
algorithms

Article

MultiAspect Graphs: Algebraic Representation
and Algorithms

Klaus Wehmuth 1,*, Éric Fleury 2 and Artur Ziviani 1,*
1 National Laboratory for Scientific Computing (LNCC), Av. Getúlio Vargas 333, 25651-075 Petrópolis, Brazil
2 Institut national de recherche en informatique et en automatique (INRIA), Centre national de la recherche

scientifique (CNRS), Université de Lyon, École normale supérieure de Lyon, UCB Lyon 1, LIP UMR 5668,
F-69342, 46, Alleé d’Italie, 69364 Lyon, France; eric.fleury@ens-lyon.fr

* Correspondence: klaus@lncc.br (K.W.); ziviani@lncc.br (A.Z.); Tel.: +55-24-2233-6199 (A.Z.)

Academic Editor: Natarajan Meghanathan
Received: 25 September 2016; Accepted: 19 December 2016; Published: 25 December 2016

Abstract: We present the algebraic representation and basic algorithms for MultiAspect
Graphs (MAGs). A MAG is a structure capable of representing multilayer and time-varying networks,
as well as higher-order networks, while also having the property of being isomorphic to a directed
graph. In particular, we show that, as a consequence of the properties associated with the MAG
structure, a MAG can be represented in matrix form. Moreover, we also show that any possible MAG
function (algorithm) can be obtained from this matrix-based representation. This is an important
theoretical result since it paves the way for adapting well-known graph algorithms for application in
MAGs. We present a set of basic MAG algorithms, constructed from well-known graph algorithms,
such as degree computing, Breadth First Search (BFS), and Depth First Search (DFS). These algorithms
adapted to the MAG context can be used as primitives for building other more sophisticated MAG
algorithms. Therefore, such examples can be seen as guidelines on how to properly derive MAG
algorithms from basic algorithms on directed graphs. We also make available Python implementations
of all the algorithms presented in this paper.

Keywords: complex network; multilayer network; time-varying network; high order network;
graph algorithms

1. Introduction

Graph theory finds many applications in the representation and analysis of complex networked
systems [1–3]. In most cases, the utility of the graph abstraction comes from its inherent ability to
represent binary transitive relations (i.e., transitive relations between two objects), which due to the
transitivity property gives raise to key concepts, such as walks, paths, and connectivity. This graph
conceptual framework allowed the emergence of basic algorithms, such as Breadth First Search (BFS)
and Depth First Search (DFS) [4,5]. These basic graph algorithms, in their turn, allow the development
of more sophisticated algorithms for the analysis of specific properties of complex networks, such as
algorithms for computing some shortest-path-based network centralities or algorithms for analyzing
network robustness [6–9]. Additionally, these basic graph algorithms also allow the analysis of dynamic
processes in complex networks, such as network generative processes or information diffusion [10–13].
Moreover, several generalizations of the basic graph concept have been proposed for modelling
complex systems that can be represented by layers of distinct networks [14,15] and also complex
systems in which the network itself evolves with time [16,17].

In our previous work [18], we formalize the MultiAspect Graph (MAG) structure, while also
stating and proving its main properties. The adopted adjacency concept in MAGs is similar to the one
found in simple directed graphs, where the adjacency is expressed between two vertices, leading to

Algorithms 2017, 10, 1; doi:10.3390/a10010001 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://www.mdpi.com/journal/algorithms

Algorithms 2017, 10, 1 2 of 36

a structure in which an edge represents a binary relation between two composite objects. Moreover,
in [18], we show that MAGs are closely related to simple directed graphs, as we prove that each MAG
has a simple directed graph, which is isomorphic to it. This isomorphism relation between MAGs
and directed graphs is a consequence of the fact that both MAGs and directed graphs share a similar
adjacency relation.

MAGs find application in the representation and analysis of dynamic complex networks, such as
multilayer or time-varying networks; or even networks that are both multilayer and time-varying as
well as higher-order networks [19,20]. Examples of such networks include face-to-face in-person contact
networks [21], mobile phone networks [22,23], gene regulatory networks [24], urban transportation
networks [25], brain networks [26,27], social networks [28], among many others. In particular, we have
previously applied the MAG abstraction from [18] to different purposes, such as modeling time-varying
graphs [29], studying time centrality in dynamic complex networks [30], and investigating social
events based on mobile phone networks [31]. To illustrate the MAG concept in more details in
this paper, we present in Section 3 an example of modeling a simple illustrative multimodal urban
transportation network.

In this paper, we build upon the basic MAG properties presented in [18] and show that MAGs
can be represented by matrices in a form similar to those used for simple directed graphs (i.e., those
with no multiple edges). Moreover, we here show that any algorithm (function) on a MAG can be
obtained from its matrix representation. We then present the most common matrix representations
that can be applied to MAGs, although we do not detail all the properties of these matrices, since they
are well established in the literature [5,32]. Further, we introduce in detail the construction of
MAG algorithms for computing degree, BFS, and DFS to exemplify how MAG algorithms can be
derived from traditional graph algorithms, thus providing an illustrative guideline for developing
other more sophisticated MAG algorithms in a similar way. Given that a MAG is isomorphic to
a directed graph as shown in [18], the algebraic representation and algorithms for MAGs discussed
in this paper closely resemble those for directed graphs. This isomorphism between MAGs and
directed graphs constitutes an important theoretical result from [18] that paves the way for adapting
well-known graph algorithms for application in MAGs, thus easing the effort to develop the analysis
and application of MAGs for modelling complex networked systems, as we discuss in this paper.
Therefore, the particular contribution of this paper is to discuss and to show how to build algebraic
representations and algorithms for the MAG abstraction (topics that are not covered in the original
MAG paper), bringing theoretical results related to these contributions. As a further contribution,
we also make available Python implementations of all the algorithms presented in this paper at the
following URL: http://github.com/wehmuthklaus/MAG_Algorithms.

This paper is organized as follows. Section 2 briefly presents the basic MAG definitions and
properties derived from [18] in order to allow enough background of the current paper. Section 2 also
presents illustrative examples of MAGs and its adjacency notion. Section 3 shows the representation of
MAGs by means of algebraic structures, such as matrices. Emphasis is given to matrix representations,
which are derived from the isomorphism relation between MAGs and simple directed graphs.
In particular, we also introduce in Section 3.1 the companion tuple, which is a complement to the
MAG matrix representations. In Section 4, we present basic MAG algorithms which are derived
from well-known simple graph algorithms. Further, in Section 4.2, we show that any algorithm
(function) that can be defined for a MAG can be also obtained from its adjacency matrix and companion
tuple, establishing the theoretical basis for deriving MAG algorithms from well-known simple graph
algorithms. Finally, Section 5 presents our final remarks and perspectives for future work.

2. MultiAspect Graph (MAG)

In this section, we present a formal definition of a MAG, as well as some key properties, which
are formally stated and proved in [18].

http://github.com/wehmuthklaus/MAG_Algorithms

Algorithms 2017, 10, 1 3 of 36

2.1. MAG Definition

We define a MAG as H “ pA, Eq, where E is a set of edges and A is a finite list of aspects.
Each aspect ϕ P A is a finite set, and the number of aspects p “ |A| is called the order of H.
Each edge e P E is a tuple with 2ˆ p elements. All edges are constructed so that they are of the
form pa1, . . . , ap, b1, . . . , bpq, where a1, b1 are elements of the first aspect of H, a2, b2 are elements of
the second aspect of H, and so on, until ap, bp which are elements of the p-th aspect of H. Note that
the ordered tuple that represents each MAG edge is constructed so that their elements are divided
into two distinct groups, each having exactly one element of each aspect, in the same sequence as the
aspects are defined on the list A.

As a matter of notation, we say that ApHq is the aspect list of H and EpHq is the edge set of H.
Further, ApHqrns is the n-th aspect in ApHq, |ApHqrns| “ τn is the number of elements in ApHqrns,
and p “ |ApHq| is the order of H.

In addition to the former definition, we define the following two sets constructed from the
cartesian products of aspects of an order p MAG:

VpHq “
p

ą

n“1

ApHqrns, (1)

the cartesian product of all the aspects of the MAG H, and

EpHq “
2p
ą

n“1

ApHqrpn´ 1qpmod pq ` 1s, (2)

which is the set of all possible edges in the MAG H, so that EpHq Ď EpHq.
We call u P VpHq a composite vertex of MAG H. As a matter of notation, a composite vertex

is always represented as a bold lowercase letter, as in u, for instance. From the properties stated
for the MAG edge in our definition, it follows that an MAG edge is closely related to an ordered
pair of composite vertices. For any given MAG H, every MAG edge e P EpHq has the form
pa1, . . . , ap, b1, . . . , bpq, so that pa1, . . . , apq P VpHq and pb1, . . . , bpq P VpHq are composite vertices
of this given MAG H. From this, we can define two functions

πo : EpHq Ñ VpHq
e “ pa1, a2, . . . , ap, b1, b2, . . . , bpq ÞÑ pa1, a2, . . . , apq “ u,

(3)

and
πd : EpHq Ñ VpHq

e “ pa1, a2, . . . , ap, b1, b2, . . . , bpq ÞÑ pb1, b2, . . . , bpq “ v.
(4)

We call πopeq the origin composite vertex of e and πdpeq the destination composite vertex of e.
Moreover, we can define the function

ψ : EpHq Ñ VpHq
Ś

VpHq
e ÞÑ pπopeq, πdpeqq “ ppa1, . . . , apq, pb1, . . . , bpqq “ pu, vq,

(5)

from which we can construct a directed graph GH “ pVpHq, ψpEpHqq. In [18], we demonstrate that
the directed graph GH “ pVpHq, ψpEpHqq is isomorphic to the MAG H from which it was originated.
At this point, we can therefore define the function

g : pApHq, EpHqq Ñ pVpHq,VpHq
Ś

VpHqq
H ÞÑ pVpHq, ψpEpHqq,

(6)

Algorithms 2017, 10, 1 4 of 36

which maps every MAG H to its isomorphic directed graph gpHq. Further, we define the set of functions

πi : VpHq Ñ ApHqris

pa1, a2, . . . , apq ÞÑ ai,
(7)

which extracts the n-th element of a composite vertex tuple.

2.2. MAG Sub-Determination

The sub-determination is a generalization of the aggregation concept applied to multilayer
or time-varying graphs, in which all layers can be aggregated, resulting in a traditional graph.
Since a MAG can have more than two aspects, the sub-determination can be done in more ways
than the aggregation.

A given MAG H of order p, can be sub-determined in 2p ´ 2 ways. For each of these 2p ´ 2 ways,
we have a list ACpHq Ă ApHq of the aspects used to determine an equivalence class. Note that in
a MAG of order p “ 1 (i.e., a traditional graph), a vertex can not be sub-determined, since 2p ´ 2 “ 0.

2.2.1. Sub-Determined Composite Vertices

Let ζ, with 1 ď ζ ď 2p´ 2, be an index for one of the possible ways to construct a proper nonempty
sublist of aspects. From this, we can define a canonical representation of the sub-determination directly
defined by ζ. For any given ζ, we consider the p-bit binary expansion of ζ that is used as an indicator
showing which aspects of the original MAG are present on the sub-determination. More specifically,
the least significant bit indicates the presence or absence of the first aspect and the most significant bit
indicates the presence or absence of the last aspect. By this convention, in a MAG with p “ 3 aspects,
we have that ζ “ 0012 corresponds to the sub-determination where only the first aspect is present,
ζ “ 0102 corresponds to the sub-determination where only the second aspect is present, ζ “ 1012

corresponds to the sub-determination where both the first and the third aspects are present, and so on.
By using this convention, we can directly associate a given ζ to its corresponding aspect sublist.

Therefore, for each ζ, we have a unique sublist AζpHq of aspects, such that pζ “ |AζpHq| is the
order of the sub-determination ζ. We now define the set

VζpHq “
pζ
ą

n“1

AζpHqrns, (8)

where VζpHq is the cartesian product of all the aspects in the sublist AζpHq of aspects, according to the
index ζ. We call uζ P VζpHq a sub-determined vertex, according to the sub-determination ζ.

We can now define the function

Sζ : VpHq Ñ VζpHq

pa1, a2, . . . , apq ÞÑ paζ1 , aζ2 , . . . , aζmq,
(9)

where m “ pζ . Sζ maps a composite vertex u P VpHq to the corresponding sub-determined composite
vertex uζ P VζpHq, according to the sub-determination ζ. As paζ1 , aζ2 , . . . , aζmq P VζpHq, it follows
that aζ1 P AζpHqr1s, . . . , aζm P AζpHqrms. From the definition, it can be seen that the function Sζ is not
injective. Hence, the function Sζ for a given sub-determination can be used to define a equivalence
relation ”ζ in VpHq, where for any given composite vertices u, v P VpHq, we have that u ”ζ v if and
only if Sζpuq “ Sζpvq.

Algorithms 2017, 10, 1 5 of 36

2.2.2. Sub-Determined Edges

From the sub-determination ζ of order pζ , we can also construct the set

EζpHq “
2ˆpζ
ą

n“1

AζpHqrpn´ 1qpmod pζq ` 1s, (10)

where pζ “ |AζpHq| is the order of the sub-determination ζ, and EζpHq is the set of all possible
sub-determined edges according to ζ. We then define the function

Eζ : EpHq Ñ EζpHq

pa1, a2, . . . , ap, b1, b2, . . . , bpq ÞÑ paζ1 , aζ2 , . . . , aζm , bζ1 , bζ2 , . . . , bζmq,
(11)

where m “ pζ and aζ1 , bζ1 P AζpHqr1s, aζ2 , 2ζ2 P AζpHqr2s, . . . , aζm , bζm P AζpHqrms. This function takes
an edge to its sub-determined form according to ζ in a similar way as defined above for composite
vertices. In general, the function Eζ is not injective. Consider two distinct edges e1, e2 P EpHq, such that
e1 and e2 differ only in aspects which are not in AζpHq. Since Eζp¨q only contains values for aspects
present in AζpHq, it follows that Eζpe1q “ Eζpe2q, and therefore Eζ is not injective. Further, consider
an edge e P EpHq and its sub-determined edge eζ “ Eζpeq, such that πopeζq “ πdpeζq, i.e., eζ is
a self-loop. Since self-loops are not allowed to be present on a MAG, it follows that eζ R EζpEpHqq.
As consequence, we have that |EζpEpHqq| ď |EpHq|.

2.2.3. Sub-Determined MAGs

For a given sub-determination ζ we have the sublist AζpHq of considered aspects and also the
sub-determined edges obtained from ζ. Based on them, we can now obtain a sub-determined MAG.
For a given sub-determination ζ we define the function

Mζ : pApHq, EpHqq Ñ pAζpHq,EζpHqq

H ÞÑ pAζpHq, EζpEpHqqq.
(12)

Since AζpHq is the sublist of aspects of H prescribed by ζ and EζpEpHqq is the set of all
sub-determined edges according to the sub-determination ζ, it follows that pAζpHq, EζpEpHqqq is
a MAG obtained from H according to the sub-determination ζ. As |AζpHq| ă |ApHq|, it follows that
the order of MζpHq is lower than the order of H. Further, since self-loops may be created by edge
sub-determination and discarded, and also since Eζ is not injective, it follows that |EζpEpHqq| ď |EpHq|.

2.3. MAG Adjacency

Two composite vertices are considered adjacent if they share the same MAG edge, i.e., given
two composite vertices u, v P VpHq are adjacent if and only if there is a MAG edge e P EpHq such that
u, v P tπopeq, πdpequ. Similarly, two MAG edges are considered adjacent if and only if they share a same
composite vertex, i.e., two given edges e1, e2 P EpHq are adjacent if and only if there is a composite
vertex u P VpHq such that u P tπope1q, πdpe1qu and u P tπope2q, πdpe2qu.

Figure 1 shows an illustrative example of three MAG edges. The figure depicts a four aspects
MAG, where each set of colored circles represents one aspect, and each edge has two elements of
each aspect.

The isolated edge pA1, A2, A3, A4, C1, C2, C3, C4q on the leftmost side of Figure 1
exemplifies the composite vertex adjacency concept. In this case the composite vertices
pA1, A2, A3, A4q and pC1, C2, C3, C4q are adjacent. The two edges pE1, E2, E3, E4, H1, H2, H3, H4q
and pH1, H2, H3, H4, K1, K2, K3, K4q exemplify a case of edge adjacency. Since the composite vertex
pH1, H2, H3, H4q is shared by both edges, they are adjacent.

Algorithms 2017, 10, 1 6 of 36

Figure 1. Illustrative example of three MultiAspect Graphs (MAG) edges.

Although the structure of a MAG edge is similar to an even uniform hypergraph edge,
the adjacency definition used on MAGs is not the usual one adopted on hypergraphs. The adjacency
concept found on a MAG is close to the one associated with traditional directed graphs, where a MAG
edge can be seen as a relation between two composite vertices, which are composite objects constructed
from aspect elements. Therefore, a MAG edge expresses a relationship between two (composite)
objects in the same way as a directed graph edge. This concept leads to the isomorphism between
MAGs and directed graphs, as well as the close relation between walks, trails, and paths on MAGs
and directed graphs.

2.4. MAG Isomorphism

Before formally defining the MAG isomorphism, it is necessary to define the concept an aspect
list bijection. Given two MAGs H and K, both with p aspects, an aspect list bijection F : ApHq Ñ ApKq
is defined as a set of p bijective functions, f1, f2, . . . , fp, such that each aspect of the MAG H is the
domain of exactly one of these functions and each aspect of MAG K is the codomain of exactly one of
these functions. It follows from this definition that given a composite vertex u P VpHq, the aspect list
bijection F takes u to a composite vertex Fpuq P VpKq.

Two MAGs of order p, H and K, are isomorphic if there is an aspect list bijection F : ApHq Ñ ApKq
such that an edge e P EpHq if and only if the edge pFpπopeqq, Fpπdpeqqq P EpKq.

2.5. MAG Walks, Trails, and Paths

There is a close relation between walks, trails, and paths on a MAG and their counterparts in the
isomorphic directed graph gpHq.

A walk on a MAG H is defined as an alternating sequence W “ ru1, e1, u2, e2, u3,
. . . , uk´1, ek´1, uks of composite vertices un P VpHq and edges em P EpHq, such that un “ πopenq

and un`1 “ πdpenq for 1 ď n ă k. It follows from this definition that in a walk, consecutive composite
vertices as well as consecutive MAG edges are adjacent.

We show in [18] that an alternating sequence W of composite vertices and edges in a MAG H is
a walk on H if and only if there is a corresponding walk GW in the composite vertices representation
of H. This means that a walk on a MAG H has a isomorphic walk on the directed graph gpHq.
Since trails and paths also are walks, we also show that the same isomorphism concept extends to
them as well.

Algorithms 2017, 10, 1 7 of 36

Figure 1 can also exemplify a MAG path. The two edges pE1, E2, E3, E4, H1, H2, H3, H4q
and pH1, H2, H3, H4, K1, K2, K3, K4q can also be seen as part of the alternating sequence
P “ pE1, E2, E3, E4q, pE1, E2, E3, E4, H1, H2, H3, H4q, pH1, H2, H3, H4q, pH1, H2, H3, H4, K1, K2, K3, K4q,
pK1, K2, K3, K4q, which characterizes a two-hops path from the composite vertex pE1, E2, E3, E4q to the
composite vertex pK1, K2, K3, K4q.

From the concept that walks, trails, and paths on a MAG have a isomorphism relation to their
counterparts on the directed graph gpHq, it follows that analysis and algorithms based on walks, trails,
and paths can be formulated on the directed graph gpHq. These properties will be extensively used in
the current work.

3. Algebraic Representation

In this section, we discuss ways to represent MAGs [18] by means of algebraic structures. As a
consequence to the isomorphism between MAGs and traditional directed graphs, it is straightforward
to construct matrix-based representations of MAGs. This section addresses these representations, using
the MAG depicted in Figure 2 as an illustrative example.

Figure 2. Illustrative MAG T of a hypothetical simple urban transit system.

Figure 2 shows an illustrative example of a three aspect MAG T. It can be seen as a
representation of a time-varying multilayer network, showing a hypothetical simple urban transit
system. More specifically, Figure 2 depicts the MAG T in its composite vertices representation, gpTq,
which is the directed graph defined in Expression (6).

Aligned with this view, the aspects of MAG T can be interpreted in the following way: The first
aspect represents three distinct locations, labeled 1, 2 and 3. Specifically, location 1 represents a
subway station, location 2 a subway station with a bus stop, and location 3 a bus stop. The second
aspect represents two distinct urban transit modes depicted as layers, namely Bus and Subway. Finally,
the third aspect represents three time instants. The MAG edges can be seen with the following meaning:
Location 1 has no edges on the bus transit mode, since it is a subway station. Similarly, location 3 has
no edges on the subway mode, since it is a bus stop. The eight black edges represent bus and subway
trips between locations. As a simplification all trips are assumed to have the same duration. The red
(dotted) edges represent the possibility of staying at a bus stop or subway station and not taking
a transit. The six blue (dashed) edges show that it is possible to change between bus and subway
layers at all times at location 2. As a simplification, the connection between the bus and subway layers
is assumed to take no time. We recognize that the decision of making these edges with 0 time length

Algorithms 2017, 10, 1 8 of 36

generates cycles of length 0 in instances of location 2. In real network analysis, 0 length cycles (and also
negative length cycles) can cause problems. However, we choose to let these cycles present in this toy
example since they will cause no harm for the analysis conducted in this thesis, and also, they make
the toy example more compact and readable. Further, we remark that if desired, these 0 length cycles
could be broken by adding new composite vertices, or by making the subway/bus transition to have
the same length as a subway/bus trip.

In this model, walks represent the ways the urban transit system can be used to travel from
one location to another. For instance, starting at location 1 on the subway layer at time t1, it is possible
to reach location 3 on the bus layer at time t3. It can be done by taking a subway trip to location 2 at
time t2, switching from subway to bus layer at location 2, time t2 and finally taking a bus trip from
location 2 bus layer arriving at location 3 on the bus layer at time t3.

The presence of unconnected occurrences of location 1 at bus layer and location 3 at subway layer
can be viewed as artefacts of the MAG construction. We call these vertices trivial components of the
MAG. This subject will be further addressed in this section.

3.1. Companion Tuple

Although we show that every MAG H is isomorphic to a directed graph designated gpHq, it is
important to note that the set of vertices of this graph is VpHq, as shown in Expression (6). Since the
set VpHq is the cartesian product of all the aspects in the MAG H, it is possible to reconstruct the
MAG’s aspect list from VpHq, which is a step necessary to obtain the MAG H from the directed graph
gpHq. When the vertices of the directed graph G associated with a given MAG H are not the composite
vertices themselves, it is necessary to provide a mechanism to link each vertex of the directed graph
to its corresponding composite vertex on the MAG. This mechanism can be, for instance, a bijective
function between VpHq and VpGq.

In the current work, we construct representations for gpHq, such as matrices, which do not directly
carry the tuples that characterize the MAG’s composite vertices. In this kind of representation, a vertex
is associated with a row or column of a matrix. Therefore, additional information has to be provided
to properly link each row (column) of a matrix to its corresponding composite vertex on the MAG
represented by this matrix. This is done by a bijective function D, defined in Section 3.2, where D takes
a composite vertex to a natural number, which is the row (column) number in the matrix.

The implementation of D presented in this work is based on the concept of a companion tuple, which
complements the matrix representation of a given MAG. For a MAG H with p aspects, its companion
tuple has the form p|ApHqr1s|, |ApHqr2s|, . . . , |ApHqrps|q, so that the number of elements on it equals
the order of H and each element represents the number of elements of an aspect of H. As a matter of
notation, we represent the companion tuple of a given MAG H as

τpHq “ p|ApHqr1s|, |ApHqr2s|, . . . , |ApHqrps|q, (13)

where p is the order of H. When there is no ambiguity in relation to which MAG we are referring to,
we may use the notation τ instead of τpHq. For instance, the companion tuple of the MAG T shown
in Figure 2 is τpTq “ p3, 2, 3q, since T has 3 aspects, of which the first has 3 elements, the second 2
elements, and the third 3 elements.

Algorithm 1 shows the building of the companion tuple for a given MAG H. Assuming that the
size of the aspect list ApHq and the size of each of the aspect sets contained in ApHq are known from
the computational representation of ApHq, the time complexity for building the companion tuple is
Oppq, where p is the number of aspects on MAG H. If, however, these sizes are unknown, then the
time complexity is Opsq, where s “

řp
i“1 |ApHqris|, since each element of each aspect has to be counted.

We remark that, in either case, the time complexity for building the companion tuple is less than
OpVpHqq, which is the cardinality of the set of composite vertices of the MAG.

Algorithms 2017, 10, 1 9 of 36

Algorithm 1: Construction of the companion tuple of a MAG.
input : ApHq
output : τpHq

1 CompTuple(ApHq)
2 p Ð |ApHq| // number of aspects in the MAG
3 for i Ð 1 to p do
4 Tris Ð |ApHqris| // number of elements in i-th aspect
5 end
6 return T

For a given MAG H and a sub-determination ζ, we also define the sub-determined companion
tuple τζpHq, which is obtained by multiplying each entry of the original companion tuple by the
equivalent entry of the tuple representation of ζ, as shown in Algorithm 2. The sub-determined
companion tuple has the same value as the original companion tuple for the aspects that have value 1
in ζ and 0 otherwise.

Algorithm 2: Construction of sub-determined companion tuple.
input : τpHq, ζ

output : τζpHq
1 SubCompTuple(τpHq, ζ)
2 p Ð |τpHq| // number of aspects in the MAG
3 for i Ð 1 to p do
4 Tζris Ð τpHqris ˚ ζris
5 end
6 return Tζ

3.2. Ordering of Composite Vertices and Aspects

In general, the sequence in which the composite vertices and aspects are organized on a MAG
is not relevant. That is, changing the sequence in which the aspects or their elements are presented
does not affect the result of any algorithm or analysis performed on a MAG, since the MAG obtained
by such changes is isomorphic to the original one. The definition of the MAG isomorphism adopted
in this work can be found in Section 2.4. However, to show the MAG’s algebraic representation in
a consistent way, it is necessary to link the MAG’s composite vertices to rows and columns of matrices,
which is achieved by the bijective function D, defined in this section at Equation (15). We now show
the preliminary steps necessary for the definition of function D, as implemented in this work.

The aspect sequence is adopted as the same in which the aspects are placed on the MAG’s
companion tuple. For the ordering of composite vertices, we define the numerical representation of
each composite vertex from its tuple. To obtain the composite vertex numerical representation, we first
translate the composite vertex into a numerical tuple. This is done by applying a family of indices,
one for each aspect on the composite vertex, where for every aspect i the corresponding index ranges
from 0 to τi ´ 1, where τi is the number of elements on the i-th aspect of the MAG. Since this is a simple
index substitution, we do not use a distinct notation for the composite vertex on its numerical tuple
form. We, however, reserve the notation uris to express the i-th element of the composite vertex on its
numerical form.

Algorithms 2017, 10, 1 10 of 36

To calculate the numerical representation of a composite vertex, we define the weight of each
position on the composite vertex tuple of a MAG H with p aspects as

Wpi, τq “

#

1 if i “ 1,
śi´1

j“1 τj otherwise,
(14)

where i is the position in the tuple varying from 1 to p, τ is the MAG’s companion tuple, and τj
is the j-th element of the MAG’s companion tuple. Note that |τ| “ p meaning that the length of
the companion tuple is the order of the MAG, i.e., the number of its aspects. Finally, we define the
composite vertex numerical representation as

Dpu, τq “ 1`
|τ|
ÿ

i“1

Wpi, τq ˆ uris, (15)

where |τ| “ p is the MAG’s order, and vris is the i-th component of the composite vertex. Figure 3
shows the MAG T with its composite vertices, and their numerical representations ranging from (1)
to (18). To illustrate how the numerical representations are obtained, we show examples based on the
MAG T.

Figure 3. MAG T with composite vertices numerical representations.

For this representation, we adopt aspect indices such that for aspect 1 we have Idxp1q “ 0, Idxp2q “ 1
and Idxp3q “ 2. For aspect 2, we have IdxpBusq “ 0 and IdxpSubwayq “ 1, while for aspect 3,
Idxpt1q “ 0, Idxpt2q “ 1 and Idxpt3q “ 2. Since the companion tuple of MAG T is τpTq “ p3, 2, 3q “ τ,
the weights are Wp1, τq “ 1, Wp2, τq “ τ1 “ 3 and Wp3, τq “ τ1 ˆ τ2 “ 6. Therefore, the composite
vertex v “ p1, Bus, t1q has numerical representation Dpv, τq “ 1` 1ˆ 0` 3ˆ 0` 6ˆ 0 “ 1, while
Dpp2, Subway, t2q, τq “ 1` 1ˆ 1` 3ˆ 1` 6ˆ 1 “ 11 and Dpp2, Bus, t3q, τq “ 1` 1ˆ 1` 3ˆ 0` 6ˆ 2 “ 14.

Algorithm 3 determines the numerical representation of a composite vertex v represented by its
numerical tuple. The presented implementation extends the concepts presented in Equations (14)
and (15), so that this algorithm can also be used to determine the numerical representation of
sub-determined composite vertices. To determine the numerical representation of a sub-determined
vertex, function D shown in Algorithm 3 receives the full composite vertex tuple (not sub-determined)
and the sub-determined companion tuple. The if seen at line 7 of Algorithm 3 makes that the 0 entries
found in a sub-determined companion tuple are discarded for the construction of the sub-determined

Algorithms 2017, 10, 1 11 of 36

numerical representation of the composite vertex. The time complexity for this algorithm is Oppq,
where p is the number of aspects on the MAG in question.

Algorithm 3: Determination of the numerical representation of a composite vertex.
input : v, τpHq
output : d

1 // v is the numerical tuple of the composite vertex
2 D(v, τpHq)
3 p Ð |τpHq| // number of aspects in the MAG
4 d Ð 0
5 w Ð 1
6 for i Ð 1 to p do
7 if τpHqris ‰ 0 then
8 d Ð d`pvris ˚wq
9 w Ð w ˚ τpHqris

10 end
11 end
12 return d

Given the numerical representation of any composite vertex, it is possible to reconstruct its tuple.
To do this, we calculate the numerical value of the index of each element on the tuple, as

Npd, i, τq “ tppd´ 1q mod Wpi` 1, τqq {Wpi, τqu, (16)

where d is the composite numerical representation, i is the position of the composite vertex tuple to be
calculated, τ is the MAG’s companion tuple, mod is the modulus (division remainder) operation and
txu is the floor operator, which for any x P R corresponds to the largest integer i P Z such that i ď x.
Note that for calculating Npd, p, τq for a MAG with p aspects, it is necessary to calculate Wpp` 1, τq.
Considering the definition of W from Equation (14), it follows that Wpp` 1, τq “

śp
j“1 “ |VpHq|,

the number of composite vertices on the MAG.
For instance, taking the composite vertex with numerical representation 14 of the MAG T,

we have that

Np14, 1, p3, 2, 3qq “ tpp14´ 1q mod 3q{1u “ t1{1u “ 1

Np14, 2, p3, 2, 3qq “ tpp14´ 1q mod 6q{3u “ t1{3u “ 0

Np14, 3, p3, 2, 3qq “ tpp14´ 1q mod 18q{6u “ t13{6u “ 2.

We can therefore define the inverse of function D as

D´1pd, τq “ pNpd, 1, τq, Npd, 2, τq, . . . , Npd, |τ|, τqq, (17)

which reconstructs the composite vertex tuple in its numerical form. From this, we can see that,
for instance, D´1p14, p3, 2, 3qq “ p1, 0, 2q, which corresponds to the composite vertex p2, Bus, t3q.
Algorithm 4 shows the implementation of D´1.

The relation between the composite vertex numerical representation and its tuple can also be
seen as a consequence of the natural isomorphism between the MAG H and its composite vertices
representation, gpHq. The role of this relation will become clear in Sections 3.4 and 3.5, where the
matrix forms of the MAG are presented.

Algorithms 2017, 10, 1 12 of 36

Algorithm 4: Determination of the composite vertex from its numerical representation.
input : d, τpHq
output : v

1 // v is the numerical tuple of the composite vertex
2 InvD(d, τpHq)
3 p Ð |τpHq| // number of aspects in the MAG
4 wr1s Ð 1
5 wl Ð 1
6 for i Ð 1 to p do
7 if τpHqris ‰ 0 then
8 wri` 1s Ð wris ˚ τpHqris
9 wl Ð wl` 1

10 end
11 end
12 for i Ð 1 to wl do
13 vris Ð pd Mod wri` 1sq{wris
14 end
15 return v

3.3. Elimination of Trivial Components

In the MAG T shown in Figure 3 the composite vertices of numerical representation p1q, p6q, p7q,
p12q, p13q, and p18q are trivial components (i.e., unconnected composite vertices). They are created in
consequence of the regularity needed on the MAG H to build the set VpHq. This type of padding is not
necessary in a directed graph and its algebraic representation. Therefore, it is possible to remove the
trivial components from the composite vertices representation and its associated matrices. However,
it is important to bear in mind that the graph resulting from this transformation may no longer be
isomorphic to the MAG and neither are the matrices associated with it. The only case in which the
isomorphism is preserved is when there are no trivial components on the MAG and nothing is removed.
Nevertheless, this kind of transformation can be helpful for application, by reducing the number of
composite vertices present on the graph and so simplifying its construction and manipulation.

The same sort of padding is discussed in [15], where authors suggest that this padding may cause
problems in the computing of some metrics, such as mean degree or clustering coefficients, unless one
accounts for the padding scheme in an appropriate way. In this subsection, we show that the padding
with the trivial components may be eliminated, if desired. Anyway, if needed, it suffices to be cautious
in computing the metrics of interest on MAGs by considering the existence of the padding scheme,
as suggested by [15]. In particular, the MAG algorithms we discuss in Section 4 remain unaffected by
this padding issue.

For a given MAG H, we define its main components graph mpHq as the MAG’s composite vertices
representation with all its trivial components removed. Figure 4 shows the main components graph
mpTq for the MAG T. It is worth noting that numerical representations are not defined for mpTq.

This can be achieved algebraically for any MAG H with the help of a matrix RpHq constructed
from the identity I P Rnˆn, where n “ |VpHq| is the number of composite vertices on the MAG.
The matrix RpHq is obtained from this nˆ n identity by removing the columns which match the
numerical representations of the trivial components of the MAG. Therefore, assuming that the MAG H
has r trivial components, the matrix RpHq P Rnˆn´r has n rows and n´ r columns. In particular, in the
cases where the MAG H has no trivial components, we have that RpHq “ I P Rnˆn.

Algorithms 2017, 10, 1 13 of 36

Figure 4. mpTq of the example MAG T.

It is also worth noting that the matrix ImpHq “ RpHq RpHqT P Rnˆn is a matrix akin to the identity
I P Rnˆn, but the diagonal entries corresponding to the trivial components (removed in RpHq) have
value 0. Therefore, multiplying a nˆ n matrix by ImpHq to the left has the effect of turning all entries
on the rows corresponding to the trivial components to 0 s. Similarly, multiplying by ImpHq to the
right has the effect of turning the entries of the columns corresponding to the trivial elements to 0 s.

As an example, we show the matrix RpTq P R18ˆ12,

RpTq “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (18)

which is obtained from the 18ˆ 18 identity matrix by removing the columns 1, 6, 7, 12, 13, and 18 that
correspond to the trivial components of the MAG T.

The algebraic form of the elimination of the trivial components is presented in Equation (22) in
Section 3.4, after the required definition of adjacency matrix.

3.4. Adjacency Matrix

As a direct consequence of the isomorphism between MAGs and traditional directed graphs, it is
expected that a MAG can be represented in matrix form. In fact, such representations can be achieved
directly by the composite vertices representation of MAGs, presented in Section 2.1. Since for any given
MAG H its composite vertices representation is a traditional directed graph, it can be represented in
matrix form.

Algorithms 2017, 10, 1 14 of 36

One of such representations is the MAG’s adjacency matrix. This matrix is obtained from the
MAG’s composite vertices representation, gpHq, and its companion tuple τpHq. In fact, the MAG’s
adjacency matrix is the adjacency matrix of the composite vertices representation, where the sequence
of the rows and columns is given by the numerical representation of the composite vertices of gpHq.

Since the set VpHq of composite vertices of a given MAG H is obtained by the cartesian product
of all aspects of the MAG (as shown in Expression (1)), it follows that the number of composite vertices
on a given MAG H with p aspects is

n “ |VpHq| “
p
ź

i“1

τi, (19)

where τi is the i-th element of the MAG’s companion tuple, i.e., the number of elements on the MAG’s
i-th aspect.

The general form of any entry of the matrix JpHq is given by

ju,v “

#

1 if pu, vq P EpgpHqq,
0 otherwise,

(20)

where pu, vq P EpgpHqq means that pu, vq is an edge on the composite vertices representation gpHq
of the MAG H, so that u, v P VpHq are composite vertices of H. It follows from the definition of
gpHq and its natural isomorphism to H, that pu, vq P EpgpHqq if and only if there is an edge e P EpHq
such that u “ πopeq and v “ πdpeq. It is important to note, however, that the notation ju,v is in fact
a shorthand for jDpu,τq,Dpv,τq, where Dpu, τq is the row number and Dpv, τq the column number of the
matrix entry. This ties the construction of the adjacency matrix of a MAG with its companion tuple,
since it is used in the determination of the numerical representation of a composite vertex (Dpu, τq).
Therefore, the adjacency matrix of any given MAG is always presented with its companion tuple.

The adjacency matrix of a given MAG H is constructed by Algorithm 5, where |VpHq| is the
number of composite vertices in H, which can be calculated using Equation (19), Dpπopeq, τq and
Dpπdpeq, τq are the numerical representation of the origin and destination composite vertices of edge
e P EpHq, respectively, as defined in Section 3.2.

Algorithm 5: Building JpHq from MAG H.
input : H “ pA, Eq
output : JpHq, τpHq

1 AdjMatrix(H)
2 n Ð |VpHq|
3 T Ð CompTuplepApHqq // companion tuple
4 JpHq Ð nˆ n matrix with all entries “ 0
5 for each e P EpHq do
6 u Ð Dpπopeq, Tq // numerical origin
7 v Ð Dpπdpeq, Tq // numerical destination
8 JpHqru, vs Ð 1
9 end

10 return JpHq, T

Considering that a sparse matrix with all entries 0 can be created in constant time, and that both
functions CompTuple and D (see Algorithms 1 and 3) have time complexity Oppq, we conclude that
Algorithm 5 has time complexity Opp ˚ |EpHq|q, where p is the number of aspects of MAG H and
|EpHq| the number of edges.

Algorithms 2017, 10, 1 15 of 36

As an example, the adjacency matrix of the MAG T is shown in Expression (21). This adjacency
matrix JpTq P R18ˆ18 has 324 entries, of which just 22 are non-zero.

JpTq “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(21)

It is important to note that the sequence of the columns and rows of JpTq is given by the numerical
representation of the composite vertices. Thus, for instance, the 1 at row 2, column 8 represents the
edge between the composite vertices with numerical representations 2 and 8, witch in turn represents
the edge p2, Bus, t1, 2, Bus, t2q of the MAG T. In this way, although JpTq is presented in matrix form,
together with the companion tuple τpTq, it fully represents the MAG T, carrying the proper adjacency
notion used to define transitive constructions, such as walks and paths on the MAG.

For an arbitrary MAG H, its main components graph mpHq is obtained by removing the MAG’s
trivial components, as stated in Section 3.3. The matrix JpmpHqq is then obtained with the use of the
matrix RpHq, presented in Section 3.3. JpmpHqq is obtained as

JpmpHqq “ RpHqT JpHq RpHq, (22)

where JpmpHqq P Rn´rˆn´r is the adjacency matrix containing only the main components of the MAG.
It is also possible to obtain the adjacency matrix JpHq from JpmpHqq. This follows from the fact

that on the adjacency matrix JpHq the rows and columns corresponding to trivial components are
already zero. Therefore,

JpHq “ ImpHq JpHq ImpHq, (23)

where ImpHq “ RpHq RpHqT . Then, we have that

RpHq JpmpHqq RpHqT “ RpHq RpHqT JpHq RpHq RpHqT

“ ImpHq JpHq ImpHq

“ JpHq.

(24)

Expression (25) shows JpmpTqq, the adjacency matrix of mpTq. This matrix is obtained from the
adjacency matrix JpTq by removing the rows and columns which represent the trivial components
of the MAG T. In this case, the trivial components are the composite vertices with numerical
representations 1, 6, 7, 12, 13, and 18. This matrix is calculated as JpmpTqq “ RpTqT JpTq RpTq, so that

Algorithms 2017, 10, 1 16 of 36

JpmpTqq “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0
1 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (25)

In general, the adjacency matrices associated with a MAG are sparse, meaning that for an nˆ n
adjacency matrix the number of non-zero entries of the matrix is of the order Opnq. Since the non-zero
entries on the MAG adjacency matrix corresponds to the edges present on the MAG, the adjacency
matrix being sparse means that the number of edges m on the MAG is of the same order of the number
of composite vertices n, i.e., m is of order Opnq. Therefore, these matrices can be stored efficiently
using sparse matrices representations, such as Compressed Sparse Column (CSC) or Compressed
Sparse Row (CSR) [33], because such representations omit all entries of value zero. Assuming that the
number of edges is larger than the number of composite vertices, these representations provide a space
complexity of Opmq for storing the MAG’s adjacency matrices. Further, they also provide efficient
matrix operations, which will be explored in the algorithms presented in Section 4.

3.5. Incidence Matrix

Given that every MAG is isomorphic to a directed graph, it follows that it can be represented by
an incidence matrix (and its companion tuple). For any given MAG H, this matrix is constructed from
the composite vertices gpHq and the companion tuple τpHq, adopting the vertex sequence induced
by the numerical representation presented in Section 3.2. The MAG’s incidence matrix CpHq P Rmˆn,
where m “ |EpHq| is the number of edges in the MAG and n “ |VpHq| is the number of composite
vertices on the MAG, is defined then as

ce,u “

$

’

&

’

%

1 if u “ πopeq,
´1 if u “ πdpeq,

0 otherwise,
(26)

where e P EpgpHqq is an edge in MAG H and u P VpHq is a composite vertex in MAG H. Here,
the notation ce,u is a shorthand for cIdpeq,Dpu,τq, where Idpeq is an numerical index for each edge and
Dpu, τq is the numerical representation of the composite vertex u. Note that the use of the composite
vertex numerical representation ties the incidence matrix to the MAG’s companion tuple.

Although the sequence of the composite vertices is defined by each composite vertex numerical
representation, the sequence used to present the MAG edges in the incidence matrix is not relevant.
The incidence matrix of a directed graph has several well-known properties [34], among which,
the property that the incidence matrix of a directed graph with k connected components has rank n´ k,
where n is the number of vertices of the graph. This property is useful for defining other matrices
based on the incidence matrix.

For a given MAG H, the incidence matrix CpHq is built by Algorithm 6, where Dpπopeq, Tq and
Dpπdpeq, Tq are the numerical representation of the origin and destination composite vertices of edge
e P EpHq, respectively, as defined in Section 3.2, and Idpeq is a unique numerical index for the edge
e P EpHq, ranging from 1 to m. Considering that a sparse matrix with all entries 0 can be created
in constant time, and that both functions CompTuple and D (see Algorithms 1 and 3) have time
complexity of Oppq, we conclude that Algorithm 6 has time complexity of Opp ˚ |EpHq|q, where p is
the number of aspects of MAG H and |EpHq| the number of edges.

Algorithms 2017, 10, 1 17 of 36

Algorithm 6: Building CpHq from MAG H.
input : H “ pA, Eq
output : CpHq, τpHq

1 IncidMatrix(H)
2 n Ð |VpHq|
3 m Ð |EpHq|
4 T Ð CompTuplepApHqq // companion tuple of H
5 CpHq Ð mˆ n matrix with all entries “ 0
6 for each e P EpHq do
7 i Ð Idpeq // index of edge e
8 u Ð Dpπopeq, Tq // numerical origin
9 v Ð Dpπdpeq, Tq // numerical destination

10 CpHqri, us Ð 1
11 CpHqri, vs Ð ´1
12 end
13 return CpHq, T

Given the incidence matrix CpHq of a MAG H, it is possible to obtain the incidence matrix
of the main components graph CpmpHqq using the matrix RpHq P Rnˆn´r defined in Section 3.4.
The incidence matrix of mpHq is given by

CpmpHqq “ CpHq RpHq. (27)

Further, given the incidence matrix of the MAG’s main components graph and the matrix RpHq,
it is possible to recover the MAG’s incidence matrix, as

CpmpHqq RpHqT “ CpHq RpHq RpHqT

“ CpHq ImpHq

“ CpHq.

(28)

This is only possible because the columns of CpHq, which are forced to 0 by the multiplication by
ImpHq, were already 0, as the composite vertices represented by them have no edges incident to them.

The incidence matrix CpTq of the example MAG T is shown in Expression (29). The vertices
(columns) sequence is determined by the vertices numerical representation, while the edge sequence
remains unconstrained. The trivial components correspond to columns 1, 6, 7, 12, 13, and 18, which
have all entries with value 0.

CpTq “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 1 0 0 ´1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 ´1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 ´1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ´1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 ´1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 ´1 0 0 1 0
0 1 0 0 0 0 0 ´1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 ´1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 ´1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 ´1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 ´1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 ´1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 ´1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 ´1 0
0 1 0 0 0 0 0 0 ´1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 ´1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 ´1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 ´1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 ´1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 ´1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 ´1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 ´1 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(29)

Algorithms 2017, 10, 1 18 of 36

The main components incidence matrix CpmpTqq is depicted in Expression (30). It is obtained
from the matrix CpTq by removing the trivial components, as shown in Expression (28).

CpmpTqq “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 0 0 ´1 0 0 0 0 0 0 0 0
´1 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 ´1 0 0 0 0
0 0 0 0 ´1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 ´1
0 0 0 0 0 0 0 0 ´1 0 0 1
1 0 0 0 ´1 0 0 0 0 0 0 0
0 1 0 0 0 ´1 0 0 0 0 0 0
0 0 1 0 0 0 ´1 0 0 0 0 0
0 0 0 1 0 0 0 ´1 0 0 0 0
0 0 0 0 1 0 0 0 ´1 0 0 0
0 0 0 0 0 1 0 0 0 ´1 0 0
0 0 0 0 0 0 1 0 0 0 ´1 0
0 0 0 0 0 0 0 1 0 0 0 ´1
1 0 0 0 0 ´1 0 0 0 0 0 0
0 1 0 0 ´1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 ´1 0 0 0 0
0 0 0 1 0 0 ´1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 ´1 0 0
0 0 0 0 0 1 0 0 ´1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 ´1
0 0 0 0 0 0 0 1 0 0 ´1 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(30)

In general, the incidence matrices related to MAGs are sparse, and therefore can be efficiently
stored using sparse matrices representations, such as CSC or CSR [33]. Assuming that the number of
edges on the MAG is larger than the number of composite vertices, the use of these representation lead
to a memory complexity of Opmq, where m “ |EpHq| is the number of edges on the MAG H.

4. MAG Algorithms

The MAG algorithms covered in this section are based on the MAG’s adjacency matrix or on its
adjacency list. Since in general we expect the adjacency matrix to be represented using sparse CSR ou
CSC formats [33], it follows, due to the structure of the CSR and CSC formats, that the adjacency matrix
and adjacency list can be seen as very closely related representations. The algorithms used in MAGs
are directly derived from the basic well-known algorithms used with directed graphs [1,5,32,33]. In this
section, we discuss algorithms for degree computation, BFS, and DFS in MAGs, since these algorithms
are well-known and fairly simple, being thus convenient for the intended didactical purpose of this
work. Furthermore, these basic algorithms also constitute building blocks for more sophisticated graph
algorithms. In this sense, the purpose of this section is not to propose new algorithms, but to show
how known algorithms may be adapted for application in MAGs. We remark that the presented BFS
and DFS algorithms follow the same implementation shown in [5].

4.1. Auxiliary Matrices and Vectors

When operating upon a matrix representation, a few auxiliary matrices and vectors are necessary
to express the desired operations. We now define these vectors, which are used on the remainder of
this section. We denote 0 and 1 the column vectors with all entries equal to 0 and 1, respectively. In all
cases, we assume the vectors have the dimension necessary for the operation where they are applied.
When necessary to improve readability, we indicate the dimension by a sub-script as in 0n or 1n.

Moreover, specially constructed matrices are used to build sub-determined algebraic algorithms
for MAGs. These matrices provide reduction/aggregation operations needed for sub-determined
algorithms. Although these matrices are specially constructed for the MAG and the sub-determination
in question, they have distinct properties and can be constructed by a general algorithm. In fact,
the construction of sub-determined algorithms relies on the use of functions to aggregate/reduce
results according to the applied sub-determination. In some cases, this function can be as simple as just
summing up values obtained in composite vertices, which are reduced to the same sub-determined
vertex. However, depending on the algorithm being constructed, this aggregation may need a more
elaborate function, which may not be expressed in terms of matrix multiplications.

Given a MAG H and a sub-determination ζ, the sub-determination matrix MζpHq P Rnζˆn is
a rectangular matrix, where n “ |VpHq| is the number of composite vertices of H and nζ “ |VζpHq|
is the number of composite vertices of the sub-determination ζ applied to the MAG H. Since a

Algorithms 2017, 10, 1 19 of 36

sub-determination is a (proper) subset of the aspects of a MAG, it follows that nζ | n, i.e., the number
of composite vertices of a MAG is a multiple of the number of composite vertices in any of its
sub-determinations. Further, MζpHq has the property of having exactly one non-zero entry in each
column, and the position of this entry is determined by the numerical value of the sub-determined
composite vertex.

Algorithm 7 shows the construction of the sub-determination matrix MζpHq for a given MAG H
and sub-determination ζ. The function D takes a composite vertex to its numerical representation
and the function Sζ takes a composite vertex to its sub-determined form, i.e., it drops the aspects not
present in the sub-determination. To determine the time complexity of Algorithm 7, we consider that
the count of composite vertices in line 3 is Op|VpHq|q, the same is the case for the count on line 4,
the construction of companion tuple at line 2 is Oppq, the construction of an empty sparse matrix at
line 5 is Op1q, and, finally, the for loop initiated at line 6 is also Op|VpHq|q. Since the number of aspects
p ! |VpHq|, we conclude that the time complexity of Algorithm 7 is Op|VpHq|q.

Algorithm 7: Construction of Mζ .

input : τpHq and ζ

output : MζpHq

1 SubDetMatrix(τpHq, ζ)
2 Tζ “ SubCompTuplepτpHq, ζq // ζ sub-determined companion tuple
3 n Ð |VpHq|
4 z Ð |VζpHq|
5 MζpHq Ð zˆ n sparse matrix
6 for j Ð 1 to n do
7 u Ð D´1pj, τpHqq // numeric tuple form of j
8 i Ð Dpu, Tζq // sub-determined numerical representation
9 MζpHqri, js Ð 1

10 end
11 return MζpH)

For instance, consider the example MAG T and a sub-determination ζt “ 0112, which drops the
third aspect of T. The aspect dropped is the aspect of time instants and, therefore, the two aspects
present in ζt are location and transit layers. Since in T there are 3 locations and 2 transit layers,
it follows that |VζtpTq| “ 6. Hence, MζtpTq P R6ˆ18 constructed according to Algorithm 7 is given by

MζtpTq “

»

—

—

—

—

–

1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

fi

ffi

ffi

ffi

ffi

fl

. (31)

As a further example, consider the MAG T and a sub-determination ζT “ 1002, which drops the
location and transit layer aspects, leaving only the time instants aspects. Since there are 3 time instants
in T, it follows that MζTpTq P R3ˆ18 is

MζTpTq “

«

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

ff

. (32)

Note that in these cases the multiplication by the sub-determination matrices performs the sum of
the distinct composite vertices that are reduced to a same sub-determined vertex. For instance, given
the sub-determination ζt “ 0112, the matrix MζtpTq is used to aggregate values found in 3 composite

Algorithms 2017, 10, 1 20 of 36

vertices into a single sub-determined vertex. The aggregation function in this case is a simple sum.
The same is done by the matrix MζTpTq for the sub-determination ζT “ 1002, where in this case each
sub-determined result is the sum of values obtained for 6 composite vertices.

4.2. Universality of Matrix Algorithms

In this section, we show that every function that can be obtained from a MAG to a given co-domain
set can also be obtained from a matrix representation of the MAG. Here the set H is the quotient set of
finite MAGs under isomorphism defined in Section 2.1. Note that a permutation σ of a given adjacency
matrix JpHq, together with the function Dσ, represents the same MAG H as JpHq, so that permutations
of adjacency matrices are isomorphic. Thus, we have the set J, which is a quotient set of pairs pJσ, Dσq

of adjacency matrices and association functions D, under adjacency matrix permutations. Therefore,
an element of J is an equivalence class of adjacency matrices and D functions. Since we consider the
pair pJpHq, τpHqq as the canonical adjacency matrix representation of the MAG H, we assign this pair
as the class representative of the MAG H in J.

Theorem 1. The adjacency matrix JpHq and companion tuple τpHq obtained from the MAG H by Algorithm 5
are isomorphic to the MAG H.

Proof. We show that Algorithm 5 can be seen as a function that takes a given MAG H to its adjacency
matrix and companion tuple, and that this function preserves the adjacency structure of the original
MAG. Further, we show that, from the adjacency matrix JpHq and companion tuple τpHq, we can
construct a MAG Ĥ that is isomorphic to MAG H.

• ùñ

Given the sets H and J, Algorithm 5 can be seen as a function

Υ : HÑ J
H ÞÑ pJpHq, τpHqq.

(33)

Considering the loop depicted at lines 5 to 9 in Algorithm 5, it can be seen that every edge e P EpHq
is converted in a pair of composite vertices (u and v) and then represented as an edge on the
adjacency matrix JpHq. Therefore, if the composite vertices u and v are adjacent in MAG H, then a
entry 1 is present at the intersection of row Dpu, τpHqq and column Dpv, τpHqq of JpHq, indicating
the corresponding adjacency in the matrix. Hence, the adjacency structure of the MAG H is
preserved by the function Υ.

• ðù

Given the adjacency matrix JpHq and companion tuple τpHq, we construct MAG Ĥ, which we
then show to be isomorphic to the MAG H. We obtain ApĤq from τpHq by constructing a list ApĤq
with p “ |τpHq| elements, in which every element i of this list is a set such that |ApĤqris| “ τris.
Without loss of generality, we can assume that the elements of each aspect ApĤqris are natural
numbers ranging from 1 to τris. We then construct the edge set EpĤq, by starting with an empty
set and then inserting an edge for each entry with value 1 in JpHq. For constructing each of these
edges, we take an entry of value 1, make r equal to its row number, and c equal to its column
number. We then build the edge e “ pD´1pr, τpHqq, D´1pc, τpHqq, which is a tuple of length 2p,
where the first p entries correspond to the origin composite vertex and the last p entries correspond
to the destination composite vertex of the edge. Note that function D´1 simply retrieves the
original composite vertex entries from the row and column numbers of the adjacency matrix.
Further, we construct the set VpĤq of composite vertices, which is the cartesian product of the sets
in ApĤq, so that

VpĤq “
p

ą

n“1

ApĤqrns, (34)

Algorithms 2017, 10, 1 21 of 36

where p “ |τpHq| is the number of aspects in the MAG H.

We now show that the MAG Ĥ, constructed from JpHq and τpHq, is isomorphic to the original
MAG H. Note that by construction of Ĥ we have that |EpĤq| “ |EpHq|; |ApĤq| “ |ApHq| “ p;
for 1 ď i ď p, |ApĤqris| “ |ApHqris|; |VpĤq| “ |VpHq|; and τpĤq “ τpHq.

Since |VpHq| “ |VpĤq|, we know that there is a bijective function from VpĤq to VpHq. Further,
we also have the bijective function D, which takes a composite vertex into a natural number,
assigning a unique and distinct natural number to each element of VpHq and VpĤq. Moreover,
since τpĤq “ τpHq and by construction of D, we have that the range of D for VpHq and VpĤq
is the same, i.e., DpVpHq, τpHqq “ DpVpĤq, τpĤqq. From this, we conclude that, for every
composite vertex u P VpHq, there is one unique composite vertex û P VpĤq such that
Dpu, τpHqq “ Dpû, τpĤqq. We thus define the bijective function

f : VpĤq Ñ VpHq
û ÞÑ u, such that Dpû, τpĤqq “ Dpu, τpHqq.

(35)

As the function f is bijective, for every edge ê P Ĥ, we have an edge e “ p f pπopêqq,
f pπdpêqqq P EpHq, and also, for every edge e P EpHq, we have the corresponding edge
ê “ p f´1pπopeqq, f´1pπdpeqqq P EpĤq. This fulfils the conditions for isomorphism between Ĥ
and H.

Since H is a quotient set under the MAG isomorphism relation and Ĥ is isomorphic to H, it follows
that Ĥ and H correspond to the same element in H, making the function Υ bijective. Also, since
each entry with value 1 in the adjacency matrix JpHq corresponds to an edge in the MAG H,
it follows that Υ´1 also preserves the MAGs adjacency structure, establishing the isomorphism
relation as desired.

Theorem 2. Every function that can be obtained from a MAG to a given co-domain set can also be obtained
from a matrix representation of the MAG.

Proof. Consider the diagram depicted in Figure 5. In this figure, H is the set of all MAGs (up to
isomorphism), J is the set of pairs of adjacency matrices and companion tuples (up to permutation),
F is an arbitrary function from H to X, where X is a codomain consistent with the definition of
function F, and I is the identity function in X. Since the function F is arbitrary, it can represent any
function or algorithm, such as searches or centrality computations, which take MAGs to a result
expected from this function.

H X

J X

Υ
F

F̂

I

Figure 5. Commutative diagram.

As both functions Υ (Equation (33) in Theorem 1) and I represent isomorphisms, it follows that
the depicted diagram commutes, so that for every function F : HÑ X there is a function F̂ : JÑ X,
which produces the same result.

As a consequence of Theorem 2, it follows that, from the adjacency matrix and companion tuple
of a MAG, one can obtain any possible outcome that can be obtained from a MAG or from any
other representation equivalent to it, such as high order tensors, as those presented in recent related

Algorithms 2017, 10, 1 22 of 36

works [15,35,36]. Therefore, Theorem 2 actually shows that any possible MAG function (algorithm)
can be obtained from a matrix-based representation of a MAG. This is an important theoretical result
since it paves the way for adapting well-known graph algorithms for application in MAGs. In the
next subsections, we show examples of basic algorithms and functions that can be obtained from the
matrix-based representation of a MAG.

4.3. Degree

The definition of degree in a traditional graph stems from the number of edges incident to a given
vertex. This concept can be generalized for MAGs, so that degrees can be defined for composite
vertices, sub-determinations, or elements of a given aspect. Further, since MAG edges are considered
to be directed, the degrees are also divided into out-degree and in-degree. In this section, we present
algorithms for calculating these distinct degree definitions.

4.3.1. Degree of Composite Vertices

The degree of composite vertices of a given MAG H can be obtained directly from its composite
vertices representation, gpHq. Since the composite vertices representation is a traditional directed
graph isomorphic to the MAG H, it follows that the degree determination is done with the traditional
algorithm for directed graphs with minor changes. For a given MAG H and its companion tuple τpHq,
the degrees of the composite vertices can be determined by Algorithm 8, where Dpπopeq, τpHqq and
Dpπdpeq, τpHqq stand for the numerical representation of the origin and destination composite vertices
of edge e P EpHq, as defined in Section 3.2.

Algorithm 8: Determination of the degree of composite vertices.
input : H “ pA, Eq
output : indegree, outdegrees

1 Degree(H)
2 n Ð |VpHq|
3 T Ð CompTuplepApHqq // companion tuple of H, i.e., τpHq
4 indegree Ð vector of n integers, all 0
5 outdegree Ð vector of n integers, all 0
6 for each e P EpHq do
7 o Ð Dpπopeq, Tq // numerical origin
8 d Ð Dpπdpeq, Tq // numerical destination
9 indegreerds Ð indegreerds ` 1

10 outdegreeros Ð outdegreeros ` 1
11 end
12 return indegree, outdegree

Another way for calculating the degrees of the composite vertices is computing it algebraically
from the adjacency matrix of the MAG, as given by

indegree “ JpHqT 1, (36)

and

outdegree “ JpHq 1. (37)

Further, the total degree of the composite vertices can be obtained by summing up their indegrees
and outdegrees.

Algorithms 2017, 10, 1 23 of 36

To determine the time complexity of Algorithm 8, we consider that lines 2, 4, and 5 have each time
complexity Op|VpHq|q, the determination of the companion tuple at line 3 has complexity Oppq, where
p is the number of aspects of the MAG, so that p ! |VpHq|. Finally, since the determination of the
numerical representation of vertices has complexity Oppq, we have that the for loop initiated at line 6
has complexity Opp ˚ |EpHq|q, so that the time complexity of Algorithm 8 is Op|VpHq| ` p ˚ |EpHq|q.
If we consider that in a given case the order of the MAG does not vary, so that p is a constant, then the
algorithm’s time complexity is Op|VpHq| ` |EpHq|q.

In the case of the example MAG T (Figure 3), whose companion tuple is τ “ p3, 2, 3q, it can be
seen that the composite vertex p2, Bus, t1q has outdegree 3 and indegree 1, while the composite vertex
p1, Subway, t2q has outdegree 2 and indegree 2. Since Dpp2, Bus, t1q, τq “ 2 and Dpp1, Subway, t2q, τq “ 10,
it follows that indegreer2s “ 1, outdegreer2s “ 3, indegreer10s “ 2 and outdegreer10s “ 2.

4.3.2. Degree of Sub-Determined Vertices

We can determine the degree for sub-determined composite vertices in a similar way to the
degree of composite vertices. Given a MAG H and a sub-determination ζ, the degree of the
sub-determined composite vertices can be obtained by Algorithm 9, where |VζpHq| is the number of ζ

sub-determined composite vertices on MAG H, Sζ is the function that takes a composite vertex to its
sub-determined form, and Dζ is the function that takes the sub-determined composite vertex to its
numerical representation. It can be seen that the time complexity of Algorithm 9 is the same as the
time complexity of Algorithm 8.

Algorithm 9: Sub-determined degree.
input : H “ pA, Eq, and ζ

output : indegree, outdegree

1 SubDetDegree(H, ζ)
2 n Ð |VζpHq|
3 T Ð CompTuplepApHqq // companion tuple of H, i.e., τpHq
4 Tζ Ð τζpHq // ζ sub-determined companion tuple
5 indegree Ð vector of n integers, all 0
6 outdegree Ð vector of n integers, all 0
7 for each e P EpHq do
8 o Ð Dpπopeq, Tζq // numerical sub-determined origin
9 d Ð Dpπdpeq, Tζq // numerical sub-determined destination

10 indegreerds Ð indegreerds ` 1
11 outdegreeros Ð outdegreeros ` 1
12 end
13 return indegree, outdegree

It is important to note that two distinct composite vertices may have the same sub-determined
form. This happens when the two composite vertices differ only on aspects which are dropped by the
sub-determination. In this case, the degree of each of these composite vertices is summed for obtain the
sub-determined degree. From this, it can also be seen that some edges in the sub-determined form may
become self-loops. The degrees calculated by Algorithm 9 include the self-loop edges. This algorithm
can be modified to count the self-loops separately, as shown in Algorithm 10. This algorithm is similar
to Algorithm 8 and has the same time complexity.

The sub-determined composite vertices degree can also be determined algebraically with

indegree “ MζpHq JpHqT 1, (38)

Algorithms 2017, 10, 1 24 of 36

and
outdegree “ MζpHq JpHq 1, (39)

where MζpHq is the sub-determination matrix and 1 is the all 1s column vector, both defined in
Section 4.1. Note that the multiplication by MζpHq adds the degrees of the composite vertices that are
collapsed to the same sub-determined vertex.

Algorithm 10: Sub-determined degree, separating self-loops
input : H “ pA, Eq, and ζ

output : indegree, outdegree, sel f degree

1 SubDetDegreeSepLoops(H, ζ)
2 n Ð |VζpHq|
3 T Ð CompTuplepApHqq // companion tuple of H, i.e., τpHq
4 Tζ Ð τζpHq // ζ sub-determined companion tuple
5 indegree Ð vector of n integers, all 0
6 outdegree Ð vector of n integers, all 0
7 sel f degree Ð vector of n integers, all 0
8 for each e P EpHq do
9 o Ð Dpπopeq, Tζq // numerical sub-determined origin

10 d Ð Dpπdpeq, Tζq // numerical sub-determined destination
11 if d ‰ o then
12 indegreerds Ð indegreerds ` 1
13 outdegreeros Ð outdegreeros ` 1
14 end
15 else
16 sel f degreeros Ð sel f degreeros ` 1
17 end
18 end
19 return indegree, outdegree, sel f degree

The degrees calculated by Equations (38) and (39) include the self-loop edges. To obtain the
separate self-loop degrees, first note that

MζpHq JpHq 1n “ MζpHq JpHqMζpHqT 1m. (40)

This follows from the fact that
MζpHqT 1m “ 1n, (41)

since MζpHqT is a nˆm rectangular matrix and has the property that each row has exactly one non-zero
entry of value 1.

Furthermore, note that the matrix MζpHq JpHq MζpHqT is the adjacency matrix of the
sub-determined MAG Hζ . Since the composite vertices representation of a sub-determined MAG is
a multigraph, each non-zero entry shows the number of superposed edges in the sub-determination.
Therefore, the main diagonal of MζpHq JpHqMζpHqT has the self-loop degree of each vertex. Hence,

sel f degree “ DiagpMζpHq JpHqMζpHqTq. (42)

For example, consider the example MAG T (Figure 3) and the sub-determination ζt “ 0112

defined in Section 4.1. We have that

Algorithms 2017, 10, 1 25 of 36

indegree “ MζtpTq JpTqT 1 “

»

—

—

—

—

–

0
7
4
4
7
0

fi

ffi

ffi

ffi

ffi

fl

, (43)

outdegree “ MζtpTq JpTq 1 “

»

—

—

—

—

–

0
7
4
4
7
0

fi

ffi

ffi

ffi

ffi

fl

, (44)

MζtpTq JpTq MζtpTqT “

»

—

—

—

—

–

0 0 0 0 0 0
0 2 2 0 3 0
0 2 2 0 0 0
0 0 0 2 2 0
0 3 0 2 2 0
0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

fl

, (45)

and

sel f degree “ DiagpMζtpTq JpTq MζtpTqTq “

»

—

—

—

—

–

0
2
2
2
2
0

fi

ffi

ffi

ffi

ffi

fl

. (46)

This means that, for instance, the sub-determined composite vertex p2, Subwayq has outdegree 7,
indegree 7, and 2 self-loops. This sub-determination corresponds to the aggregation of all 3 time
instants, which means that the edges in which only the time instant changes become self-loops.
These edges are shown in red (dotted) in Figure 3. Note that τζt “ p2, 3q, so that Dpp2, Subwayq, p2, 3qq “ 2,
making it correspond to the second element of the degree column vector.

4.3.3. Single Aspect Degree

The single aspect degree is a particular case of sub-determined degree in which the
sub-determination applied is such that only a single aspect remains. Therefore, the determination of
single aspect degrees is done in the same way presented in Section 4.3.2.

We, however, present an additional example illustrating the time instant degree, which is obtained
by the sub-determination ζT “ 1002 defined in Section 4.1. This sub-determination has only the third
aspect of the MAG T (Figure 3), which corresponds to the three time instants present on MAG T.
In this case, we have that

indegree “ MζTpTq JpTqT 1 “

«

2
10
10

ff

, (47)

outdegree “ MζTpTq JpTq 1 “

«

10
10

2

ff

, (48)

MζTpTq JpTq MζTpTqT “

«

2 8 0
0 2 8
0 0 2

ff

, (49)

and

sel f degree “ DiagpMζTpTq JpTq MζTpTqTq “

«

2
2
2

ff

. (50)

Therefore, we have that τζT “ p3q, so that Dppt1q, p3qq “ 1, Dppt2q, p3qq “ 2, and Dppt3q, p3qq “ 3.
Considering the composite vertices representation of MAG T, depicted in Figure 3, it can be seen

Algorithms 2017, 10, 1 26 of 36

that each time instant has 2 self-loop edges (in blue-dashed), which is consistent with Equation (50).
Further, there are 8 edges from t1 to t2 (in red-dotted and black) and 8 edges from t2 to t3. This is
consistent with the adjacency matrix shown in Equation (49). Further, the indegrees and outdegrees of
each time instant are consistent with Equations (47) and (48).

4.4. Breadth-First Search (BFS)

The Breadth-First Search (BFS) is an important graph algorithm that can be seen as a primitive
for building many other algorithms [5]. The goal of this section is to illustrate how the BFS algorithm
can be adapted for being used in MAGs, both in its full composite vertices representation and in
its sub-determined forms. In the not sub-determined form, the adaptation is very simple, since the
composite vertices representation of a MAG is a directed graph. In this case, all that is needed is to
convert the composite vertices representation from its tuple to numerical form, and then apply the
traditional BFS algorithm. The adaptation to the sub-determined forms also does not require major
changes on the algorithm. As with many graph algorithms, BFS can be expressed in combinational or
in algebraic forms, which are presented in the following related subsections.

4.4.1. BFS for Composite Vertices

The non sub-determined BFS in its combinational form is constructed directly upon the MAG’s
adjacency matrix, JpHq.

Algorithm 11: BFS for composite vertices.
input : JpHq, τpHq, and s P VpHq
output : vertices, distance, pred

1 BFS(JpHq, τpHq, s)
2 n Ð |VpHq|
3 vertices Ð vector of n integers, all 0
4 distance Ð vector of n integers, all8
5 pred Ð vector of n integers, all Nil
6 color Ð vector of n integers, all 0 // set all vertices to white (unvisited)
7 Q Ð empty queue
8 verticesrDps, τpHqqs Ð 1
9 colorrDps, τpHqqs Ð 1

10 distancerDps, τpHqqs Ð 0
11 EnqueuepQ, Dps, τpHqqq
12 while Q not empty do
13 u Ð headrQs
14 for each v successor of u do
15 if colorrvs “ 0 then
16 colorrvs Ð 1 // set vertex v to gray (visited)
17 verticesrvs Ð 1
18 distancervs Ð distancerus ` 1
19 predrvs Ð u
20 EnqueuepQ, vq
21 end
22 end
23 DequeuepQq
24 colorrus Ð 2 // set vertex u to black (closed)
25 end
26 return vertices, distance, pred

Algorithms 2017, 10, 1 27 of 36

Considering Algorithm 11 and the standard form of the BFS algorithm encountered in [5], it can
be seen that the difference is that the starting composite vertex s has to be transformed from its
tuple representation to its numerical representation, as shown in lines 8, 9, and 10 of Algorithm 11.
Therefore, from the analysis provided in [5], we can conclude that the time complexity of Algorithm 11
is Op|VpHq| ` |EpHq|q.

BFS is also closely related to matrix multiplication. This stems from the well-known property of
the powers of the adjacency matrix, in which the pi, jq entry of the n-th power of the adjacency matrix
shows the number of existing walks of length n from vertex i to vertex j [33]. From this, we could think
that for a given MAG H, the series

B “
8
ÿ

i“0

JpHqi “ I` JpHq ` JpHq2 ` JpHq3 ` JpHq4 ` . . . (51)

would produce a matrix B, such that the entry Bi,j indicates the number of walks of any length from
vertex i to vertex j. This is indeed the case when H happens to be an acyclic MAG, making JpHq a
nilpotent matrix.

The existence of cycles in H makes that, for some vertices, there will exist walks of arbitrary length
connecting them (namely, the cycles), making the series of Equation (51) divergent. However, since
the objective is not to know the number of walks between each pair of vertices, but simply to know
which vertices are reachable from each other (i.e., there is at least a path between them), this technical
problem can be solved by multiplying the adjacency matrix JpHq by a scalar ρH , such that

ρH ă
1

ρpJpHqq
, (52)

where ρpJpHqq is the spectral radius of the matrix JpHq. This leads to the matrix

JρpHq “ ρH JpHq, (53)

so that the spectral radius of the matrix JρpHq ă 1. This results that Equation (51) constructed with
the matrix JρpHq converges. Since the convergence of the series is assured, Equation (51) can be
re-expressed as

B “ pI ´ JρpHqq´1. (54)

The matrix B defined in Equation (54) has the property that, for any given composite vertex
v P VpHq, the row Dpvq of B has non-zero entries in every column that corresponds to a composite
vertex u P VpHq, such that u is reachable from v. Hence, for a given composite vertex v, the row Dpvq
corresponds to the result of a BFS started at that composite vertex. Although the matrix B carries the
BFS of all composite vertices of the MAG H, it is important to note that this matrix may not be sparse,
which for large MAGs can lead to difficulties in memory allocation. To avoid such difficulties, it is also
possible to express a BFS for a single composite vertex v as

B “ rvI` rvJρpHq ` rvJρpHq2 ` rvJρpHq3 ` rvJρpHq4 ` . . . , (55)

where rv is the row vector with n entries for which all entries except Dpv, τq are 0 and the entry Dpv, τq

is 1.
Considering the example MAG T, shown in Figure 3, the result of the BFS using Algorithm 11 for

the composite vertex p2, Bus, t1q, whose numerical representation is Dpp2, Bus, t1q, p3, 2, 3qq “ 2, is

vertices “ r2, 5, 8, 9, 10, 11, 14, 15, 16, 17s

distances “ r8, 0,8,8, 1,8,8, 1, 1, 2, 2,8,8, 2, 2, 3, 3,8s

pred “ rNil, Nil, Nil, Nil, 2, Nil, Nil, 2, 2, 5, 5, Nil, Nil, 8, 8, 10, 10, Nils,

(56)

Algorithms 2017, 10, 1 28 of 36

where the list vertices shows the composite vertices accessible from p2, Bus, t1q, which in this example
represent all locations, transit modals, and time instants reachable from this initial point. The list
distances carries the distances in hops from the initial composite vertex p2, Bus, t1q to all possible
destinations (with8meaning that a destination is not reachable). The list pred shows the predecessors
of each composite vertex, making possible to construct a BFS tree.

4.4.2. Sub-Determined BFS

It is possible to obtain a sub-determined form of the BFS algorithm for MAGs. It is important,
however, to realize that this sub-determined BFS algorithm is not equivalent to applying the
BFS algorithms presented in Section 4.4.1 to a sub-determined MAG. A sub-determination is
a generalization of the idea of aggregating multilayer and time-varying graphs, as shown in Section 2.2.
As with the aggregation process, the sub-determination of a MAG can cause the presence of paths
and walks on the sub-determined MAG that do not actually exist on the original MAG. To illustrate
this, we present Figure 6a,b, which show a small two aspects MAG and its sub-determined form,
obtained by the sub-determination ζR “ 012. First, note that, in the MAG R shown in Figure 6a,
there is no path originating from the composite vertices p1, 1q or p1, 2q to the composite vertices p3, 1q
or p3, 2q. Nevertheless, in Figure 6b, there is a path connecting the sub-determined vertex p1q to the
sub-determined vertex p3q, even though such connection is not possible on the original MAG shown
in Figure 6a. Therefore, to obtain the proper result, the sub-determined BFS should not be evaluated
directly using the sub-determined MAG.

(a) MAG R (b) Sub-determined form

Figure 6. MAG R and its sub-determined form.

Such a case can be seen algebraically by noting that given a MAG H and a sub-determination ζ,
in general

MζpHq

˜

8
ÿ

i“0

JρpHqi
¸

MζpHqT ‰
8
ÿ

i“0

´

MζpHq JρpHq MζpHqT
¯i

. (57)

To see that the Inequality (57) holds, note that an arbitrary power of the matrix MζpHq
JρpHq MζpHqT is given by

´

MζpHqJρpHqMζpHqT
¯n
“ MζpHqJρpHqMζpHqT MζpHqJρpHqMζpHqT . . .
looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

n times

, (58)

where
`

MζpHq JρpHq MζpHqT
˘

is multiplied n times. Note, however, that

MζpHqT MζpHq ‰ In, (59)

Algorithms 2017, 10, 1 29 of 36

since MζpHq P Rmˆn is a retangular matrix and m ă n, so that the rank of the matrix MζpHqT MζpHq
is less or equal to m, while the rank of the identity In is n ą m. Since Inequality (59) holds, so does the
Inequality (57).

Here, the left hand side of the Inequality (57) corresponds to the sub-determination of the BFS
calculated for the MAG H, while the right hand side corresponds to the BFS calculated for the
sub-determined MAG Hζ .

In the case of the MAG R, shown in Figure 6a, we have that the sub-determination is given by
ζR “ 012 and the adjacency and sub-determination matrices are

JpRq “

»

—

—

—

—

–

0 0 0 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

fl

, (60)

MζRpRq “

«

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

ff

, (61)

and

JζRpRq “

«

0 1 0
0 0 1
0 0 0

ff

. (62)

Therefore, we have that

MζRpRq

˜

8
ÿ

i“0

JρpRqi
¸

MζRpRq
T “

«

3 2 0
0 3 2
0 0 3

ff

, (63)

while
8
ÿ

i“0

´

MζRpRq JρpRq MζRpRq
T
¯i
“

«

2 2 2
0 2 2
0 0 2

ff

(64)

and
`

I3 ´ JζRpRq
˘´1

“

«

1 1 1
0 1 1
0 0 1

ff

. (65)

Remembering that the entries of the matrices in Equations (63)–(65) are to be considered only as
zero or non-zero, it can be seen that the matrix at Equation (63) has a 0 at entry p1, 3q, while the matrices
at Equations (64) and (65) have a non-zero entry at this same position. This illustrates the situation
in which a BFS is done on the sub-determined (aggregated) MAG, as in Equations (64) and (65), i.e.,
paths that are not present on the original MAG can appear on the sub-determined form, potentially
altering the results obtained by algorithms applied to it.

For instance, considering the MAG T, depicted in Figure 3, for a sub-determination ζt “ 0112,
which drops the time aspect, and considering ρH “ 0.5 so that JρpTq “ 0.5 JpTq, we have that

MζtpTq

˜

8
ÿ

i“0

JρpTqi
¸

MζtpTqT “

»

—

—

—

—

–

3 0 0 0 0 0
0 7.8 2.2 1.3 5.2 0
0 2.2 4.6 0.2 1.3 0
0 1.3 0.2 4.6 2.2 0
0 5.2 1.3 2.2 7.8 0
0 0 0 0 0 3

fi

ffi

ffi

ffi

ffi

fl

. (66)

Algorithm 12 shows a combinational version of the sub-determined BFS. This procedure
ensures that only paths present on the original MAG are considered on the sub-determined BFS.

Algorithms 2017, 10, 1 30 of 36

The sub-determination of the results obtained from the BFS is done in the internal if, comprising
lines 21 to 25 of Algorithm 12.

Algorithm 12: Sub-determined BFS.
input : JpHq, τpHq, ζ and s P VζpHq
output : vertices, distance, pred

1 BFS-Sub(JpHq, τpHq, ζ, s)
2 n Ð |VpHq| nS Ð |VζpHq|
3 Tζ Ð τζpHq // ζ sub-determined companion tuple
4 vertices Ð vector of nS integers, all 0
5 distance Ð vector of nS integers, all8
6 pred Ð vector of nS integers, all Nil
7 colorS Ð vector of nS integers, all 0 // set all sub-determined vertices to white

(unvisited)
8 color Ð vector of n integers, all 0 // set all vertices to white (unvisited)
9 Q Ð empty queue

10 for every v P VpHq where Dpv, τζpHqq “ Dps, τζpHqq do
11 EnqueuepQ, Dpv, τpHqqq
12 colorrDpv, τpHqqs Ð 1
13 end
14 verticesrDps, Tζq ´ 1s Ð 1
15 distancerDps, Tζqs Ð 0
16 while Q not empty do
17 u Ð headrQs
18 for each v successor of u do
19 if colorrvs “ 0 then
20 colorrvs Ð 1 // set vertex v to gray (visited)
21 EnqueuepQ, vq
22 if colorSrDpv, Tζqs “ 0 then
23 colorSrDpv, Tζqs Ð 1 // set sub-determined vertex Dpv, Tζq to gray

(visited)
24 verticesrDpv, Tζqs Ð 1
25 distancerDpv, Tζqs Ð distancerDpu, Tζqs ` 1
26 predrDpv, Tζqs Ð Dpu, Tζq

27 end
28 end
29 end
30 colorrus Ð 2 // set vertex u to black (closed)
31 DequeuepQq
32 end
33 return vertices, distance, pred

After applying Algorithm 12 to the MAG R with initial vertex s “ 1 and sub-detemination
ζR “ 012, the obtained result is

vertices “ r1, 2s

distances “ r0, 1,8s

pred “ rNil, 1, Nils,

(67)

which is consistent with the result obtained by Equation (63).

Algorithms 2017, 10, 1 31 of 36

Further, applying Algorithm 12 to MAG T, shown in Figure 3, with starting composite vertex
s “ p2, Busq and applying the sub-determination ζt “ 0112, which drops the time aspect, the obtained
result is

vertices “ r2, 5, 3, 4s

distances “ r8, 0, 1, 2, 1,8s

pred “ rNil, Nil, 2, 5, 2, Nils.

(68)

Considering that τζt “ p3, 2q and 2 “ Dpp2, Busq, p3, 2qq, 5 “ Dpp2, Subwayq, p3, 2qq,
3 “ Dpp3, Busq, p3, 2qq, and 1 “ Dpp1, Subwayq, p3, 2qq, this means that disregarding time, starting from
p2, Busq it is possible to reach p2, Subwayq in 1 step, p1, Subwayq in 2 steps, and p3, Busq in 1 step. It is
not possible to reach p1, Busq because there is no bus stop at location 1, neither p3, Subwayq because
there is no subway station at location 3. From the predecessor list (pred) it is possible to build a BFS tree,
where p2, Busq is the root, p2, Subwayq and p3, Busq are children of p2, Busq, and p1, Subwayq is a child
of p2, Subwayq. Note that p1, Subwayq and p3, Busq are leaves. It can be seen that the result obtained in
Equation (66) is consistent with the results obtained by Algorithm 12. Comparing Algorithm 12 to
Algorithm 11, it can be seen that the main difference is the additional for loop at line 12 of Algorithm 12.
Since the time complexity of this loop is Op|VpHq|q, we then conclude that the time complexity of
Algorithm 12 is Op|VpHq| ` |EpHq|q.

4.5. Depth-First Search (DFS)

In this section, we show the adaptation of the Depth-First Search (DFS) algorithm for use with
MAGs. The DFS algorithm exposes many properties of the MAG structure and can be used as
a primitive for the construction of many other algorithms [5]. We present DFS algorithms for both the
full composite vertices representation of the MAG as well as for the sub-determined form. We remark
that in the sub-determined algorithm the full information of the MAG is used, in the sense of preventing
the use of paths that may exist in the sub-determined form of the MAG, while not actually existing in
the original MAG.

4.5.1. DFS for Composite Vertices

The composite vertices implementation is constructed using the MAG’s adjacency matrix JpHq and
companion tuple τpHq. The implementation shown is very similar to the traditional implementation
presented in [5], which is expected since the composite vertices representation of the MAG is indeed
a directed graph, so that the original algorithm applies.

The proposed implementation can be seen in Algorithm 13 is similar to the original
implementation. Therefore, considering the analysis provided in [5], we conclude that the time
complexity of Algorithm 13 is Op|VpHq| ` |EpHq|q.

When applied to MAG T, shown in Figure 3, the DFS algorithm generates the result

d “ r0, 2, 22, 24, 3, 26, 28, 13, 19, 4, 12, 30, 32, 8, 14, 5, 7, 34s

f “ r1, 21, 23, 25, 18, 27, 29, 16, 20, 11, 17, 31, 33, 9, 15, 6, 10, 35s

pred “ rNil, Nil, Nil, Nil, 2, Nil, Nil, 11, 2, 5, 5, Nil, Nil, 17, 8, 10, 10, Nils,

(69)

where the list d carries the discovery time of each composite vertex, the list f the respective finish time
of each composite vertex, and pred the predecessor list of each composite vertex.

4.5.2. Sub-Determined DFS

The sub-determined DFS algorithm is presented in Algorithm 14 and is similar to the non
sub-determined one. The main differences are at the Procedure Visit-DFS-Sub and the call to
a sub-determined BFS at line 15 of the DFS-Sub function. This version for a sub-determined
BFS is considered to determine the reachability of sub-determined vertices from the root of each

Algorithms 2017, 10, 1 32 of 36

sub-determined DFS tree. This is necessary to prevent including vertices not reachable from the tree
root in the non sub-determined MAG into the DFS trees constructed by Procedure Visit-DFS-Sub.
An example of this is provided in Equation (71). The difference in Procedure Visit-DFS-Sub is that in
addition to the root vertex for the DFS tree it also receives the reachability vector produced by the BFS.
This reachability vector has one entry for each sub-determined vertex. This entry has value 1 when
corresponding to a reachable vertex, while entries corresponding to unreachable vertices carry value 0.

Algorithm 13: DFS for composite vertices.
input : JpHq, τpHq
output : discTime, f inTime, pred

1 DFS(JpHq, τpHq)
2 n Ð |VpHq|
3 for u “ 1 to n do
4 colorrus Ð 0 // set all vertices to white (unvisited)
5 discTimerus Ð ´1 // set discovery times to nil
6 f inTimerus Ð ´1 // set finish times to nil
7 predrus Ð ´1 // set predecessors to nil
8 end
9 time Ð 0

10 for u “ 1 to n do
11 if colorrus “ 0 then
12 DFS-Visitpuq
13 end
14 end
15 return discTime, f inTime, pred

1 Procedure DFS-Visit(u)
2 colorrus Ð 1 // set vertex u to gray (visited)
3 discTimerus Ð time
4 time Ð time` 1
5 for each v successor of u do
6 if colorrvs “ 0 then
7 predrvs Ð u
8 DFS-Visitpvq
9 end

10 end
11 colorrus Ð 2 // set vertex u to black (closed)
12 f inTimerus Ð time
13 time Ð time` 1

To determine the time complexity of Algorithm 14, we consider that the sub-determined BFS
executed at line 15 of Function DFS-Sub is done once for the root vertex of each sub-determined DFS
tree. Since it is executed only once for each DFS tree, we conclude that the total time expended in the
sub-determined BFS algorithm is Op|VpHq|` |EpHq|q. Since the reachability check included in Function
Visit-DFS-Sub is done by verifying the content of one entry of the reachability vector, it is done in Op1q
and therefore does not affect the overall time complexity of the Visit-DFS-Sub Function. Therefore,
since the DFS is run upon the sub-determined MAG, it follows that the time complexity of doing
the DFS part of the Algorithm is Op|VζpHq| ` |EζpHq|q. Since |VζpHq| ă |VpHq| and |EζpHq| ă |EpHq|,
we conclude that the time complexity is dominated by the BFS used for the reachability determination,
making the overall time complexity of Algorithm 14 to be Op|VpHq| ` |EpHq|q.

Algorithms 2017, 10, 1 33 of 36

Algorithm 14: Sub-determined DFS.
input : JpHq, τpHq,ζ
output : discTime, f inTime, pred

1 DFS-Sub(JpHq, τpHq,ζ)
2 Tζ Ð τζpHq // ζ sub-determined companion tuple
3 Mζ Ð SubDetMatrixpH, ζq

4 Jζ “ Mζ JpHq MT
ζ // sub-determined adjacency matrix

5 n Ð |VζpHq| // number of sub-determined vertices
6 for u “ 1 to n do
7 colorrus Ð 0 // set all vertices to white (unvisited)
8 discTimerus Ð ´1 // set discovery times to nil
9 f inTimerus Ð ´1 // set finish times to nil

10 predrus Ð ´1 // set predecessors to nil
11 end
12 time Ð 0
13 for u “ 1 to n do
14 if colorrus “ 0 then
15 vertices “ BFS-SubpJpHq, τpHq, ζ, Tζq

16 DFS-Visit-Subpu, verticesq
17 end
18 end
19 return discTime, f inTime, pred

1 Procedure DFS-Visit-Sub(u, vertices)
2 colorrus Ð 1 // set vertex u to gray (visited)
3 discTimerus Ð time
4 time Ð time` 1
5 for each v successor of u do
6 if colorrvs “ 0 and verticesrvs ‰ 0 then
7 predrvs Ð u
8 DFS-Visit-Subpv, verticesq
9 end

10 end
11 colorrus Ð 2 // set vertex u to black (closed)
12 f inTimerus Ð time
13 time Ð time` 1

When applying the sub-determined DFS algorithm to the example MAG T shown in Figure 3
with a sub-determination ζt “ 0112, which drops the time aspect, the obtained result is

d “ r0, 2, 3, 6, 5, 10s

f “ r1, 9, 4, 7, 8, 11s

pred “ rNil, Nil, 2, 5, 2, Nils,

(70)

where the list d carries the discovery time of each sub-determined composite vertex, the list f its finish
time and pred its predecessor.

Considering the MAG R shown in Figure 6a with a sub-determination ζR “ 012, the result
obtained by Algorithm 14 is

d “ r0, 1, 4s

f “ r3, 2, 5s

pred “ rNil, 1, Nils.

(71)

Algorithms 2017, 10, 1 34 of 36

It can be seen that even though in the MAG R sub-determined by ζR “ 012 (see Figure 6b) there
is a path from vertex 1 to 3, vertex 3 is not in the same DFS tree as vertices 1 and 2, even with the DFS
starting at vertex 1, as can be seen in dr0s. This occurs because in MAG R (with no sub-determination)
there is no path connecting the composite vertex 1 to the composite vertex 3.

5. Final Remarks

In this paper, we have presented the algebraic representation and basic algorithms of MultiAspect
Graphs (MAGs). The key contribution has been to show that models based on the MAG abstraction
(formally defined in [18]) can be represented by a matrix and a companion tuple. Furthermore, we have
also shown that any possible MAG function (algorithm) can be obtained from this matrix-based
representation. We have chosen to present the algebraic representation in matrix form since it is
well accepted and known, thus contributing to the readability of the paper. Nevertheless, given the
isomorphism property of MAGs, any representation form available for directed graphs can also be
used for MAGs, including matrices as used here for convenience or sorted adjacency lists, for instance,
that are a common representation of graphs in existing network analysis packages. This is an important
theoretical result because it paves the way for adapting well-known graph algorithms for application
in MAGs. In this sense, we have presented the adaptation for the MAG context of basic graph
algorithms, such as computing degree, BFS, and DFS. These basic graph algorithms adapted to the
MAG context can be used as primitives for building other more sophisticated MAG algorithms.
Therefore, such examples can be seen as guidelines on how to properly derive MAG algorithms from
basic algorithms on directed graphs. In particular, we have also presented the sub-determined versions
of the same basic algorithms, showing that such versions disregard spurious paths that usually result
from the sub-determination process, thus avoiding the pollution of the results with the consideration
of such paths.

The discussed basic algorithms can be used as building blocks for other purposes, thus allowing
the extension of the MAG applicability. Concerning algorithm complexity, given the isomorphism
between a MAG and a traditional directed graph, we expect MAG algorithms to have the same
complexity as the equivalent algorithms for traditional directed graphs. For instance, if the MAG
algorithm is derived from a given traditional algorithm that is polynomial for traditional graphs,
the resulting algorithm for MAGs will be polynomial in the size of the composite vertices representation
of the MAG.

As future work, we intend to build upon the results here obtained for the algebraic representation
and basic algorithms of MAGs to analyze MAG properties, such as the centrality of edges, composite
vertices, and aspects. We also intend to consider the dynamics encountered in these properties in the
cases where one of the MAG aspects represents time. Finally, we are also targeting the application
of the MAG concept for the better understanding, modeling, and analysis of different real-world
applications represented by high order complex networked systems.

Acknowledgments: This work was partially funded by the Brazilian funding agencies CAPES (STIC-AmSud
Program), CNPq, FINEP, and FAPERJ as well as the Brazilian Ministry of Science, Technology, Innovations,
and Communications (MCTIC).

Author Contributions: The problem definition, theoretical analysis, and algorithm design were performed jointly
by all authors; Klaus Wehmuth derived the theorems and implemented the algorithms depicted in the paper.
All authors read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Distel, R. Graph Theory, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2010.
2. Jansson, J. Special Issue on Graph Algorithms. Algorithms 2013, 6, 457–458.
3. Deo, N. Graph Theory with Applications to Engineering and Computer Science, 1st ed.; Dover Publications:

Mineola, NY, USA, 2016.

Algorithms 2017, 10, 1 35 of 36

4. Tarjan, R. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput. 1972, 1, 146–160.
5. Cormen, T.H.; Stein, C.; Rivest, R.L.; Leiserson, C.E. Introduction to Algorithms, 3rd ed.; MIT Press: Cambridge,

MA, USA, 2009.
6. Friedkin, N.E. Theoretical foundations for centrality measures. Am. J. Sociol. 1991, 96, 1478–1504.
7. Wehmuth, K.; Ziviani, A. Distributed location of the critical nodes to network robustness based on spectral

analysis. In Proceedings of the IEEE Latin American Network Operations and Management Symposium
(LANOMS), João Pessoa, Brazil, 1–3 October 2011; pp. 1–8.

8. Takes, F.W.; Kosters, W.A. Computing the Eccentricity Distribution of Large Graphs. Algorithms 2013,
6, 100–118.

9. Wehmuth, K.; Ziviani, A. DACCER: Distributed Assessment of the Closeness CEntrality Ranking in complex
networks. Comput. Netw. 2013, 57, 2536–2548.

10. Watts, D.; Strogatz, S.H. Collective dynamics of small-world networks. Nature 1998, 393, 440–442.
11. Barabási, A.L.; Albert, R. Emergence of Scaling in Random Networks. Science 1999, 286, 509–512.
12. Pastor-Satorras, R.; Vespignani, A. Epidemic Spreading in Scale-Free Networks. Phys. Rev. Lett. 2001,

86, 3200–3203.
13. Guimarães, A.; Vieira, A.B.; da Silva, A.P.C.; Ziviani, A. Fast Centrality-driven Diffusion in Dynamic

Networks. In Proceedings of the 5th Annual Workshop on Simplifying Complex Networks for Practitioners,
Rio de Janeiro, Brazil, 13–17 May 2013; pp. 821–828.

14. Kurant, M.; Thiran, P. Layered Complex Networks. Phys. Rev. Lett. 2006, 96, doi:10.1103/
PhysRevLett.96.138701.

15. Kivelä, M.; Arenas, A.; Barthelemy, M.; Gleeson, J.P.; Moreno, Y.; Porter, M.A. Multilayer networks.
J. Complex Netw. 2014, 2, 203–271.

16. Leskovec, J.; Kleinberg, J.; Faloutsos, C. Graphs over Time: Densification Laws, Shrinking Diameters and
Possible Explanations. In Proceedings of the 22nd SIGKDD Conference on Knowledge Discovery and Data
Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 177–187.

17. Holme, P.; Saramäki, J. Temporal networks. Phys. Rep. 2012, 519, 97–125.
18. Wehmuth, K.; Fleury, E.; Ziviani, A. On MultiAspect graphs. Theor. Comput. Sci. 2016, 651, 50–61.
19. Scholtes, I.; Wider, N.; Garas, A. Higher-order aggregate networks in the analysis of temporal networks:

Path structures and centralities. Eur. Phys. J. B 2016, 89, 1–15.
20. Benson, A.R.; Gleich, D.F.; Leskovec, J. Higher-order organization of complex networks. Science 2016,

353, 163–166.
21. Lucet, J.C.; Laouenan, C.; Chelius, G.; Veziris, N.; Lepelletier, D.; Friggeri, A.; Abiteboul, D.; Bouvet, E.;

Mentre, F.; Fleury, E. Electronic Sensors for Assessing Interactions between Healthcare Workers and Patients
under Airborne Precautions. PLoS ONE 2012, 7, doi:10.1371/journal.pone.0037893.

22. Xavier, F.H.Z.; Silveira, L.M.; Almeida, J.M.; Ziviani, A.; Malab, C.H.S.; Marques-Neto, H.T. Analyzing the
Workload Dynamics of a Mobile Phone Network in Large Scale Events. In Proceedings of the First Workshop
on Urban Networking (UrbaNe), Nice, France, 10–13 December 2012; pp. 37–42.

23. Blondel, V.D.; Decuyper, A.; Krings, G. A survey of results on mobile phone datasets analysis. EPJ Data Sci.
2015, 4, 1–55.

24. Karlebach, G.; Shamir, R. Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Biol. 2008,
9, 770–780.

25. Yang, H.; Bell, M.G.; Meng, Q. Modeling the capacity and level of service of urban transportation networks.
Transp. Res. Part B Methodol. 2000, 34, 255–275.

26. Bullmore, E.; Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional
systems. Nat. Rev. Neurosci. 2009, 10, 186–198.

27. De Domenico, M.; Sasai, S.; Arenas, A. Mapping Multiplex Hubs in Human Functional Brain Networks.
Front. Neurosci. 2016, 10, doi:10.3389/fnins.2016.00326.

28. Szell, M.; Lambiotte, R.; Thurner, S. Multirelational organization of large-scale social networks in an online
world. Proc. Natl. Acad. Sci. USA 2010, 107, 13636–13641.

29. Wehmuth, K.; Ziviani, A.; Fleury, E. A unifying model for representing time-varying graphs. In Proceedings
of the IEEE International Conference on Data Science and Advanced Analytics (DSAA), Paris, France,
19–21 October 2015; pp. 1–10.

Algorithms 2017, 10, 1 36 of 36

30. Costa, E.C.; Vieira, A.B.; Wehmuth, K.; Ziviani, A.; da Silva, A.P.C. Time Centrality in Dynamic Complex
Networks. Adv. Complex Syst. 2015, 18, doi:10.1142/S021952591550023X.

31. Sarraute, C.; Brea, J.; Burroni, J.; Wehmuth, K.; Ziviani, A.; Alvarez-Hamelin, J.I. Social Events in a
Time-Varying Mobile Phone Graph. In Proceedings of the International Conference on the Scientific Analysis
of Mobile Phone Datasets (NetMob), Cambridge, MA, USA, 8–10 April 2015.

32. Bang-Jensen, J.; Gutin, G.Z. Digraphs: Theory, Algorithms and Applications, 2nd ed.; Springer: London,
UK, 2009.

33. Kepner, J.; Gilbert, J. Graph Algorithms in the Language of Linear Algebra; SIAM: Philadelphia, PA, USA, 2011.
34. Bapat, R.B. Graphs and Matrices, 2nd ed.; Springer: London, UK, 2014.
35. De Domenico, M.; Solé-Ribalta, A.; Cozzo, E.; Kivelä, M.; Moreno, Y.; Porter, M.; Gómez, S.; Arenas, A.

Mathematical Formulation of Multilayer Networks. Phys. Rev. X 2013, 3, doi:10.1103/PhysRevX.3.041022.
36. Domenico, M.D.; Granell, C.; Porter, M.A.; Arenas, A. The physics of spreading processes in multilayer

networks. Nat. Phys. 2016, 12, 901–906.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	MultiAspect Graph (MAG)
	MAG Definition
	MAG Sub-Determination
	Sub-Determined Composite Vertices
	Sub-Determined Edges
	Sub-Determined MAGs

	MAG Adjacency
	MAG Isomorphism
	MAG Walks, Trails, and Paths

	Algebraic Representation
	Companion Tuple
	Ordering of Composite Vertices and Aspects
	Elimination of Trivial Components
	Adjacency Matrix
	Incidence Matrix

	MAG Algorithms
	Auxiliary Matrices and Vectors
	Universality of Matrix Algorithms
	Degree
	Degree of Composite Vertices
	Degree of Sub-Determined Vertices
	Single Aspect Degree

	Breadth-First Search (BFS)
	BFS for Composite Vertices
	Sub-Determined BFS

	Depth-First Search (DFS)
	DFS for Composite Vertices
	Sub-Determined DFS

	Final Remarks

