best bids which fit its overall schedule.

The winner determination for combinatorial auctions (CAs) is NP-complete [49]. CAs can
be viewed as a “reverse” task allocation, where the agents with resources are the auctioneer(s)
and the agents who want to obtain the resources (for completing their tasks) are bidders. The
downside of CAs is that they often require an exponential number of task bundles to be con-
sidered, which results in an exponential number of communication messages. The difference
from our approach is that we compute an allocation for each task (almost) independently,
using locality of both tasks and resources. This can be done very efficiently, as shown in this
paper. Inversely, a possible consequence of our work could be that we provide here some first
insights in how to deal with combinatorial auction problems where resources and bidders are
distributed and not every bidder is allowed to bid on every resource. More generally, none of
the research mentioned above studies the effect of different social networks of self-interested
agents on the run time and the quality of the allocations.

9.3 Allocations in networks of agents

There is some work where networks have been employed in the context of task allocation
with a different focus or application. For example Gaston and DesJardins [23] study how

123

Auton Agent Multi-Agent Syst

the topology of an organization’s structure affects the performance of the teams forming
in multiagent systems. They show that the agents’ interaction topology is a key factor in
effective team formation, mainly that scale-free networks support the diversity required for
effective teams. Eberling and Kleine Büning [18] design a system where agents cooperate
with neighbors to perform assigned tasks. They select others to cooperate with who are in
some sense “like” themselves, whereas we study the problem of finding agents that have
complimentary resources to allocate tasks. A very interesting aspect of their work is that
they study the effect of adapting the structure of their local network. Such changes can for
example be based on the long run benefit of relations, which could be learned from observ-
ing past behavior as has been put forward in earlier work [7,22]. The focus of the research
discussed above is on distributed coalition or team formation among agents in a network. In
our work we also investigate how the different network topologies affect the performance of
the system; in our case a task allocation. However, the main difference from our approach
is that we do not need agents to form groups before allocating tasks, but tailor the agents
assigned to a task based on the specific problem instance, given existing social relations.

We study the effect of limiting cooperations exactly to such social relations, but networks
of agents are also used to model the allowed communication between agents. For example,
Kafalı and Yolum [30] investigate how different communication protocols improve the effi-
ciency of the resource allocation when agents are not fully aware of all other agents and their
demand for resources. Vidal [58] develops a protocol for agents to coordinate their actions
such that communication allows them to align their individual search landscapes with the
global fitness landscape. A minimum level of connectedness in the agents’ communication
network is required for this to work. Abdallah and Lesser [1] use networks to model limited
interactions between agents and mediators. Mediators in this context are agents who receive
the task and have connections to other agents. They break the task up into subtasks, and nego-
tiate with other agents to obtain commitments to execute these subtasks. Their focus is on
modeling the decision process of just a single mediator. The work of [50] introduces compu-
tational geometry-based algorithms for distributed task allocation in geographical domains.
Agents are then allowed to move and actively search for tasks, and the capability of agents to
perform tasks is homogeneous. In order to apply their approach, agents need to be mobile, and
they have some knowledge about the geographical positions of tasks and some other agents.
Other work [51] proposes a location mechanism for open multiagent systems to allocate tasks
to unknown agents. In this approach each agent caches a list of agents they know. The analysis
of the communication complexity of this method is based on lattice-like graphs, while we
investigate how to efficiently solve task allocation in a social network, whose topology can
be arbitrary.

Also extant work on resource allocation in social networks with self-interested agents in
fact uses the network as a model for allowed communication in the sense of negotiation. In
this model connected agents are allowed to negotiate about exchanging resources locally in a
network, and as often as possible, as long as each exchange is individually rational [3,10,11].
The aim of this line of work is to show convergence to new allocations with properties such
as envy-freeness. Tasks as such are not explicitly included, but could in principle be modeled
by the utility functions. In our work we allow resources to change hands at most once, and
the utility for resources is of a combinatorial nature, i.e., only certain sets of resources can
achieve tasks and thus have any value.

Resource allocation in a social network has also been modeled by letting each pair of
connected agent solve a bargaining problem [8,9,31]. In this abstract model each bargaining
problem can be thought of as sharing a single pie among the two agents. Results show for
example existence and computation of equilibria in specific graph structures, given efficiency

123

Auton Agent Multi-Agent Syst

(and fairness) criteria such as the Nash bargaining solution. Although this work also takes
social relations into account, the model is very different from the task allocation model com-
monly used in multiagent systems, and results do not seem to transfer. However, applying the
game theoretical method used to obtain these results for our setting is a worthwhile direction
for future work.

Another important direction for future work is to apply the developed algorithms to a real-
world application. For example, a supply chain consists of a set of partially connected agents,
and it is a natural application domain for task allocation in networks. Easwaran and Pitt [17]
are concerned with the allocation of subtasks to service providers in a supply chain, where
“complex tasks” require “services” for their accomplishment. Their algorithm breaks up the
problem in two stages: (1) identifying which services need to be executed in order to solve
the complex task by breaking the task into subtasks until there are only primitive tasks that
can be solved by a combination of service agents, and (2) identifying an optimal set of service
providers to provide the services identified in the first stage. For the first stage they use a
hierarchical network planning and for the second stage a genetic algorithm. Both algorithms
are run centrally. In contrast, Walsh and Wellman [59,60] develop a distributed approach for
this problem, using a separate auction for each required resource. These separate auctions
have the advantage of being computationally very efficient, but may also lead to managers
that end up with insufficient resources to execute a task, while they still need to pay for these
resources (the bidder exposure problem). To remedy this, they also include a mechanism for
decommitment. This mechanism allows managers to return resources in case—after the auc-
tions are concluded—the acquired set of resources turns out to be insufficient to complete the
task. Such an approach works well when this does not happen too often. However, we expect
that in situations where resources are scarce (for example with a resource ratio around 0.5
as in our experiments), few managers are able to acquire all resources required for their task
when these need to be obtained in separate auctions. For such difficult instances, it may be
better to consider the tasks in a greedy order such as in GDAP (if agents are not strategic), or to
use an optimal combinatorial approach locally such as the cluster-based mechanism. Having
said that, their model of hierarchical subtask decomposition is quite expressive, they provide
a neat equilibrium analysis, and the application to the domain of supply chain formation is
very inspiring.

10 Conclusions

In this paper we study the task allocation problem in a social network (STAP), which can be
seen as a new, more general, variant of the task allocation problem. We believe this problem
models many realistic task allocation problems. This paper includes the following contri-
butions regarding this problem. We prove that computing the efficient solution for STAP
is NP-complete and we give a bound on possible approximation algorithms. We present a
computationally efficient distributed protocol, GDAP. We show that this protocol cannot be
used as part of a truthful mechanism in case the agents who control the resources are self-
interested, but we provide an alternative, cluster-based algorithm for such situations. Finally,
we conduct an extensive set of experiments to assess the solution quality and the compu-
tational efficiency of the proposed algorithms in three types of social networks, namely,
small-world networks, random networks, and scale-free networks.

The results presented in this paper show that the distributed algorithm performs well
in all three types of networks, and for many different settings. Furthermore, the algorithm
scales well to large networks, both in terms of quality and of required computation time. The

123

Auton Agent Multi-Agent Syst

results also show that the value of an optimal task allocation in small-world networks where
resources are scarce is relatively low compared to the same setting in the other network types,
because there are no agents in these small-world networks with many connections that can
still allocate tasks that require many resources. However, both the distributed algorithm as
well as the cluster-based algorithm with the similarity heuristic perform relatively well in
such small-world networks, because these algorithms exploit exactly such locality to reduce
the computational burden. Overall as a price of truthfulness, the cluster-based algorithm per-
forms a bit worse than GDAP, except when cluster size is large (i.e., less than five clusters
for small-world networks or at most two for the others).

Because the quality of the allocations found by the (truthful) cluster-based algorithm is
not as good as the quality of GDAP (except in some small-world networks), we aim in our
future work to design an alternative truthful mechanism for networks in which clusters do
not already occur naturally. But even for GDAP there may be room for different heuristics,
perhaps attaining a better performance in specific settings. In addition, we believe the model
can be extended to support use in other realistic situations. For example, in the current model
we assume that agents can only contact their neighbors to request resources, but it would
be interesting to see neighbors also as mediators in finding resources further away in the
social network. This direction could benefit from the results on resource exchanges [3,11]
discussed in the previous section. A third interesting topic for further work is the addition of
reputation information among the agents. This may help to model changing business relations
and incentivize agents to follow the protocol. For this we could look into taking some first
results on dynamic social networks [4] into account.

Finally, it would be interesting to study real-life instances of the social task allocation
problem, and see how they relate to the randomly generated small-world, scale-free, and
uniformly random networks studied in this paper.

Acknowledgments This work is supported by the Technology Foundation STW, applied science division
of NWO, and the Ministry of Economic Affairs.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

References

1. Abdallah, S., & Lesser, V. (2005). Modeling task allocation using a decision theoretic model. In
Proceedings of the 4th international conference on autonomous agents and multiagent systems (AAMAS

2005) (pp. 719–726). New York: ACM.
2. Alon, N., Feige, U., Wigderson, A., & Zuckerman, D. (1995). Derandomized Graph Products. Com-

putational Complexity, 5(1), 60–75.
3. Andersson, M. R., & Sandholm, T. W. (1998). Contract types for satisficing task allocation: II

experimental results. In AAAI spring symposium series: Satisficing models. California: Stanford
University

4. Assen, M. A. L. M., & van de Rijt, A. (2007). Dynamic exchange networks. Social Networks, 29(2), 266–
278.

5. Babanov, A., & Gini, M. (2006). Deciding task schedules for temporal planning via auctions. In AAAI

Spring Symposium.
6. Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439),

509–512.
7. Barton, L., & Allan, V. H. (2007). Methods for coalition formation in adaptation-based social networks.

In Cooperative information agents XI, LNAI (vol. 4676, pp. 285–297). Heidelberg: Springer.

123

Auton Agent Multi-Agent Syst

8. Braun, N., & Gautschi, T. (2006). A nash bargaining model for simple exchange networks. Social

Networks, 28(1), 1–23.
9. Chakraborty, T., Kearns, M., & Khanna, S. (2009). Network bargaining: Algorithms and structural

results. In Proceedings of the tenth ACM conference on electronic commerce (pp. 159–168).
10. Chevaleyre, Y., Dunne, P. E., Endriss, U., Lang, J., Lemaitre, M., Maudet, N., Padget, J., Phelps, S.,

Rodríguez-Aguilar, J. A., & Sousa, P. (2006). Issues in multi-agent resource allocation. Informati-

ca, 30, 3–31.
11. Chevaleyre, Y., Endriss, U., & Maudet, N. (2007). Allocating goods on a graph to eliminate envy. In

Proceedings of the 22nd national conference on artificial intelligence (AAAI 2007) (pp. 700–705).
12. Coase, R. H. (1937). The nature of the firm. Economica NS, 4(16), 386–405.
13. Coase, R. H. (1995). My evolution as an economist. In W. Breit & R. W. Spencer (Eds.), Lives of

the laureates (pp. 227–249). Cambridge, MA: MIT Press.
14. Dantzig, G. (1957). Discrete variable problems. Operations Research, 5, 266–277.
15. Dias, M. B., Zlot, R. M., Kalra, N., & Stentz, A. T. (2005). Market-based multirobot coordination:

A survey and analysis. Technical report CMU-RI-TR-05-13. Pittsburgh, PA: Robotics Institute, Carnegie
Mellon University.

16. Dunne, P. E., Kraus, S., Manisterski, E., & Wooldridge, M. (2010). Solving coalitional resource
games. Artificial Intelligence, 174(1), 20–50.

17. Easwaran, A. M., & Pitt, J. (2002). Supply chain formation in open, market-based multi-agent
systems. International Journal of Computational Intelligence and Applications, 2(3), 349–363.

18. Eberling, M., & Kleine Büning, H. (2010). Self-adaptation strategies to favor cooperation. In Agent

and multi-agent systems: Technologies and Applications, LNAI (vol. 6070, pp. 223–232). New York:
Springer.

19. Ferreira, P., dos Santos, F., Bazzan, A., Epstein, D., & Waskow, S. (2010). Robocup rescue as
multiagent task allocation among teams: Experiments with task interdependencies. Autonomous Agents

and Multi-Agent Systems, 20, 421–443.
20. Foster, I., Jennings, N. R., & Kesselman, C. (2004). Brain meets Brawn: why grid and agents need

each other. In Proceedings of the 3rd international conference on autonomous agents and multiagent

systems (AAMAS 2004) (pp. 8–15). Washington, DC: IEEE Computer Society.
21. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability—a guide to the theory of

NP-completeness. New York: W.H. Freeman and company.
22. Gaston, M. E., & DesJardins, M. (2005). Agent-organized networks for dynamic team formation.

In Proceedings of the 4th interence confere on autonomous agents and multiagent systems (AAMAS

2005) (pp. 230–237). New York: ACM Press.
23. Gaston, M. E., & DesJardins, M. (2008). The effect of network structure on dynamic team formation

in multi-agent systems. Computational Intelligence, 24(2), 122–157.
24. Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Pro-

ceedings of the National Academy of Sciences of the United States of America, 99(12), 7821–7826.
25. Goldberg, D., Cicirello, V., Dias, M. B., Simmons, R., Smith, S., & Stentz, A. T. (2003). Market-based

multi-robot planning in a distributed layered architecture. In Multi-robot systems: From swarms

to intelligent automata: Proceedings from the 2003 international workshop on multi-robot systems

(Vol. 2, pp. 27–38). Dordrecht: Kluwer Academic Publishers.
26. Groves, T. (1973). Incentives in teams. Econometrica, 41(4), 617–631.
27. Gulati, R. (1995). Does familiarity breed trust? The implications of repeated ties for contractual choice

in alliances. Academy of Management Journal, 38(1), 85–112.
28. Heydenreich, B., Muller, R., & Uetz, M. (2007). Games and mechanism design in machine schedul-

ing—an introduction. Production and Operations Management, 16(4), 437–454.
29. Hirayama, K., Yokoo, M., & Sycara, K. (2004). An easy-hard-easy cost profile in distributed constraint

satisfaction. Transactions of the Information Processing Society of Japan, 45(9), 2217–2225.
30. Kafalı, Ö., & Yolum, P. (2008). Improving self-organized resource allocation with effective

communication. In Seventh international workshop on agents and peer-to-peer computing, AAMAS

(pp. 7–18).
31. Kleinberg, J., & Tardos, E. (2008). Balanced outcomes in social exchange networks. In Proceedings

of the 40th annual ACM symposium on theory of computing (pp. 295–304).
32. Klos, T., & Nooteboom, B. (2001). Agent-based computational transaction cost economics. Economic

Dynamics and Control, 25(3–4), 503–526.
33. Koutsoupias, E. (2003). Selfish task allocation. Bulletin of EATCS, 81, 79–88.
34. Kraus, S., Shehory, O., & Taase, G. (2003). Coalition formation with uncertain heterogeneous infor-

mation. In Proceedings of the 2nd international conference on autonomous agents and multiagent

systems (AAMAS 2003) (pp. 1–8). New York: ACM.

123

Auton Agent Multi-Agent Syst

35. Kraus, S., Shehory, O., & Taase, G. (2004). The advantages of compromising in coalition formation
with incomplete information. In Proceedings of the 3rd international conference on autonomous

agents and multiagent systems (AAMAS 2004) (pp. 588–595).
36. van der Krogt, R., de Weerdt, M., & Zhang, Y. (2008). Of mechanism design and multiagent planning.

In ECAI (pp. 423–427). Amsterdam: IOS Press.
37. Lerman, K., & Shehory, O. (2000). Coalition formation for large-scale electronic markets. In Proceed-

ings of 4th international conference on multi-agent systems (ICMAS 2000) (pp. 167–174). Boston,
MA: IEEE Computer Society.

38. Makhorin, A. (2004). GLPK. GNU linear programming kit http://www.gnu.org/software/glpk/.
39. Manisterski, E., David, E., Kraus, S., & Jennings, N. (2006). Forming efficient agent groups for

completing complex tasks. In H. Nakashima, M. P. Wellman, G. Weiss& P. Stone (Eds.),Proceedings

of the 5th international conference on autonomous agents and multiagent systems (AAMAS 2006)

(pp. 257–264). Hakodate: ACM.
40. Mitchell, D. G., Selman, B., & Levesque, H. J. (1992). Hard and easy distributions of SAT problems.

In Proceedings of the national conference on artificial intelligence (AAAI 1992) (pp. 459–465).
41. Myerson, R. (1979). Incentive-compatibility and the bargaining problem. Econometrica, 47, 61–73.
42. Myerson, R. B., & Satterthwaite, M. A. (1983). Efficient mechanisms for bilateral trading. Journal

of Economic Theory, 29(2), 265–281.
43. Nair, R., Ito, T., Tambe & Marsella, S. (2002). Task allocation in the robocup rescue simulation

domain: A short note. In A. Birk, S. Coradeschi & S. Tadokoro (Eds.), RoboCup 2001: Robot Soccer
world cup V, lecture notes in computer science (Vol.2377 , pp. 1–22). Springer Berlin, Heidelberg.

44. Niedermeier, R. (2006). Invitation to fixed-parameter algorithms, Oxford lecture series in mathemat-

ics. Oxford: Oxford University Press.
45. Nisan, N. (2007). Introduction to mechanism design (for computer scientists). In N. Nisan, T. Roughgar-

den, E. Tardos, & V. Vazirani (Eds.), Algorithmic game theory (pp. 209–242). Cambridge: Cambridge
University Press.

46. Nisan, N., & Ronen, A. (2000). Computationally feasible VCG mechanisms. In Proceedings of the

2nd ACM conference on electronic commerce (pp. 242–252). New York: ACM.
47. Nisan, N., & Ronen, A. (2001). Algorithmic mechanism design. Games and Economic Behavior,

35(1–2), 166–196.
48. Patel, J., Teacy, W. L., Jennings, N. R., Luck, M., Chalmers, S., Oren, N., Norman, T. J., Preece,

A., Gray, P. M., Shercliff, G., Stockreisser, P. J., Shao, J., Gray, W. A., Fiddian, N. J., & Thompson,
S. (2005). Agent-based virtual organizations for the grid. Multi-Agent and Grid Systems, 1(4), 237–249.

49. Rothkopf, M. H., Pekec̆, A., & Harstad, R. M. (1998). Computationally manageable combinational
auctions. Management Science, 44, 1131–1147.

50. Sander, P. V., Peleshchuk, D., & Grosz, B. J. (2002). A scalable, distributed algorithm for efficient task
allocation. In Proceedings of the 1st international conference on autonomous agents and multiagent

systems (AAMAS 2002) (pp. 1191–1198). New York: ACM Press.
51. Shehory, O. (2000). A scalable agent location mechanism. In N. R. Jennings & Y. Lespérance (Eds.),

Proceedings of intelligent agents VI, agent theories, architectures, and languages (ATAL), LNCS (Vol.
1757, pp. 162–172). Heidelberg: Springer

52. Shehory, O., & Kraus, S. (1998). Methods for task allocation via agent coalition formation. Artificial

Intelligence, 101(1–2), 165–200.
53. Shehory, O., & Kraus, S. (1999). Feasible formation of coalitions among autonomous agents in

nonsuperadditive environments. Computational Intelligence, 15(3), 218–251.
54. Shoham, Y., & Leyton-Brown, K. (2008). Multiagent systems: Algorithmic, game-theoretic, and logical

foundations. Cambridge: Cambridge University Press.
55. Smith, R. G. (1981). The contract net protocol: High-level communication and control in a distributed

problem solver. IEEE Transactions on Computers, C-29(12), 1104–1113.
56. Sreenath, R. M., & Singh, M. P. (2004). Agent-based service selection. Web Semantics, 1(3), 261–279.
57. Vazirani, V. V. (2001). Approximation algorithms. New York: Springer-Verlag New York Inc.
58. Vidal, J. M. (2003). A method for solving distributed service allocation problems. Web Intelligence

and Agent Systems, 1(2), 139–146.
59. Walsh, W. E., & Wellman, M. P. (1999). Efficiency and equilibrium in task allocation economies

with hierarchical dependencies. In International joint conference on artificial intelligence (IJCAI) (pp.
520–526)

60. Walsh, W. E., & Wellman, M. P. (2000). Modeling supply chain formation in multiagent systems. In
Agent-mediated electronic commerce II, LNAI (Vol. 1788, pp. 94–101). Heidelberg: Springer.

61. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small world” networks. Nature, 393, 440–
442.

123

http://www.gnu.org/software/glpk/

Auton Agent Multi-Agent Syst

62. de Weerdt, M., Zhang, Y., & Klos, T. B. (2007). Distributed task allocation in social networks.
In Proceedings of the 6th international conference on autonomous agents and multiagent systems

(AAMAS 2007) (pp. 17–24). New York: ACM.

123

	Multiagent task allocation in social networks
	Abstract
	1 Introduction
	2 Social task allocation problem
	3 Complexity results
	4 Algorithms for social task allocation
	4.1 Optimal solution
	4.2 Centralized greedy algorithm

	5 Experiments with centralized heuristics
	6 A distributed protocol
	7 Experiments with the distributed protocol
	7.1 Resource ratio
	7.2 Degree
	7.3 Agents
	7.4 Tasks
	7.5 Skewed value-distribution for tasks
	7.6 Summary

	8 Mechanism design for STAP
	8.1 Exact truthful mechanism
	8.2 A computationally efficient truthful mechanism
	8.3 Clustering heuristics
	8.4 Experiments on selfish social task allocation
	8.4.1 Effect of cluster size
	8.4.2 Scalability

	9 Related work
	9.1 Allocations with fully connected agents
	9.2 Auctions for allocation problems
	9.3 Allocations in networks of agents

	10 Conclusions
	Acknowledgments
	References

