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Multiancestry association study identifies new asthma risk loci 

that colocalize with immune cell enhancer marks

A full list of authors and affiliations appears at the end of the article.

Abstract

We examined common variation in asthma risk by conducting a meta-analysis of worldwide 

asthma genome-wide association studies (23,948 cases, 118,538 controls) from ethnically-diverse 

populations. We identified five new asthma loci, uncovered two additional novel associations at 

two known asthma loci, established asthma associations at two loci implicated previously in 

comorbidity of asthma plus hay fever, and confirmed nine known loci. Investigation of pleiotropy 

showed large overlaps in genetic variants with autoimmune and inflammatory diseases. 

Enrichment of asthma risk loci in enhancer marks, especially in immune cells, suggests a major 

role of these loci in the regulation of immune-related mechanisms.

Asthma is a complex disease affecting hundreds of millions of people worldwide. Asthma 

prevalence varies between populations and ethnicities, ranging in the U.S. from 3.9% in 

Mexican Americans to 12.5% in African Americans1. The contribution of genetic factors to 

asthma risk has been demonstrated in family studies, where heritability estimates range from 

25%-80%2. The large variability in prevalence and heritability estimates reflects the role of 

environmental exposures on disease risk and phenotypic heterogeneity that are hallmarks of 

asthma. These features may explain why genome-wide association studies (GWAS) have 

uncovered a smaller number of asthma loci than similarly sized studies of other 

multifactorial diseases3. Indeed, at the time of analysis, only 21 loci have been associated 

with asthma per se in 20 studies, and these loci explain only part of the genetic risk. 

Although an exome-chip study showed no evidence for low frequency or rare variants with 

large effects on asthma risk4, the role of noncoding rare variants in asthma remains 

unknown. Future studies based on whole-genome sequencing may clarify the respective 

influence of common and rare variants on asthma risk. To generate larger sample sizes for 

GWAS meta-analysis of asthma enabling the discovery of common novel risk loci, we 

established the Trans-National Asthma Genetic Consortium (TAGC) across worldwide 

groups of investigators with genome-wide data available in >142,000 individuals of diverse 

ancestries. We constructed a comprehensive catalog of asthma risk variants that are robust 

across populations and environmental exposures. By combining TAGC meta-analysis results 

with existing databases, we assessed the genetic architecture of asthma risk alleles with 

respect to functional effects and shared effects with other diseases.

The authors who are affiliated with deCODE (D.F.G., I.J., K.S., U.T., G.T.) are employees of deCODE genetics/AMGEN. All other 

co-authors did not declare any conflict of interest
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RESULTS

Meta-analysis of asthma GWAS

We combined data from asthma GWAS with high-density genotyped and imputed SNP data 

(2.83 million SNPs) in the following populations: European-ancestry (19,954 cases, 107,715 

controls), African-ancestry (2,149 cases, 6,055 controls), Japanese (1,239 cases, 3,976 

controls) and Latino (606 cases, 792 controls) (Supplementary Table 1). After extensive QC 

of summary data provided by each participating group (Online Methods, Supplementary 

Note and Supplementary Table 2), we first conducted ancestry-specific meta-analyses 

followed by a multi-ancestry meta-analysis of all populations (23,948 cases, 118,538 

controls) to identify additional loci with pan-ancestry effects. Because childhood-onset 

asthma may be distinct from later-onset asthma5 and may represent a more homogeneous 

subgroup, we also performed analyses on the pediatric subgroup (asthma onset ≤16 years; 

8,976 cases, 18,399 controls). Meta-analyses of SNP effect sizes obtained from each asthma 

GWAS were performed using fixed-effects (significance of the combined SNP effect size 

summarized in Pfixed) and random-effects (Prandom) models (Online Methods) and using a 

conventional Prandom (or Pfixed) threshold of 5×10−8 to define genome-wide significance. 

Results were consistent between methods for detecting loci with at least one SNP 

significantly associated with asthma. We therefore present the results from the random-

effects analysis for the European-ancestry and multi-ancestry meta-analyses, which include 

the largest number of studies and allow an accurate estimate of the between-study variance, 

and results from the fixed-effects analysis for the African-ancestry, Japanese and Latino 

meta-analyses. We observed little evidence of inflation in the test statistics in either the 

ancestry-specific (lambda: European-ancestry, 1.031; African-ancestry, 1.014; Japanese, 

1.021; Latino, 1.044) or multi-ancestry (lambda=1.046) meta-analyses (Supplementary Fig. 

1).

We identified 673 genome-wide significant SNPs (Prandom≤5×10−8) at 16 loci in European-

ancestry populations (Fig. 1a, Table 1, Supplementary Tables 3 and 4; Online Methods for 

locus definition). No genome-wide significant risk loci were detected in African-ancestry, 

Japanese or Latino populations (Supplementary Fig. 2 and Supplementary Tables 5–7), 

possibly due to a lack of power. In the combined multi-ancestry meta-analysis, 205 

additional SNPs were significant at Prandom≤5×10−8, including 12 SNPs at two loci not 

detected in the European-ancestry analysis (Fig. 1b, Table 1, and Supplementary Tables 3 

and 8). Altogether, 878 SNPs at 18 loci reached genome-wide significance, of which 69% 

were significant in both European-ancestry and multi-ancestry meta-analyses, 23% were 

significant in the multi-ancestry meta-analysis only, and 8% were significant in the 

European-ancestry meta-analysis only (Supplementary Tables 4 and 8 and Supplementary 

Fig. 3 for the regional plots of the 18 loci). All 18 loci remained genome-wide significant 

after further genomic control correction of the test statistics, confirming the robustness of 

these results (Supplementary Table 9).

The 18 chromosomal regions included five new loci associated with asthma at 5q31.3, 

6p22.1, 6q15, 12q13.3, 17q21.33; two new associations at 6p21.33 and 10p14 that were 

independent from previously reported signals at these loci in ancestry-specific populations 
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(Latino6 and Japanese7, respectively); two associations at 8q21.13 and 16p13.13 that were 

previously reported for asthma plus hay fever but not for asthma alone in a study of 

European-ancestry populations8; and nine previously identified asthma loci.

None of the lead SNPs at the 18 loci showed evidence for heterogeneity in effect sizes across 

studies except for the lead variant at 9p24.1 (Phet for Cochran’s Q test9=0.008 across 

European-ancestry studies and Phet=0.02 across multi-ancestry studies, Table 1, 

Supplementary Fig. 4). There was also significant evidence for heterogeneity in ancestry-

specific effect sizes (Pethnic =0.003) for the 6p22.1 lead SNP rs1233578, which, 

consequently, did not reach significance in the multi-ancestry analysis (Table 1, 

Supplementary Table 3). The meta-analysis of the pediatric subgroup showed evidence for 

association (Prandom≤5×10−8) at five of the 18 loci (2q12, 5q31, 6p21.33 9p24.1 and 17q12–

21) (Supplementary Figs. 5 and 6 and Supplementary Table 10). No loci specific to that 

group were identified.

The results provided genome-wide significant confirmation of nine previously reported loci 

in both European-ancestry and multi-ancestry meta-analyses (Table 1; Supplementary Figs. 

3b and 4). Our results allow detailed analysis of the broad 17q12–21 locus. It is notable that 

the lead SNP (rs2952156) at this locus is within ERBB2 (Prandom=2.2×10−30 in multi-

ancestry meta-analysis), at least 180 kb from the previously recognized asthma-associated 

signals at the GSDMB/ORMDL3 haplotype block3 (Supplementary Fig. 7). This is 

attributable to effect size heterogeneity across studies (0.001≤Phet≤0.05) that extends over a 

200 kb region that includes ORMDL3 and GSDMB (Supplementary Table 11). This 

heterogeneity is partly due to age of asthma onset, as previously reported5. Indeed, in the 

pediatric group, the 17q12–21 SNPs did not show heterogeneity (Phet≥0.09) and the lead 

SNP rs8069176 is 3.6 kb proximal to GSDMB (Prandom=Pfixed=4.4 ×10−26), consistent with 

previous studies3,5. The SNP effect sizes in the pediatric and non-pediatric studies show a 

significant difference for rs8069176 at the GSDMB locus (Phet=7.4×10−4) but no difference 

for rs2952156 at the ERBB2 locus (Phet=0.11). These two SNPs are only in moderate LD 

(r2=0.30) and, interestingly, each is in strong LD (r2>0.9) with missense variants localized in 

ERBB2 for the proxy of rs2952156 and in ZPBP2 and GSDMB for the proxies of 

rs8069176. Moreover, both rs2952156 and rs8069176 are associated with GSDMB and 

ORMDL3 expression in blood e-QTL databases10–13 and with expression of GSDMA, 

CDK12, GSDMB, ORMDL3 in whole lung tissue12,14. However, only rs2952156 is 

associated with PGAP3 transcript in lung12,14 (Supplementary Table 12a). Further 

exploration of eQTL data from GTEx12 indicated that rs8069176 accounts for a large part of 

the association of the most significant SNP with ORMDL3 transcript in blood while 

rs2952156 accounts for a large part of the association of the most significant SNP with 

PGAP3 transcript in lung (Supplementary Table 12b), suggesting that the asthma-associated 

signals near PGAP3/ERBB2 and ORMDL3/GSDMB blocks may affect asthma risk through 

the expression of different genes in different tissues..

Finally, of the 21 published asthma loci, 12 did not reach genome-wide significance in 

TAGC (Supplementary Table 13). The most significant SNPs in the GWAS catalog3 at seven 

of those loci had P-values>0.01 in TAGC analyses. Among these seven non-replicated loci, 

two (4q31.217, 8q24.1115) were reported in Japanese, three (4q12, 9p23, 10q24.2)16 had 
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SNPs with low minor allele frequencies (≤ 2%) and were reported in a childhood-onset 

asthma study, and two (1q31.317, 5q12.118) were reported in European-ancestry children 

with asthma defined by current or persistent asthma symptoms with regular use of 

medication. The most significant SNPs at the remaining five loci had P-values ≤5×10−4 in at 

least one TAGC meta-analysis, thus providing some replication. Amongst these five loci, the 

1q23.1 locus is specific to African-ancestry populations19; the 12q13.2 SNP, reported by a 

Japanese study7, showed heterogeneity in the TAGC Japanese meta-analysis as well as in 

European-ancestry and multi-ancestry meta-analyses (Phet ≤0.05); and the 7q22.3 SNP, 

reported in European-ancestry populations20, was associated with a severe form of 

childhood asthma and also showed heterogeneity across studies in the original publication20 

(where the Prandom value did not reach significance) as well as in our study (European-

ancestry, multi-ancestry and pediatric meta-analyses, 0.006≤Phet≤0.03). Finally, SNPs at 

1q21.3 and 22q12.3 loci, previously reported in European-ancestry populations21,22, did not 

show significant evidence for heterogeneity across TAGC studies in the European-ancestry 

and multi-ancestry meta-analyses (0.11≤Phet≤0.19). When we repeated these two meta-

analyses, under a fixed-effects model and considering separately the set of TAGC datasets 

that were part of the original publication (set P) and the set of remaining TAGC datasets (set 

R), both 1q21.3 and 22q12.3 SNPs had higher effect sizes in set P than in set R. These 

differences in effect sizes did not reach significance for the 1q21.3 SNP (Phet for Cochran’s 

Q test are 0.13 and 0.20 in European-ancestry and multi-ancestry analyses) and were 

borderline significant for the 22q12.3 SNP (0.04≤Phet≤0.06) (Supplementary Table 14). 

Altogether, these results suggest that the lack of replication is mainly due to heterogeneity 

that is attributable to various factors, such as ethnicity, specificity of clinical phenotypes or 

other factors as further discussed.

To investigate whether the 18 asthma loci identified in this study contain multiple distinct 

signals, we performed approximate conditional regression analysis based on summary 

statistics for all loci (Online Methods), except for the 9p24.1 region which showed 

heterogeneity in SNP effect size across studies over the whole locus. For the 17q12–21 

locus, this analysis was restricted to the pediatric sub-group in which there was no 

heterogeneity. After conditioning on the lead SNP in each investigated region, four 

secondary signals (2q12, 5q22.1, 5q31, 6p21.32) remained significant (Pfixed≤5×10−8) 

(Supplementary Table 15), yielding 22 distinct genome-wide significant signals.

To provide biological insight into our findings, we conducted a comprehensive bioinformatic 

assessment of the asthma association signals. To pinpoint the most likely candidate genes at 

the nine loci harboring novel associations with asthma per se, we interrogated results of six 

eQTL studies in tissues relevant to asthma, blood (including peripheral blood11,12, 

lymphoblastoid cell lines (LCLs)10,13, monocytes23) and whole lung tissue12,14, and 

searched for missense variants potentially tagged by the association signals. To assess the 

level of overlap of asthma associations with susceptibility loci for other phenotypes, we 

interrogated the GWAS catalog3 while varying the strength of association with asthma 

(thresholds from 5×10−8 to 10−3). To get greater insight into how asthma associated variants 

may functionally influence disease, we interrogated the ROADMAP/ENCODE functional 

genomics data generated in a wide range of human cell types24. Finally, the degree of 
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connectivity between the asthma-associated loci was assessed through text mining25. Results 

are described below.

Candidate genes at the nine loci showing novel associations

A summary of eQTL analysis for these nine loci is described in Table 2 and Supplementary 

Table 16; regional plots are shown in Supplementary Fig. 3a.

New asthma susceptibility loci—Five new loci were identified in this study. The 

strongest new signal in both the European-ancestry (Prandom=8.6×10−13) and multi-ancestry 

(Prandom=2.2×10−12) meta-analyses was with SNP rs2325291 in an intron of BACH2 at 

6q15, which is strongly correlated with rs10455168 (r2=0.91), a cis-eQTL altering 

expression of BACH2 in blood11. BACH2 encodes a zip transcription factor that regulates 

nucleic acid-triggered antiviral responses in human cells26. The second strongest signal in 

the European-ancestry and multi-ancestry analyses was with rs17637472 (Prandom=3.3×10−9 

and 6.6×10−9), which lies between ZNF652 and PHB at 17q21.33, and is a strong cis-eQTL 

for GNGT2 (173 kb from rs17637472) in blood10,11,13,23. GNGT2 interacts with beta-

arrestin 1 to promote G-protein-dependent Akt signaling for NF-kappaB activation27.

Among the other new signals, the lead SNP rs1233578 at 6p22.1 (Prandom=5.3×10−9 in 

European-ancestry populations) resides between TRIM27 and GPX5. This SNP was not 

associated with gene expression in blood or lung but is in LD (r2=0.6 in European-ancestry 

populations) with rs7766356 (312 kb from rs1233578), which is a cis-eQTL for ZSCAN12 

in blood13 and ZSCAN31 in lung14. These zinc finger protein encoding genes were 

associated with lung function28. The two SNPs, rs1233578 and rs7766356, represent the 

same association signal in European-ancestry populations (the association with rs7766356 

becomes non-significant after conditioning on the lead SNP rs1233578). The 12q13.3 lead 

SNP (rs167769), which was only significant in the multi-ancestry analysis 

(Prandom=3.9×10−9), lies in an intron of STAT6 and is strongly associated with STAT6 

expression in blood10,11,13 and lung14. STAT6 is a transcription factor, essential for the 

functional responses of Th2 lymphocytes mediated by IL-4 and IL-1329. This result robustly 

establishes the association of STAT6 with asthma risk that has been disputed by candidate 

gene studies30. The 5q31.3 lead SNP rs7705042 (Prandom=7.9×10−9 in multi-ancestry 

analysis) is within an intron of NDFIP1 and associated with NDFIP1 expression in 

blood11–13. NDFIP1 is a potent inhibitor of antiviral response31 and inflammation 

processes32.

New asthma signals at loci reported in specific populations—Two associations in 

our study were with novel SNPs at loci previously reported to be associated with asthma in 

Latinos6 and Japanese7. The first one at 6p21.33 was reported in an admixture mapping 

study in Latinos6. The lead TAGC SNP, rs2855812 (Prandom=8.9×10−12 in the multi-ancestry 

analysis, Prandom =1.7×10−8 in the European-ancestry meta-analysis) lies in an intron of 

MICB. This SNP was not correlated (r2=0) with any of the SNPs reported in the Latino 

study6. The 6p21.33 region harbors many genes whose transcripts are associated with TAGC 

asthma signals, including TNF, LST1, HLA-C, LTA in blood10,11,13 and MICB in lung12,14. 

These genes are involved in immune-related mechanisms. This 6p21.33 locus is about 600 
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kb apart from the previously reported 6p21.32 locus that spans HLA-Class II genes. 

Intensive sequencing efforts will be needed to further clarify the HLA region associations. 

The second association was at 10p14 locus where a GWAS in Japanese7 reported association 

(lead SNP rs10508372) with adult asthma. We detected a new signal, rs2589561, in 

European-ancestry (Prandom=1.4×10−8) and multi-ancestry meta-analyses 

(Prandom=3.5×10−9), that is not correlated with rs10508372 in either European-ancestry or 

Japanese populations. The SNP rs2589561 is in a gene desert, 929 kb distal of GATA3. 

However, recently published promoter capture Hi-C data in hematopoietic cells33 revealed 

that two proxies of rs2589561 (r2>0.9) lie in a region that interacts with the GATA3 

promoter, especially in CD4+T cells. This suggests that the SNP may be in a distal regulator 

of GATA3, which encodes a transcription factor that is a master regulator of differentiation 

of Th2 cells and innate lymphoid cells type 234.

Asthma signals reported for asthma plus hay fever—Loci on chromosomes 

8q21.13 and 16p13.13 were previously associated with asthma plus hay fever but not with 

asthma alone in one European-ancestry study8. In our results, the 8q21.13 lead SNP 

rs12543811 (Prandom=3.4×10−8 and 1.1×10−10 in the European-ancestry and multi-ancestry 

analyses) lies between TPD52 and ZBTB10 and is in strong LD (r2=0.79) with the 

previously reported asthma/hay fever SNP rs7009110. These two SNPs represent the same 

signal, as the association with rs12543811 becomes non-significant after conditioning on 

rs7009110. Thus, the 8q21.13 locus is likely implicated in allergic asthma. A functional 

analysis of the asthma/hay fever locus pinpointed PAG1 as a promising candidate35. The 

chromosome 16p13.13 SNP rs17806299 is within an intron of CLEC16A 

(Prandom=2.1×10−10 and 2.7×10−10 in European-ancestry and multi-ancestry meta-analyses). 

Although in moderate LD (r2=0.66) with the previously reported asthma/hay fever signal 

(rs62026376)8, the association of asthma with rs17806299 was removed after conditioning 

on rs12935657 (r2=0.96 with rs62026376), indicating that these SNPs represent the same 

signal and 16p13.13 is probably also an allergic asthma locus. The SNP rs17806299 is 

strongly associated with the expression of a nearby gene, DEXI in blood11,23. Similar 

observations of associations of CLEC16A SNPs with autoimmune diseases and expression 

of DEXI together with chromosome conformation capture experiments implicated DEXI as 

the most likely candidate gene for autoimmune diseases36. The potential relevance of DEXI 

in allergic diseases has also been previously discussed8.

It is notable that the lead SNPs at the nine new asthma-associated loci lie in non-coding 

regions and are not tagging missense variants.

Overlap of loci associated with asthma and other phenotypes

We next explored whether the nine loci that harbored new signals for asthma per se 

overlapped with GWAS loci reported for allergy-related phenotypes, lung function 

phenotypes, or other immune-related diseases using the GWAS catalog3. Six of these nine 

asthma loci showed overlapping associations with allergy-related phenotypes and eight of 

them with auto-immune diseases or infection-related phenotypes (Table 2). Moreover, three 

asthma loci overlapped with associations with lung function phenotypes.
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We expanded our search of overlap between the asthma association signals having multi-

ancestry Prandom<10−4 in this study and GWAS signals with all phenotypes and diseases in 

the GWAS catalog3. We examined 4,231 unique trait-loci combinations (Online Methods), 

and used the disease classification from Wang et al.37 to group traits. We summarized the 

overlap with GWAS catalog signals as the proportion of catalog SNPs having asthma P-

values<10−4 in our analysis. This revealed significant overlap with autoimmune disease 

(10%, i.e. 49 out of 480 catalog SNPs show evidence for asthma association), consistent 

with the hypothesized shared susceptibility38,39, moderate overlap with diseases having an 

inflammatory component (cardiovascular diseases, cancers, neuro-psychiatric diseases), and 

small to no overlap with other diseases (Table 3). When investigating specific diseases and 

traits (Supplementary Table 17), the most significant overlap is with allergic phenotypes. 

There is little to no overlap with other phenotypes that appear most frequent in the GWAS 

catalog (for example, no shared associations with type 2 diabetes).

When we broadened our analysis to a larger set of SNPs in the GWAS catalog to identify 

loci for diseases with potentially shared genetic architecture with asthma (i.e, SNPs 

associated with asthma at Prandom≤10−3 in our multi-ancestry meta-analysis), additional 

pleiotropic signals emerged (Supplementary Table 18). This larger set of associations 

suggests a broader picture of asthma risk, with a wide range of pleiotropic effects for traits 

ranging from lung cancer and multiple sclerosis (with rs3817963 in BTNL2) to coronary 

heart disease (with rs1333042 near CDKN2B). This analysis also generated an extended set 

of asthma candidate genes. Indeed, there are 210 SNPs in the GWAS catalog that are 

associated with asthma in TAGC at a threshold of 10−3; the proportion of false positives 

among these is smaller than 1%.

Enrichment of asthma risk loci in epigenetic marks

Because nearly all lead SNPs at the 18 loci identified by this study lie in non-coding 

sequences, except for the IL13 missense variant (rs20541), we investigated whether the 

asthma-associated variants and their proxies (r2≥0.80) were concentrated in cis-regulatory 

DNA elements. Only 16 of 18 identified asthma loci were explored because we excluded the 

two loci spanning the HLA region due to the large amount of variability and extensive LD in 

this region. We interrogated the 111 ROADMAP and 16 ENCODE reference epigenomes in 

a wide range of human cell types24. We focused on histone marks characterizing enhancers 

and promoters assayed in all 127 epigenomes and DNase I-hypersensitive sites available in 

51 cell types. To assess enrichment of the asthma risk variants for co-localization with these 

regulatory elements, we used the Uncovering Enrichment through Simulation pipeline40. 

This approach generates random SNP sets that match the characteristics of the original 

asthma-associated SNPs (distance from the nearest transcription start site, number of LD 

partners, minor allele frequency). Empirical P-values for enrichment are calculated by 

comparing the observed frequency of co-localization of SNPs with a given type of 

regulatory element in the original asthma-associated SNP set to the co-localization 

frequency distribution obtained from the 10,000 random SNP sets generated. Benjamini-

Hochberg false discovery rates (FDRs) are then computed to correct for multiple testing 

(Online Methods).
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While the asthma-associated variants were strongly enriched for co-localization with 

enhancer marks, there was only weak enrichment in promoter marks (Table 4 and 

Supplementary Table 19). This enrichment was highest in leukocytes (27 leukocytes of 

which 19 (70%) are lymphocytes and monocytes). For example, a FDR≤5% for enrichment 

of asthma loci in active enhancers was observed in 100% of leukocytes compared to 50% of 

all cell types. The enrichment of asthma risk variants for co-localization with DNase I-

hypersensitive sites was intermediate between the enrichments in promoters and enhancers 

and was again increased in blood cells (FDR≤5% in 40% of leukocytes and 12% of all cell 

types) (Table 4 and Supplementary Table 20).

The strong enrichment of asthma loci in enhancer marks, especially in immune cells, 

indicates that the associated genetic variants are likely involved in regulation of immune-

related functions. This also suggests that epigenetic mechanisms may be key to promoting 

asthma, as evidenced for IgE levels, an asthma-associated phenotype41.

Connectivity between asthma-associated loci

To characterize the degree of connectivity between the 18 asthma-associated loci, we applied 

the Gene Relationships Across Implicated Loci (GRAIL) text-mining approach25. Genes at 

eleven of these loci showed connections with a GRAIL score, PGRAIL, less than 5% (7 of 

them being highly connected with PGRAIL<10−3) (Fig. 2 and Supplementary Table 21). 

These genes were connected by keywords such as ‘asthma’, ‘allergy’, ‘atopic’, ‘interleukin’, 

‘cytokines’, ‘airway’, and ‘inflammation’, confirming the central role of immune-related 

mechanisms accounting for these connections.

DISCUSSION

In this meta-analysis of worldwide asthma GWAS in ethnically-diverse subjects, we 

discovered nine novel loci influencing asthma risk. This study confirms that immune-related 

mechanisms are prominent in asthma susceptibility and brings novel insights that open new 

routes for future asthma research. The asthma-associated loci identified by TAGC are 

enriched in enhancer marks and are likely to be involved in gene regulation. Although this 

was observed in immune cells, asthma genes (e.g., IL1RL1, TSLP, IL33, ORMDL3/

GSDMB) are also expressed in the airway epithelium where they modulate airway 

inflammation. Investigation of epigenetic marks in airway epithelial cells may bring 

additional insight. The best candidates at many loci are involved in immune response to 

viruses or bacteria, which underlines the importance of infections in asthma risk. This study 

further provides evidence for overlap of asthma loci with loci underlying auto-immune 

diseases and other diseases that have an inflammatory component, which strengthens the 

growing importance of pleiotropy in multifactorial diseases.

Our meta-analysis doubles the number of cases from prior genome-wide studies at the time 

of analysis21,22. We identified 878 SNPs that correspond to 22 distinct association signals at 

18 loci meeting criteria for genome-wide significance in European-ancestry and/or multi-

ancestry populations. Pooling data from ethnically-diverse populations can increase power to 

detect new loci (two loci reached the genome-wide threshold only in the multi-ancestry 

analysis) but may also increase heterogeneity. Besides differences in the genetic background, 
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varying environmental exposures can modify genetic risks and result in heterogeneity in 

SNP effect size, and consequently reduce power of multi-ancestry analysis compared to 

ancestry-specific analysis. Assuming an asthma prevalence of 10%, the variance in liability 

to asthma explained by the 22 genome-wide significant variants of this study was estimated 

to be 3.5% (95% Confidence Interval : 2.0%–5.4%) of which 72% was accounted for by the 

known loci and 28% by the new loci. It is of note that the current study was based on 

HapMap2-imputed data which was shared within the TAGC consortium and thus allowed 

detection of associations with common genetic variants (MAF≥1%).

The overall relative paucity of asthma risk loci detected by large-scale GWAS compared to 

other common diseases may be due to the clinical heterogeneity of asthma and the important 

role of differing environmental exposures. It is recognized that asthma is not a single disease 

but that the syndrome varies based on many characteristics42, including age of asthma onset, 

the severity of disease, the type of cellular inflammatory infiltrates, occupational exposures 

and the varying response to treatment.. It is thus possible that additional asthma loci will be 

revealed by studies targeting more specific asthma sub-phenotypes and/or taking into 

account environmental exposures.

In conclusion, future discoveries might come by exploring more complex models of asthma 

phenotypes and through the joint analysis of asthma and other immune-mediated and 

inflammatory diseases. The central role of gene regulatory mechanisms highlighted by our 

study might prompt genome-wide explorations of the epigenome in immune cells and the 

respiratory epithelium while integrating information on genetic variation and environmental 

exposure histories.

ONLINE METHODS

GWAS Studies and Data Shared

All 66 genome-wide association studies that form the TAGC consortium are described in the 

Supplementary Note and summarized in Supplementary Table 1. These studies included 56 

studies of European-ancestry (19,954 cases, 107,715 controls), seven studies of African-

ancestry (2,149 cases, 6,055 controls), two Japanese studies (1,239 cases, 3,976 controls) 

and one Latino study (606 cases, 792 controls), making a total of 23,948 cases and 118,538 

controls. There were 27 studies including only childhood-onset asthma (defined as asthma 

diagnosed at or before 16 years of age) which allowed us analyzing separately a pediatric 

subgroup (8,976 cases, 18,399 controls). All subjects provided informed consent to 

participate in genetic studies and local ethics committees for each of the individual studies 

approved the study protocol. Definition of asthma was based on doctor’s diagnosis and/or 

standardized questionnaires (see Supplementary Note for details). The samples were 

genotyped on a variety of commercial arrays, detailed in the Supplementary Note and 

Supplementary Table 2. GWAS were performed on imputed SNP data that were generated 

using HapMap2 as reference panel and one of the commonly used imputation software 

(Supplementary Note and Supplementary Table 2). In each dataset, the effect of each 

individual SNP on asthma, assuming an additive genetic model, was estimated through a 

logistic regression-based approach and expressed in terms of a regression coefficient with its 
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standard error; the detailed methodology and software used for analysis by each study can 

be found in the Supplementary Note and Supplementary Table 2.

Imputation, quality control (including adjustments for population stratification) and analysis 

was done by each group independently and data on a predefined set of 3,952,683 autosomal 

SNPs was shared. These SNPs were those of the HapMap Phase 2, release 21 panel in 

subjects from European, Asian and African-ancestry that were filtered using SNP annotation 

from the build 37.3 of the reference sequence and dbSNP b135 (31,587 SNPs (0.8% of all 

SNPs) from previous annotations that showed discrepancies with the chosen annotation were 

deleted). The variables that were shared contained the study name, general information on 

SNPs (rs number, chromosome, position, alleles (baseline and effect alleles as used in the 

analysis by each study), SNP status (imputed or genotyped SNP and whether the SNP 

genotype or imputed value was used in computation), quality control (QC) indicators (call 

rate and P-value for Hardy-Weinberg (HW) equilibrium test for genotyped SNPs, software 

used for imputation and imputation quality score for imputed SNPs), allele frequencies in 

cases and controls and information on association statistics (regression coefficient for SNP 

effect, standard error of regression coefficient, Z scores, P-values associated with Z score 

statistic).

Quality control of shared data

For each SNP, the alleles on the HapMap2 template (reference and alternate alleles on the 

positive strand) were compared to the alleles (baseline and effect alleles) used in the analysis 

by each group. When necessary, the association variables (allele frequencies, regression 

coefficient for SNP effect, Z score) were swapped to match the reference/alternate alleles of 

the template. Data for each SNP showing any ambiguity or error in assignment to the 

template were set to missing. In addition, a number of QC checks were done regarding the 

name, format, range of possible values for all shared variables mentioned in the previous 

paragraph as well as consistency checks across variables. Any problem or inconsistency was 

corrected, otherwise the data for that SNP were set to missing. After this first stage of QC 

procedure, association statistics for at least one SNP in at least one study were available for 

2.83 million autosomal SNPs. Strict QC criteria were used for inclusion of a SNP in the 

analysis. When a SNP genotype was used in the study analysis, these criteria were: call rate 

≥99%, P-value for HW test ≥10−6 and minor allele frequency (MAF) ≥0.01 in both controls 

and cases. When a SNP imputed value was used in the analysis, the criteria were: imputation 

quality score ≥0.5 and MAF≥0.01 in both controls and cases. The distribution of the 

summary statistics (regression coefficient for SNP effect, standard error, Z score) of all 

SNPs passing QC was examined for each study; SNPs that still showed extreme Z scores (≥ 

7 or ≤−7) after QC were excluded.

Meta-analysis of asthma GWAS

We conducted fixed-effects meta-analysis with inverse variance weigthing and random-

effects meta-analysis using the Der Simonian and Laird43 estimator of the between-study 

variance when the meta-analyses included a large number of studies (European-ancestry, 

multi-ancestry and pediatric sub-group meta-analyses), which allows an accurate estimate of 

the between-study variance. We used a fixed-effects model for the meta-analyses of the 
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African-ancestry, Japanese and Latino populations.. For all these meta-analyses, we used the 

SNP regression coefficient and standard error from each study for which the SNP passed 

QC. All meta-analyses were done with Stata version 14.1 (Stata Corp., College Station, 

Texas, USA). To minimize the false-positive findings and to obtain robust results, we 

examined the combined results for SNPs for which at least two-thirds of the studies 

contributed to a meta-analysis. Tests of significance of the combined effect sizes were 

performed using a standard normal distribution. We applied a threshold of Prandom (or Pfixed) 

of 5×10−8 to declare a combined SNP effect as genome-wide significant. To verify the 

robustness of the results, we applied a genomic control correction to the association test 

statistics. The lead SNP at a locus was the variant with the strongest evidence for association 

in the European-ancestry or multi-ancestry meta-analysis. We defined a support interval 

around the lead SNP designated as “locus”; the bounds of this interval were the positions of 

the two most extreme SNPs among all SNPs lying within 500 kb on each side of the lead 

SNP and having Prandom (or Pfixed)≤10−6. Heterogeneity of per-SNP effect sizes across all 

studies in a meta-analysis was assessed using the Cochran’s Q test9. A difference between 

the four ethnic-specific summary effects was also tested with the Cochran’s Q statistic.

Conditional analysis of asthma-associated loci

The Genome-wide Complex Trait Analysis (GCTA) software44 (see URLs) was used to 

perform approximate conditional analysis for all loci with at least one SNP reaching the 

genome-wide significance level. This approximate conditional analysis is based on the 

summary meta-analysis statistics obtained under a fixed-effects model and takes into 

account the correlations among SNPs, that are estimated from a large reference population 

included in the meta-analysis. Approximate conditional analysis was only carried out in the 

European-ancestry ethnic group which can be assumed to share a similar LD pattern and 

represents the largest ancestry-specific dataset and the only one to show genome-wide 

significant results. As this analysis assumes no heterogeneity in SNP effect size across 

studies, the 9p24.1 and 17q12–21 loci, that show significant heterogeneity (Phet≤0.05 based 

on the Cochran’s Q test) for a large portion of each locus, were not investigated. However, 

for the 17q12–21 locus, where there is no heterogeneity in the pediatric sub-group, GCTA 

was restricted to the European-ancestry pediatric sub-group. We used the large ECRHS 

(European Community Respiratory Health Survey) dataset as the reference sample to 

estimate LD. This dataset was genotyped using Illumina Human610Quad array and included 

2,101 unrelated individuals after QC22. Imputation was done using the MACH software45 

and HapMap2, release 21 panel; only well-imputed SNPs (imputation quality score rsq>0.8) 

and with minor allele frequency (MAF) ≥1% were kept in this reference panel. For each 

asthma-associated locus, the region explored by conditional analysis extended by 500 kb on 

each side of the two extreme SNPs defining the support interval around the lead SNP (see 

preceding paragraph). However, we reduced that extension to 250 kb for the 6p21.33 and 

6p21.32 loci to avoid overlap. The length of the regions explored by conditional analysis 

varied from 1.01 Mb to 1.63 Mb. Within each investigated region by conditional analysis, 

fixed-effects summary meta-analysis data for SNPs belonging to that region were adjusted 

for the lead SNP using the --cojo-cond option; tests for the adjusted SNP effects were based 

on the Wald test If there was an additional SNP meeting the Bonferroni-corrected threshold 

for the total number of SNPs overall all regions investigated by GCTA (P=4.1×10−6) after 
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adjustment for the lead SNP, we performed an additional round including both SNPs. If the 

remaining SNPs had P-values greater than 4.1×10−6, no further analysis was performed. The 

results of this analysis are reported in Supplementary Table 15.

Identification of cis-eQTLs at new asthma risk loci

To get greater insight into the potential genes driving the association signals at the novel 

asthma loci, we defined a list of SNPs to be interrogated that included the lead SNPs, the 

secondary signals identified by conditional analysis and all SNPs in LD with these SNPs (r2 

comprised between 0.5 and 1). To search for cis-expression quantitative trait loci (eQTLs) 

within at most 1 Mb of each investigated SNP, we interrogated six publically available eQTL 

databases by giving priority to cell types more likely to be involved in asthma biology (blood 

cell types and lung tissue): (i) a meta-analysis of the transcriptional profiles from peripheral 

blood cells of 5,311 European-ancestry subjects (the blood eQTL browser11); (ii) the gene 

expression data of 777 lymphoblastoïd cell lines (LCLs) from the MuTHER database10; (iii) 

the transcription profiles of 405 and 550 lymphoblastoïd cell lines from UK asthma 

(MRCA) and eczema (MRCE) family members, respectively13; (iv) the eQTL data from 

monocytes of 1,490, subjects included in the GH-express database23; (v) the GTEx eQTL 

Browser with data from multiple tissues including blood and lung12; (vi) the transcriptional 

profiles from lung tissues of 1,111 subjects14 (see URLs).

Search for missense variants at new asthma risk loci

To complement the eQTL analysis, we searched whether the lead asthma-associated SNPs 

and secondary signals were in LD (r2>0.5) with missense variants using the HaploReg v4.1 

tool (see URLs).

Overlap of loci associated with asthma and other phenotypes

Overlap of novel asthma risk loci with associations with allergy-related phenotypes/diseases 

and immune-related diseases as well as lung function phenotypes was first annotated using 

the March 24, 2015 version of the NHGRI-EBI (National Human Genome Research 

Institute and European Bioinformatics Institute) GWAS catalog3 (see URLs) We then used 

this catalog to systematically investigate the overlap of asthma signals having Prandom ≤ 10−4 

in the multi-ancestry meta-analysis with association signals of all diseases and traits in the 

catalog. That version of the catalog had 19,080 SNP entries, and 16,047 of those SNPs had a 

TAGC asthma association P-value. To investigate pleiotropy, we filtered out SNPs associated 

with asthma in the database, SNPs that have a reported GWAS P-value larger than 10−7 

(with the intent of removing some of the potential false positives in the catalog) and SNPs 

that are duplicated (i.e., remove disease-SNP duplications). This reduced the number of 

entries to 5,927. Note that this process did not remove SNPs in perfect LD associated with 

the same disease, nor SNPs that were present multiple times in the database as associated 

with different phenotypes. For some diseases or quantitative traits, there were multiple SNPs 

in the same region reported in the catalog potentially yielding redundant information. Some 

of the SNPs could be in strong LD, but some could reflect independent signals. To avoid 

possible duplication of signals, we decided to keep only unique trait-loci combinations as 

reflected by the variables "Disease.Trait" and "Region" in the catalog. There were 4,231 

unique entries left after this filtering step. Diseases/traits in the GWAS catalog were grouped 
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using the classification from Wang et al.37 We summarized the overlap of GWAS catalog 

signals with asthma signals by the proportion of catalog SNPs with asthma P-values smaller 

than 10−4 in our analysis. The significance of overlap was estimated by the binomial tail 

probability for observing the number of TAGC SNPs with Prandom≤10−4 among the number 

of SNPs reported in the GWAS catalog for a group of diseases. The significance threshold 

for enrichment in shared associations between a disease group and asthma was set equal to 

0.05 divided by the number of disease groups investigated using a Bonferroni correction. 

Finally, we examined a larger set of SNPs in the GWAS catalog that show an association 

with asthma at Prandom≤10−3 in TAGC multi-ancestry meta-analysis and estimated the 

proportion of false positives among those SNPs.

Enrichment of asthma risk loci in epigenetic marks

To get greater insight into the functional role of the genetic variants at the novel and known 

asthma loci identified by this study, we investigated whether the lead SNPs and their proxies 

(r2≥0.80) were concentrated in cis-regulatory DNA elements. We used the Uncovering 

Enrichment through Simulation pipeline40 (se URLs) that was adapted to the current study. 

This approach tests if GWAS-identified SNPs are enriched in particular functional 

annotations through use of Monte Carlo simulations. The original set of asthma-associated 

SNPs included the lead SNPs at each asthma risk locus (ie one SNP per asthma-associated 

locus, as recommended by Hayes et al40). We excluded the two associated loci that span the 

HLA region (6p21.33 and 6p21.32) because of the high amount of variability and LD in this 

region. Each of the original lead SNPs is categorized by its distance from the nearest 

transcription start site (TSS) and number of LD partners (r2≥0.8). Quartiles for both the TSS 

distance and LD partner count are calculated and the initial SNPs are binned accordingly. 

Then, SNPs from the whole set of imputed SNPs used for analysis are binned according to 

the original SNP criteria (distance from the closest TSS, number of LD partners, and also 

MAF). Random SNP sets are chosen, matching to the original bin frequencies. LD partners 

(r2≥0.8) for both the original lead SNPs and random SNPs are retrieved. The SNP data, 

including the original and random sets of SNPs and their corresponding LD partners 

(r2≥0.8), are intersected with the cell-specific epigenome tracks of regulatory elements using 

the BedTool’s intersectBed46, to determine which SNPs co-localize with a given type of 

regulatory elements (for example, enhancers or promoters). Those resultant SNPs are then 

collapsed into loci that co-localize with marks based on LD structure. We computed an 

empirical-P value for a specific track using 10,000 random SNP sets (this P-value is equal to 

rloci/n where rloci is the number of instances when the frequency of co-localization of the 

random SNP sets with the regulatory feature is greater than or equal to the frequency of co-

localization with the feature for the original SNP set and n is the number of random SNP 

sets generated (here, 10,000). We used the Benjamini-Hochberg false discovery rates (FDR) 

to correct for multiple testing. We interrogated the functional data from 111 ROADMAP 

reference epigenomes and 16 additional epigenomes from ENCODE (Encyclopedia of DNA 

elements) that are available in a wide range of human cell and tissue types24 (see URLs). We 

focused on enhancers and promoters that were defined using the ChromHMM 15-state 

model assayed in all 127 epigenomes. We also examined enrichment in DNase I 

hypersensitivity sites that are available in 51 cell types.

Demenais et al. Page 14

Nat Genet. Author manuscript; available in PMC 2018 June 22.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Connectivity between asthma-associated loci

We used GRAIL (Gene Relationships Across Implicated Loci)25 to assess the relatedness 

between asthma associated loci. As described in detail previously25, to define the genes near 

each SNP, GRAIL finds the furthest neighboring SNPs in the 3′ and 5′ direction that are in 

LD (r2>0.5) and proceeds outward in each direction to the nearest recombination hotspot. 

All genes that overlap that interval are considered implicated by the SNP. If there are no 

genes in that region, the interval is extended by 250 kb in either direction. We took the 

genome-wide significant signals identified by this study as a seed and queried loci to 

investigate biological connectivity among those loci. The connectivity between genes 

belonging to these loci was assessed through text-mining of PubMed abstracts. Each gene at 

each locus was scored for enrichment in GRAIL connectivity to genes located at the other 

loci by using statistical text-mining methods, as previously described25. The 

interconnectivity among genes at asthma risk loci was visualized using VIZGRAIL47 (see 

URLs).

Variance explained by the asthma associated genetic variants

We estimated the variance in liability to asthma explained by the 22 distinct genome-wide 

significant SNPs (18 lead SNPs plus four secondary signals identified by approximate 

conditional analysis) at the 18 asthma-associated loci using a method based on the liability 

threshold model48 and assuming a prevalence of asthma of 10%. The variance in liability to 

asthma explained by individual SNPs was summed over all 22 significant variants. For the 

loci that included two SNPs (lead SNP and secondary signal), we used the SNP effect sizes 

estimated by approximate joint analysis using GCTA44. We also estimated the variance in 

liability to asthma explained by the nine lead SNPs at the nine new asthma loci and by the 

13 distinct genome-wide significant signals at the nine known loci.

Data availability statement

The summary statistics of the meta-analysis that support the findings of this study are 

available through a link from the GWAS Catalog entry for the TAGC study on the EMBL-

EBI (European Bioinformatics Institute) web site (https://www.ebi.ac.uk/gwas/downloads/

summary-statistics).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 

Manhattan plots of the results of European-ancestry and multi-ancestry random-effects 

meta-analyses of asthma risk. (a) The European-ancestry meta-analysis pertains to 19,954 

cases and 107,715 controls. (b) The multi-ancestry meta-analysis pertains to 23,948 cases 

and 118,538 controls. Each locus is annotated by its cytogenetic band location. The × axis 

represents chromosomal location and the y axis represents −log10 (P value) for tests of 

association between SNPs and asthma. Black, previously known loci; red, new loci 

identified in the European-ancestry meta-analysis; blue, additional new loci identified in the 

multi-ancestry meta-analysis The dashed horizontal line denotes P=5×10−8.
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Figure 2. 

GRAIL25 circle plot of connectivity between genes at asthma risk loci. The 17 asthma risk 

loci are along the outer ring (the 10p14 locus was ignored because it corresponds to a gene 

desert); the internal ring represents the genes at these loci. The width of the lines drawn 

between genes corresponds to the strength of the literature-based connectivity, with thicker 

lines representing stronger connections.
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Table 2

Main characteristics of the nine loci harboring novel associations with asthma

Locusa Location of lead SNPb Cis-eQTLs in blood (B)
and lung tissue (L)

Association with allergy-
related
and lung function 
phenotypes

Association with auto-immune 
diseases
and other immune-related 
traits

New asthma susceptibility loci

5q31.3 NDFIP1 (intron) B: NDFIP1 (2.7×10−9) IBD

6p22.1 Intergenic
B: ZSCAN12 (3.0×10−8)

Lung function
L: ZSCAN31 (6.5×10−11)

6q15 BACH2 (intron) B: BACH2 (3.0×10−10) MS, T1D, CD, IBD, V, IGG

12q13.3 STAT6 (intron)
B: STAT6 (9.8×10−198) IgE (total, specific)

Pso, ISP_IFN
L: STAT6 (3.7×10−37) Lung function

17q21.33 Intergenic B: GNGT2 (2.1×10−52) Atopic dermatitis ISP_IL2

New asthma signals at loci previously associated with asthma in ancestry-specific populations

6p21.33 MICB (intron)

B: TNF (4.8×10−14), LST1 
(1.0×10−13), HLA-C (3.2×10−13), 

LTA (1.0×10−10)

IgE (total, specific), Self-
reported allergy, Atopic 
dermatitis, Lung Function

SLE, UC, RA, IBD, BS, GD, SS, 
AS, Pso, UC, V, WBC, MoC, DS, 
HIV-1, SJS, HB, HBV, IMN, 
CD4:CD8 ratio, HIV-1C

L: MICB (4.6×10−13)

10p14 Intergenic None Self-reported allergy RA, ISP_IL1B, ISPV

Asthma signals previously reported for asthma plus hay fever

8q21.13 Intergenic None Atopic dermatitis, Asthma + 
hay fever Self-reported 
allergy

RA

16p13.13 CLEC16A (intron) B: DEXI (2.2×10−43) Atopic dermatitis, Asthma + 
hay fever

T1D, PBC, MS, RA, IBD, CD, 
LEP

At each of the nine loci harboring novel associations with asthma, cis-genes whose expression (e-QTLs) is associated with the lead asthma-

associated SNPs (shown in Table 1) or SNPs in LD (r2≥0.5) with the lead SNPs were searched using six eQTL databases from whole blood11,12, 

lymphoblastoïd cell lines10,13, monocytes23 and lung12,14; only genes with the strongest associations (P-value <5×10−8, as shown in 

parentheses) are presented here (Supplementary Table 16 for details). Overlap of these nine loci with associations with allergy-related and lung 

function phenotypes as well as with auto-immune diseases and other immune-related traits was annotated using the GWAS catalog3;

IBD=Inflammatory bowel diseases (Crohn’s disease), MS=multiple sclerosis, T1D=type 1 diabetes, CD=celiac disease, V=vitiligo, IGG=IgG 

Glycosylation, Pso=psoriasis, ISP_IFN=Immune Response to Smallpox (secreted IFN-alpha), ISP_IL2 Immune Response to Smallpox (secreted 

IL2), SLE=Systemic Lupus Erythematosus, UC=Ulcerative colitis, RA=Rheumatoid arthritis, BS=Behçet syndrome, GD=Grave’s disease, 

SS=Systemic sclerosis, AS=Ankylosing spondylitis, WBC=White Blood cell count, MoC=monocyte count, DS=Dengue shock, HIV-1=HIV-1-

susceptibility, SJS=Stevens-Johnson syndrome, HB=Hepatitis B infection, HBV=Hepatitis B vaccine response, IMN=Idiopathic membranous 

nephropathy, CD4:CD8=CD4:CD8 lymphocyte ratio, HIV-1C= HIV-1 control, ISP_IL1B=Immune Response to Smallpox (secreted IL-1 beta), 

ISPV=Immune response to smallpox vaccine (IL-6), PBC=Primary biliary cirrhosis, LEP=Leprosy.

a
Cytogenetic band;

b
The protein coding genes flanking intergenic SNPs are shown in Table 1.
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Table 3

Overlap of TAGC asthma-associated SNPs with GWAS catalog association signals by disease group

Disease Group Number of GWAS
catalog association
signals

Number of SNPs
associated with asthma at

Prandom≤10−4 in the multi-

ancestry meta-analysis

P-value for overlap

Cardiovascular 743 20 7.8 × 10−42

Body size and morphology 346 2 5.0 × 10−4

Immune/Autoimmune 480 49 3.0 × 10−129

Nervous system 242 4 1.4 × 10−8

Blood 594 10 1.3 × 10−19

Neuropsychiatric 114 5 1.5 × 10−12

Cancer 417 7 4.0 × 10−14

Endocrine system 276 2 4.0 × 10−4

Digestive system 347 16 1.4 × 10−37

Eyes 177 2 2.0 × 10−4

Respiratory system 85 2 3.6 × 10−5

Infectious disease/Infection 104 2 5.3 × 10−5

Urinary system 144 1 1.5 × 10−2

Alcohol, smoking, and illicit substances 30 0 1

Musculoskeletal system 132 0 1

Overlap of TAGC asthma-associated SNPs with association signals of all diseases/traits in the GWAS catalog3 was investigated for all TAGC SNPs 

having Prandom≤10−4 in the multi-ancestry meta-analysis; diseases from the GWAS catalog were grouped according to the disease classification 

proposed by Wang et al.37 (note that the “Digestive system” group includes Crohn's Disease, a subtype of Inflammatory Bowel Disease). The 

significance of overlap was estimated by the binomial tail probability for observing the shown number of TAGC asthma SNPs among the number 

of SNPs reported in the GWAS catalog for a group of diseases (for example, the probability of observing 20 or more asthma SNPs with 

Prandom≤10−4 among the 743 cardiovascular SNPs is shown in the last column); a conservative Bonferroni adjusted significance threshold for 

enrichment in shared associations is 0.05/15=0.003 (for the 15 disease groups investigated).
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Table 4

Enrichment of asthma risk loci in promoter and enhancer marks and DNase I-hypersensitive sites

Type of regulatory elements Proportion of all cell types (blood cell types) showing
enrichment with a given false discover rate (FDR)

FDR ≤ 10% FDR ≤ 5%

All promoter states 6% (26%) 0

Active promoter states 13% (33%) 0

All enhancer states 57%(100%) 44%(89%)

Active enhancer states 66% (100%) 50%(100%)

DNase I-hypersensitive sites 16% (50%) 12%(40%)

The co-localization of SNPs at asthma risk loci with regulatory elements (promoters, enhancers, DNase I-hypersensitive sites) was assessed at 16 

asthma-loci identified by this study ( Table 1); the 6p21.33 and 6p21.32 loci that encompass the HLA region were excluded because of the high 

amount of variability and LD in this region. Enhancer and promoter states were defined using the ChromHMM 15-state model applied to functional 

data of 127 ROADMAP and ENCODE reference epigenomes in various cell types (including 27 leukocytes)24. DNase I hypersensitivity sites were 

identified in 51 cell types (including 10 leukocytes)24. Empirical-P-values for enrichment were obtained using 10,000 Monte-Carlo simulations of 

random sets of SNPs matching the original set of asthma-associated SNPs40; Benjamini-Hochberg’s FDR was calculated to correct for multiple 

testing (Online Methods for details).
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