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Abstract: Adopting cognitive radios (CRs) having multiple antennas in blind non-cooperative and
cooperative spectrum sensing (CSS) under fading channels has gained attention due to higher detec-
tion performances provided by the spatial diversity gain of multi-sensors in different geographical
locations and lower complexity, respectively. However, most studies do not consider sensing scenar-
ios of more practical significance: for example, sometimes adopting only uncalibrated antenna arrays
and sometimes only correlated signals at antenna arrays of CRs, but almost always, none of these
impairments. Therefore, this paper studies these combined impairments on the performances of two
blind techniques in centralized CSS with decision fusion (DF) and data fusion for different numbers of
CRs and antennas per CR, both under frequency selective fading channels. One is the circular folding
cooperative power spectral density split cancellation (CFCPSC), and the other is the generalized
likelihood ratio test (GLRT). Extensive numerical results show, for instance, that with sample fusion
(SF) and calibrated antennas, GLRT outperforms CFCPSC independently of correlation, numbers
of antennas, or CRs. However, uncalibrated antennas severely penalize GLRT while surprisingly
benefiting CFCPSC. Correlation is detrimental to GLRT and CFCPSC with SF but may help CFCPSC
in DF and GLRT in DF or eigenvalue fusion. Generally, CFCPSC outperforms GLRT.

Keywords: centralized cooperative spectrum sensing; multiantenna sensor; correlation; uncalibrated
antennas; GLRT; CFCPSC; decision fusion; data fusion

1. Introduction

The unprecedented offer for the current explosive amount of new telecommunication
services is among many benefits of the evolution of communication systems in the last
decades. The improvements provided from older generations of mobile communication
systems to its fifth generation (5G) and the advent of the Internet of things (IoT) [1], for in-
stance, have allowed a significant increase in the users quality of service (QoS) and quality
of experience (QoE) also driving the traditional concept of wireless communication to a
new age in which everyone can connect to everything, everywhere, and at any instant [2].
Moreover, as wireless technologies are continuously under enhancement [3] and evolutions
occur pretty fast, lots of new features, applicabilities, and solved problems become avail-
able all the time. Indeed, 5G and IoT were just born a few years ago, but even so, several
academic research projects and companies are already researching the sixth generation
(6G) of mobile communication systems around the world [4]. The above statements and
statements in [3] indicate that the introduction of new technologies may occur soon, yet
with the potential to revolutionize the existing ones. However, a drawback of the rapid
evolution of communication systems is the lack of spectrum bands available to allocate
such a large amount of new telecommunication services. That lack of spectrum resources is
usually called spectrum scarceness.

Spectrum scarceness can be understood as the result of the growth in demand for
additional spectrum bands in the last decades. On the other hand, studies on literature

Electronics 2022, 11, 1719. https://doi.org/10.3390/electronics11111719 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11111719
https://doi.org/10.3390/electronics11111719
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3054-395X
https://orcid.org/0000-0002-6179-9894
https://doi.org/10.3390/electronics11111719
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11111719?type=check_update&version=2


Electronics 2022, 11, 1719 2 of 19

show that although scarce, spectrum resources are also contradictorily underused [5].
According to these studies, the main reasons for spectrum underutilization are both (i) the
procedure regarding the spectrum access that, in fact, gives access rights only to primary
users for the contracted time-space domains, and (ii) the low utilization of these incumbents
in accessing their spectrum bands in the contracted time-space domains. Consequently,
regulatory agencies of spectrum access started considering a new spectrum access policy
aiming at mitigating underutilization. In this new access policy, primary spectrum bands
could opportunistically be used by non-incumbents or secondary users (SUs) if they find
idle/vacant primary user (PU) bands. For that reason, the SUs have to be smart devices
in order to find and use possibly vacant PU bands without causing harmful interference
to PUs. Fortunately, the concept of spectrum sensing based on cognitive radios (CRs) has
emerged as a promising solution to this problem since it is the act of sensing the spectrum
seeking idle portions for opportunistic use. Thus, in the context of CR-based spectrum
sensing, CRs are intelligent SUs capable of providing secondary access to vacant PU bands
without causing harmful interference to PUs via spectrum sensing and then mitigating
spectrum underutilization and scarceness.

Spectrum sensing (SS) can be carried out by one CR, or SU, in non-cooperative spec-
trum sensing (nCSS) or by a group of collaborative SUs in cooperative spectrum sensing
(CSS). CSS, however, is wider used due to more statistical power in detecting PU signals.
One of the main advantages that give more detection performance to CSS is the spatial
diversity of SUs in different geographical locations for sensing the spectrum. The spatial
diversity in the positions of cooperating SUs allows the secondary network to overcome
issues that nCSS generally cannot, like multipath fading, shadowing, hidden PU terminal
problems, or a combination of these phenomena [6]. Additionally, CSS may be centralized,
distributed, or relay-assisted [6]. In centralized CSS, SUs sense a target PU band and share
some sensing information with a central node called fusion center (FC) via a control channel
(CC) for making an occupation decision on its occupation state. This kind of information
determines two possible fusion rules. The first one, the soft decision fusion rule, also know
as data fusion, and the the second, the hard decision (HD) fusion rule, also known as deci-
sion fusion (DF). In the soft decision, this sensing information may be the sensing samples
that were collected from the received signal after a specified sensing period or a quantity
calculated from these samples. The former soft decision is called sample fusion (SF). The
latter soft decision mode commonly adopts quantities as energy values [6], eigenvalues of
the sample covariance matrix (SCM) of the received signals [6], or power spectral densities
(PSDs) [7], for example. In the HD, however, each SU senses the targeted PU band and
autonomously takes and sends their individual decisions on the occupation state of the
sensed band to the FC.

Whether in SUs or FC, the secondary network of cooperating SUs needs to apply a
statistical test to make occupation decisions. SUs or FC fully computes the adopted statistic
in HD or soft decision with SF, respectively, but SUs may also partially compute the adopted
statistic in soft decision when SF is not in use and leave the remaining computations to the
FC. The FC associates all received information to achieve the global collaborative occupation
decision in both cases, soft decision or HD. In HD, it combines all received occupation
decisions sent by each SU via the K-out-of-U rule [6], where K is the number of decisions
favoring the hypothesis that the PU signal is in the band that is sensed, represented byH1,
i.e., the hypothesis that the PU band under sensing is not idle, and U denotes the number of
received decisions. In the K-out-of-U rule, the FC takes a final occupation decision favoring
H1 if a minimum of K out of the U received decisions are also in favor of the hypothesis
H1. It decides in favor ofH0 otherwise, in whichH0 represents the hypothesis that the PU
signal is absent of sensed band, i.e., the hypothesis that the PU band under sensing is idle.
With K = U, K = 1, or K = bU/2 + 1c, the K-out-of-U rule becomes one of its well-known
three particular cases named AND, OR, and majority (MAJ) voting rule, respectively, where
b·c represents the floor function.
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1.1. Related Works

There are several statistical tests analyzed in nCSS and CSS in different circumstances
and scenarios, and the literature usually classifies them into three categories: non-blind,
semi-blind, or blind statistical tests [8–10]. The most known non-blinds are the matched-
filter detection and the cyclostationary feature detection. They are classified as non-blind
because they need some a priori information regarding the sensing channels formed
between the PU transmitter and SUs receivers and/or the PU signal to be detected to
compute their statistics. On the other hand, semi-blind statistical tests as the well-known
energy detection (ED) and the eigenvalue-based maximum eigenvalue detection [6], also
known as Roy’s largest root test, are those statistical tests that do not require any a priori
information on the sensing channel or PU signal, but use the additive white Gaussian noise
(AWGN) power information in their computations. Although simpler than non-blind tests,
semi-blind tests are vulnerable to inaccuracies in the noise power estimation, which is
usually called noise uncertainty (NU). Therefore, NU is a significant drawback of semi-
blind tests that can limit their application range. Blind tests, however, do not require any
a priori information regarding sensing channel, PU signal, or noise power information
in their computations. Usually, they do not have a better performance than non-blind or
semi-blind tests but have lower computational complexity, which is a relevant advantage
of blind tests. Besides, performance analyses of blind statistical tests in spectrum sensing
have been gaining increasing attention [9] since the above-mentioned a priori information
required for non-blind or semi-blind tests is commonly unknown or difficult to know in
practice, especially information regarding the PU signal and/or noise power in scenarios
of dynamical noise (DN) (when noise power varies over time). Some examples of blind
statistical tests are the eigenvalue-based: (i) maximum-minimum eigenvalue detection
(MMED) [6], also known as eigenvalue ratio detection; (ii) the generalized likelihood ratio
test (GLRT) [6]; (iii) the PSD-based, cooperative power spectral density split cancellation
(CPSC) [7]; and (iv) circular folding cooperative power spectral density split cancellation
(CFCPSC) [11]. GLRT (and GLRT-based statistical tests) are by far the most popular of
these blind tests, especially in multiantenna-CR-based spectrum sensing, and when neither
information on PU signal nor precise noise power-knowledge are available. However,
even blind tests as GLRT and MMED may still suffer from performance degradation under
unequal noise and/or received signal powers (when received signal and/or noises are
assumed to have unequal and/or time-varying variances at the inputs of the receivers of
the SUs), which may lead to sensors with unequal average signal-to-noise ratios (SNRs).
CFCPSC is an improved version of CPSC with more statistical power than its predecessor
algorithm. Both are known because their robustness in scenarios of unequal noise and DN
and low computational complexity. Thus, these characteristics make them suitable for the
analyses at hand.

Multiantenna-transceivers have been used in CR-based SS [12–15] to increase the
statistical power for detecting PU signals. For example, authors in [13] adopted different
assumptions on the availability of noise power value to propose two eigenvalue-based
statistical tests for multiantenna SU SS using the GLRT paradigm. Proposed methods
are called arithmetic to geometric mean (AGM) and signal-subspace eigenvalue (SSE),
and results show that semi-blind SSE outperforms ED with no NU, and blind AGM
performs better than ED under NU. GLRT and other generalized likelihood ratio-based
detectors also outperform the ED under NU in [14] in multiantenna-CR-based spectrum
sensing. However, Refs. [13,14] adopt calibrated antennas, meaning that the noise power
values at the receiver antennas are identical. Authors of [15,16], on the other hand, provide
more practical appeal analyses of GLRT-based tests by assuming that each SU antenna may
experience a different noise power level. Additionally, the work in [17] proposes a general
multiantenna-based detector for spectrum sensing that outperforms other detectors such
as AGM, MMED, GLRT, and GLRT-based detectors under calibrated and uncalibrated
antennas with known noise power levels and uncalibrated antennas with unknown noise
power levels.
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Studies in [15–17] highlight the importance of using multiple antennas in SUs for SS
when information on PU signal, sensing channels, and/or noise power values may not be
available, but they do not consider correlated received signals at the antenna arrays. It is
worth remembering that signal correlation is common in multiantenna receivers, for exam-
ple, due to the proximity between the antennas. Furthermore, as spatial diversity decreases
as the correlation increases, one may expect that it causes performance degradation in
a given communication environment.Even so, few works consider correlated received
signals in multiantenna-CR-based SS analyses [18]. Additionally, authors in [19] affirm
that multiantenna-CR-based SS analyses with correlated received signals and uncalibrated
antennas are seldom adopted and statements in [17] lead to the same conclusion.

The work in [20] considers GLRT and CFCPSC in centralized CSS with multiantenna-
SUs under frequency-selective (FS) sensing channels, unequal signal and noise powers,
where the noise power at the front-end of SUs varies independently over time, and different
numbers of SUs and antennas per SU. FS channels follow the IEEE 802.22 standard [21,22]
for wireless regional area networks (WRANs), and authors consider GLRT with HD and soft
decision fusion and CFCPSC in soft decision with total and partial data fusion. For GLRT,
HD fusion adopted the fusion rules AND, OR, and MAJ, and soft decision fusion adopted
SF and weighted sample fusion (WSF) and eigenvalue fusion (EF) and weighted eigenvalue
fusion (WEF). Results in [20] show that CFCPSC outperforms all except weighted GLRT
in soft decision SF under DN. However, one can notice that although this work provides
several performance analyses of GLRT and CFCPSC in different circumstances and sce-
narios, it does not consider received signal correlations at the antenna arrays of SUs. The
work in [23], on the other hand, provides performance analyses of GLRT and CFCPSC
in multiantenna-SUs in centralized CSS under the same FS sensing channels in [20] with
received signal correlations at the antenna arrays but does not consider unequal signal nor
noise powers. Yet, the work in [23] only adopts non-weighted GLRT in soft decision SF,
HD with the fusion rules AND, OR and MAJ, and CFCPSC in soft decision SF compared
to the work in [20], but includes analyses of CFCPSC in HD, which is not included in [20].
The results in [23] show that GLRT outperforms CFCPSC in soft decision under correlated
signals without DN, but HD CFCPSC achieves better detection performances than HD
GLRT and CFCPSC with soft decision or HD is more robust to FS channels.

Although the aforementioned works are enough to provide a basis for the study of this
paper, one can notice that they are far from exhaustive. That is, one can find other studies
involving performance analyses of multiantenna SUs for nCSS and CSS under calibrated
and uncalibrated antennas, unequal signal powers and/or noise powers, or correlated
received signals at the antenna arrays, especially in nCSS. However, very few works
adopt combinations of these phenomena, and, to the best of our knowledge, there are no
performance analyses of the CFCPSC in multiantenna-CR-based SS combining unequal
signal powers and noise powers with correlated received signals at the antenna arrays yet.

1.2. Contributions and Structure of the Paper

This paper is an extension of studies in [20,23]. It extends the analyses of [20,23] by
adopting unequal signal and noise powers combined with received signals correlation at
the antenna arrays of SUs in centralized CSS under FS sensing channels according to the
IEEE 802.22 standard for WRAN [22] for different numbers of SUs and antennas per SU.
Analyses of CFCPSC with HD in [23] substitutes the analyses of CFCPSC with partial data
fusion in [20]. Since this paper does not adopt CC traffic analysis and CFCPSC with total
or partial data fusion, it has identical detection performances under error-free CC, which
is the case adopted in this study. This paper also proposes a different approach in terms
of DN compared to the one in [20]. Specifically, noise powers in [20] are independently
and identically distributed at the front-end of each multiantenna-SU assuming equal noise
powers, meaning that the noise powers at the antennas of a given SU are identical, and,
therefore, calibrated. In this paper, however, we assume unequal noise power at each
antenna of each SU, i.e., we assume that the antennas of given SU may be uncalibrated. The
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results show a different picture compared to the results in [20] and consistency compared
to [23]. Now, detection performances of GLRT are much more affected than in [20] and
drastically degrade under DN powers independently if received signals are correlated or
not. CFCPSC, on the other hand, has performance improvements while the performances
of GLRT degrades, also independently if received signals are correlated or not. The weight-
ing schemes of [20] for WSF and WEF could not bring any performance improvements
and, therefore, should not be used in the adopted scenarios. Results are consistent with
those in [23], and as in [23], the existence of correlation among received signals can be
detrimental or beneficial to the detection performances of spectrum sensing depending
on the test statistic under analysis. GLRT performs better than CFCPSC only in a few
cases, and CFCPSC is a better choice in the majority of the performance analyses under the
adopted spectrum sensing scenarios.

In summary, the contributions of this paper are

1. The performance analyses of [20] combined with correlated received signals at the
antenna array of SUs;

2. The performance analyses of [23] combined with unequal signal and noise powers;
3. The combined performance analyses of [20,23] adopting a new DN model in which

the noise power levels at each antenna of each SU may vary, which is called dy-
namical noise, and also are independent and, possibly, non-identically distributed
random variables.

The structure of the rest of the paper is organized as follows. Section 2 presents
a background on SS as a binary hypothesis testing the problem and the system model,
including the DN model, the GLRT, and CFCPSC algorithms in centralized CSS with SF
and DF, and the GLRT weighting schemes for SF and EF. Section 3 presents numerical
results and discussions, and Section 4 concludes the paper and gives some directions for
further related research.

2. Background and Proposed System Model

The secondary users or fusion center decisions in spectrum sensing are modeled by
formulating these decisions as a binary hypotheses testH0 andH1, whereH0 andH1 are the
hypotheses that the sensed PU band is vacant or not, respectively. Detection performances
of spectrum sensing, or the performances of these decisions, are usually analyzed via the
probabilities of false alarm and detection. The probability of false alarm represents the
chances of having an occupation decision favoringH1 when the sensed PU band is in fact
underH0, i.e., Pfa = Pr(H1|H0), which is also the probability of the test statistic T exceeds
a given decision threshold, here denoted as γ, underH0, that is Pfa = Pr(T > γ|H0). The
probability of detection means the chances of having an occupation decision favoringH1
when the sensed PU band is, in fact, under H1, i.e., Pd = Pr(H1|H1), which is also the
probability of having T > γ underH1, that is, Pd = Pr(T > γ|H1). These probabilities are
combined by using the receiver operating characteristic (ROC) metric, which maps Pfa and
Pd under the variation of γ for a given detector. Another metric is the area under the ROC
curve, AUC.

Let us consider the above-mentioned binary hypotheses. Given a PU transmitter using
one antenna and a multiantenna SUs containing U SUs with L antennas each, the n-th
received signal sample at the l-th antenna of u-th SU, with n = 1, 2, . . . , N, l = 1, 2, . . . , L,
and u = 1, 2, . . . , U, can be written as:

yl,u(n) =

{
ηl,u(n) ;H0

∑Z−1
z=0 hl,u(z)s(n− z) + ηl,u(n) ;H1

(1)

for a given sensing instant under hypothesisH0 orH1, respectively. Variable ηl,u(n) in (1),
ηl,u(n) ∼ N (0, σ2

l,u), represents the n-th complex zero_mean-σ2
l,u_variance AWGN sample

received at the l-th antenna of u-th SU. Notice that the noise variances are possibly different
not only among SUs, which is a common situation in practice [20], but also possibly different
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at each antenna of the u-th SU, meaning that the antennas of u-th SU are assumed to be
uncalibrated and, therefore, expected to cause performance degradation [24]. The n-th
binary phase-shift keying (BPSK) PU signal sample is written as s(n) and the operation
given by the sum in (1) evaluates the convolution of the PU signal with the impulse
response of sensing channel formed between the PU transmitter and the l-th antenna of
u-th SU. When Z equals 1, the sensing channels are characterized as slow-flat Rayleigh
ones, and when Z is greater than 1, they are slow-frequency-selective Rayleigh ones [11].

2.1. Dynamical Noise Model

Noise distribution significantly affects the detection performances of detectors with
multiple antennas because they are generally developed assuming that noises are identically
distributed at antenna arrays to minimize complexity [24]. Indeed, most of the works
consider identically distributed AWGNs in: (i) at the receiver antennas of SUs in nCSS
and CSS under SUs with equal average SNRs and (ii) identically distributed AWGNs at
the receiver antennas of u-th SU in CSS under unequal noises (i.e., antennas of u-th SU
with equal average SNRs but SUs with unequal average SNRs). For example, Ref. [20]
adopts unequal noise powers among SUs but equal noise powers at the antennas of u-
th SU. According to (1), Ref. [20] adopts ηl,u(n) ∼ N (0, σ2

u), meaning that each SU may
experience a different noise power, but the antenna array of u-th SU is assumed to be
calibrated by a suitable technique [24]. The work in [23], on the other hand, adopts equal
noise powers even among SUs, i.e., it adopts ηl,u(n) ∼ N (0, σ2), meaning that all SUs
experience identical noise powers inclusive. Mathematically, one can write the DN model
adopted in [20] as σ̄2

u ∼ U [(1− ξ)σ2
u , (1 + ξ)σ2

u ], where σ2
u is the exact value of noise power

at u-th SU, σ̄2
u is the time-varying noise power at u-th SU, possibly varying uniformly in

the range [(1− ξ)σ2
u , (1 + ξ)σ2

u ], and ξ, with 0 ≤ ξ ≤ 1, is an DN factor used to determine
the level of noise power variation at the front-ends of multiantenna-based SUs, not on the
l-th antenna of SUs. In practice, however, calibration errors are unavoidable [19] and lead
to different noise powers at the antennas of a given SU. Therefore, our paper gives more
practical appeal to the analyses at hand by adopting:

σ̄2
l,u ∼ U [(1− ξ)σ2

l,u, (1 + ξ)σ2
l,u], (2)

where (2) is a more general DN model compared to the one in [20].

2.2. Correlation Model

This work assumes a scenario where the received samples at the L antennas of u-th
SU are possibly correlated and partially follows the correlation model adopted in [23].
Therefore, in order to produce correlation on the received signal samples, consider, at first,
the matrix Bu ∈ CL×Z of uncorrelated slow-FS sensing channel gains that affect the received
signals at the L antennas of u-th SU given by:

BT
u = [bT

1,u, bT
2,u, . . . , bT

L,u], (3)

with bl,u ∈ C1×Z being the gains of the time variant impulse response of sensing channels
between the l-th antenna of the u-th SU and the PU transmitter with Z-tap and T being the
matrix transposition. In (3), the gain vectors bT

,u and bT
ı,u are uncorrelated for ı 6= . It is

possible to obtain the correlated channel gains matrix Hu ∈ C1×Z from (3) by making:

Hu = [hT
1,u, hT

2,u, . . . , hT
l,u, · · · hT

L,u]
T = (BT

uQ)T ∈ CL×Z, (4)
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where hl,u = [hl,u(1), hl,u(2), hl,u(3), . . . , hl,u(Z)]. The matrix Q ∈ RL×L can be written
as [25]:

Q =


q11 q12 . . . q1L−1 q1L
0 q22 . . . q2L−1 q2L
...

. . .
...

0 0 . . . qL−1L−1 qL−1L
0 0 . . . 0 qLL

. (5)

The matrix in (5) can be obtained from a matrix A [25]:

A =


1 ρ . . . ρ|2−L| ρ|1−L|

ρ 1 . . . ρ|3−L| ρ|2−L|

...
. . .

...
ρ|L−2| ρ|L−3| . . . 1 ρ

ρ|L−1| ρ|L−2| . . . ρ 1

, (6)

in which A = QTQ and ρ, with 0 ≤ ρ ≤ 1, is the correlation coefficient that leads to a
given correlation between received signals at different antenna pairs of each SU. For ı 6= ,
the vectors hT

,u and hT
ı,u in Hu are now correlated. The elements of the i-th line and j-th

column of A, with i, j = 1, 2, . . . , L, are formulated as:

aij = ρ|i−j|. (7)

The aij parameter denotes the correlation between signals at different antenna pairs of
each SU. Clearly, the correlation between received signals at a given antenna pair decreases
as |i − j| increases if 0 < ρ < 1, i.e., received signal samples at farther apart antenna
pairs are less correlated than those at closer apart antenna pairs, as expected. Likewise,
the element of the i-th line and j-th column of matrix Q in (5), is:

qij =



√aij, i = 1, j = i,
aij/qii, i = 1, j 6= i,√

aij −∑
j−1
k=1 q2

kj, i > 1, j = i,

(aij −∑
j−1
k=1 qkiqkj)/qii, i > 1, j 6= i.

(8)

The z-th element of channel gain, hl,u(z), that affects the received signal at the l-
th antenna of u-th SU in (1) is forming matrix Hu in Equation (4). Therefore, signal
samples received at antenna pairs k and j of u-th SU in (1), given by yk,u(n) and yj,u(n) for
n = 1, 2, . . . , N, have a non-zero correlation under hypothesisH1 if ρ > 0. Notice also that
the correlation model adopted here does not take into account information as, for instance,
operation frequencies, separation distances between antenna pairs, and other information
related to the propagation environment, as the angle of arrival of received signals and
temporal and frequency dispersion [26]. Moreover, ref. [23] considers only separation
distances between antenna pairs. These assumptions make this model simpler and suitable
for the analyses in this paper since it allows performance analyses of spectrum sensing
under different levels of correlation of received signals at the SUs simply by varying the
correlation coefficient ρ.

Figure 1 summarizes the before-described systems for the adopted multiantenna-cognitive-
radio-based blind SS assuming correlated signals and unequal signal and noise powers.
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Figure 1. (a) Schematic diagram for multiantenna-cognitive-radio-based cooperative spectrum
sensing system, (b) adopted unequal SNRs, {SNR1, SNR2, . . . , SNRU}, among SUs under error-free
control channels (CCs), and (c) adopted dynamical noise model in which the noise power varies at
each antenna of each SU, {σ̄2

1,u, σ̄2
2,u, . . . , σ̄2

L,u}, under correlated signals, ρ|i−j| with i, j = 1, 2, . . . , L.

2.3. GLRT

The eigenvalue- and blind-based GLRT [6] is formulated from the SCM of the received
signal given by:

R =
YY†

N
, (9)
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where † stands for the conjugate and transpose operation, N denotes the number of samples
that was received at each antenna and Y stands for the received sample matrix.

2.3.1. GLRT with DF

For the GLRT with DF, denoted as GLRT-DF, SUs locally compute the SCM of received
signals, its eigenvalues, and the test statistic for making an individual decision on the
occupation state of the sensed PU band. SUs send these decisions to the fusion center
via the control channels, which combines them for achieving a cooperative decision. It is
possible to build the matrix of sensing samples Yu ∈ CL×N collected by the L antennas of
u-th SU to compute the covariance matrix as:

YT
u = [yT

1,u, yT
2,u, . . . , yT

l,u], . . . yT
L,u], (10)

where yl,u = [yl,u(1), yl,u(2), . . . , yl,u(N)], with yl,u ∈ C1×N , represents the N samples
collected by the l-th antenna of u-th SU, and the n-th sample comes from yl,u(n) in (1).
Then, the SCM Ru ∈ CL×L at the u-th SU is:

Ru = YuY†
u/N. (11)

The u-th SU may compute the GLRT-DF statistic as [6]:

TGLRTu =
Lλ1,u

∑L
i=1 λi,u

, (12)

such that λ1,u ≥ λ2,u ≥ · · · ≥ λL,u are the eigenvalues of Ru in (11). If TGLRTu > γu,
the u-th SU makes a decision in favor of hypothesis H1, or H0 if TGLRTu > γu, where
the local decision threshold γu is predetermined at u-th SU. The fusion center makes the
final decision by applying the K-out-of-U rule, in which the fusion center reaches a final
occupation decision favoringH1 when at least K out of the U sent decisions by the SUs are
also in favor of the hypothesisH1. It decides in favor ofH0 otherwise. When K = U, K = 1,
or K = bU/2 + 1c, the K-out-of-U rule becomes AND, OR, MAJ voting rules, respectively,
where b·c represents the floor function. It is worth highlighting that it is here considered
a perfect (error-free) CC, thus occupation decisions sent by SUs and received by the FC
are identical.

2.3.2. GLRT with EF and WEF

For the GLRT with EF, denoted as GLRT-EF, the u-th SU also must compute the SCM
and its eigenvalues, as it does for the GLRT-DF. Instead of making individual decisions,
however, each SU sends its eigenvalues to the FC via CC for final computations and
achievement of the cooperative decision on the occupation state of the sensed PU band.
The eigenvalues are, therefore, the quantity derived from the received signal samples in
this case. Then, in this case, the u-th SU must also compute (11) from (10) and send the
eigenvalues of Ru to the FC. The FC computes the GLRT-EF statistic as [20]:

TGLRTEF =
L ∑U

u=1 λ1,u

∑U
u=1 ∑L

l=1 λl,u
, (13)

with λ1,u ≥ λ2,u ≥ · · · ≥ λL,u being the eigenvalues of u-th SU received at the FC (remem-
bering that the eigenvalues received at the FC are identical to those sent by the SUs since
the CC is assumed to be error-free). If TGLRTEF > γFC, the FC decides as H1, or the FC
decides asH0 if TGLRTEF < γFC, where γFC denotes the decision threshold at the FC.

The eigenvalue weighting scheme, denoted as GLRT-WEF, confers robustness to
GLRT-EF against the adopted DN model in [20] since it gives more weight to eigenvalues
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of SUs affected by lower estimated noise powers. Then it is also used here under the DN
model proposed in (2). The weight for the eigenvalues of the u-th SU is given by:

gu =
1
σ̂2

u
=

(
1

L− 1

L

∑
l=2

λl,u

)−1

, (14)

where σ̂2
u = 1

L−1 ∑L
l=2 λl,u is the maximum likelihood estimate of the noise power of the

u-th SU assuming the presence of a PU signal [6,27]. Notice that σ̂2
u is the mean of the

L− 1 ordered eigenvalues λ2,u ≥ λ3,u ≥ · · · ≥ λL,u of the u-th SCM Ru ∈ CL×L computed
in (11). Thus, according to [20], the test statistic for the GLRT-WEF, after some tedious
manipulations, can be written as:

TGLRTWEF = L

1 +
U

∑U
u=1

λ1,u

∑L
l=2 λl,u


−1

. (15)

2.3.3. GLRT with SF and WSF

For the GLRT with SF, denoted as GLRT-SF, the SUs collect the samples and send
them to the fusion center, via CC, reaching a cooperative decision on the occupation state
of the sensed PU band. From this point, the FC computes the SCM from the matrix of all
received samples YFC ∈ CLU×N , its eigenvalues, as well as the test statistic, and makes
the decision on the occupation state of the sensed PU band. One can write the matrix YFC
according to:

YT
FC = [YT

1 , YT
2 , YT

3 , . . . , YT
u , . . . , YT

U ], (16)

with Yu being a submatrix of the received signal samples at the FC coming from the u-th
SU, which is identical to the u-th matrix in (10) considering an error-free control channel.
Then, at the FC, the LU × LU-dimensional complex SCM RFC is:

RFC = YFCY†
FC/N, (17)

and the FC computes the GLRT-SF statistic as [6]:

TGLRTSF =
LUλ1

∑LU
i=1 λi

, (18)

with λ1 ≥ λ2 ≥ · · · ≥ λLU denoting the eigenvalues of RFC in (17). The FC makes an
occupation decision favoring H1 when TGLRTSF > γFC or favoring H0 otherwise, where
γFC is a decision threshold previously established at the FC.

The weighting scheme for received samples, denoted as GLRT-WSF, in [20] confers
robustness to GLRT-SF against the adopted DN, then it is also used here under the DN
model proposed in (2). Therefore, the matrix of weighted received samples at the FC for
the GLRT-WSF can be written as:

Y′FC = [Y′T1 , Y′T2 , . . . , Y′TU ]
T, (19)

where Y′u = fuYu represents the weighted received samples at the FC related to the u-th
SU and fu is the u-th weight computed according to:

fu =
1
σ̂u

=

(
1

L− 1

L

∑
l=2

λl,u

)− 1
2

, (20)
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where σ̂u is the square root of the maximum likelihood estimate of the noise power of the
u-th SU in (14). The FC computes the modified SCM R′FC ∈ CLU×LU from the weighted
samples in (20) as:

R′FC =
1
N

Y′FCY′†FC. (21)

The GLRT-WSF statistic is calculated as:

TGLRTWSF =
LUλ

′
1

∑LU
i=1 λ

′
i
, (22)

with {λ′1, λ
′
2, λ

′
2, . . . , λ

′
LU} standing for the eigenvalues calculated from (21).

We consider the GLRT-SF as the blind benchmark technique or the state-of-the-art
method since it has been largely studied in the last decade.

2.4. CFCPSC

The CFCPSC [11] is a PSD-based blind statistical test known for its robustness against
DN and low computational complexity. It was firstly developed for single-antenna SUs
in a scenario of centralized CSS with SF. In its computation [23], the algorithm splits the
whole bandwidth at each SU into S sub-bands and estimates the power spectral density in
each sub-band. Thereafter, it combines the PSD level estimated at the s-th sub-band of all
SUs, makes an occupation decision regarding the presence or absence of the PU signal in
each sub-band, and finally, combines the sub-band decisions via the OR rule to make a final
occupation decision on the sensed PU band. We adopt some modified versions of CFCPSC
that work with multiantenna-SUs in SF [20,23] and DF [23]. Sections 2.4.1 and 2.4.2 present
these modified versions, respectively.

2.4.1. CFCPSC with SF

For the CFCPSC with SF, denoted as CFCPSC-SF, the CFCPSC algorithm treats each
antenna as a separate receiver. This adaptation from the original CFCPSC algorithm [11]
is similar to having LU single-antenna SUs instead of U SUs with L antennas each. The
corresponding modified algorithm acts in Steps 1 to 5 of the original CFCPSC, leading to
the following full algorithm:

1. By using the discrete Fourier transform (DFT), calculate the PSD of the signal at the
l-th antenna of u-th SU in (1) as:

F′l,u =

∣∣DFT[yl,u(n)]
∣∣2

N
, (23)

for n = 1, 2, 3, . . . , N.
2. Compute the modified circular-even component of F′l,u by making:

Fl,u(k) =


[F′l,u(1)+F′l,u(N/2+1)]

2 , k = 1,
[F′l,u(k)+F′l,u(N−k+2)]

2 , k = 2, 3, . . . , N.
(24)

3. Split the sensed band into S sub-bands and compute the signal power in the s-th
sub-band, with s = 1, 2, . . . , S, as:

Fsl,u =
N/(2S)

∑
k=1

Fl,u[k + (s− 1)V]. (25)
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4. Calculate the total amount of signal power in the band that is sensed as:

Ffulll,u =

N
2

∑
k=1

Fl,u(k). (26)

5. Find the average of the ratios Fsl,u /Ffulll,u in order to eliminate the effect of the noise
variance, leading to:

ru,s =
L

∑
l=1

Fsl,u

LFfulll,u
. (27)

6. At the FC, compute the test statistic for the s-th sub-band as:

TCFCPSCs =
1
U

U

∑
u=1

ru,s. (28)

7. Compare TCFCPSCs with the decision threshold γFC in order to reach a decision on
the occupation state of the s-th sub-band: decide H0 if TCFCPSCs < γFC or H1 if
TCFCPSCs ≥ γFC.

8. Make the final decision as H0 when each decision in each sub-band is H0 or as H1
when at the minimum one sub-band decision isH1.

2.4.2. CFCPSC with DF

The CFCPSC with DF, denoted as CFCPSC-DF, deals with each antenna as a single
receiver. In [11], it is shown that the alteration of the original CFCPSC, in this case, is
similar to having L single-antenna receivers rather than a single L- antenna SU. Every one
of the SUs divide the whole bandwidth into S sub-bands, makes an occupation decision in
the sub-band level, combines these decisions, finds a local occupation decision regarding
the presence or absence of a PU signal in the sensed band, and forwards this occupation
decision to the fusion center in order to make a global collaborative decision. The steps
1, 2, 3, 4, and 5 of this altered CFCPSC-DF are the same as the first ones of the modified
CFCPSC-SF in Section 2.4.1. The remaining steps are as follows:

6. Find the CFCPSC TCFCPSCu,s = ru,s statistic at each SU for the s-th sub-band.
7. Compare TCFCPSCu,s with a local decision threshold γu in order to decide on the

occupation state of the s-th sub-band: when TCFCPSCu,s is greater than ≥ γu, decides
H1, otherwise decideH0 .

8. At each SU, make a occupation decision asH0 if all local sub-band decisions are also
H0 or asH1 if at least one local sub-band decision isH1 and then send this decision
to the FC.

9. At the fusion center, combine the U decisions and make a global collaborative decision
asH0 when all received decisions areH0 or asH1 otherwise.

3. Simulation Results and Discussions

We present some Monte Carlo simulation results of the GLRT-based and CFCPSC-
based approaches in multiantenna-CR-based centralized CSS under the seldom adopted
SS scenario of correlated received signals at the antenna arrays of SUs combined with
uncalibrated antenna arrays of SUs. Results are for (i) GLRT-DF with the fusion rules AND
(GLRT-DF-AND), OR (GLRT-DF-OR), and MAJ (GLRT-DF-MAJ), (ii) GLRT-SF, -WSF, -EF,
and -WEF, and (iii) CFCPSC-SF and -DF. Calibration errors at each antenna branch follow
the DN model proposed in (2) with σ2

l,u = 1.
Simulations consider one single-antenna PU transmitter, the number of SUs and

antennas given by the pairs (U, L) = {(2, 9), (3, 6), (6, 3), (9, 2)}, and N = 30 samples at
each SU antenna per sensing period, unless stated otherwise.

The PU signal was assumed to be a baseband BPSK signal with five independent and
identically distributed samples per symbol with six symbols per sensing period. Each SU
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has an average SNR according to Table 1. The PU signal powers at SUs are unequal and
computed as Pl,u = σ2

l,u × 10SNRu/10 = 10SNRu/10 according to the corresponding desired
average SNR in Table 1. Notice that the average SNR of the secondary network is always
(1/U)∑U

u=1 SNRu = −10 dB independently of the number of SUs, U, in Table 1, which is a
challenging SS scenario for detecting PU signals.

Table 1. Average SNRs at each SU according to the number of SUs, U.

SNR for the u-th SU, dB

u = 1 u = 2 u = 3 u = 4 u = 5 u = 6 u = 7 u = 8 u = 9

U = 2 −12 −8
U = 3 −12 −10 −8
U = 6 −12 −11.2 −10.4 −9.6 −8.8 −8
U = 9 −12 −11.5 −11 −10.5 −10 −9.5 −9 −8.5 −8

Each sensing channel has Z = 6 non-zero taps and mimics a slow-FS Rayleigh fad-
ing channel. Table 2 shows the adopted normalized power gains. Finally, the CFCPSC
algorithm adopts S = 5 sub-bands for both SF and DF.

Table 2. Power delay profile of the channel between primary user and secondary user.

Path Index 1 2 3 4 5 6

Propagation
delays in µs 0 3 8 11 13 21

Path gains in dB 0 −7 −15 −22 −24 −19

Figure 2 depicts the AUC values as a function of the correlation coefficient ρ for
fixed U = 2 SUs, L = 9 antennas, N = 30 samples at every single SU antenna per
sensing period, (a) ξ = 0, i.e., the antenna array of u-th SU is assumed to be calibrated
by a suitable technique and (b) ξ = 1, when the level of noise power variation at the
front-ends of multiantenna-based SUs is in the worst case in the adopted system model.
If the DN is null, i.e., ξ = 0, the performance ranking of adopted detectors is: GLRT-SF,
closely followed by GLRT-WSF, followed by, GLRT-WEF, GLRT-EF, CFCPSC-SF, GLRT-
DF-MAJ, GLRT-DF-AND, GLRT-DF-OR, and CFCPSC-DF, for all range of ρ values. In this
scenario, in general, the presence of correlation, i.e., for ρ > 0, leads to a poorer detection
performances. However, notice that the CFCPSC-based approaches have a considerable
improvement performance under the presence of DN, i.e., for ξ = 1. The opposite occurs
for the GLRT-based approaches. We postpone the discussions regarding the DN variation.

Figures 3 and 4 present several numerical results according to the configurations
established in the aforementioned paragraphs adopting AUC versus ξ. However, the
correlation model uses the correlation coefficient as ρ = 0 or ρ = 1 to simulate a sensing
scenario such that the received signal samples at each antenna array are uncorrelated or
have maximum correlation, respectively. The adoption of these correlation coefficients
yields the maximum and minimum benefit of the spatial diversity order of antenna arrays,
which leads to the best and the worst cases in terms of detection performances of each
detector from the perspective of correlated and uncorrelated received signals. Simulations
aim at analyzing the influence of having calibration errors combined with signal correlation
on the detection performances of GLRT-based approaches compared to CFCPSC-based
ones. The pairs of graphs marked as (a), (b) and (c), (d) in Figure 3 show numerical results
for U = {2, 3} and L = {9, 6}, and under uncorrelated, ρ = 0, and correlated, ρ = 1,
received signal samples at each antenna array, respectively. In a similar way, the pairs of
graphs marked as (a), (b) and (c), (d) in Figure 4 show numerical results for U = {6, 9} and
L = {3, 2}.
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CFCPSC-SF CFCPSC-DF GLRT-SF
GLRT-WSF GLRT-EF GLRT-WEF
GLRT-DF-OR GLRT-DF-AND GLRT-DF- MAJ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

ρ, correlation coefficient

A
U

C

(a) ξ = 0; U = 2; L = 9
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(b) ξ = 1; U = 2; L = 9

Figure 2. AUCs versus the correlation coefficient for U = 2 SUs and L = 9 antennas. (a) ξ = 0,
absence of DN; (b) ξ = 1, presence of DN. This figure is better viewed in color.

First of all, it is worth emphasizing that the adoption of the DN model proposed
in (2) led to considerably different results in terms of performance ranking compared
to those corresponding results presented in [20] for uncorrelated received signals and
unequal signal and noise powers (remembering that [20] considers ρ = 0, and ξ = 0.8
according to (2)). For example, choosing U = 3, L = 6, ρ = 0, and ξ = 0.8, the performance
ranking of adopted detectors is, in [20]: GLRT-WSF followed by CFCPSC-SF, GLRT-WEF,
GLRT-DF-OR, GLRT-EF, GLRT-SF, GLRT-DF-MAJ, and GLRT-DF-AND, while in Figure 3
the performance ranking is: CFCPSC-SF followed by CFCPSC-DF, GLRT-SF, GLRT-WSF,
and GLRT-EF closely followed by GLRT-WEF and GLRT-DF-AND, -MAJ, and -OR. Besides,
performance gaps between detectors adopted in [20] are also, in general, considerably
larger than shown in Figure 3. Yet, performance rankings of Figures 3 and 4 are consistent
with those presented in [23] for FS sensing channels and ρ = 1 for the majority of detectors
(remembering that differently from this paper, [23] considers equal signal and noise powers
among SUs and antennas per SU, i.e., it adopts the same average SNR at each SU and ξ = 0
according to (2), which justify some few differences compared to Figures 3 and 4).

The numerical analysis of Figures 3 and 4 unveils that the presence of DN at the
antennas of SUs, which occurs when ξ > 0, may be highly detrimental to the detection
performances of GLRT-based approaches, independently of the values of U, L, and ρ.
See, for example, that the AUCs for any GLRT curve decrease as ξ increases. The poorer
detection performances of the GLRT, in this case, are credited to the higher levels of
calibration errors for larger values of ξ that directly impact the elements of the sample
covariance matrices, their eigenvalues, and consequently, the resulting test statistic for
distinguishing between noise only, H0, and noise plus PU signal, H1, in the sensed PU
band. Surprisingly, the opposite occurs with the CFCPSC-based approaches. In this case,
the presence of DN is interestingly beneficial to the detection performances of the CFCPSC
since its AUCs, for any curve, increase as ξ increases, independently of the values of U, L,
and ρ. These improvements in detection performances indicate that the benefits of having
antennas with noise powers below the nominal noise power in a given sensing period,
i.e., σ̄2

l,u < σ2
l,u, outperform the penalties of having σ̄2

l,u > σ2
l,u in a given sensing period in

the case of the CFCPSC, especially for large ξ. For a better understanding of the above
statement, let us consider, for instance, a numerical example with ξ = 0.8. Notice that
in this case, σ̄2

l,u ∈ [(1− ξ)σ2
l,u, (1 + ξ)σ2

l,u] = [0.2, 1.8], in which σ2
l,u = 1. According to

Figures 3 and 4, one can easily notice that the benefits of having 0.2 ≤ σ̄2
l,u < 1 in a given

sensing instant, which results in an instantaneous SNR Pl,u/σ̄2
l,u larger than the average

SNR Pl,u/σ2
l,u of the received signal at the l-th antenna of u-th SU, i.e., Pl,u/σ̄2

l,u > Pl,u/σ2
l,u,

is larger than the penalties of having 1 < σ̄2
l,u ≤ 1.8 in a given sensing instant, which
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results in an instantaneous SNR smaller than the average SNR of the received signal at the
l-th antenna of u-th SU, i.e., Pl,u/σ̄2

l,u < Pl,u/σ2
l,u. The aforementioned performance is in

accordance with the results shown in Figure 2b when compared to Figure 2a.

CFCPSC-SF CFCPSC-DF GLRT-SF
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GLRT-DF-OR GLRT-DF-AND GLRT-DF- MAJ
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(a) ρ = 0; U = 2; L = 9
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(c) ρ = 0; U = 3; L = 6
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(d) ρ = 1; U = 3; L = 6

Figure 3. AUCs versus DN factor, ξ, for U = 2 SUs and L = 9 antennas (graphs (a,b)) and U = 3 SUs
and L = 6 antennas (graphs (c,d)). This figure is better viewed in color.

Notice from Figures 3 and 4 that the GLRT-DF, -EF, and -WEF are more sensitive to
the number of antennas per SU than the CFCPSC, since increasing or decreasing L may
considerably increase or decrease the detection performances of the GLRT in these cases,
especially for larger values of ξ and independently of ρ. Figure 4, for instance, depicts
the worst cases where some detectors have the AUCs below or equal to 0.5, meaning that
they are useless for larger values of ξ, independently of ρ. The increased or decreased
detection performances of the GLRT-based approaches, in these cases, are consequences
of the larger or smaller number of eigenvalues of the sample covariance matrices of SUs.
In other words, increasing the number of eigenvalues of the sample covariance matrices
increases the accuracy of GLRT statistics for distinguishing between H0 and H1. From
these results, one can conclude that the GLRT-DF, -EF, and -WEF perform better when
using smaller numbers of SUs with larger numbers of antennas per SU than larger numbers
of SUs with smaller numbers of antennas per SU in the adopted SS scenarios. However,
although the CFCPSC has, in general, more detection power than the GLRT; the GLRT-SF
and -WSF perform better than CFCPSC for smaller values of ξ, independently of U, L,
and ρ, which means that the GLRT-SF is a better choice in terms of detection performances
for multiantenna-CR-based centralized CSS with calibrated antenna arrays in this case.
The weighting schemes for WSF and WEF were effective in [20], but cannot bring any
performance improvements here. On the contrary, results show that they are practically
irrelevant in Figure 3 for L = 9, 6 and 0 ≤ ξ ≤ 1 and may degrade or severely degrade
the detection performances of the GLRT in Figure 4 with L = 3, 2 for larger values of ξ
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compared to their corresponding unweighted versions, independently of ρ, respectively.
Notice that smaller values of L reduce the accuracy in the computation of the weights, which
represent the maximum likelihood estimate of noise power, or its square root, of each SU,
and, consequently, the detection performances of the GLRT, especially for larger values of
ξ. A comparison between graphs (a), (b) and (c), (d) for ρ = 0 and ρ = 1 in Figures 3 and 4
unveils that the GLRT and the CFCPSC suffer performance degradation with SF while
GLRT-DF and -EF and CFCPSC-DF have performance improvements under correlated
received signals for the majority of numerical results. Therefore, notice that the best-and-
worst cases in terms of detection performances from the perspective of correlated and
uncorrelated received signals depend on each detector since the existence of correlation
benefits some test statistics while it penalizes others. The robustness to any values of U and
L is a significant advantage of the CFCPSC-DF over GLRT-DF and -EF, which can be noticed
particularly for large values of U and small values of L, independently of ρ. Finally, see
from Figure 3a,b that the GLRT-DF-MAJ and GLRT-DF-AND rules have identical detection
performances with 2 SUs since that the number of decisions K = bU/2 + 1c equals the
number of SUs U.

CFCPSC-SF CFCPSC-DF GLRT-SF
GLRT-WSF GLRT-EF GLRT-WEF
GLRT-DF-OR GLRT-DF-AND GLRT-DF- MAJ
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(a) ρ = 0; U = 6; L = 3
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(c) ρ = 0; U = 9; L = 2
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Figure 4. AUC versus DN factor, ξ, for U = 6 SUs and L = 3 antennas (graphs (a,b)) and U = 9 SUs
and L = 2 antennas (graphs (c,d)). This figure is better viewed in color.

Now, in order to show a different scenario than U × L = 18, as in the previous results,
Table 3 shows some AUCs values for different combinations of U and L, under DN (ξ = 0.8)
and correlation (ρ = 0.8). The same conclusions, as the ones obtained in Figures 3 and 4,
can be found from the results of Table 3.
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Table 3. AUCs for different values of U and L.

U 2 3 6 9

L 3 6 9 3 6 9 3 6 9 3 6 9

CFCPSC-SF 0.729988 0.838198 0.895556 0.794639 0.89602 0.946796 0.901013 0.971991 0.990660 0.949289 0.99004 0.997944
CFCPSC-DF 0.651618 0.745349 0.765207 0.700577 0.77651 0.816878 0.760226 0.884537 0.880821 0.831518 0.887656 0.923810
GLRT-SF 0.545269 0.650442 0.749037 0.584686 0.741676 0.85266 0.737864 0.924277 0.983100 0.854241 0.983808 0.998689
GLRT-WSF 0.535668 0.637573 0.738003 0.552138 0.721738 0.842229 0.648853 0.907191 0.981202 0.749671 0.978559 0.998601
GLRT-EF 0.520655 0.584451 0.669108 0.508487 0.601918 0.694031 0.514222 0.639469 0.757595 0.520523 0.662543 0.800873
GLRT-WEF 0.513711 0.578112 0.662675 0.493975 0.589602 0.684807 0.486195 0.619507 0.744751 0.483049 0.637887 0.785588
GLRT-OR 0.508139 0.554845 0.600482 0.483197 0.555332 0.617140 0.46073 0.568586 0.626162 0.452316 0.575338 0.665070
GLRT-AND 0.523487 0.571553 0.649025 0.522549 0.577501 0.639655 0.533101 0.578388 0.644887 0.537838 0.573493 0.638000
GLRT-MAJ 0.523487 0.571553 0.649025 0.510522 0.578734 0.652747 0.523968 0.594999 0.692428 0.524387 0.608244 0.718336

4. Conclusions

This paper presented several performance analyses of blind statistical tests circular
folding cooperative power spectral density split cancellation (CFCPSC) and generalized
likelihood ratio test (GLRT) based on multiantenna cognitive radios in a centralized coop-
erative spectrum sensing under correlated received signals at the antennas of secondary
users combined with unequal average primary user signal power and dynamical noise
assuming uncalibrated antenna arrays and frequency-selective sensing channels. The anal-
yses adopted the well-known eigenvalue-based GLRT with (i) sample fusion, weighted
sample fusion, eigenvalue fusion, and weighted eigenvalue fusion, and (ii) decision fu-
sion with the fusion rules AND, OR, and MAJ, and the recently proposed power spectral
density-based CFCPSC with sample fusion and decision fusion. The spectrum sensing
scenarios considered different numbers of secondary users and antennas per secondary
user and aimed at investigating the influence of having calibration errors combined with
signal correlations on the detection performances of the GLRT compared to the CFCPSC,
which is known for being robust against dynamical noise powers. Results show that the
GLRT is quite vulnerable to calibration errors with or without received signals correlations,
while the CFCPSC improves its performances under calibration errors with or without
received signals correlations, independently of the number of secondary users and antennas
per secondary user. Besides, the weighting schemes used for the GLRT with weighted
sample fusion and weighted eigenvalue fusion could not bring any benefits here and,
on the contrary, caused severe performance degradation for higher levels of calibration
errors. The GLRT with sample fusion and weighted sample fusion performed better than
the CFCPSC with sample fusion only in lower levels of calibration errors. Correlations of
received signals led to performance improvements for the GLRT with decision fusion and
eigenvalue fusion/weighted eigenvalue fusion and the CFCPSC with decision fusion and
performance degradation for the GLRT and CFCPSC with sample fusion. Robustness to
the numbers of secondary users and antennas per secondary user is a relevant advantage
of the CFCPSC with decision fusion over the GLRT with decision fusion and eigenvalue
fusion. Results showed that the CFCPSC is the best choice for spectrum sensing under the
adopted scenarios in the majority of the analyses.
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Abbreviations
The following abbreviations are used in this manuscript:

5G Fifth generation
6G Sixth generation
AGM Arithmetic to geometric mean
AUC Area under the curve
AWGN Additive white Gaussian noise
BPSK Binary phase-shift keying
CC Control channel
CFCPSC Circular folding cooperative power spectral density split cancellation
CPSC Cooperative power spectral density split cancellation
CR Cognitive radio
CSS Cooperative spectrum sensing
DF Decision fusion
DFT Discrete Fourier transform
DN Dynamical noise
ED Energy detection
EF Eigenvalue fusion
FC Fusion center
FS Frequency-selective
GLRT Generalized likelihood ratio test
HD Hard decision
IoT Internet of things
MMED Maximum-minimum eigenvalue detection
nCSS Non-cooperative spectrum sensing
NU Noise uncertainty
PSD Power spectral density
PU Primary user
QoE Quality of experience
QoS Quality of service
ROC Receiver operating characteristic
SCM Sample covariance matrix
SF Sample fusion
SNR Signal-to-noise ratio
SS Spectrum sensing
SSE Signal-subspace eigenvalue
SU Secondary user
WEF Weighted eigenvalue fusion
WRAN Wireless regional area network
WSF Weighted sample fusion
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