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Body fat distribution is a major, heritable risk factor for cardiometabolic dis-
ease, independent of overall adiposity. Using exome-sequencing in 618,375
individuals (including 160,058 non-Europeans) from the UK, Sweden and
Mexico, we identify 16 genes associated with fat distribution at exome-wide
significance. We show 6-fold larger effect for fat-distribution associated rare
coding variants compared with fine-mapped common alleles, enrichment for
genes expressed in adipose tissue and causal genes for partial lipodystrophies,
and evidenceof sex-dimorphism.Wedescribe an associationwith favorable fat
distribution (p = 1.8 × 10−09), favorable metabolic profile and protection from
type 2 diabetes (~28% lower odds; p = 0.004) for heterozygous protein-
truncating mutations in INHBE, which encodes a circulating growth factor of
the activin family, highly and specifically expressed in hepatocytes. Our results
suggest that inhibin βE is a liver-expressed negative regulator of adipose sto-
ragewhoseblockademaybebeneficial in fat distribution-associatedmetabolic
disease.
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The ability to store excess calories in adipose tissue in the form of
triglycerides is essential to metabolic health in humans1–6 and the
distribution of fat in the body is amajor risk factor for cardiometabolic
disease6–9, independent of overall adiposity.

In individuals from different world regions, a higher waist-to-hip
circumference ratio (WHR), a simple proxy-measure of the relative
abundance of abdominal to gluteofemoral fat, is strongly associated
with higher incidence of cardiovascular disease and diabetes7,8,10,
independent of body mass index (BMI).

While fat distribution is a major epidemiological risk factor
accounting for a large share of the globalmorbidity of cardiometabolic
disease, there is a lack of therapeutic options to modify improper fat
storage. A deeper understanding of the genetic basis of fat distribution
and its relationships with disease may translate into new therapeutic
approaches.

In Mendelian genetic studies, rare variants in PPARG11, a tran-
scription factor andmaster-regulator of adipocyte differentiation, and
in six other genes have been associated with familial partial lipody-
strophy (FPLD)12,13. Partial lipodystrophies are extreme forms of cen-
tripetal body fat distribution characterized by the inability to expand
peripheral adipose storage, with deposition of excess calories as
ectopic fat in the liver, leading to insulin resistance, diabetes and
vascular disease12,13. It has been suggested that similarmechanisms are
at play in more subtle forms of cardiometabolic disease of unknown
genetic etiology in the general population1.

Consistent with this hypothesis, genome-wide association studies
(GWAS) have successfully identified hundreds of common genetic
variants associated with fat distribution and provided evidence of
strong etiologic relationships with diabetes and coronary disease14–19.

However, the demonstration of key underlying mechanisms for
fat distribution-associated disease and their molecular determinants
have been elusive, contributing to challenges in identifying ther-
apeutically modifiable pathways. In particular, the excessive deposi-
tion of hepatic fat has been proposed to play a central role in the link
between body shape and disease1. Hepatic steatosis is a driver of
insulin resistance, dyslipidemia and nonalcoholic steatohepatitis
(NASH), a highly prevalent and fast-growing cause of global morbidity
andmortality20. Genetic variants associatedwith accumulation of fat in
the abdominal cavity or with lower levels of fat deposition in gluteo-
femoral regions have been hypothesized to cause hepatic steatosis as
key mechanistic steps towards type 2 diabetes and coronary
disease16,21. However, it has not been possible to demonstrate these
genetic mechanisms and pinpoint their molecular effectors due to a
lack of large genomic databases linked to refinedmeasures of liver fat,
inflammation and fibrosis.

Here, we tackled these outstanding questions with humangenetic
studies centered around the exome sequencing of 618,375 individuals
across five ancestries. This approach may identify naturally occurring
loss-of-function (LOF) alleles that protect from disease22,23, a type of
genetic association which has informed therapeutic target identifica-
tion in a growing number of examples24,25. We also combined exome
sequencing with common-variant polygenic scores and with refined
measures of liver fat and inflammation, to study the role of liver health
in fat distribution-associated cardiometabolic disease (Fig. 1).

Results
Exome-wide associations with body fat distribution
We leveragedmulti-ancestry exome-sequencing of 618,375 individuals
from three population-based cohorts in the UK, Sweden and Mexico
(“Methods”, Supplementary Data 1), including 160,058 non-European
individuals. We estimated associations with fat distribution, measured
as BMI-adjustedWHR, for the burden of rare nonsynonymous variants
in each gene in the genome, conditional upon 868 common variants
(listed in Supplementary Data 2) identified by fine-mapping of GWAS
signals in the same participants (“Methods”).

Sixteen genes were associatedwith fat distribution at exome-wide
statistical significance (inverse-variance weighted [IVW] meta-analysis
p < 3.6 × 10−7; Table 1, Supplementary Fig. 1), with consistent effect
estimates across ancestries (heterogeneity I2 below 75%26 for each
association; SupplementaryData 3). Rarepredicted-deleterious coding
alleles in PLXND1 and CD36were 2.5- and 4.5-fold enriched inAmerican
ancestry individuals relative to Europeans, providing critical evidence
implicating these genes (Supplementary Data 3). A median of 296
(interquartile range, 187-428; Table 1 and Supplementary Data 4) dis-
tinct rare coding variants per gene contributed to the gene-burden
exposures. Effect estimates were on average six-fold larger for gene-
burden associations than for the 868 fine-mapped common-variant
signals identified in the same individuals (Fig. 2).

Gene-burden associations had near perfect correlation in a BMI-
unadjusted analysis (Pearson correlation, 0.99; p = 9.9 × 10−13; Supple-
mentary Fig. 2), indicating that collider bias27,28 due to BMI adjustment
did not drive the identification of these genes. To assess the potential
influence of skeletal phenotypes on these associations, we performed
sensitivity analyses adjusted for height or estimated bone mineral
density, which yielded near-identical associations as the main analysis
(height adjustment Pearson correlation, 1; p = 6.2 × 10−31; estimated
bonemineral density adjustment Pearson correlation, 1; p = 4.6 × 10−18;
Supplementary Fig. 2). We also showed near-identical estimates with a
nonlinear adjustment for body fat mass measured by electrical
bioimpedance (Pearson correlation, 1; p = 1.3 × 10−16; Supplementary
Fig. 2), ruling out an influence of nonlinear relationships with overall
body adiposity on the associations.

To further corroborate that the identified associations reflect a
difference in fat distribution, we studied visceral-to-gluteofemoral fat
ratio derived from whole-body magnetic resonance imaging (MRI), a
“gold-standard” measure available in a subset of 38,880 people (i.e.
~6% of the discovery sample; Supplementary Data 5, Supplementary
Fig. 3). Association estimates showed 94% directional concordance
between BMI-adjusted WHR and visceral-to-gluteofemoral fat ratio
(expected proportion under null assumption, 50%; two-way binomial
for observed proportion p = 5.2 × 10−4) and gene-burden associations
were highly consistent between the two traits (beta in SD units of
visceral-to-gluteofemoral fat ratio per 1 SD higher BMI-adjusted WHR
via the 16 genes, 1.30; 95% confidence interval [CI], 1.04, 1.56;
p = 9.3 × 10−23; Supplementary Fig. 3). We observed similar consistency
for a polygenic scorebasedon202WHR-associated commonvariants16

(beta in SD units of visceral-to-gluteofemoral fat ratio per 1 SD higher
BMI-adjusted WHR via the polygenic score, 1.09; 95% CI, 1.04, 1.14;
p = 2.2 × 10−360).

For four of 16 genes (ACVR1C, CALCRL, PLIN1, PDE3B), rare coding
variant associations with BMI-adjusted WHR have been previously
reported at the genome- and exome-wide significance thresholds used
here17,18,29 (SupplementaryData 6),whilePDE3B rare coding alleles have
been associatedwith BMI22; the remaining 12 associations hadnot been
reported in previous studies.

Two of the 16 genes (PPARG, PLIN1) were causative genes for
familial partial lipodystrophies (FPLDs), which are Mendelian forms
of extreme fat distribution (Supplementary Data 7; fold-enrichment,
554; 95% confidence interval [CI], 49 to 3623; Fisher’s exact test
p = 1.3 × 10−5). The burden of rare pLOF variants or rare pLOF plus
predicted deleterious missense variants in six of seven known FPLD
genes (all except AKT2) showed a nominal association with fat dis-
tribution (p < 0.05; Supplementary Data 7). Interestingly, in our
analysis, PLIN1 pLOF variants were associated with lower BMI-
adjusted WHR and larger hip circumference, a phenotype that is
opposite of that observed30 in individuals with C-terminal frameshift
variants in PLIN1 and autosomal dominant FPLD type 4 (Supple-
mentary Result 1). This suggests that the lipodystrophy phenotype
observed in FPLD type 4might be due to a peculiar alteration in PLIN1
function caused by those specific C-terminal frameshift variants and
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not a simple heterozygous loss of PLIN1 function (i.e.
haploinsufficiency).

We observed enrichment for genes highly expressed in sub-
cutaneous adipose tissue, the specialized energy storage tissue of the
body (Supplementary Fig. 4; Enrichment Wald test p = 7.3 × 10−4), and,
to a lesser degree, visceral adipose tissue (Supplementary Fig. 4;
Enrichment Wald test p = 1.1 × 10−3). For five of 16 genes, subcutaneous
adipose was the highest expressing tissue across 48 tissue types, while
one gene had highest expression in visceral adipose tissue (Supple-
mentary Fig. 5). We estimated associations with hip and waist cir-
cumference, as proxy measures of gluteofemoral and abdominal fat
respectively. Thirteen of 16 genes showed nominal associations with

hip circumference (IVW meta-analysis p < 0.05), while five genes were
associated with waist (IVW meta-analysis p < 0.05; Supplemen-
tary Data 8).

In line with previous literature on fat distribution14,18,19,31, we
observed evidence of sex-interaction for eight of 16 genes (pinteraction <
3.1 × 10−3, Bonferroni correction for 16 genes at α =0.05; Supplemen-
tary Data 9), with stronger associations in women for all eight genes. In
sex-stratified discovery analyses for BMI-adjusted WHR, we identified
two additional genes in the women-only analysis which showed no
associations in men (FGF1 and MSR1; Table 1; Supplementary Data 9).

To complement gene-burden analyses,weperformed a rare single
variant discovery analysis identifying 13 independently associated

Multi-ancestry genetic discovery of fat distribution in 
618,375 individuals

Exome-wide gene-burden 
analysis

Exome-wide single 
variant analysis

GWAS with fine-
mapping

Array genotyping and imputation
Genome-wide variants; MAF  1%

~1 million rare variants 
gene-burden

P-value threshold < 5×10-8

~9 million common variants

P-value threshold < 5×10-8

Impact of favorable fat distribution on liver phenotypes and 
cardiometabolic diseases

Characterization of INHBE, a liver-specific gene 
associated with favorable fat distribution

Effect of genetically predicted favorable fat distribution on liver-related phenotypes and 
cardiometabolic diseases

Interplay of rare variants and polygenic predisposition to 
favorable or unfavorable fat distribution

Evaluation of phenotypic impact of polygenic score compared to rare 
variants

Exome sequencing
Rare coding variants; MAF < 1%

Genes discovered in gene-burden 
analysis

A

B

C

Cardiometabolic 
diseases

� Transaminase levels
� MRI-derived liver fat and 

inflammation
� Liver histopathology
� Liver disease diagnoses

Four polygenic 
scores for 
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distribution

Derive polygenic score for fat 
distribution

� Type 2 diabetes
� Coronary artery disease

Liver-related 
phenotypes

868 fine-mapped 
signals

Generate polygenic 
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13 independent  
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16 associated genes

20,000 genes; 7 gene-burden 
configurations

P-value threshold < 3.6×10-7

Genes 
discovered in 
gene-burden 

analysis

≥ 

Fig. 1 | Study overview.We performed three major groups of analyses, illustrated
in (A–C).A outlines the multi-ancestry genetic discovery analysis for BMI-adjusted
WHR. B summarizes association analyses for genetically determined fat distribu-
tion, liver health parameters and cardiometabolic disease. C outlines the

evaluation of common and rare variant interplays in fat distribution. MAF minor
allele frequency, GWAS genome-wide association study, MRI magnetic resonance
imaging.
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variants in 11 genes (IVW meta-analysis p < 5 × 10−8; Supplementary
Fig. 1 and Supplementary Data 10). These included a variant in a gene
not highlighted in the gene-burden analysis nor in previous genetic
studies: a Val136Ile missense variant in GH1 (Supplementary Data 10).

In summary, we identified several associations with fat distribu-
tion for rare coding variants that (a) are robust in a variety of sensitivity
analyses; (b) are highly correlated with a “gold-standard” fat distribu-
tion measure; (c) have large-effect sizes; (d) are enriched for genes
highly expressed in adipose tissue and for causal genes of Mendelian
forms of extreme fat distribution and (e) often exhibit sex-
dimorphism.

Loss of function in liver-specific INHBE is associated with favor-
able fat distribution and protection from metabolic disease
Weexplored indepth the associationwith favorable fatdistribution for
rare pLOF variants in INHBE (Table 1 and Fig. 3), encoding amember of
the activin pathway and transforming growth factor-beta (TGF-β)
superfamily known as inhibin βE.

Multiple attributes of this association made it of particular inter-
est. Associations of naturally occurring pLOF alleles with protection
from human disease have helped define new therapeutic targets in a
growing number of examples24,25 and this was a newly identified, large-
effect association (0.17 SD units; Table 1) with a favorable phenotype
(lower BMI-adjusted WHR) for pLOF alleles. Also, in contrast with the
exome-wide enrichment for adipose genes, INHBE was the only iden-
tified gene with strong and specific expression in hepatocytes, but no
expression in visceral or subcutaneous adipose tissues (Fig. 4).

The association with favorable fat distribution was consistent in
ancestry subsets (Supplementary Data 3) and was strong in men and
women with no evidence of sex-interaction (Supplementary Data 9).
There was an association with larger hip circumference, but no asso-
ciation with waist (Fig. 5A and Supplementary Data 11). INHBE pLOF
variants were associated with lower visceral-to-gluteofemoral fat ratio
at MRI (beta in SDs of fat ratio per allele, −0.24; 95% CI, −0.45, −0.02;

p =0.03; Supplementary Data 5), and with lower visceral fat volume
(Supplementary Data 12). Bioimpedance analyses showed numerically
larger impact on body fat rather than lean masses and percentages
(Supplementary Fig. 6). INHBE pLOF carriers had higher self-reported
birthweight and were more likely to self-report a ‘plumper-than-aver-
age’ comparative body size at age 10 (Supplementary Data 13).

We examined the genomic context of the association with BMI-
adjusted WHR at the INHBE locus and identified no fine-mapped
common-variant signals for fat distribution within a 1-Mb window
around the gene (Supplementary Fig. 7), consistent with the associa-
tion being solely driven by rare INHBE pLOF alleles. We performed a
leave-one-variant-out backward-selection analysis to identify indivi-
dual rare pLOF alleles contributing to the gene-burden association.
The association was primarily but not exclusively driven by a c.299-
1 G >C splice acceptor variant accounting for nearly two-thirds of
alternative alleles in the aggregate gene-burden genotype (Supple-
mentary Data 14). The c.299-1 G >C variant is in linkage disequilibrium
(r2 = 0.89) with a rare Ser544Asn missense variant in SLC26A10, a
nearby pseudogene tolerant to rare deleterious variation with no
reported evidence of protein expression (https://www.proteinatlas.
org/)32. We performed a number of sensitivity analyses, which sup-
ported that the rare-variant signal at the locus is driven by INHBE and
not SLC26A10 (Supplementary Result 2), including evidence that: (a)
Ser544Asn was not associated with fat distribution after adjusting for
c.299-1G >C; (b) rare coding variants in INHBE remained associated
with fat distribution even after excluding all Ser544Asn carriers and (c)
rare coding variants in SLC26A10 were not associated with fat dis-
tribution after excluding Ser544Asn (Supplementary Result 2, Sup-
plementary Data 10, 11, 14–16). We next expressed the c.299-1G >C
variant in Chinese hamster ovary cells which have no endogenous
INHBE expression and detected a lower molecular weight protein that
was not secreted outside the cell, consistent with loss-of-function
(Fig. 6, Supplementary Fig. 8).

Genetic variants associatedwith favorable fat storagemayprotect
frommetabolic disease. In 83,873 cases and 586,592 controls, both the
burden of rare pLOF variants (per-allele odds ratio, 0.72; 95% CI, 0.58,
0.90; IVWmeta-analysis p =0.0043; Fig. 5B) and the c.299-1G>C splice
variant alone (SupplementaryData 11) were associatedwith lower odds
of type 2 diabetes. The association of INHBE was similar in magnitude
to that of PDE3B and ACVR1C, two other genes with large-effect asso-
ciations with favorable fat distribution in our analysis (Supplementary
Data 17 and Supplementary Fig. 9)which, similar to INHBE, also showed
associations with higher hip circumference as a measure of greater
gluteofemoral fat (Supplementary Data 8). The association of INHBE
pLOF variants with protection from diabetes had similar estimates in
men and women or in obesity categories in an analysis corrected for
potential collider effects (Supplementary Data 18).

A broader exploration of the association of INHBE pLOF variants
with continuous metabolic traits revealed associations with lower
HbA1c, lower apolipoprotein B, lower triglycerides, and higher high-
density lipoprotein cholesterol (IVWmeta-analysisp <0.05; Fig. 5A and
Supplementary Data 11), all of which are consistent with a favorable
metabolic phenotype21,33–35. There were no associations with estimated
bonemineral density or with the risk of bone fracture (Supplementary
Result 3).

Given the hepatic expression andproposed role of fat distribution
genes in liver dysfunction, we explored associations with liver traits.
Rare pLOF variants in INHBE were associated with lower alanine
transaminase levels (ALT), ameasure of liver injury, lower corrected T1
(cT1, anMRI imagingmeasure of liver inflammation/fibrosis) and lower
nonalcoholic fatty liver disease (NAFLD) activity score at liver biopsy in
bariatric patients (Supplementary Data 19), though the latter associa-
tion is driven by only three heterozygous carriers in the bariatric sur-
gery cohort and should be interpreted with caution. We did not
observe an association with nonalcoholic liver disease or with liver
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confidence intervals. The gray diamond represents meta-analysis estimates. BMI
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Fig. 4 | INHBE mRNA expression in humans across tissues and liver cell-types.
The left panel shows normalized mRNA expression for INHBE in counts per million
(CPM) across tissues from the Genotype Tissue Expression (GTEx) consortium107,
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individuals for each tissue107. The right panel shows normalized cell-type specific
expression within liver in counts per transcripts per million protein coding genes
(pTPM) from the Human Protein Atlas (HPA)108.
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cirrhosis outcomes, but the analysis was underpowered due to the
rarity of INHBE pLOF alleles (Supplementary Data 19).

We performed RNASeq in liver biopsy samples from a cohort of
bariatric surgery patients (“Methods”) and investigated the association
between liver disease status and INHBE expression. Individuals with
liver steatosis exhibited higher INHBE expression compared to indivi-
dualswith healthy liver (25%higher expression;Wald testp = 4.1 × 10−16;
Supplementary Fig. 10), while individuals with nonalcoholic steatohe-
patitis had even higher expression (60% higher compared to healthy
liver;Wald testp = 2.0 × 10−63; Supplementary Fig. 10). Furthermore,we
observed a strong association between higher NAFLD activity score at
liver biopsy and higher liver expression of INHBE mRNA (Supplemen-
tary Fig. 10). INHBE hepatic expression showed modest correlation
with that of activin A or follistatin (Supplementary Fig. 11), which are
other members of the TGF-β family involved in metabolic regulation
and disease36,37.

Overall, our results suggest that inhibin βE is a liver-derived
negative regulator of energy storage in peripheral adipose tissue in
humans and that its inactivation may protect from metabolic disease.

Genetic evidence of a central role for liver steatosis and
inflammation in fat distribution-associated disease
Hepatic steatosis and inflammation have been proposed to play a
central role in fat distribution related cardiometabolic disease1, but
genetic evidence of this mechanism is lacking. Here, we studied

associations with (a) transaminase levels in 542,904 people; (b) MRI-
derived measures of liver fat (proton-density fat fraction, PDFF) and
liver inflammation/fibrosis (cT1) in 36,402 people; (c) liver histo-
pathology in 3565 bariatric surgery patients; and (d) liver disease
diagnoses in 15,851 cases and 468,511 controls. In observational epi-
demiology analyses, higher BMI-adjustedWHRandhigher BMI showed
the expected association with higher levels of MRI-measured liver fat,
inflammation andwith higher risk of liver disease outcomes and type 2
diabetes (Supplementary Figs. 12 and 13).

We next estimated associations with liver phenotypes for four
validated16,21 common-variant scores capturing polygenic predisposi-
tion to: (a) lower WHR via both higher gluteofemoral and lower
abdominal fat; (b) lower WHR via lower abdominal fat (waist-specific
score) (c) lower WHR via higher gluteofemoral fat (hip-specific score);
and (d) lower insulin resistance via greater adipose expandability. We
used a polygenic score for lower BMI as comparator 38.

The favorable fat distribution scores were associated with “gold-
standard”measures of adipose expandability, peripheral adiposity and
fat distribution at dual-energy X-ray absorptiometry (DXA) in a small
subset of UKB (N = 5117 or 0.8% of the discovery sample with available
DXA; Supplementary Fig. 14). Favorable fat distribution polygenic
scores were strongly associated with lower transaminase levels, lower
liver fat and inflammation at MRI (Fig. 7A, Supplementary Fig. 15), as
well as protection from nonalcoholic liver disease and liver cirrhosis
(Fig. 7A and Supplementary Fig. 15). The polygenic score for lower

Fig. 5 | Associationof INHBEpLOFvariantswith favorablemetabolicprofile and
protection from type 2 diabetes. A shows associations with anthropometric and
metabolic phenotypes, including 645,626 individuals. P-values are from two-sided
Wald tests. Markers represent estimated beta coefficients, while error bars repre-
sent 95% confidence intervals. B shows ameta-analysis of the association with type
2 diabetes risk, including a total of 83,873 cases and 586,592 controls. P-values are
from two-sided Wald tests. Markers represent estimated odds ratios, while error
bars represent 95% confidence intervals. The gray diamond represents meta-

analysis estimates. AAF alternative allele frequency; BMI body mass index; RR
reference-reference homozygous genotype; RA reference-alternative hetero-
zygous genotype; AA alternative-alternative homozygous genotype; CI confidence
intervals; P P-value; SD standard deviation; pLOF predicted loss of function; kg
kilogram; m2 meter squared; mg milligram; dL deciliter; cm centimeter; UKB UK
Biobank study; SINAI Mount Sinai BioMe cohort; MDCS Malmö Diet and Cancer
Study; MCPS Mexico City Prospective Study; GHS Geisinger Health System; EUR
European; SAS South Asian; AMR American; ALL all ancestries pooled.
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insulin resistance via greater adipose expandability and the overall
score for lower BMI-adjusted WHR were also associated with lower
NAFLD activity score on histopathology (Fig. 7A and Supplementary
Fig. 15). Notably, associations of fat distribution polygenic scores with
liver traitswere similarly strong and, at times, even stronger than those
of the polygenic score for lower BMI, for a given genetically deter-
mined difference in the underlying trait. All four scores were also
robustly associated with lower risk of type 2 diabetes and coronary
artery disease (Fig. 7A and Supplementary Fig. 15), consistent with
previous literature15,16,21, and associations with diabetes and liver dis-
ease were independent of known epidemiologic risk factors for these
conditions (Supplementary Data 20).

Next, we investigated relationshipswith liver and cardiometabolic
disease outcomes for the genes identified in our gene-burden analysis
of fat distribution, pooling associations across 16 genes using a rare-
variant Mendelian randomization approach to maximize statistical
power. Genetically lower BMI-adjusted WHR via the 16 genes was
associated with lower ALT, lower liver fat and lower risk of type 2
diabetes and coronary disease (Fig. 7B), consistent with the common-
variant associations. Statistically significant associations with type 2
diabetes showed no evidence of sex-interaction, while the association
with coronary disease appeared stronger in men (Supplementary
Data 21). As fat distribution is associatedwithmetabolic disease also in
lean individuals39, we estimated associations with type 2 diabetes in a
BMI-stratified analysis which accounts for possible collider bias and

found that associations were similarly strong by obesity category
(Supplementary Data 22).

Interplay of rare and common fat distribution variants in the
general population
Given the observation that polygenic extremes andMendelian-disease
causing variants have a similar impact on certain traits40,41, the com-
bined availability of exome-sequencing, genome-wide genotyping and
fat distribution phenotypes in our study, and the observed enrichment
for FPLD-causing genes in the exome-wide analysis, we investigated
the interplay of common and rare variants for fat distribution.

We compared associations for mutations in PPARG, the causal
gene for FPLD type 3 (used as benchmark for Mendelian-like effects;
“Methods”), with those of a genome-wide polygenic score for BMI-
adjusted WHR generated and validated using GWAS data from our
analysis (“Methods”; Supplementary Fig. 16). PPARGmutation carriers
had 0.46 SD higher BMI-adjusted WHR (IVW meta-analysis p =0.012;
Table 2, Supplementary Data 23) and >4-fold higher odds of type 2
diabetes (IVW meta-analysis p = 3.4 × 10−4; Table 2, Supplementary
Data 23) compared to noncarriers; which is consistent with the effect-
size of otherMendelianmutations in population-based studies22,40,41. In
the same dataset, the genome-wide polygenic score was robustly
associated with fat distribution and related-disease (Supplementary
Result 4, Supplementary Figs. 17–20, Supplementary Data 24, 25), with
individuals in the top 1% of polygenic predisposition having similar
average fat distribution as PPARGmutation carriers (0.58 SDs; Table 2).
Notably, being in the top 1% of the polygenic score is approximately
120-times more frequent than being the heterozygous carrier of a
PPARG mutation in the cohorts we studied (Table 2). Other genotype
combinations including rare alleles combined with high polygenic
burden ormultiple rare alleles for other genes identified in our exome-
wide analysis had similar impact (ANKRD12, PLIN4; Supplementary
Result 4; Supplementary Data 24). At the opposite polygenic extreme,
individuals in the bottom 1% of the polygenic score had a favorable fat
distribution (−0.67 SDs; Table 2) and a risk of type 2 diabetes similar to
that of INHBE pLOF carriers (Table 2).

Discussion
We performed a large and ancestrally diverse study on the influences
of rare coding variants on body shape and associated cardiometabolic
disease, making a number of observations that substantially advance
our understanding of the genetic basis of these phenotypes.

First, we showed that rare mutations in numerous genes
have a substantial impact on body fat distribution in the general
population. We identified new associations with favorable adiposity
and protection from metabolic disease for rare loss-of-function var-
iants in INHBE, encoding a liver-produced circulating member of the
TGF-β superfamily. Our results suggest that inhibin βE is a liver-
expressed negative regulator of energy storage in peripheral adipose
tissue in humans and that loss of its function protects from liver
inflammation, dyslipidemia and type 2 diabetes by promoting healthy
fat storage. These findings may have therapeutic implications. The
identification of naturally ccurring loss-of-function variants associated
with protection from human disease has helped identify a growing
number of new targets for pharmacological inhibition across multiple
indications22–25,42,43. Human genetic support is associated with higher
odds of successful drug development44 and hepatocyte-expressed
genes that encode circulating proteins like INHBE can be effectively
inhibited via liver-directed oligonucleotide therapeutics or by mono-
clonal antibodies targeting the circulating protein product, as shown
in several clinical trials45–51. Hence, inhibition of INHBE may be a
therapeutic approach for metabolic disease associated with improper
fat storage.

INHBE provides an example of a liver-specific gene where rare
loss-of-function mutations are associated with body fat distribution.

Fig. 6 | In vitro expression of the INHBE c.299-1G>C splice acceptor variant.
A shows a genemodel for INHBEwith the predicted loss of function splice acceptor
variant (c.299-1G>C) highlighted.B shows aWesternblot analysis for INHBEprotein
in cell lysates and conditioned media from CHO cells transfected with wild-type
INHBE or the INHBE c.299-1G>C splice acceptor variant. Full length GST-tagged
recombinant INHBE protein (100ng) was used as a positive control and staining
with Ponceau S was used to compare sample loading across samples. The image is
representative of one of three technical replicates. Each replicate yielded similar
results. Chr chromosome, CHO Chinese hamster ovary, GST Glutathione s-trans-
ferase, WT wild type, kDa kilodalton, WB western blot, Ponceau S Ponceau S (Acid
Red 112).
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This association uncovers a potential new player in the biological
interactions between liver, a critical organ for energy sensing, and
adipose tissue, the specialized energy storage system of the human
body. Higher levels of INHBE expression have been observed in insulin
resistance52, an early pathophysiologic process in metabolic disease,
and, in our study, in hepatic steatosis and inflammation, which may
partly reflect the insulin resistance associated with those conditions.

We hypothesize that the upregulation of INHBE in those settings may
drive a maladaptive response to excess calories.

The biological functions of inhibin βE in humans are largely
unknown and could be disparate, given its potential to form homo-
dimers or heterodimers with other members of the activin family
which are involved inmultiple processes53. Interestingly, inhibinβE has
recently been proposed to be a hepatokine that regulates energy
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homeostasis by inducing beige adipocytes and improving insulin
sensitivity inmousemodels of hepatic overexpression54.While the role
as liver-produced regulator of adipose function is consistent with our
human genetic findings, the directionality of associations is opposite.
In the mouse model, overexpression of inhibin βE resulted in greater
insulin sensitivity54, whereas loss-of-function is associated with pro-
tection from metabolic disease in humans. Notably, different mouse
models of inhibin βE perturbation have yielded contrasting results52,54.
More broadly, phenotypic inconsistencies have been highlighted
between mutations affecting fat distribution in humans and mouse
models of those variants55,56, which are partly due to inter-species dif-
ferences in adipose patterning and function. Therefore, the relevance
of mouse models of inhibin βE perturbation to human pathophysiol-
ogy is unclear.

Second, by using genomic data in conjunction with “gold-stan-
dard” liver MRI imaging and histopathology phenotypes, our study
shows the profound impact of adipose expandability genes on ectopic
liver fat deposition, hepatic inflammation and disease, uncovering
another key aspect of adipose-liver interplay in energy storage. We
show that variation at adipose-expressed genes associated with an
enhanced ability to expand peripheral fat storage results in lower
levels of liver fat, lower liver inflammation, and protection against
cirrhosis. Our results show that improper adipose storage is a key
determinant of the burgeoning epidemic of nonalcoholic liver disease
and suggest that enhancing adipose expandability may be an impor-
tant preventive or therapeutic strategy for these conditions.

Third, our results highlight the combined impact of common and
rare variation on fat distribution in the general population. Individu-
ally, rare coding genotypes had much larger phenotypic impact than
that of common alleles. However, the cumulative impact of common
polygenic predisposition (captured by polygenic score extremes) was
as large as that of PPARG mutations, with an over 100-fold higher
frequency. These results illustrate the existence of more prevalent
polygenic forms of lipodystrophy-like disease, and may help explain
the observation that mutations in known causal genes cannot be
identified in a large proportion of patients with FPLD 21,57.

This study has limitations. The coupling of exome-sequencing at
scale in diverse ancestries and the confidence in effector gene attri-
bution afforded by rare coding variants enabled us to pinpoint several
effector genes for fat distribution. However, the rarity of some of the
associated alleles means that the number of associated loci for a given
sample size is higher for GWAS of common variants, and suggests that
sequencing of millions of people across ancestries and geographies
will be necessary to fully catalogue the impact of rare variation on
these traits and the contribution of individual alleles in identified
genes. Also, WHR is a simple and broadly used proxy-measure of fat
distribution, but does not fully capture the spectrum of variation in
human body composition. Here, we used “gold-standard” MRI-based
measures of fat distribution and several sensitivity analyses to validate
the identified associations. Human genetic analyses centered on
refined imaging phenotypes may reveal more detailed patterns and
insights.

In summary, this study identified genes where rare coding alleles
are associated with large differences in body fat distribution in
humans, including an association with protection against metabolic
disease for rare loss-of-function variants in the liver-expressed INHBE.
Our results suggest that blocking inhibin βE may be a therapeutic
approach for promoting metabolic health and uncover biological
interplays between liver and adipose tissue in energy storage.

Methods
Participating cohorts
Exome-wide analyses were performed in UK Biobank (UKB)58, Malmö
Diet and Cancer study (MDCS)59, and Mexico City Prospective Study
(MCPS)60. UKB is a population-based cohort of people 40-69 years of
age recruited in the UK in 2006-2010. A total of 429,442 European,
10,115 South Asian, 8,948 African, 2,203 East Asian, 604 American
ancestry participants with exome sequencing and phenotypic data
were included (Supplementary Data 1). MDCS is a population-based
cohort of 44–73-year-old people living in Malmö (Sweden) and
recruited in 1991–1996. A total of 28,875 European ancestry partici-
pants were included (Supplementary Data 1). MCPS is a population-

Fig. 7 | Genetic associations of favorable fat distributionwith liver phenotypes,
type 2 diabetes and coronary artery disease risk. A shows associations for
common variants polygenic scores for favorable fat distribution; associations for a
BMI polygenic score are shown for comparison. Markers and error bars represent
beta coefficients (for continuous traits) or odds ratios (for binary traits) and their
95% confidence intervals. P-values are from two-sided Wald tests. Sample sizes:
ALT, 442,695; PDFF at MRI imaging, 38,915; cT1 at MRI imaging, 38,915; NAFLD
activity score, 3572; nonalcoholic liver disease, 14,195 cases and 428,139 controls;
cirrhosis, 4063 cases and 428,139 controls; type 2 diabetes, 58,379 cases and
530,072 controls; coronary artery disease, 89,202 cases and 342,007 controls;
*NAFLD activity score measured by liver biopsy, the association for the BMI poly-
genic score was not estimated for this phenotype as it is only available in bariatric
surgery patients with extremely high BMI. B shows associations for rare coding

variants (full black circles) and a common-variant polygenic score for lower BMI-
adjusted WHR (open circles; shown as benchmark). Markers and error bars repre-
sent beta coefficients (for continuous traits) or odds ratios (for binary traits) and
their 95% confidence intervals. P-values are from two-sidedWald tests. P-values are
from two-sided Wald tests. ALT, 542,904; PDFF at MRI imaging, 37,686; cT1 at MRI
imaging, 37,686; NAFLD activity score, 3565; nonalcoholic liver disease, 15,858
cases and 468,523 controls; cirrhosis, 4950 cases and 466,464 controls; types 2
diabetes, 66,062 cases and 530,538 controls; coronary artery disease, 92,824 cases
and 361,297 controls. ALT alanine aminotransferase, PDFF proton-density liver fat
fraction, MRI magnetic resonance imaging, cT1 corrected T1, NAFLD nonalcoholic
fatty liver disease, BMI body mass index, WHR waist-hip ratio, P P-value, CI con-
fidence intervals, SD standard deviation, U/L units per liter, ms milliseconds,
pt point.

Table 2 | Fat distribution and prevalence of type 2 diabetes in high-impact genetic exposure groups

Variable Overall
population

PPARG
mutationsa

Top 1% of BMI-
adjusted WHR
polygenic score

INHBE pLOF
variants

Bottom 1% of BMI-
adjusted WHR
polygenic score

Frequency for each exposure group (number of people needed to
sequence to observe one individual in the genetic
exposure group)

- 0.0083% (1
in 12,048)

1% (1 in 100) 0.22%
(1 in 454)

1% (1 in 100)

Mean BMI-adjusted WHR in each exposure group (95% CI of the
mean) in SD units of BMI-adjusted WHR

0
(−0.002, 0.004)

0.46
(0.05, 0.86)

0.58 (0.56, 0.61) −0.19
(−0.25, −0.13)

−0.67 (−0.70, −0.64)

Prevalence of type 2 diabetes in each exposure group (95% CI),
percentage

9.8%
(9.7%, 9.9%)

33%
(19%, 47%)

13% (12%, 14%) 5.7%
(4.3%, 7.1%)

6.9% (6.2%, 7.6%)

Estimates are from European ancestry participants in UKB (for BMI-adjusted WHR; n = 428,652) and UKB plus GHS (for diabetes; 50,167 cases and 466,291 controls).
pLOF predicted loss of function, BMI body mass index,WHR waist-to-hip ratio, SD standard deviation, CI confidence interval.
aGenotype includes rare protein-truncating variants or experimentally validated loss-of-function variants predicted to be causal for FPLD type 3 (“Methods”).

Article https://doi.org/10.1038/s41467-022-32398-7

Nature Communications |         (2022) 13:4844 10



based cohort of people aged 35 years or older, recruited from two
urban districts in Mexico City in 1998–200460,61. A total of 138,188
participants of American ancestry were included (Supplementary
Data 1). Ancillary analyses included association results from 109,909
participants in the Geisinger Health System MyCode and DiscovEHR
collaborations (GHS)62,63, 28,338 participants in theMount Sinai BioMe
biobank cohort (BioMe;mean age, 55 years; 59%women)64, and 15,046
participants in the University of Pennsylvania PennMedicine Biobank
cohort (mean age, 63 years; 52% women)65. Ethical approval for the
UKB was obtained from the North West Centre for Research Ethics
Committee (11/NW/0382) and the work described here was approved
by UK Biobank under application number 26041. The MCPS study was
approved by the Mexican Ministry of Health, the Mexican National
Council for Science and Technology, and theUniversity of Oxford. The
MDCS study was approved by the Regional Ethics Committee at Lund
University. Approval for DiscovEHR analyses was provided by the
Geisinger Health System Institutional Review Board under project
number 2006-0258. Approval for the University of Pennsylvania Penn
Medicine Biobank was provided by the Institutional Review Board of
the University of Pennsylvania. Mount Sinai BioMebiobank cohortwas
approved by the Icahn School of Medicine at Mount Sinai’s Institu-
tional Review Board.

Phenotype definitions
Our primary trait of interest was BMI-adjusted WHR, a phenotype
which has been widely used in human genetic studies of fat
distribution14,16,18,19. BMI-adjusted WHR was defined as the ratio
between waist and hip circumference adjusted for BMI, calculated as
weight in kilograms divided by the square of height in meters, as
previously done14,16,18,19. Adjustment for BMI was performed by calcu-
lation of residuals in a linear regression model with WHR as outcome
and BMI as exposure. The inverse-rank normal transformation was
then applied in sex- and ancestry-specific subgroups.

Blood biomarkers were analyzed in UKB, GHS and MCPS. In UKB,
HbA1c was analyzed using high-performance liquid chromatography
(VARIANT II TurboHemoglobin Testing System, Bio-Rad), and glucose,
liver enzymes (alanine aminotransferase [ALT] and aspartate amino-
transferase [AST]), and blood lipids (apolipoprotein B, triglycerides,
high-density lipoprotein cholesterol, and low-density lipoprotein
cholesterol) were analyzed using the AU5800 clinical chemistry ana-
lyzer (Beckman Coulter). In GHS, biomarker values were extracted
from the electronic medical records, as described previously24. In
MCPS, HbA1c was analyzed using high-performance liquid chromato-
graphy (HA-8180 analyzers, Arkray).

Type 2 diabetes cases were adjudicated in each cohort based on
one or more of the following criteria: (1) an electronic health record
of type 2 diabetes (using International Classification of Diseases,
Tenth Revision [ICD-10] diagnosis codes E11 or O24.1 or corre-
sponding Ninth Revision [ICD-9] codes), in at least one inpatient
encounter or at least two outpatient encounters or if noted as a
cause of death; (2) a glycemic biomarker value (HbA1c, random or
fasting glucose) in the diabetic range66; (3) a prescription record of
anti-diabetic medication use; (4) a self-reported physician diagnosis
of type 2 diabetes; (5) entry on a diabetes registry as a type 2 dia-
betes case. Where possible, we excluded individuals from the case
pool if they had a potential diagnosis of type 1 diabetes mellitus
(using ICD-10 codes E10 or O24.0, or a prescription record that
included insulin only in the absence of other diabetic medication).
Individuals not meeting any of the criteria for diabetes case status
were used as controls. In addition, individuals were excluded from
the control group if they met any of the following criteria: (1) an
electronic health record diagnosis pertaining to any potential type
of diabetes mellitus or a family history of diabetes; (2) a glycemic
biomarker value in the prediabetic range66; (3) any other cohort-
specific phenotype that potentially indicated a diagnosis of

diabetes mellitus (e.g. a disease registry entry or self-reported
diagnosis of non-specific diabetes).

Liver disease (nonalcoholic liver disease and liver cirrhosis) cases
were defined using one or more of the following criteria: (1) an elec-
tronic health record of disease, in at least one inpatient encounter, or
at least two outpatient encounters, or if noted as a cause of death; (2)
self-reported disease, ascertained at study recruitment; (3) surgery or
medical procedures performed for the disease. Individuals not meet-
ing any of the case criteria were used as controls. Subjects were also
excluded from the control group if they met any of the following: (1)
diagnosis of any type of liver disease (i.e. beyond NAFLD or liver cir-
rhosis); (2) presence of only a single outpatient encounter for the liver
disease of interest; (3) had elevated ALT (>25 IU/L for women and >33
IU/L formen67); (4) had a diagnosis of ascites attributed to liver disease.
Diagnostic codes used for liver diseases are shown in Supplementary
Data 26. Coronary artery disease (CAD) cases were defined using one
ormoreof the following criteria: (1) an electronic health record of CAD
and/or myocardial infarction, in at least one inpatient encounter, or at
least twooutpatient encounters, or if noted as a causeof death; (2) self-
reported CAD or myocardial infarction, ascertained at study recruit-
ment; (3) surgeryormedical procedures performed for CAD, including
coronary artery bypass grafting and/or percutaneous coronary inter-
vention. We further excluded individuals with a family history of CAD
(defined using EHR diagnostic codes or self-reported data) from the
control group. Fracture was defined as a history of electronic health
record-coded or self-reported vertebral or non-vertebral fracture (the
latter not including fractures of the skull, facial bones, hands, or toes,
where possible). We excluded individuals with a history of any type of
fracture from the control group.

Liver histopathology and MRI phenotypes
Liver histopathology phenotypes were derived in 3,565 European-
ancestry individuals who underwent bariatric surgery and were
enrolled in the GHS-RGC DiscovEHR collaboration62. Liver histology
was assessed on intraoperative wedge biopsies of the liver by an
experienced histopathologist and reviewed by a second pathologist.
All biopsies were scored using the NASH Clinical Research Network
system68.

A subset of ~36,000 participants in UKB underwent magnetic
resonance imaging (MRI) of the liver, using SiemensMAGNETOMAera
1.5T clinical MRI scanners69. This included two liver acquisitions: a
quantitative T1 mapping sequence and a sequence for estimating liver
fat content. For T1 mapping, a “ShMOLLI” (Shortened Modified Look-
Locker Inversion recovery) protocol was used. Since T1 measurements
may be confounded by liver iron levels, we derived iron-corrected T1
(cT1) values as described70. Higher cT1 values correlate with liver
inflammation and fibrosis on histology70,71. For liver fat imaging, the
first ~10,000 participants (pre-2016) were imaged using a Dixon gra-
dient echo protocol, whilst all further participants were imaged using
the IDEAL (Iterative Decomposition of water and fat with Echo Asym-
metry and Least-squares estimation) sequence. We derived measure-
ments of proton-density liver fat fraction (PDFF, estimated as the
fraction of fat signal relative to total fat and water signal) by applying
pre-defined mathematical models after segmenting the liver
images72–74. We used an automated workflow to segment pixels
belonging to the liver using a Li thresholding approach for PDFFmaps.
All liver pixels were subsequently averaged for each parametric map,
to obtain ameasure of each trait. Full details of these approaches have
been previously described elsewhere75.

Gold-standard measures of fat distribution
A subset of ~46,000 participants in UKB underwent two-point Dixon76

MRI using SiemensMAGNETOMAera 1.5 T clinicalMRI scanners69, split
into six different imaging series. This subset included 38,880 people
with available exome sequencing. Stitching of the six different scan
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positions corrected for overlapping slices, partial scans, repeat scans,
fat-water swaps, misalignment between imaging series, bias-field,
artificially dark slices and local hotspots, similar to what has previously
been performed77. A total of 52 subjects had their whole-body Dixon
MRI manually annotated into six different classes of fat: upper body
fat, abdominal fat, visceral fat, mediastinal fat, gluteofemoral fat and
lower-leg fat. These annotations were then used to train a multi-class
segmentation deep neural net which employed a UNet78 architecture
with a ResNet3479 backbone, and a loss function of a sumof the Jaccard
Index and categorical focal loss80. Fat volume phenotypes were cal-
culated by summing the resulting segmentation maps from the neural
net for each corresponding fat class. The visceral-to-gluteofemoral fat
ratio was then calculated as the ratio of visceral to gluteofemoral fat
volume for a given individual. Association analyses were adjusted for
the same covariates described in the exome-wide discovery analysis,
except for the exclusion of fine-mapped common alleles and the
inclusion of height as additional covariate.

DXA was performed on ~5000 participants in UKB by General
Electric Lunar iDXA instruments69. Scans were analyzed by the radio-
grapher at image acquisition using General Electric enCORE software
to generate all numerical indices of body composition (e.g. lean and fat
mass). We derived the visceral-abdominal to gluteofemoral fat mass
ratio and leg fat percentage from the DXA data. The protocol used for
image acquisition is available at: https://biobank.ndph.ox.ac.uk/ukb/
ukb/docs/DXA_explan_doc.pdf.

Exome sequencing and genotyping data
The Regeneron Genetics Center (RGC) performed high coverage
whole-exome sequencing in all cohorts. These procedures have been
described indetail previously22,63,81 and arebriefly summarizedhere. To
capture exome sequences, we used NimbleGen VCRome probes from
Roche (for a fraction of GHS participants) or a modified version of the
xGen design from Integrated DNA Technologies (IDT; for the remain-
ing participants in GHS and all other cohorts). Next, we sequenced
balanced pools using 75 base pair paired-end reads, using Illumina v4
HiSeq 2500 (for the initial part of the GHS cohort) or Illumina NovaSeq
(for all other samples) instruments. We achieved more than 20x cov-
erage over 85% of targeted bases in 96% of the VCRome-captured
samples and 20x coverage over 90% of targeted bases in 99% of the
IDT samples. We used Illumina software to demultiplex pooled sam-
ples following sequencing, used BWA-mem82 to align reads to the
GRCh38 human reference genome, and used GLnexus83 to produce
cohort-level genotypefiles.Weused the snpEff84 software and Ensembl
v85 gene definitions to annotate variants. Annotations for protein-
coding transcripts were prioritized using the most deleterious func-
tional effect for each gene (ordered from most deleterious to least
deleterious): frameshift, stop-gain, stop-loss, splice acceptor, splice
donor, in-frame indel,missense, and other annotations. Predicted loss-
of-function (pLOF) genetic variants included the following: (1) dele-
tions or insertions resulting in a frameshift; (2) deletions, insertions, or
single nucleotide variants resulting in the loss of a transcription start/
stop site or introduction of a premature stop codon; and (3) acceptor
or donor splice site variants. Missense variants were classified
according to their predicted deleteriousness by way of several in silico
algorithms. These were LRT85, MutationTaster86, SIFT87, Polyphen2
HDIV88 and Polyphen2 HVAR88. We then constructed seven gene-
burden models for each gene, according to the functional annotation
and alternative allele frequency (AAF) of each variant in that gene. This
included: (1) pLOF variants only, AAF < 1%; (2) pLOF variants or mis-
sense variants predicted to be deleterious by all 5 in silico algorithms
(as outlined above), AAF < 1%; (3) pLOF or missense variants predicted
to be deleterious by all 5 in silico algorithms, AAF <0.1%; (4) pLOF or
missense variants predicted to be deleterious by at least 1 of 5 in silico
algorithms, AAF < 1%; (5) pLOF or missense variants predicted to be
deleterious by at least 1 of 5 in silico algorithms, AAF <0.1%; (6) pLOFor

any missense variants (irrespective of predicted deleteriousness),
AAF < 1%; 7) pLOF or any missense variants, AAF <0.1%.

UKBgenerated genotyping arraydata as previously outlined89.We
used the Illumina Human Omni Express Exome or Global Screening
arrays22 to perform common-variant genotyping in other cohorts.
Variants were subsequently imputed separately according to geno-
typing platform, and using the TOPMed reference panel90, via the
TOPMed imputation server91.

Common-variant genome-wide association study and fine-
mapping
We leveragedmore than 9million imputed common variants (minor
allele frequency >1%) to conduct GWAS of BMI-adjusted WHR in
UKB, MDCS, and MCPS. Association analyses were performed
separately in each cohort and ancestry, using mixed-effects linear
regression models implemented in REGENIE92. Ancestry-specific
results were subsequently pooled across cohorts using fixed-effect,
inverse-variance-weighted meta-analysis. Subsequently, we used
the FINEMAP software to pinpoint themost likely causal variants for
each genome-wide significant signal (p < 5 × 10−8 22). For this analy-
sis, we defined loci as 1MBwindows centered on the variant with the
smallest p-value at a locus. If association signals extended beyond
this window, we expanded the window for 250 kb beyond variants
with p < 5 × 10−5. Overlapping loci were merged into the same locus.
Linkage disequilibriumwas calculated for each locus using the same
subjects included in the genome-wide association analysis, followed
by fine-mapping (separately in each ancestry) implemented in
FINEMAP93. At each locus, fine-mapping identifies sets of common
variants (termed “credible sets”) that have a high likelihood of
including the causal variant at that locus. Each variant in a credible
set is assigned a posterior inclusion probability (PIP), with a larger
PIP representing a greater likelihood of a variant being the causal
variant for that signal. We identified the 95% credible set (i.e., the
smallest set of variants that captures 95% of the PIP) for each locus
and assigned the variant with the highest PIP as the sentinel variant.
Fine-mapping in the HLA region was approximated by identification
of independent sentinel variants using linkage disequilibrium
clumping, as implemented in Plink94 (using the command “--clump
--clump-r2 0.01 --clump-p1 5e-8 --clump-p2 5e-8”).

Exome-wide association analysis
We estimated the association between gene-burden models and phe-
notypes using linear regression (quantitative traits) or Firth-bias cor-
rected logistic regression (binary outcomes), implemented in
REGENIE92. Analyses were stratified by ancestry and adjusted for sev-
eral covariates, including age, age2, sex, age-by-sex and age2-by-sex
interaction terms, experimental batch-related covariates, the first ten
common-variant-derived principal components (only four common-
variant principal components were used in MCPS to account for spe-
cific level of admixture and relatedness in that study), and the first 20
rare-variant-derived principal components. We further adjusted dis-
covery exome-wide analyses of BMI-adjusted WHR for common-
variant signals identified by FINEMAP (identified as described
above and listed in Supplementary Data 2), to ensure independence
between rare and common-variant signals, as done previously22. We
used fixed-effect inverse-variance-weighted meta-analysis to pool
results across subsets and applied a Bonferroni-corrected statistical
significance threshold of p < 3.6 × 10−7 in the gene-burden discovery
analysis.

In a secondary analysis, we performed an exome-wide association
analysis of BMI-adjusted WHR for individual rare nonsynonymous
variants (minor allele frequency < 1% andminor allele count > 25) using
the same analytical approach as for the gene-burden analysis and
applying a statistical significance threshold of p < 5 × 10−8, as described
before 22.
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Tissue enrichment analysis
We calculated tissue enrichment for genes identified in the primary
discovery analysis using gene expression values from the V8 data
freeze from GTEx (https://www.gtexportal.org), as previously
described 22.

Identification of genes and variants associated with BMI-
adjusted WHR
Wesought to identify genes and variants forwhich the associationwith
BMI-adjusted WHR had not been previously reported in large-scale
rare coding variant association studies of this trait17,18,29. We extracted
reported variants and genes from these studies meeting the following
criteria: pLOF or missense variants (or gene burden of such variants),
AAF < 1%, and p-value for association with BMI-adjusted WHRmeeting
conventional statistical significance thresholds (p < 5 × 10−8 for single
rare coding variants, p < 3.6 × 10−7 for gene-burden analyses).

Leave-one-variant-out backward-selection analysis
We used a leave-one-variant-out analysis to generate the list of indivi-
dual variant sites that contribute to the observed association with
lower BMI-adjusted WHR for rare coding variants in INHBE. In suc-
cessive iterations, we identified the variant site whose removal maxi-
mally attenuated the gene-burden association signal (i.e., resulting in
the largest p-value for association). In the following iteration, the
identified variant was removed from the gene-burden. This was repe-
ated until the gene-burden test based on the remaining list of variants
had an association p-value > 0.05.

Analysis of INHBE mRNA expression in the liver
Liver mRNA expression of INHBEwasmeasured in 2,611 patients of the
GHS bariatric cohort in whom RNA was sequenced on Illumina Nova-
Seq instruments by 75 bp paired-end reads. The gene expression
values for all samples were then normalized across samples using the
trimmed mean of m-values approach (TMM) as implemented in
edgeR95,96. To assess differential expression for INHBE expression
among samples with various NAFLD Activity Scores (NAS) and among
samples with different liver histopathology categories, we used
DESeq297 with age, sex, race, and extraction site as covariates. We
performed log fold change shrinkage between group comparisons
using the ‘apeglm’method98 to achieve amore effective ranking across
groups for INHBE, estimating a more precise log fold change.

Expression of INHBE variants and immunoblotting of INHBE
protein
INHBEwild type (WT) and c.299-1G>C expression constructs consisted
of minigenes containing the full untranslated regions (UTRs), both
exons, and the intron between exons 1 and 2, and were synthesized
into the pcDNA3.1 vector. Commonly used hepatocyte cell lines such
as HepG2 hepatoma cells express INHBE endogenously (Human Pro-
tein Atlas32). To ensure examination of only the INHBE splice variant
and WT control, we expressed the INHBE WT and c.299-1G>C variant
constructs in ExpiCHO-S cells, which do not express endogenous
INHBE. Expression experiments were performed according to manu-
facturer’s instructions (Thermofisher, A29133). Briefly, ExpiCHO-S cells
were seeded at 3 × 106 cells/mL one day before transfection and
transfected with 1 µg/mL INHBE plasmids on the day of transfection.
ExpiCHO enhancer/feeder mixture was added 20h after transfections.
Cultures were harvested 3 days after transfections.

For immunoblotting of INHBE protein, cells were lysed in RIPA
lysis buffer (Thermofisher, 89900) containing protease and phospha-
tase inhibitors (Thermofisher, 78441). Cell lysates, conditioned med-
ium, and 100ng of GST-tagged full length INHBE recombinant protein
(Abnova, H00083729-P01) were run on SDS-PAGE under reducing
conditions and transferred to PVDF membranes. Membranes were
blocked in Superblock T20 TBS buffer (Thermofisher, 37536) then

incubated in primary antibody against INHBE (Novus Biologicals,
H00083729-B01P, 1:1000) overnight at 4 °C. Secondary antibody
incubation was performed with HRP conjugated anti-mouse antibody
(Cell Signaling, 7076, 1:10000) for 3 h at room temperature. Super-
signal West Pico Plus Chemiluminescent Substrate (Thermofisher,
34579) was used for the development of chemiluminescent signal.
Ponceau S (Sigma, P7170) was used to visualize total protein bands.

Mendelian randomization analysis of fat distribution and liver
traits
We examined the association between genetically predicted fat dis-
tribution or BMI and various liver andmetabolic traits usingMendelian
randomization (MR)99. We used the fixed-effect inverse-variance-
weighted (IVW) method, implemented in the TwoSampleMR100 and
MendelianRandomization101 R packages.

Polygenic score analyses
We generated and evaluated polygenic scores that capture the
common-variant-driven genetic predisposition to higher or lower BMI-
adjustedWHR.We used genome-wide association analyses of imputed
common variants in 461,548 European ancestry participants fromUKB
as the training dataset, and a non-overlapping sample of 24,958
unrelated European ancestry participants from the MDCS as a model
selection and validation dataset. We generated polygenic scores using
four different derivation approaches, after subsetting results to var-
iants with a minor allele frequency ≥1%: (a) “clumping and
thresholding”94 using four different r2 thresholds for linkage dis-
equilibrium clumping (0.2, 0.4, 0.6, 0.8) at seven different p-value
thresholds (5 × 10−02, 5 × 10−03, 5 × 10−04, 5 × 10−05, 5 × 10−06, 5 × 10−07,
5 × 10−08) for variant inclusion; (b) the LDpred algorithm, at ten dif-
ferent rho values (1, 0.1, 0.01, 0.001, 0.3, 0.03, 0.003, 0.00427,
0.00573, 0.00759); (c) conditional and joint analysis (COJO) approach,
implemented in GCTA102, at two p-value thresholds (5 × 10−07 and
5 × 10−08) which uses a stepwise model selection approach for all var-
iants thatmeet the selected p-value threshold; and (d) sBayesR103 using
its default parameters. Hence, a total of 41 different models. We
selected the optimized polygenic score across the different approa-
ches based on which method maximized the variance explained (R2)
for BMI-adjusted WHR in the model selection dataset. R2 estimates
were obtained using models that accounted for 10 common-variant
genetic PCs, age, and sex. Using the model that yielded the optimized
polygenic score out of the 41mentioned above (COJO approach with a
P-value threshold of 5 × 10−07, using 500 variants), we generated the
polygenic scores for BMI-adjusted WHR in the GHS and UKB cohorts.
This polygenic score differs from the previously published polygenic
scores for BMI-adjusted WHR used in the Mendelian randomization
analyses described above. The polygenic scores used for Mendelian
randomization have been validated as suitable instruments for the
Mendelian randomization framework andhave beenbuiltwith the goal
of facilitating etiologic inference (for instance byminimizing between-
variant linkage disequilibrium). Conversely, the polygenic score gen-
erated and validated here aimed atmaximizing variance explained and
the ability to predict the BMI-adjusted WHR phenotype. To validate
our approach, we performed a similar analysis using an independent
GWAS training set of 142,762 people14.

Selection of high-impact genotypes
We compared the phenotypic impact of polygenic extreme and rare
mutations with Mendelian-size effects. To define polygenic extreme,
we used the top 1% or the bottom 1% of the polygenic score distribu-
tion,whichhas been shown to impart a phenotypic impact comparable
to that of large-effect, rare variants40,104. We defined several further
genotype groups. The first groupwas that of carriers of rare (AAF < 1%)
pLOF or experimentally validated LOF variants in PPARG, the causal
gene for FPLD type 3 and one of the genes discovered in our gene-
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burden analysis, as a benchmark for a Mendelian-size effect in a WHR-
increasing direction. Experimentally validated LOF variants were
defined as missense variants predicted to be causal for FPLD type 3
based on a systematic functional characterization of all possible mis-
sense variants in PPARG and calibration with true FPLD type 3-causing
mutations105. We used missense sites whose predicted probability of
being causal for FPLD type 3 using this method was above 80%.
Additional genotype groups included (1) individuals in the top quintile
of the polygenic score distribution who were also heterozygous car-
riers of ANKRD12 rare pLOF (since the burden of rare pLOF variants in
ANKRD12 had the largest WHR-increasing effect among genes dis-
covered in our gene-burden analysis); (2) PLIN4 pLOF homozygotes,
since PLIN4 was the only gene in our gene-burden discovery analysis
for which the rare pLOF variant burden was associated with a large
WHR-increasing effect (>0.1 SD) and for which multiple pLOF homo-
zygotes were identified (i.e. complete human “knock-outs”); (3) INHBE
pLOFcarriers, as a benchmark for a rare-variant-driven effect in aWHR-
decreasing direction; (4) individuals who were INHBE pLOF carriers
and who were also in the bottom quintile of the polygenic score
distribution.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data supporting the findings of thismanuscript are reported in the
main text, in the figures, in the supplementary materials, and are
tabulated in Table 1, Table 2 and Supplementary Data 1 to 28. UKB
individual-level genotypic and phenotypic data may be accessed by
approved investigators via the UK Biobank study (www.ukbiobank.ac.
uk/). Additional information about registration for access to the data
are available at www.ukbiobank.ac.uk/register-apply/. Data access for
approved applications requires a data transfer agreement between the
researcher’s institution and UK Biobank, the terms of which are avail-
able on the UK Biobank website (www.ukbiobank.ac.uk/media/
ezrderzw/applicant-mta.pdf). MCPS data may be available to quali-
fied non-commercial researchers to reproduce results reported in this
manuscript by emailing mcps-access@ndph.ox.ac.uk. The data access
policy can be downloaded from https://www.ctsu.ox.ac.uk/research/
prospective-blood-based-study-of-150-000-individuals-in-mexico.
MDCS data may be available to qualified academic non-commercial
researchers to reproduce results reported in this manuscript through
the portal at https://www.malmo-kohorter.lu.se/malmo-cohorts, fol-
lowing the principles outlined in this policy https://www.malmo-
kohorter.lu.se/sites/malmo-kohorter.lu.se/files/mdcs_mpp_mos_
request_form_vermar20.doc. eQTL summary statistics may be down-
loaded from the GTEx portal (https://gtexportal.org/). The GRCh38
reference assembly may be accessed from the Genome Reference
Consortium (https://www.ncbi.nlm.nih.gov/grc).

Code availability
TheREGENIE association analysis packagewasused toperformgenetic
associations (available at https://doi.org/10.5281/zenodo.6789127).
Reads were aligned to the GRCh38 reference genome using BWA-
mem82 and GLnexus83 was used to produce cohort-level genotype files.
Variants were annotated with snpEff84. Missense variants were anno-
tated using LRT85, MutationTaster86, SIFT87, Polyphen2 HDIV88 and
Polyphen2 HVAR88. Fine-mapping of GWAS data was performed using
FINEMAP v1.493 and variants in the HLA region were clumped using
Plink94. Polygenic scores were derived using GCTA v1.93102, LDpred
v1.0.11106, and sBayesR v2.02103. Mendelian randomization analyses
were performed using TwoSampleMR v0.5.6100 and MendelianRando-
mization v0.5.1101. Liver gene expression data were analyzed using
edgeR v3.32.1, DESeq297, and apeglm v1.12.098.
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