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Abstract—With the increase in penetration of renewable en-
ergy sources (RES), traditional inertia estimation techniques based
purely on the number of online synchronous generators are increas-
ingly unsuitable, ultimately leading towards suboptimal frequency
control in the electric power grid. The stochastic nature of RES
additionally makes the system inertia a time-varying quantity.
Furthermore, the frequency and inertial response of power systems
change drastically in multiarea power systems with interconnected
tie-lines. Hence, it is important for state/parameter estimation
(e.g., inertia) in multiarea systems, while ensuring communication
between each of the areas. In this article, a client–server-based fed-
erated learning framework is used to estimate power system inertia
in a multiarea system. Federated learning is a machine learning
technique where multiple decentralized devices are trained with
local data, and a global model is updated and redistributed by a cen-
tral server by aggregating the trained weights of the decentralized
devices, without exchanging the local data. Using local frequency
measurements, obtained from the phase-locked loop of an energy
storage system, the inertia at each of the areas can be estimated
locally via offline training using convolutional neural networks
(CNNs), whereas the CNN weights update in an online fashion.
The framework, tested on a two-area power system, accurately
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estimated the inertia constant for both independent and identically
distributed (IID) and non-IID data. Furthermore, the CNN-based
method outperformed conventional neural network-based estima-
tion techniques in terms of number of communication rounds and
estimation accuracy.

Index Terms—Convolutional neural networks (CNNs), federated
learning (FL), low-inertia grids, multiarea power system, power
system inertia estimation.

NOMENCLATURE

Abbreviations
ACE Area control error.
AWGN Add white Gaussian noise.
CNN Convolutional neural network.
DER Distributed energy resources.
ERCOT Electricity Reliability Council of Texas.
ESS Energy storage system.
FFR Fast frequency response.
FL Federated learning.
GPU Graphics processing unit.
IID Independent and identically distributed.
MLP Multilayer perceptron.
MSE Mean squared error.
PLL Phase-locked loop.
PMU Phasor measurement unit.
RES Renewable energy source.
RMSE Root MSE.
ROCOF Rate-of-change-of-frequency.
RRS Response reserve service.
SNR Signal-to-noise ratio.
UFLS Under frequency load shedding.

Machine Learning Variables and Parameters
α Learning rate.
β Local mini-batch input, β ∈ B.
B Set of local mini-batches of training snapshots,

B ∈ Pn.
E Number of local training epochs.
Pn Number of training snapshots at ESS client n.
R Kernel size for CNN layer 1.
S Kernel size for CNN layer 2.
μ Total number of training snapshots at for N clients.
μn Number of training snapshots at client n.
∇EMSE Gradient of MSE loss function.
Ψi Selected ESS clients in communication round i.
M̃ Estimated value of inertia constant.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-3941-3369
https://orcid.org/0000-0001-8504-7796
https://orcid.org/0000-0003-2885-1213
https://orcid.org/0000-0003-3057-1085
https://orcid.org/0000-0001-8096-1255
mailto:abodh.poudyal@wsu.edu
mailto:robert.fourney@ieee.org
mailto:tonkoski@ieee.org
mailto:timothy.hansen@sdstate.edu
mailto:utamrak@sandia.gov
mailto:rdtrevi@sandia.gov


6402 IEEE SYSTEMS JOURNAL, VOL. 16, NO. 4, DECEMBER 2022

ξ Power systems area number.
b Local mini-batch input size.
C Fraction of clients selected by the server, C ≤ N .
c Size of single input vector in a batch.
h1 Number of neurons in first hidden layer of feedfor-

ward network.
h2 Number of neurons in first hidden layer of feedfor-

ward network.
m Number of selected ESS clients.
N Number of ESS clients.
p Number of channels for CNN layer 1.
q Number of channels for CNN layer 2.
w0 Initial weight of CNN.
wt Aggregated CNN weights.
Y Input size of feedforward neural network.

Power System Variables and Parameters
Δω Change in frequency.
Δω̇ Rate-of-change-of-frequency.
ΔPL Change in load.
Δδ Change in power angle.
ΔPe Change in electrical power.
ΔPm Change in mechanical power
ΔPtie Tie-line power flow.
B Bias factor.
D Damping coefficient.
K Secondary controller gain.
M Inertia constant.
R Speed regulation droop.
T0 Tie-line coefficient.
Tg Turbine-governor time constant

I. INTRODUCTION

INCREASING penetration of renewable energy sources
(RESs) results in a decline of power system inertia. Power

system inertia slows the initial rate-of-change-of-frequency
(ROCOF) in the case of a frequency event [1], [2]. With a
significant decline in inertia, the instantaneous ROCOF may be
large enough to trigger under frequency load shedding that could
initiate a sequence of cascading outages [3]–[5].

As a result of the stochastic nature of RES, power system iner-
tia is also a time-varying parameter in the modern grid [6]–[9].
With reduced inertia in the grid from replacing conventional
synchronous generation assets with an increased penetration
of RES, it is necessary to perform real-time monitoring of
inertia levels in the power grid [10]–[12]. Furthermore, due
to the absence of rotating components, inverter-based systems
are considered passive in terms of inertial response. However,
recent advancements in control techniques led to the provision of
virtual inertia support from RES-based systems [13]–[15]. With
the meshed architecture of the grid, the increasing penetration of
stochastic RES makes the task of inertia estimation even more
challenging as inertial support can also come from intercon-
nected areas via tie-lines [16], [17]. Recently, we presented
a preliminary inertia estimation method using convolutional
neural networks (CNNs) for a single area power system [18]. The
estimation of inertia was based purely on frequency and ROCOF

measurements taken locally from the phase-locked loop (PLL)
of an energy storage system (ESS). In the proposed work, the
ESS is first used to probe the power system, and then the PLL of
the same ESS is used for inertia estimation. As an extension to
the former work, this article includes the effect of tie-line power
flow in multiarea power systems while estimating the inertia
constant in a decentralized fashion.

A. Literature Review

Several inertia estimation techniques using phasor mea-
surement units (PMUs) were presented in [19]–[23]. Lugnani
et al. [19] estimated the inertia constant of a single or group
of generators with the help of PMUs installed on the generator
bus. A low-order autoregressive moving average model was used
to estimate the value of inertia. Panda et al. [20] proposed an
online inertia estimation technique based on synchronized PMU
measurements. The dynamics of the network was emulated via
an equivalent swing equation in terms of frequency deviation and
inertia constant. The Electric Reliability Council of Texas (ER-
COT) monitors the grid inertia based on the unit commitment
plans of interconnected generators in the grid [12]. However, the
nonsynchronous generating units have not yet been incorporated
in the tool [24]. Recently, ERCOT promulgated new ancillary
market design that allows fast frequency response (FFR) under
response reserve service [25]. Hence, the estimation of iner-
tia constant based purely on the online status of synchronous
units is inaccurate considering the FFR support that can
come from the interconnected nonsynchronous units. There are
some model-free techniques to estimate the inertia constant. A
Markov–Gaussian-based inertia estimation technique, discussed
in [26], can dynamically estimate the system inertia. However,
a large historical dataset (i.e., two years) was required for this
method, and this may not be readily available for other systems
and can be cumbersome for training for moderate sampling
time.

The electric power grid is highly meshed, and it is nec-
essary to consider the impact of inter-area power flow while
estimating the inertia constant. There is little work that considers
multiarea power systems when estimating the inertia constant.
Tuttelberg et al. [23] estimated the equivalent inertia of indi-
vidual areas in a multiarea power system using ambient PMU
measurements. However, only synchronous units have been
considered and, in general, PMU data should be postprocessed
to capture the accurate inertial response. An inertia estimation
method for a multiarea interconnected electric power system
using electromechanical oscillation modes has been discussed
in [27]. The relation between inertia, frequency, and damping
of electromechanical modes was developed, however the pen-
etration of RES in any one of the areas can drastically change
the dynamics of electromechanical modes [28], [29]. Hence,
estimating inertia with respect to number of online synchronous
units is increasingly inaccurate considering the inertial response
coming from RES-based resources.

Schmitt et al. [30] used inter-area modal information, particu-
larly frequency and damping of the oscillation mode, to estimate
the inertia constant. A general neural network-based inertia
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estimation technique was presented that estimates the inertia
only for system with synchronous generation. Additionally, the
training data was centralized and trained in a single neural
network. Aggregating the data centrally for training increases
the cost and makes this approach less secure. A data-driven
inertia estimation approach in multiarea systems is discussed
in [31]. The dependency of the system inertia with the eigenvalue
and eigenvectors, extracted using dynamic mode decomposition,
were analyzed. However, only synchronous units are considered
as a part of the analysis.

With limited data-driven techniques in the literature, most
above-mentioned inertia estimation methods are based on the
number of online synchronous units in the power system. With
increasing penetration of RES-based units, it is necessary to
include the effects of nonsynchronous units in grid inertia [7],
[32], [33]. It is therefore preferable to design a data-driven
generator-independent technique that can better identify the
uncertain dynamic behavior of modern power grids that have
a significant penetration of stochastic RES-based units [34],
[35]. As mentioned before, such data-driven estimation tech-
niques will be independent of the generating units used, and
can be generalized to estimate the inertia for any system. Fur-
thermore, such methods should be cost efficient, accurate, and
computationally effective. The centralized estimation method
can be highly inefficient as the overhead incurred during the data
collection phase outweighs the purpose of the estimation task.
Furthermore, centralized approaches are less secure as compared
to decentralized training methods [36].

B. Key Contributions

The conventional inertia estimation methods depend on the
types of generating units being used and are mostly centralized.
Here, we propose a framework to estimate the inertia of the
system in a decentralized fashion that depends only on the
local frequency measurements. Recently, a client–server-based
framework—federated learning (FL)—has gained popularity as
a secured and decentralized machine learning approach appli-
cable for large-scale data that can be trained locally [37]–[39].
Training the data locally might create a biased machine learning
model as the training data can be specific for a particular region.
For a machine learning model to be generalized, training data
should be independent and identically distributed (IID), i.e., the
probability of occurrence of each of the mutually independent
random variables are same. However, the data at geographically
dispersed locations could be non-IID [40], creating a biased
model that fits the specific non-IID data. Inertia estimation when
performed in a decentralized fashion involves non-IID data at
several geographically dispersed locations. An FL approach can
deal with both IID and non-IID data effectively [41], and hence
the task of inertia estimation is explored for both cases in this
article. The main contributions of this article are as follows.

1) Designed a CNN-based inertia estimator, in which the
inertia constant of a particular area is estimated using
local frequency measurements obtained from the PLL of
an ESS. Because the estimation method is independent
of the generating unit, it could also account for other grid

Fig. 1. Transfer function-based model of a two-area system.

assets that provide FFR to the grid but are ignored, such as
synchronous motors or small DER equipped with virtual
inertia.

2) Proposed a client–server-based framework, in which mul-
tiarea inertia is estimated in a decentralized fashion. The
estimation task is performed locally and is an offline
process, whereas the CNN weights are updated using the
federated averaging [41] algorithm in an online fashion.
To represent IID data, the entire dataset is randomly
shuffled and redistributed to each of the ESS clients. To
represent non-IID data, the training data was arranged in
a particular order and specific parts of those orders were
partitioned for the ESS clients. The proposed estimation
framework is tested on both IID and non-IID data.

3) Improved the performance of the estimation framework
by highlighting the trade-offs between the number of
communication rounds and number of local epochs.

C. Organization

The rest of this article is structured as follows. Section II
describes the frequency response in a multiarea power system.
In Section III, FL-based multiarea inertia estimation technique
is presented. Section IV describes the simulation setup, and
the results and analysis are presented in Section V. Section VI
concludes this article.

II. FREQUENCY RESPONSE OF MULTIAREA POWER SYSTEMS

This section provides a general description of multiarea power
system and its frequency response. For experimental purposes,
we have considered a two-area power system, and it is assumed
that the transfer function-based model represents the dynamics
of an actual two-area power system model. Furthermore, we
also assume that the overall generating units in an area can
be represented by an equivalent generator. This section also
discusses system perturbation using excitation signals from an
ESS.
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A. Multiarea Power Systems

Fig. 1 shows a transfer function-based model of Kundur’s
two-area system [16], [42].1 It is assumed that the simplified
transfer function-based model represents the overall dynamics
of the two-area power system. As opposed to the single area
equivalent generator system, a two-area power system is inter-
connected via tie-lines that are connected with the secondary
control of each of the areas. The tie-line power is obtained as the
difference between the power angle (Δδ) of the generating units.
The inertial response is the result of change in frequency (Δω),
which is ultimately related to the difference in mechanical to
electrical power (ΔPm −ΔPe). Hence, in a multiarea system,
the effect of tie-line power can affect the inertial response of
individual areas as the tie-line power compensates the change
in rotor angle of the generating units. The effect of tie-line is
given by the area control error (ACE), which is the difference
betweenΔω and the bias factor (B). ACE also takes into account
the error between scheduled and actual power transfer between
areas. Furthermore, K is the integral gain of the automatic
generation control, Tg is the turbine-governor time constant,
ΔPL is the change in load, M is the inertia constant, D is
the damping coefficient, R is the speed regulation droop, and
T0 is the tie-line coefficient. The mathematical relationship and
in-depth explanation of each of these parameters are given in [16]
and [42].

B. Inertia Estimation Using an Excitation Signal

Power system inertia estimation can be conducted using ex-
citation signals that are generated through the power electronic
interface of ESS without affecting system stability [6], [18].
Utility-scale ESSs are expected to be widely deployed in power
systems for various services [43]. Hence, such existing power
electronic-based ESS can be used to perturb the system and,
based on the local frequency measurements obtained from the
PLL of the ESS, inertia estimation can be performed [44], [45].
In this article, pulsating excitation signals of fixed frequency and
varying magnitudes are used. However, it should be noted that to
collect the snapshots, only the area in which the snapshots are to
be collected is perturbed, while the change in load for the other
area is assumed to be zero, i.e., the data collection procedure is
asynchronous. A sample excitation signal, fed to Area 1 of the
system in Fig. 1 with an amplitude of ΔPL1, and corresponding
measurements of Δω1 and Δω̇1 are shown in Fig. 2.

The sampling time and sampling frame of the measurements
can be defined after collecting the snapshots from the PLL of
the local ESS. The noise in Δω1 and Δω̇1 represents normal
Gaussian measurement noise [46]. Because we are interested in
estimating the inertia constant, we only consider the sampling
frame, in which the inertial response is prominent. By vary-
ing M and ΔPL for individual areas, multiple snapshots can
be collected for training. To make it practical, the frequency
measurements can be collected when there is a new dispatch in
the power system. At that point, the measured data can be used
for the training purpose locally, and the network gradients are

1Subscript 1 denotes Area 1 and subscript 2 denotes Area 2, unless stated
otherwise, throughout the rest of this article.

Fig. 2. Sample of excitation signal, frequency, and ROCOF measurements at
Area 1 whenM1 = 9 s,M2 = 5 s,ΔPL1 =2× 10−3 p.u., andΔPL2 = 0 p.u.
Only the area in which the frequency snapshots are to be collected is perturbed
via excitation signal. In this case, Area 1 is perturbed via ΔPL1 = 2× 10−3
p.u., whereas ΔPL2 = 0 p.u.

Fig. 3. Inertia estimation using 1-D CNN trained in batches.

updated whenever the clients and the server communicates. The
procedure is discussed in detail in the remaining sections. For
the purpose of this research, it is assumed that M and ΔPL are
varied in a simulated environment.

III. MULTIAREA INERTIA ESTIMATION USING FL

This section describes an FL-based decentralized approach to
estimate inertia using local frequency measurements. A CNN-
based inertia estimation method is described that takes local
noisy frequency measurements as its input and estimates the
inertia. It is assumed that the system has a preexisting commu-
nication protocol between the clients and the server. The design
and description of such protocol is not within the scope of this
work.

A. CNN-Based Inertia Estimation

Fig. 3 shows a 1-D CNN that takes the frequency measure-
ments, Δω and Δω̇, as inputs and estimates the inertia constant.
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The measurementsΔω andΔω̇ are stacked horizontally to create
a single input vector of size c. Furthermore, the input is taken
in the form of randomly selected batches of size b as CNNs are
expected to perform well when trained in batches [47]. For each
epoch, the entire batch of training samples are fed to the CNN,
and the process is repeated for several epochs until a desired
model accuracy is obtained. For each training iteration, the input
is of the size b× c and the output will be a vector of size b with
inertia estimates for the corresponding samples of Δω and Δω̇.
One needs to define several hyperparameters (parameters with
values that are set before the training process) for CNN that
can be tuned to improve the performance of the CNN. CNN
contains the kernels (i.e., filters) that slide through the input
samples and get the activation for the respective convolution
layer. The convolution layers in CNN exploit spatial patterns in
the input data that can drastically improve the performance of the
estimation method [48]. This feature can be beneficial to identify
the region where the effect of system inertia is prominent in the
frequency snapshots. The kernels are selected to be vectors of
sizesR andS , respectively, for two convolution layers. Let p and
q represent the number of channels in each of the convolution
layers. Because the input is of a single dimension, the number
of input channels is one. At the end of the convolution layers
begins a feedforward neural network that is trained to minimize
the mean squared error (MSE) between the actual and estimated
values using backpropagation [49]. In this work, two hidden
layered feedforward neural networks are used with h1 and h2

hidden layers, respectively.
In this article, each of the ESS clients contain a CNN es-

timator that estimates the area inertia using local frequency
measurements obtained from the PLL of the ESS. To assess
the performance of the estimator, this article analyzes both the
MSE and root MSE (RMSE) values. MSE computes the square
of the errors, whereas RMSE is in the same scale as the error
values. MSE and RMSE are chosen as error metrics over other
metrics due to their ability to penalize larger errors by squaring
the error, which ensures faster convergence of the CNN model.

B. FL-Based Inertia Estimation

Existing centralized machine learning approaches require
training data that is collected in a centralized location and
perform the prediction on a single model based on the aggregated
training data [41]. This method is expensive and inefficient
from a communication, memory, and cybersecurity point of
view—the central server needs to have a large storage capacity
to accommodate entire training data from the clients, and the
clients have to continually communicate to update the training
data. Hence, the information can be breached while communi-
cating the data, which is not desirable considering the increasing
number of cyber threats in the power system [50], [51].

FL is a secure and robust framework that facilitates decentral-
ized machine learning. The training is performed remotely on
individual clients in a decentralized fashion [52]. However, after
the training has been completed, a central server aggregates the
trained weights from each of the clients and then redistributes
the aggregated weights to the clients. FL is highly efficient, and

is more robust than conventional machine learning techniques
due to following reasons.

1) Only model weights are communicated from the clients to
server and vice-versa. This ensures data privacy and dis-
courages possible cyberattacks, which is a serious concern
in the field of power systems [50], [51].

2) The training process at each of the clients is offline,
whereas the communication between the clients and server
occurs only during the weight aggregation and distribution
phase, if the clients are available. Communication cost is
important in any online optimization task as the bandwidth
of communication could be limited. In FL, the number of
local training epochs can be varied to improve the model
at client’s level. This can reduce the communication cost
drastically.

3) Because the weights of the neural network are just floating
point values, the server does not require excess memory
to store and aggregate the weights of the clients. This is an
important aspect of FL that makes it more data-efficient
compared to other machine learning algorithms.

FL can be applied in a multiarea system to estimate the inertia
constant of individual areas. It should be noted that FL does
not estimate the inertia, but rather provides a framework to
do so in a decentralized fashion. In FL, the training data (i.e.,
frequency snapshots) reside at the client ESS location, making
it a decentralized machine leaning algorithm. Each of the areas
will have a shared CNN model that estimates the inertia constant
at that particular area as described in the former section. Fig. 4
shows a general framework of FL-based inertia estimation in
a multiarea power system. Each of the communication rounds
between the server and the clients can be represented by three
processes—check-in, configuration and training, and weight
aggregation. Let N be the total number of ESS clients, each
belong to an Area ξ. During check-in, a fraction C of N clients
(C ≤ N ) are randomly selected by the server. The red cross
denotes the clients that are not selected, or may be offline,
during the check-in phase at a particular round. However, the
nonselected clients in the former communication rounds are
also selected in the subsequent communication rounds once they
come back online. Let Ψi be the set of m ESS clients for round
i. Here, m = max(C ×N, 1) is the number of selected clients,
ensuring at least one client is selected. During the configuration
and training process, the server initializes the weight of the
shared CNN model, w0 ← wt, and distributes it to the selected
clients inΨi. Initializing a common weight in the server is found
to be more effective than random initialization of weights in each
of the clients [41], [53].

The learning rate (α) and local mini-batch size (b) are defined
at each of the ESS clients n in particular area ξ. The number of
local epochs, E, can be varied to achieve the best performance.
Furthermore, E can be varied for individual clients, i.e., CNN at
different clients can be trained on local frequency measurements
for a different number of epochs. Because the server does not
keep track of number of training epochs at the CNN of each
client n, it is reasonable to posit that in a real world scenario E

will be different for different clients. However, for simplicity, in
this work E is consistent for each of the clients. Let Pn be the set
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Fig. 4. FL-based framework for inertia estimation in a multiarea power system. The cloud storage is some form of storage device that stores the aggregated CNN
model and information about selected clients.

of training snapshots at ESS client n, B represents the batches
of training snapshots where each batch β ∈ B is of size b. At
each ESS clients n, the CNN model then estimates the inertia
constant by minimizing MSE via backpropagation.

Finally, when the clients are online, the trained weights of each
of the clients, wn

t+1, are sent back to the server for aggregation.
In this work, the weight aggregation is performed once the
server receives the trained weights of all selected clients. Weight
aggregation is the most important process in a communication
round that makes FL different than other machine learning
techniques. After collecting the trained weights, wn

t+1, from all
clients in Ψi, a weighted average method based on the number
of data samples on each of the clients is given by

wt+1 =

N∑

n=1

μn

μ
wn

t+1 (1)

where μn is the number of training snapshots at client n and μ is
the total number of training snapshots for N clients. The server
stores the aggregated weight, wt+1, in its persistent storage as a
checkpoint and the entire process is repeated for the next round,
i+ 1. The algorithm for FL is known as federated averaging
due to its unique weight averaging method given in (1). The
pseudocode for federated averaging is given in Algorithm 1.

C. Overall Framework for Multiarea Inertia Estimation

A schematic of the overall framework of inertia estimation in
multiarea system using FL is shown in Fig. 5. A two-area power
system model connected by a tie-line is used in this work. The
power system at each area is asynchronously perturbed by exci-
tation signalΔPL. The perturbation is fed only at one of the areas
that the frequency snapshots are to be observed, while keeping
the perturbation at the other area to zero, i.e., in Fig. 5ΔPL1 is an
excitation signal with a given amplitude and frequency whereas

Fig. 5. Overall schematic of FL-based inertia estimation in a multiarea power
system. Note that only one of the areas is perturbed at a time via ΔPL to collect
the snapshots.

ΔPL2 = 0. The additional Gaussian noise signal is added
in the measurement to mimic noisy PLL measurements. The
CNN located at each of ESS clients improves the estimation by
minimizing MSE between actual value (M ) and estimated value
(M̃ ), and updates the model parameters via backpropagation.
However, the local weight updates corresponding to each of the
clients, represented by w1

t and w2
t , are different. The trained

updates are sent to the server for aggregation via a secured
communication channel. The server then aggregates the weight
and distributes the shared model to each of the ESS clients.
This process repeats for several communication rounds until the
global model converges.

IV. SIMULATION SETUP

A. Overview

The modeling and simulation of the multiarea power system,
along with data collection and preprocessing, was conducted in
MATLAB/Simulink 2018b. The CNN model and FL framework
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was developed in Python using PyTorch, an open-source library
for deep learning studies [54]. To leverage the fast computing
abilities of PyTorch, the machine learning model was trained
on South Dakota State University’s Roaring Thunder cluster on
NVIDIA Tesla P100/V100 GPUs. Although GPUs were used to
train this model for speed of analysis, modern microcontrollers
with ARM cortex cores have been successful in training deep
CNN architectures and can be used in real-world implementa-
tions [55].

B. Simulation Benchmark

The transfer function-based two-area system with an equiva-
lent generator model, shown in Fig. 1, was used as an experimen-
tal model to collect the frequency snapshots, and the respective
simulation parameters are given in Table I [16], [42], [56]. To
have variation in the dataset, the snapshots were collected from
both the areas with different values of M1 and M2. Similarly,
for each of the areas, excitation signals with 100 different values
of ΔPL from 10−3 to 0.1 p.u. with an increment 10−3 p.u. were
used. As mentioned before, the excitation signals were fed only
in the area the snapshots were collected, as shown in Fig 5.

To collect realistic data samples, white Gaussian noise was in-
troduced in the signal using add white Gaussian noise (AWGN)
block in MATLAB/Simulink. The signal-to-noise ratio of 45 dB

TABLE I
SIMULATION PARAMETERS FOR MULTIAREA POWER SYSTEM

with a covariance of 10−6 was found to be appropriate for
our setup as described in [46]. A total of 900 snapshots were
collected from both of the areas with a sampling frequency of
200 Hz, as mentioned in the IEEE standard [57]. Similarly,
a sampling frame (inertial response time frame) of 1 s was
used—from 31 to 32 s—as the system took time to reach a
steady–steady response to the excitation signal.

C. Data Distribution and Hyperparameters Selection for FL

A sampling time of 200 Hz gives 200 data points (c = 400)
for each of the snapshots of Δω and Δω̇, extracted at a sampling
frame of 1 s. To have a comparison on the basis of communi-
cation rounds and architecture, the simulation was performed
on both CNN and a CNN architecture, multilayer perceptron
(MLP), for which the architecture and hyperparameters were
selected, as described in [18]. This section describes a general
method of data partitioning for IID and non-IID cases and
hyperparameter selection for the FL framework.

To test the global model on a validation set for each com-
munication round, the overall data was split into two parts —
720 snapshots (∼ 80%) for training and 180 snapshots (∼ 20%)
for validation. The general method of having an IID case would
be to distribute the snapshots to each of the areas so as to have
a near equal probability distribution for each value of inertia
constant. To achieve this, the training dataset was randomly
shuffled and redistributed so that each ESS client contained
350 random snapshots. For the non-IID case, the 720 training
snapshots were arranged in ascending order ofM and distributed
in equal parts to the ESS clients. This ensure that the two ESS
clients have snapshots corresponding to different values of M ,
e.g., the snapshots corresponding to M = 2 s is in Area 1 but
not in Area 2.

The effectiveness of the federated averaging algorithm de-
pends on three hyperparameters — C, E, and b [41]. Because
N = 2, we selected a value of C = 1 that means that all of the
clients are selected during each communication round. Further-
more, we experimentally verified that b = 10 works well for
both CNN and MLP. When some level of accuracy is desired
from the global model, the algorithm can be stopped at the
particular communication round that the best global accuracy
is obtained. However, for inertia estimates, we assume that an
estimated value within 10% of the actual value is a correct value.
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TABLE II
RMSE OF ESTIMATED VALUES OF INERTIA ON VALIDATION SET FOR IID DATA

Fig. 6. Evolution of aggregated weight, wt+1, using federated averaging for
each communication round i between the server and ESS clients for MLP-based
training (top) and CNN-based training (bottom). The plots represent the IID case
when E = 1. MLP (top) takes ∼ 1000 iterations to reach the desired accuracy.

Hence, we predefined i before conducting the simulation in this
work. The simulation conducted for different values of E and i
for MLP and CNN are presented in Section V. The combinations
of i and E are so chosen to get a similar value of RMSE on the
validation set.

V. RESULTS AND ANALYSIS

A. Performance Metrics for IID Data

For the IID case, the RMSE values on the validation set of 180
snapshots for MLP and CNN are given in Table II. The presented
value is the RMSE observed for the ith communication round,
where the neural networks at the ESS clients are trained for E
number of local epochs on IID data. When E = 1, it takes 200
communication rounds between the server and the ESS clients
to achieve an RMSE of 0.3652 when trained using a CNN.
However, when trained using the MLP, an RMSE of 0.4387 is
obtained with 1000 communication rounds. To get a similar level
of model performance, MLP requires a much higher number of
client–server communication than with CNN.

Fig. 7. Aggregated model accuracy on validation set for each communication
round i between the server and ESS clients for MLP-based and CNN-based
training. The plot represents the IID case when E = 1. MLP takes ∼ 1000
communication rounds to reach a desired level of accuracy as compared to
∼ 200 communication rounds for CNN.

TABLE III
RMSE OF ESTIMATED VALUES OF INERTIA ON VALIDATION SET FOR

NON-IID DATA

Fig. 6 shows the evolution of aggregated weights of the global
model, obtained via federated averaging, for IID case when
E = 1. It can be seen that the weights are saturated at∼ i = 175
for CNN (approximately 5.7 times less than MLP), whereas
some of the weights do not converge for MLP-based model even
when i = 1000.

Similarly, Fig. 7 shows the accuracy of the aggregated model
on validation set at the end of each communication rounds
for the IID case when E = 1. CNN-based approach reaches
the desired accuracy in less number of communication rounds
than the MLP-based approach. The MLP-based model gave a
validation accuracy of 95% at i = 1000, and CNN gave a vali-
dation accuracy of 96.67% at 200 epochs. Hence, based on the
abovementioned results, the CNN-based estimator outperforms
the MLP in terms of communication cost and RMSE for IID
data.

B. Performance Metrics for non-IID Data

For the non-IID case, the RMSE values on the validation set
of 180 snapshots for MLP and CNN are given in Table III. The
presented value is the RMSE observed for ith communication
round, where the neural networks at the ESS clients are trained
for E number of local epochs on non-IID data. When E = 1,
it takes 200 communication rounds between the server and the
ESS clients to achieve an RMSE of 0.372 when trained using
CNN. However, using MLP, an RMSE of 0.3851 is obtained
after 1000 communication rounds.

Fig. 8 shows the evolution of aggregated weights of the global
model, obtained via federated averaging, for non-IID case when
E = 1. Similar to the IID case, it can be seen that the weights are
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Fig. 8. Evolution of aggregated weight, wt+1, using federated averaging for
each communication round i between the server and ESS clients for MLP-based
training (top) and CNN-based training (bottom). The plots represent the non-
IID case when E = 1. MLP (top) takes ∼ 1000 iterations to reach the desired
accuracy.

Fig. 9. Aggregated model accuracy on validation set for each communication
round i between the server and ESS clients for MLP-based and CNN-based
training. The plots represent the non-IID case for E = 1. MLP takes ∼ 1000
communication rounds to reach a desired level of accuracy as compared to
∼ 200 communication rounds for CNN.

saturated at ∼ i = 175 for CNN, whereas some of the weights
do not converge for MLP-based model even when i = 1000.
Similarly, Fig. 9 shows the accuracy of the aggregated model
on validation set at the end of each communication rounds.
Consistent with the results observed for the IID case, it takes less
number of communication rounds to reach a desired accuracy
for CNN-based approach as compared with the MLP-based
approach.

Fig. 10. Comparison of accuracy for IID and non-IID data when i = 40 and
E = 5.

From the above-mentioned analysis, it is interesting to ob-
serve that for two-area ESS clients, the performance metrics
do not have much difference for the IID and the non-IID case.
Fig. 10 shows the comparison of validation accuracy for IID
and non-IID case when E = 5. The convergence for IID case is
slightly better than the non-IID case. This is due to the fact that
IID data samples contain more training labels that improves the
estimation of the overall model. However, with limited train-
ing labels for non-IID data, the performance of the estimation
model is weaker compared with the model trained with IID data
samples. It is also important to note that in this work we have
distributed the data to the ESS clients by manually separating
the data to IID and non-IID fashion in a controlled environment.
Such scenario is not possible in real-world scenarios, and hence
the results might not be generalizable to hundreds of ESS clients
with highly non-IID data. The key takeaway from these analyses
is that the global model is successful in estimating the multiarea
inertia constant without being trained on several snapshots.

C. Communication Cost

Communication overhead incurs the highest optimization cost
in FL [41]. Although FL rejects the clients that are unable
to provide an update, or are offline during a particular instant
of communication, the cost of communication overhead still
overpowers the individual computational cost on the clients, as
well as the cost to add an additional client in the framework [41],
[52]. In FL, the communication cost can be drastically reduced
by increasing the number of E to a certain extent. Fig. 11 shows
the validation accuracy of a CNN model for IID data with respect
to i for different values of E. It can be seen that when the value
of E is increased from 1 to 5, the number of communication
rounds to achieve the desired accuracy reduces drastically. When
E = 5, only 40 communication rounds would suffice to achieve
an accuracy beyond 95%. This is a decrease in communication
round by a multiple of 5 as compared to the case when E = 1.
Furthermore, the CNN model withE = 1was approximately six
times more computationally efficient than the MLP counterpart.
Therefore, when E = 5, CNN-based FL framework is 30 times
more efficient than the MLP-based framework. Hence, the FL
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Fig. 11. Validation accuracy of a CNN-based model on IID data with respect
to i for different values of E. On varying the values of E, the number of
communication rounds can be controlled in FL.

learning framework can be made more efficient by decreasing
the number of communication rounds between the server and
the ESS clients and simultaneously increasing the value of E.

Additionally, an early stopping technique can be used when
the desired accuracy is obtained. In Fig. 11, the training at the
client ESS and the communication between the client ESS and
the server can be stopped when i = 36 (represented by a dashed
vertical red line with a horizontal intersecting line showing the
equivalent accuracy) to get the maximum accuracy.

D. Comparison with Existing Methods

The approach detailed in [32] presents a disturbance-based
inertia estimation method while accommodating the dynamics
of voltage and frequency of the power system. The authors model
the effect of a power disturbance and frequency measurements to
estimate the inertia of the system. However, the estimation task
is centralized as the disturbance and dynamics data are centrally
collected to estimate the inertia. Furthermore, the method is
typically presented for synchronous generator models and may
not perform well for nonsynchronous units. The methods in [34]
and [35] involve data-driven approaches to estimate the system
inertia. In [34], a neural network-based inertia forecast tool is
presented in a system with high penetration of wind farms.
However, the method is centralized and has no provision for
non-IID data. In addition, further analysis is required to identify
the variables correlated with system inertia to improve the per-
formance of the neural network-model. Similarly, Yang et al.
[35] presented a modal identification-based inertia estimation
approach. Similarly, Cai et al. [27] performed eigenvalue analy-
sis on the power oscillation and frequency signals obtained from
the PMU. As mentioned before, such electromechanical modes
of oscillation change drastically when nonsynchronous units are
connected in the system. Hence, the proposed method is only
applicable for systems dominated by synchronous generating
units.

The existing methods discussed above lack several features
that highlight the benefit of the proposed method. The essen-
tial feature of sharing CNN weights among the clients, rather
than the training data, makes the proposed approach secure.

TABLE IV
COMPARISON OF PROPOSED APPROACH WITH [32], [34], AND [35]

Furthermore, none of the existing methods handle non-IID data
for inertia estimation. The overall comparison of the proposed
approach against existing methods in [32], [34], and [35] is given
in Table IV.

VI. CONCLUSION

In this article, the inertia constant was estimated in a multi-
area power system using a federated averaging algorithm. The
simulation was conducted and verified for two neural network
architectures—MLP and CNN. The frequency snapshots were
collected at the PLL of each ESS client using nonintrusive
excitation signals. It was found that MLP takes a greater number
of communication rounds compared to CNN to get a similar
level of accuracy. Furthermore, the framework was verified to
perform well for both IID and non-IID data with significant
accuracy, which is important in the field of power systems that
contains highly non-IID data. Both the MLP and CNN-based
inertia estimators showed good performance even with noisy
input samples. It was also verified that the number of commu-
nication rounds between the ESS clients and the server can be
drastically reduced by increasing the number of local epochs,
E at each of the clients. The number of communication round
reduced drastically when using a CNN model with higher num-
ber of local epochs as compared to the MLP model. Traditional
data-driven estimation methods are increasingly unsuitable for
modern power grids inundated with Big Data of non-IID nature.
Hence, the ability of FL can be leveraged to perform estimation
tasks in such environment without collecting the data from
decentralized locations. This tool can be highly useful in areas
that traditionally involve data collection from multiple areas,
such as energy demand prediction. A potential direction for
future research is to estimate the unknown inertia in the system
considering its time-varying characteristics. The current work
focused mostly on the decentralized method for data-driven
inertia estimation, without considering any time-varying nature
of inertia. However, the problem can also be formulated as a
time-series problem and can be integrated with the proposed
decentralized strategy.
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