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1. Introduction
This paper develops an approach based on performance
targets to assess a preference function for a multiobjec-
tive decision under uncertainty. This approach is shown
to yield preference functions that are strategically equiva-
lent to conventional multiattribute utility functions, but the
target-oriented approach is more natural for some classes of
decisions. Therefore, this approach provides new methods
to assess a preference function for use in certain multiob-
jective decision analyses.
The target-oriented approach is particularly applicable

for resource allocation decisions where multiple stakehold-
ers to the decision impact the success that results from the
selected allocation of resources. Examples of such deci-
sions include (1) budget allocation for new product devel-
opment where competitors are simultaneously developing
competitive products, and (2) allocation of project fund-
ing related to controversial activities in regulated environ-
ments. For example, a customer’s purchase decision for a
new product may involve comparing your product’s per-
formance against competing products on such attributes as
cost, quality, and features. Your budget allocation decision
for new product development in such a situation should
consider two types of uncertainty: (1) the performance
of your new product with respect to the attributes, and

(2) the performance of competitors’ products on these
same attributes. The second type of uncertainty can be
conceptualized by saying that your competitors’ product
performance establishes targets that your product will be
compared against when a purchase decision is made. If the
performance of your competitors’ future products is uncer-
tain when you make your product development budgeting
decisions, the performance of your potential products must
be compared against uncertain targets set by your competi-
tors’ products on the various attributes.

2. Background
Substantial empirical evidence indicates that the conven-
tional concave single-attribute utility function often does
not provide a good description of individual preferences.
As a substitute, Kahneman and Tversky (1979) propose an
S-shaped value function, and Heath et al. (1999) suggest
that the inflection point in this S-shaped value function can
be interpreted as a target. Developing this concept further,
Castagnoli and Li Calzi (1996) present a target-oriented
decision-making approach for decisions under uncertainty
with a single evaluation attribute, and this type of decision-
making approach is now discussed.
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2.1. Normative Target-Oriented Formulation

For notational convenience, designate an evaluation attri-
bute by Z, and an arbitrary specific level of that evaluation
attribute by z. An expected utility decision maker is defined
to be target oriented for a single-attribute decision if the
decision-maker’s utility for an outcome depends only on
whether a target is achieved with respect to Z. Thus, a
target-oriented decision maker has only two different util-
ity levels, and because a utility function is only specified
to within a positive affine transformation, these two util-
ity levels can be set to one (if the target is achieved) and
zero (if the target is not achieved). With this scaling for the
utility function, a target-oriented decision-maker’s expected
utility for alternative a is

E�u �a�=
∫ �

z=−�

{
p�z �a	×1+�1−p�z �a	�×0}f �z �a	dz

=
∫ �

z=−�
p�z �a	f �z �a	dz�

where p�z � a	 is the probability that the target is achieved
given that the attribute is at level z and alternative a is
selected, and f �z � a	 is the probability density function for
z given that a is selected.
If targets are probabilistically independent of alterna-

tives, once z is specified, this reduces to

E�u � a�=
∫ �

z=−�
p�z	f �z � a	dz� (1)

where p�z	 is the probability that the target is achieved
given that the attribute is at level z. Thus, for a target-
oriented decision maker it is not necessary to assess a utility
function; instead, it is necessary to determine the probabil-
ity function p�z	. As we discuss below, in some decision
contexts this may be a more intuitively appealing task than
assessing a utility function. A special case of (1) is where
the target is known for certain, and hence p�z	 is either
zero or one, depending on z. Therefore, the target-oriented
approach applies to decisions with certain targets as well
as decisions with uncertain targets.
It is clear from (1) that there is always an equivalent stan-

dard (nontarget-oriented) utility formulation for any target-
oriented formulation because the utility function can be set
equal to p�z	 to create such a formulation. The converse is
also true: Because utility functions consistent with the Sav-
age axioms are bounded (Fishburn 1970), the utility func-
tion can be rescaled so that it lies between zero and one over
the range of levels for Z that is of interest. Then, setting
p�z	 equal to the (possibly rescaled) utility function creates
a strategically equivalent target-oriented formulation.

2.2. Descriptive Target-Oriented Formulation

The decision making described in the preceding section is
normative in the sense that it assumes the decision maker
wishes to obey the axioms of rational choice (Von Neu-
mann and Morgenstern 1947, Pratt et al. 1964) that yield

expected utility as the decision criterion. An alternative for-
mulation that also leads to (1) uses a target-oriented for-
mulation to model descriptively the behavior of a decision
maker. This approach models a decision maker as some-
one who intuitively ranks alternatives in accordance with
their probability of achieving a possibly uncertain target
on Z, and hence selects the alternative with the greatest
probability of achieving this target. Such a model might be
considered a natural variant on Simon’s theory of bounded
rationality. With this approach, the right-hand side of (1)
is interpreted as the probability that the target will be
achieved, given that alternative a is selected. Of course,
there is always a normative expected utility interpretation
of (1) that is mathematically equivalent to this descriptive
interpretation.

3. Target-Oriented Multiattribute
Decisions

Here are several illustrative decision-making situations
where a target-oriented multiattribute decision-making app-
roach is natural.

Product Development. A target-oriented approach to
product development resource allocation is natural in some
situations where the product is a complex system, for exam-
ple, an automobile, a personal computer, a television, a
new missile defense system, or any of a variety of other
complex products that are developed or improved by com-
panies in competitive markets. Typically such products are
developed by sizable teams, with a key decision being the
resources (budget, personnel, office space, testing capacity,
etc.) that will be allocated to the subteams working on each
subsystem of the product. Most such products are devel-
oped in a competitive environment against other companies
(or other opponents such as foreign military powers), and
the success of the new or improved product will be deter-
mined by how well it performs relative to the competing
products. Because competing products are usually under
development at the same time, they give rise to uncer-
tain performance targets against which your product will
be compared when it is finally released. A target-oriented
decision-making approach is relevant if potential customers
for the product make purchase decisions based on whether
your product outperforms the competition on various sets
of attributes. Examples of such decision rules include:

1. The Pugh Rule. This widely used concept selection
process (Pugh 1991) starts with a benchmark concept and
compares each proposed concept against the benchmark on
several criteria. The proposed concept that is superior to the
benchmark on the largest number of criteria is chosen for
further development. The Pugh rule is commonly imple-
mented along with Quality Function Deployment (Clausing
1998).

2. Plurality Voting. The customer chooses the product
that is superior to other products on the greatest number of
criteria.
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3. Elimination by Aspects. The customer ranks
attributes in order of importance, and starting with the most
important attribute eliminates products that are inferior on
that attribute, repeats this procedure with the next most
important attribute, and continues in this way successively
eliminating products that are inferior on successively less
important attributes (Tversky 1972).
On the other hand, if potential customers make decisions

based on weighted average performance across attributes,
product development teams will work to develop a prod-
uct whose weighted average performance exceeds the
weighted average performance of competing products. In
this case, a target-oriented approach with a single attribute
(namely, weighted average performance across the perfor-
mance attributes) is appropriate.

Regulated Environments. Much business decision
making is conducted in an environment subject to gov-
ernment regulation or standards with substantial scrutiny
by interested parties. Examples of this include construct-
ing new facilities such as warehouses, stores, manufactur-
ing plants, pipelines, or power plants; or conducting certain
types of business, such as the use of genetically modified
plants or animals; or manufacturing involving or produc-
ing hazardous materials. In such decision-making environ-
ments, the performance required with respect to various
performance attributes by the different stakeholders can be
uncertain, and hence decision making is done in the pres-
ence of uncertain targets.
Often each stakeholder group in such a situation focuses

almost exclusively on performance with respect to the eval-
uation attribute of interest to them. Hence, failure to pro-
vide adequate performance with respect to each attribute, or
at least with respect to a sufficient number of attributes, will
lead to failure of the selected alternative. In such situations,
a target-oriented decision-making approach is appropriate.

Setting Performance Standards. It is common in
operations management to set performance targets, such
as monthly sales quotas for sales personnel; or quality,
throughput, and safety standards for manufacturing plants.
These are often set to provide concrete incentives for opera-
tions personnel who may have difficulty relating their daily
personal activities to higher-level, somewhat abstract, cor-
porate targets involving market share, revenue growth, net
income, etc. These higher-level corporate targets can be
uncertain because these in turn address the highest objec-
tive of a business, which is usually to be profitable and stay
in business. Thus, the setting of performance standards is
often decision making with uncertain targets, and hence a
target-oriented approach is appropriate.

Resource Allocation Under Uncertain Competition.
Product development, regulated decision making, and set-
ting performance standards are examples of decisions with
three characteristics: (1) a fixed resource must be allo-
cated among competing uses to produce an uncertain final
result, (2) there are (possibly uncertain) targets with respect

to multiple performance attributes, and (3) the final suc-
cess of the decision outcome is measured by the extent
to which the multiple performance targets are met, and
not by detailed performance with respect to each perfor-
mance attribute. Whenever these characteristics are present,
a target-oriented approach to multiattribute preference anal-
ysis is appropriate.
The examples above emphasize that performance targets

may be uncertain, but decisions where some or all of the
targets are known for certain are special cases that are also
covered by the results developed below.

4. Target-Oriented Multiattribute
Formulation

This section extends the target-oriented approach in §2 to
decisions with multiple evaluation attributes. We first con-
sider a normative formulation that is analogous to the nor-
mative formulation presented in §2.1 for the single-attribute
situation.

Definition 1. With n attributes X = �X1�X2� � � � �Xn	, a
decision maker is defined to be target oriented if his or her
utility for an outcome x= �x1� x2� � � � � xn	 depends only on
which targets are met by that outcome, where there is a
single target for each attribute.

For example, a decision maker allocating a product
development budget to upgrade an existing product might
have three evaluation attributes: cost, quality, and features.
If the decision maker is target oriented, alternative budget
allocations will be ranked based only on which of the cost,
quality, and features targets are met, and not on the spe-
cific levels that are achieved for the three attributes. These
performance targets might be set relative to a competitor’s
project that is also currently under development, and hence
might be uncertain due to the uncertain performance of the
competitor’s product.
It follows from Definition 1 that the utility function for

a target-oriented decision maker is completely specified
by 2n − 2 constants where these constants are the utilities
of achieving specific combinations of the various targets.
(There are 2n such constants, but because a utility function
is only specified to within a positive affine transformation,
two of these can be specified arbitrarily.) Therefore, to cal-
culate expected utilities it is necessary to know the prob-
ability for each of the 2n different possible combinations
of target achievement as a function of the levels for the n
attributes. Define I = �I1� I2� � � � � In	 as a set of indicator
variables where Ii equals one if the target for Xi is achieved
and zero otherwise. Let Iu be the set of all 2

n combinations
of possible levels of I , and let p�I � x	 be the probability of
I given x. Then, the expected utility for alternative a is

E�u � a�=
∫
X

[∑
I∈Iu
u�I	p�I � x	

]
f �x � a	dx� (2)



Bordley and Kirkwood: Multiattribute Preference Analysis
826 Operations Research 52(6), pp. 823–835, © 2004 INFORMS

where f �x � a	 is the probability density function over X
given a, and u�I	 is the decision maker’s utility function
over I .

Definition 2. For notational convenience, define the
target-oriented preference function uT �x	 by

uT �x	≡
∑
I∈Iu
u�I	p�I � x	� (3)

Using this definition, (2) shows that a target-oriented
decision-maker’s expected utility equals the expected value
of his or her target-oriented preference function. Equation
(3) can be rewritten as

uT �x	=
∑
I∈Iu
kIp�I � x	� (4)

where kI = u�I	, and hence the decision-maker’s utility
function is specified by a set of 2n constants, where these
are the utilities of achieving each unique combination of
targets.
Note that there is a descriptive formulation that is equiv-

alent to (2), just as there is a descriptive formulation for
the single-attribute case that is equivalent to (1). Specifi-
cally, if u�I	 is interpreted as the probability that a par-
ticular set of target achievements I is “good enough” with
respect to the entire set of targets, then the right side of
(2) gives the probability that a particular alternative will
be “good enough” for the decision maker to select this
alternative. Hence, if it is assumed that a decision maker
will select the alternative that has the greatest probability
of being “good enough,” then (2) provides an approach to
descriptively model decision-making behavior in multiob-
jective decisions.

5. Special Cases

5.1. Independent Targets

We now examine conditions on a decision-maker’s prefer-
ences that lead to specific functional forms of (4). These
conditions are useful because they can simplify the assess-
ment of the target-oriented preference function in practical
applications.

Definition 3. If a decision-maker’s probability of achiev-
ing the target on any attribute Xi depends only on the level
xi, then the decision maker is said to have independent
targets.

Independent targets seem intuitively reasonable for many
target-oriented decisions, and with independent targets, the
Ii are probabilistically independent, given x. If we define
pi�xi	 to be the probability that the target for attribute Xi
is achieved, given the level xi of that attribute, then inde-
pendent targets imply

p�I � x	=
{

n∏
i=1

i	�Ii=1	

pi�xi	

}{
n∏
i=1

i	�Ii=0	

�1−pi�xi	�
}
� (5)

where a product is defined to be one if there are no factors.
Equation (5) combines with (4) to yield

uT �x	=
∑
I∈Iu
kI

{
n∏
i=1

i	�Ii=1	

pi�xi	

}{
n∏
i=1

i	�Ii=0	

�1−pi�xi	�
}
� (6)

For example, with two attributes this becomes

uT �x1�x2	=k��1−p1�x1	��1−p2�x2	�
+k1p1�x1	�1−p2�x2	�+k2�1−p1�x1	�p2�x2	
+k12p1�x1	p2�x2	� (7)

where k� = u�0�0	, k1 = u�1�0	, k2 = u�0�1	, and k12 =
u�1�1	.
Note that uT �x	 in (6) is fully determined by the n func-

tions pi�xi	 and the 2
n constants kI . Thus, the amount

of information needed to determine uT �x	 when there are
independent targets is the same as that needed to deter-
mine a multilinear multiattribute utility function (Keeney
and Raiffa 1976, §6.4; Kirkwood 1997, Theorem 9.41).
In fact, Theorem 2 below shows that it is always possi-
ble to find a multilinear utility function that is strategically
equivalent to uT �x	 in (6), where two preference functions
for decisions under uncertainty are said to be strategically
equivalent if they give the same rank ordering for any set
of alternatives and hence are positive affine transformations
of each other (Keeney and Raiffa 1976, Theorem 4.1; Kirk-
wood 1997, Theorem 9.25).

5.2. Additive Target Preferences

Following standard terminology, a decision maker is said
to have additive independent preferences if the decision-
maker’s rank ordering for any set of alternatives depends
only on the marginal probability distributions over the
attributes for each alternative (Keeney and Raiffa 1976,
§6.5; Kirkwood 1997, Definition 9.31).

Theorem 1. The target-oriented preference function for a
target-oriented decision maker with independent targets
and additive independent preferences is strategically equiv-
alent to

uT �x	=
n∑
i=1
Kipi�xi	 (8)

for some constants Ki. If an alternative that achieves all the
targets of a second alternative and also achieves additional
targets is not less preferred than the second alternative,
then Ki � 0 for all i.

The proofs for this theorem and the others below are
in the appendix. The form of uT in (8) is similar to the
form for the standard additive utility function, and Theo-
rem 3 below shows that it is always possible to determine
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an additive utility function that is strategically equivalent
to an additive uT .

5.3. Reliability-Structured Target Preferences

While the additive target-oriented preference function
shown above has a similar form to the standard additive
multiattribute utility function, we now consider a type of
target-oriented preference structure that is different from
the structures usually assumed for multiattribute utility
functions.

Definition 4. A target-oriented decision maker with inde-
pendent targets is said to have a reliability target structure
if u�I	 can take on only two different levels. An outcome
with the higher utility level is called a success, and an out-
come with the lower utility level is called a failure.

Because a utility function is only defined to within a
positive affine transformation, it is always possible with a
reliability target structure to scale u�I	 so that the utility
for a success is one and the utility for a failure is zero.
This scaling convention is used for the remainder of this
paper.
The potential usefulness of a reliability target structure

is illustrated by the new product development example dis-
cussed above where there are three evaluation attributes:
cost, quality, and features. One way to analyze this deci-
sion is as follows: Suppose that potential customers for this
new product will compare it against the competitors’ sim-
ilar products, and hence a target-oriented decision analy-
sis approach may be appropriate. Because these competing
products are not yet on the market, the targets on the three
attributes that the new product must achieve to be a success
are uncertain. A reliability target structure may be appro-
priate if the decision is viewed as selecting the alternative
with the highest likelihood of acceptance by potential cus-
tomers. For example, a potential customer may purchase
our product only if it is of higher quality than the com-
petitors’ products and is also either less costly or has more
features. Assuming that the targets for the attributes are
independent and u�I	 is scaled to be either zero or one as
discussed above, then

uT �xc� xq� xf 	= pq�xq	
{
1− �1−pc�xc	��1−pf �xf 	�

}
�

where the subscripts c, q, and f refer to cost, quality, and
features, respectively.
This is a special case of (6), but the kI do not need to

be directly assessed because they are determined by speci-
fying the combinations of targets needed for success. This
shows the origin of the term reliability target structure,
because uT �x	 is determined using analogies with paral-
lel and series elements in reliability. (The cost and fea-
tures targets are analogous to parallel elements in reliability
analysis, and the quality target is analogous to an element
in series with these.) Theorem 4 below shows that there
is an equivalent multiplicative utility function for many
reliability-structured target-oriented preference functions.

6. Assessment Procedure with an
Application

6.1. Assessment Procedure

Assessing a target-oriented preference function of the form
of (6) requires determining the n target probability func-
tions pi�xi	 and the 2

n constants kI . While there are no
theoretical restrictions on the shape of the pi�xi	, in many
applications these will be monotonic in xi with greater lev-
els of xi either always having a higher probability or always
having a lower probability. For example, in the new product
development example discussed above, it seems reasonable
that pc�xc	 would monotonically decrease with increases in
xc. That is, lower costs will always lead to a higher proba-
bility of meeting the cost target.
In a decision with monotonic pi�xi	, these functions

might be determined by assessing the probability distribu-
tion for the minimum level of Xi that will meet the target.
Thus, for the new product development example, probabil-
ity distributions might be assessed for the level of perfor-
mance that the competitors will achieve in their products
with respect to cost, quality, and features. Then, either the
cumulative distribution or the complementary cumulative
distribution for this uncertain quantity would be used as
pi�xi	, depending on whether more or less of an attribute
is preferred.
Assessment of the kI could be time consuming because

there are 2n of these. However, in analogy to applica-
tions of multiattribute utility theory (Corner and Kirkwood
1991), we might assume that additive independence holds
so that only the n constants in (8) must be assessed. For
example, some variation on the SMART assessment pro-
cedure (Edwards 1977, Edwards and Barron 1994) might
be appropriate to assess these constants. This assessment
is simplified even further if a reliability target structure is
assumed. Then, it is only necessary to determine the appro-
priate series and parallel target structure, as illustrated by
the new product development example discussed above. In
this case, no weights have to be determined, but instead the
parallel/series structure is specified.

6.2. Illustrative Application—New Product
Development

Keeney and Lilien (1987) consider a decision where a com-
pany wanted to assess how prospective customers would
evaluate a proposed new tester for very large-scale inte-
grated circuits. They identified four categories of evaluation
criteria (technical, economic, software, and vendor support)
with a total of 17 evaluation attributes, as shown in the
first column of Table 1. The preference monotonicity for
each evaluation attribute is shown in the second column of
Table 1, and the scores on each of the evaluation attributes
are shown in the third through fifth columns of the table
for the OR 9000, which was the proposed new tester, and
its two competitors, the J941 and the Sentry 50.



Bordley and Kirkwood: Multiattribute Preference Analysis
828 Operations Research 52(6), pp. 823–835, © 2004 INFORMS

Table 1. New product application—data.

Tester ratings

Evaluation attribute Monotonicity OR 9000 J941 Sentry 50

Technical
Pin capacity Increasing 160 96 256
Vector depth Increasing 0�128 0�256 0�064
Data rate Increasing 50 20 50
Timing accuracy Decreasing 1�000 1�000 600
Pin capacitance Decreasing 55 50 40
Programmable measurement units Increasing 8 2 4

Economic
Price Decreasing 1�4 1 2�8
Uptime Increasing 98 95 95
Delivery time Decreasing 3 6 6

Software
Software translator Increasing 90 90 90
Networking: Communications Increasing 1 1 1
Networking: Open Increasing 1 0 0
Development time Decreasing 3 4 4
Data analysis software Increasing 1 1 1

Vendor support
Vendor service Decreasing 2 4�75 6
Vendor performance Decreasing 4 4 4
Customer applications Increasing 1 1 1

Keeney and Lilien (1987) assessed the measurable value
function for a lead user at a primary customer company
for this testing equipment. This lead user first assessed a
minimum acceptability level and a maximum desirability
level for each attribute. Keeney and Lilien then confirmed
that the user’s preferences were describable by an addi-
tive measurable value function, and they assessed a single-
dimensional value function and an importance weight for
each attribute. The assessed additive measurable value
function was then used to evaluate the OR 9000 against
the J941 and Sentry 50, and the results served as input to
determine that the proposed new tester was not competitive
enough to market.
For this decision, it is natural to think in terms of perfor-

mance targets because the explicit purpose of the analysis
was to determine whether the OR 9000 was attractive when
judged against the J941 and the Sentry 50. Thus, the per-
formance of these two testers sets targets against which the
OR 9000 is judged. Table 2 illustrates a possible target-
oriented preference analysis for this decision. There is no
uncertainty about the performance of the three testers, and
preferences are monotonic with respect to each evaluation
attribute. Therefore, the target will be achieved for an evalu-
ation attribute only if performance meets or exceeds a target
performance level on that evaluation attribute. The target
performance levels might be set using different criteria for
each evaluation attribute. For example, there might be some
evaluation attributes where it would be judged necessary
only to meet some minimal level of performance, while for
other evaluation attributes it might be judged necessary to
exceed the performance of both of the competitors by some
threshold amount (for example, 10%).

To illustrate a possible target-oriented analysis, Table 2
assumes that the performance target for each evaluation
attribute is equal to the best performance of either of the
two competitors. For example, because higher levels of “pin
capacity” are more preferable and the Sentry 50 has the
highest level for this evaluation attribute, the Sentry 50
level (which is 256) is the performance target for this eval-
uation attribute. The targets for each evaluation attribute are
shown in the second column of Table 2.
Keeney and Lilien (1987) used an additive measurable

value function, and if the additive independence conditions
in Theorem 1 hold, then the target-oriented preference
function will have the weighted-additive form (8). Keeney
and Lilien used a two-stage process to assess weights for
a measurable value function. First, the relative weights for
the evaluation attributes within each of the four evaluation
categories were assessed, and then weights were assessed
for each of the four categories so that the overall weight
for each evaluation attribute is the product of its cate-
gory weight and its within-category weight. To illustrate
the target-oriented analysis procedure, Table 2 assumes that
the weights used by Keeney and Lilien can be applied.
Both the within-category weights and the category weights
(which are 0.52, 0.14, 0.32, and 0.02) are shown in the
third column of Table 2.
Using the performance data in Table 1 and the target

and weight information in Columns 2 and 3 of Table 2,
the fourth through sixth columns of Table 2 show whether
each tester achieves the target on each evaluation attribute.
For example, for “data rate,” both the OR 9000 and Sentry
50 have a data rate of 50, which is the target level, and
therefore they achieve the target, and hence have pi�xi	= 1
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Table 2. New product application—target-oriented analysis.

Target achievement Weighted comparisons

Evaluation attribute Target Weight OR 9000 J941 Sentry 50 OR 9000 J941 Sentry 50

Technical 0�52 0�2 0�2 0�8
Pin capacity 256 0�15 0 0 1
Vector depth 0�256 0�20 0 1 0
Data rate 50 0�10 1 0 1
Timing accuracy 600 0�35 0 0 1
Pin capacitance 40 0�10 0 0 1
Programmable measurement units 4 0�10 1 0 1

Economic 0�14 0�5 1 0�5
Price 1 0�50 0 1 0
Uptime 95 0�20 1 1 1
Delivery time 6 0�30 1 1 1

Software 0�32 1 1 1
Software translator 90 0�15 1 1 1
Networking: Communications 1 0�20 1 1 1
Networking: Open 0 0�20 1 1 1
Development time 4 0�30 1 1 1
Data analysis software 1 0�15 1 1 1

Vendor Support 0�02 1 1 0�7
Vendor service 4�75 0�30 1 1 0
Vendor performance 4 0�30 1 1 1
Customer applications 1 0�40 1 1 1

Overall Value: 0�514 0�584 0�820

for this evaluation attribute. On the other hand, the J941
does not achieve the target with respect to this evaluation
attribute, and hence has pi�xi	 = 0. The weighted com-
parisons in the rightmost three columns of Table 2 show
the weighted evaluation for each alternative within each
of the four evaluation categories and the overall value
for each alternative using the weights in the third col-
umn. This evaluation finds the OR 9000 to be the least
preferred of the three alternatives, with an overall value
of 0.514.
Both the Keeney and Lilien evaluation and this target-

oriented analysis assume that there is no uncertainty about
the performance of the alternatives. The target-oriented
analysis extends to the case with uncertainty in a straight-
forward manner. Suppose first that the only uncertainty is
with respect to the performance of the proposed OR 9000,
and there is no uncertainty about the performance of the
J941 and Sentry 50 because these are already in production.
With an additive target-oriented preference function of the
form of (8), only the marginal probability distributions for
the evaluation attributes impact the ranking of alternatives.
Hence, the probability analysis can be done one attribute at
a time.
As an illustration, consider the “data rate” evaluation

attribute, and represent this by Y . Let yJ941 and ySentry 50 rep-
resent the data rates for the J941 and Sentry 50. Then, an
alternative achieves the target for Y if y is at least as great
as max�yJ941� ySentry 50	 = 50. Hence, the conditional proba-
bility of achieving the target for Y as a function of y is

p�I � y	=
{
1� y � 50�

0� otherwise�

If fOR 9000�y	 and FOR 9000�y	 represent the probability density
function and cumulative distribution function, respectively,
for yOR 9000, then the expected value of the target-oriented
preference function for data rate for the OR 9000 is

E�udata rate �OR 9000�=
∫
Y
p�I � y	fOR 9000�y	dy

= 1− FOR 9000�50	�
which is known once FOR 9000�y	 is assessed using any of
the standard methods.
To illustrate a more complex case, suppose that the data

rates for the J941 and Sentry 50 are also uncertain. Then,
p�I � y	= Prob�y �max�yJ941� ySentry 50	= Prob�y � yJ941 ∩
y � ySentry 50	. If the data rates for these two testers are prob-
abilistically independent, then p�I � y	= Prob�y � yJ941	×
Prob�y � ySentry 50	, and the expected value for the OR 9000
of the target preference function for data rate is

E�udata rate �OR 9000�
=
∫
Y

∫ y

yJ941=−�

∫ y

ySentry 50=−�
fJ941�yJ941	

· fSentry 50�ySentry 50	fOR 9000�y	dySentry 50 dyJ941 dy
=
∫
Y
FSentry 50�y	FJ941�y	fOR 9000�y	dy�

where the probability density functions and cumulative dis-
tribution functions for yJ941 and ySentry 50 are represented
analogously to those for yOR 9000. It is straightforward
to evaluate this integral using a standard approximation
method such as the extended Pearson-Tukey approxima-
tion. (If the data rates for the J941 and Sentry 50 are not
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independent, then the probability model will be more com-
plex, as would also be true in a realistic conventional mul-
tiattribute utility analysis for this situation.)
The Keeney and Lilien (1987) measurable value anal-

ysis requires ranges for all the evaluation attributes and
midvalues for those ranges, while the target-oriented anal-
ysis requires that a target be specified for each attribute.
Both methods require that attribute weights be assessed.
The competitive shortcomings of the OR 9000 can be iden-
tified with either analysis approach, but these shortcom-
ings are quickly apparent and easily understood from the
target-oriented analysis results in Table 2. It is immediately
clear from this table that the Sentry 50 has better techni-
cal performance than the OR 9000, and technical perfor-
mance has a weight of 0.52, which is much greater than
any other evaluation category. While either of the two anal-
ysis approaches can be a valid way to analyze this decision,
the target-oriented approach seems easier to explain to a
nontechnical audience, and it clearly emphasizes the differ-
ences among the alternatives.

7. Comparison to Multiattribute
Utility Analysis

This section shows that common multiattribute utility func-
tion forms are strategically equivalent to various forms
of target-oriented preference functions. However, in gen-
eral there can be many target-oriented preference func-
tions of a specified form that are strategically equivalent
to a specified multiattribute utility function. For example,
consider an additive multiattribute utility function u�x	 =∑n
i=1 �iui�xi	. Let x

o
i represent the least-preferred xi and x

∗
i

represent the most preferred xi in the domain of interest,
and assume that the ui�xi	 are scaled so that ui�x

o
i 	= 0 and

ui�x
∗
i 	= 1. Then, the additive multiattribute utility function

can always be translated into a valid strategically equiv-
alent additive target-oriented preference function uT �x	 =∑n
i=1Kipi�xi	 by setting pi�xi	=moi +�m∗

i −moi 	ui�xi	 and
Ki = �i/�m∗

i − moi 	 for any constants 0 � moi < m∗
i � 1,

where moi = pi�xoi 	 and m∗
i = pi�x∗i 	.

For example, consider the two-attribute additive utility
function u�x1� x2	= 0�4x1+ 0�6�1− x2	, where the domain
for each Xi is 0� xi � 1. One strategically equivalent target-
oriented preference function is found by setting moi = 0
and m∗

i = 1, i= 1�2, to yield
uT �x1� x2	= 0�4x1+ 0�6�1− x2	� (9)

and another strategically equivalent target-oriented prefer-
ence function is found by setting mo1 = 0�4 and m∗

1 = 0�9,
while leaving mo2 = 0 and m∗

2 = 1, which yields
uT �x1� x2	= 0�8× �0�4+ 0�5x1	+ 0�6�1− x2	� (10)

In (9), the probability of achieving the target for X1 when
x1 = 0 is zero, and the probability when x1 = 1 is one.
However, in (10) the probability of achieving the target for
X1 when x1 = 0 is 0.4, and the probability when x1 = 1 is
0.9. Thus, the interpretation of (10) is different from (9),
because in (9) there is a level of X1 for which the target on

X1 is certain to be achieved and another level for which it
is certain not to be achieved, but in (10) the probability of
achieving the target on X1 is never less than 0.4 or greater
than 0.9. However, in (10) the utility K1 of achieving the
target for X1 is twice as great relative to the utility K2 of
achieving the target for X2 as it is in (9) (0.4 versus 0.6 in
(9), but 0.8 versus 0.6 in (10)).
Theorems are now presented which demonstrate that

target-oriented preference functions of the various types
reviewed above can often be converted into strategically
equivalent multiattribute utility functions, and vice versa.
In these theorems, the notation defined above for xoi
and x∗i is used. Similarly, x

o = �xo1� xo2� � � � � xon	 and x∗ =
�x∗1� x

∗
2� � � � � x

∗
n	. In presentations of multiattribute utility

theory (Keeney and Raiffa 1976, Chapter 6; Kirkwood
1997, Chapter 9), the utility function is usually scaled so
that u�xo	 = 0 and u�x∗	 = 1, and for each xi the single-
attribute utility function ui�xi	 is scaled so that ui�x

o
i 	= 0

and ui�x
∗
i 	= 1, and these scaling conventions are used here.

Scaling constants for the single-attribute utility functions
are designated by �i and the multiplicative utility function
constant by �.

Theorem 2. There always exists a multilinear utility
function

u�x	=
n∑
i=1
�iui�xi	+

n∑
i=1

∑
j>i

�ijui�xi	uj�xj	

+
n∑
i=1

∑
j>i

∑
l>j

�ijlui�xi	uj�xj	ul�xl	

+ · · ·+�123···nu1�x1	u2�x2	 · · ·un�xn	
that is strategically equivalent to any target-oriented pref-
erence function of form (6), and vice versa.

Theorem 3. There always exists an additive utility func-
tion u�x	=∑n

i=1 �iui�xi	 that is strategically equivalent to
any additive target-oriented preference function (8), and
vice versa.

Theorem 4. There always exists:
(1) A multiplicative utility function 1 + �u�x	 =∏n
i=1�1 + ��iui�xi	�, where 1 + � = ∏n

i=1�1 + ��i	 and
� > 0, that is strategically equivalent to any reliability-
structured target-oriented preference function with series
targets, provided that pi�x

o
i 	 > 0 for all i,

(2) A reliability-structured target-oriented preference
function with series targets and pi�x

o
i 	 > 0 for all i that is

strategically equivalent to any multiplicative utility function
with �> 0,

(3) A multiplicative utility function 1 + �u�x	 =∏n
i=1�1 + ��iui�xi	� with 1 + � = ∏n

i=1�1 + ��i	, where
−1 < � < 0, that is strategically equivalent to any
reliability-structured target-oriented preference function
with parallel targets, provided that pi�x

o
i 	 < 1 for all i, and

(4) A reliability-structured target-oriented preference
function with parallel targets and pi�x

o
i 	 < 1 for all i that is
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strategically equivalent to any multiplicative utility function
with −1<�< 0.
Theorem 4 shows that a multiplicative utility function

with substitutable attributes (−1 < � < 0) corresponds to
a target-oriented preference function analogous to a paral-
lel system in reliability theory, and a multiplicative pref-
erence function with complementary attributes (0 < �)
corresponds to a target-oriented preference function anal-
ogous to a series system in reliability theory. Because
series and parallel systems are fundamental building blocks
of reliability models and multiplicative utility functions
are common in multiattribute utility applications, Theo-
rem 4 shows that there is a close mathematical relationship
between multiattribute utility theory and reliability theory.

8. Generalization: “Degree of
Achievement” of Targets

This section generalizes the development in preceding sec-
tions to consider the “degree of achievement” of targets in
a target-oriented preference function.

8.1. Single-Attribute Decisions

For a decision with a single evaluation attribute Z, let zt
be the possibly uncertain target level for Z and za be the
possibly uncertain actual performance for alternative a, and
assume that utility is specified as a function u�zt� za	. For
example,

u�zt� za	=
{
0� za < zt�

1� otherwise�
(11)

corresponds to a special case of §2.1 where preferences are
increasing, and if u�zt� za	 is a function only of za, this
formulation corresponds to conventional utility analysis.
Note that u�xt� za	 is not necessarily monotonic with

respect to za in all practical decisions. For example,
suppose

u�zt� za	=
{
−a�zt − za	� za < zt�

b− c�za− zt	� otherwise�
(12)

for constants a� 0� b � 0, and c. (Equation (11) is a spe-
cial case of (12) with a = 0, b = 1, and c = 0.) In (12),
if a > 0 there is added loss of value for missing the target
zt on the low side (za < zt) by greater amounts, and either
added value, no change in value, or added loss for exceed-
ing the target zt by greater amounts depending on whether
c < 0� c = 0, or c > 0. For example, if b = 0, a > 0, and
c > 0, then the most preferred level is za = zt , and greater
deviations from zt in either direction are increasingly less
preferred. Examples where this might hold include manu-
facturing processes where there is an “ideal” level for some
characteristic of the product, materials management with a
target inventory level, or medical conditions with an ideal
level for a medical indicator, such as blood pressure.

General Formulation. If the probability density func-
tion for zt and za, given a, is designated by ft�a�xt� xa � a	,
then

E�u � a�=
∫ �

za=−�

∫ �

zt=−�
u�zt� za	ft�a�zt� za � a	dzt dza� (13)

If zt and za are probabilistically independent, given a, then
ft�a�zt� za � a	= ft�zt � a	× fa�za � a	, and if zt is also not
dependent on a so that ft�a�zt� za � a	= ft�zt	× fa�za � a	,
then (13) becomes

E�u �a�=
∫ �

za=−�
fa�za �a	

∫ �

zt=−�
u�zt�za	ft�zt	dztdza� (14)

If p�za	 ≡
∫ �
zt=−� u�zt� za	ft�zt	 dzt in (14), then this

equation is made equivalent to (1). (Because u�zt� za	 can
be rescaled by any positive affine transformation with-
out changing the decision, it is always possible to specify
u�zt� za	 so that p�za	 gives valid probabilities.) Hence,
there is always a target-oriented formulation (1) that is
equivalent to (14), although that formulation may not have
a natural interpretation in terms of the real-world decision.
As discussed in §2.1, there is always a standard single-

attribute utility formulation that is strategically equivalent
to any target-oriented specification of the form of (1).
Because the preceding paragraph demonstrates that there is
always a specification of the form of (1) that is strategi-
cally equivalent to any specification of the form of (14),
therefore there is always a standard utility formulation that
is strategically equivalent to (14).

8.2. Multiattribute Decisions

The approach in the preceding section can be general-
ized to multiattribute preferences, but utility independence
concepts must be applied to develop a preference func-
tion form that is practical for applications. Designate the
target level for attribute Xi by xit , and the actual perfor-
mance for Xi, given alternative a, by xia, and define xt ≡
�x1t� x2t� � � � � xnt	 and xa ≡ �x1a� x2a� � � � � xna	. Analogously
to the single-attribute case in §8.1, assume that utility is a
function u�xt& xa	. Designate the probability density func-
tion over xt and xa, given a, by ft�a�xt& xa � a	 so that the
multiattribute extension of (13) is

E�u � a�=
∫ �

−�
· · ·

∫ �

−�
u�xt& xa	 ft�a�xt& xa � a	dxt dxa� (15)

Reducing the complexity of (15) so that it can be
applied requires simplifying both u�xt& xa	 and ft�a�xt& xa	.
To illustrate how this can be done, assume that the pairs
�Xit�Xia	� i= 1�2� � � � � n, are each additive independent of
the remaining Xit and Xia. Then, u�xt& xa	 reduces to the
standard weighted-sum form

u�xt& xa	=
n∑
i=1
kiui�xit� xia	 (16)

for some constants ki and two-attribute utility functions
ui�xit� xia	. If, in addition, Xit is probabilistically indepen-
dent of Xia, and Xit is probabilistically independent of a,
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then

ft�a�xt& xa � a	= ft�xt	fa�xa � a	� (17)

where ft�xt	 is the probability density function over the Xit
and fa�xa � a	 is the conditional probability density function
over Xia, given a.
Substituting (16) and (17) into (15) and integrating yields

E�u � a�=
n∑
i=1
ki

∫ �

xia=−�
fia�xia � a	

·
∫ �

xit=−�
u�xit� xia	fit�xit	 dxit dxia� (18)

Because each term in (18) is analogous to (14), the argu-
ment that was applied to (14) also demonstrates that there
is a strategically equivalent target-oriented formulation for
(18) of the form of (8). As with (13), a form such as (12)
could be used for the u�xit� xia	 in (18) to represent dif-
fering preferences for different degrees of achievement of
the targets. Equation (18) assumes additive independence
among the pairs �Xit�Xia	, but other preference conditions
could also be applied, such as the utility independence and
pairwise preferential independence conditions that lead to
a multiplicative decomposition.

8.3. Relationship to Goal Programming

This section demonstrates that the basic weighted goal pro-
gramming formulation is a special case of the model in
§8.2. The basic weighted goal program is (Tamiz and Jones
1996)

min
y�'

n∑
i=1
�w−

i '
−
i +w+

i '
+
i 	 (19)

subject to fi�y	+ '−i − '+i = bi� i = 1� � � � � n, and y ∈ Cy .
In this formulation, bi� i = 1� � � � � n, are the targets, ' rep-
resents the set of all '−i � 0 and '+i � 0, which are the
negative or positive deviation, respectively, from each tar-
get level, and w−

i � 0 and w+
i � 0 are the weights for

these deviations in the optimization. (At most, one of '−i
and '+i will be nonzero in any optimal solution.) Cy is
an optional set of constraints on the decision variables
y = �y1� y2� � � � � ym	. The solution to this goal program is
the feasible y that minimizes the weighted sum of the devi-
ations between fi�y	 and bi.
To show that this is a special case of generalized target-

oriented preference analysis, assume (16) holds and (12)
holds with a� 0, b = 0, and c � 0 for each ui�xit� xia	 so
that

ui�xit� xia	=
{
−ai�xit − xia	� xia < xit�

−ci�xia− xit	� otherwise�
(20)

For this case, the target-oriented decision with no uncer-
tainty can be represented by

max
xa∈C

n∑
i=1
kiui�xit� xia	� (21)

where C is the set of feasible xa = �x1a� x2a� � � � � xna	.
By defining '−i ≡max�xit − xia�0	 to represent deviations
below the target levels xit in (20) and '

+
i ≡max�xia−xit�0	

to represent deviations above the target levels in that equa-
tion, we can rewrite (20) as ui�xit� xia	 = −a'−i − c'+i .
Substituting this representation for ui into (21) yields

min
'�xa

n∑
i=1
�kiai'

−
i + kici'+i 	 (22)

subject to '−i − '+i = xit − xia, '
+
i � 0, '−i � 0, i =

1�2� � � � � n, and xa ∈ C. If xia is a function of a set of
decision variables y, so that xia = fi�y	 with y ∈ Cy , and
bi ≡ xit , we can rewrite '−i −'+i = xit−xia as fi�y	+'−i −
'+i = bi. Hence, (22), which we have just shown is equiva-
lent to (20) and (21), becomes equivalent to (19) if we set
w−
i ≡ kiai and w+

i ≡ kici. Because (16) and (20) are special
cases of u�xt& xa	, the weighted goal programming formu-
lation in (19) is a special case of target-oriented preference
analysis.
Stochastic goal programming (Ballestero 2001) treats

target-oriented decisions under uncertainty by replacing
the uncertain evaluation attribute levels with their corre-
sponding expected utilities and then minimizing (19), an
approach that is not fully consistent with utility theory. In
contrast, target-oriented preference analysis under uncer-
tainty, as presented in §8.2, extends the goal programming
formulation in (19) to decision making under uncertainty
in a way that is fully consistent with utility theory.

8.4. Further Generalization to Target Ranges

The formulation in §§8.1 and 8.2 can be generalized to
multiple target levels for each evaluation attribute, which
addresses decisions with target ranges. Specifically, sup-
pose there are two target levels xlit < x

u
it for each Xi. If

xit ≡ �xlit� xuit	, then with the same utility and probabilistic
independence conditions on Xit and Xia as assumed in §8.2,
(18) will be a valid representation for this situation. As an
example, consider

ui�x
l
it� x

u
it� xia	=



−ai�xlit − xia	� xia < x

l
it�

0� xlit � xia � x
u
it�

−ci�xia− xuit	� otherwise�

(23)

where ai > 0 and ci > 0, which assumes there is a range
of levels xlit � xia � x

u
it that are all equally preferred and

deviations in either direction from that range are less pre-
ferred. (An example is a manufacturing process where any
dimension for a manufactured component within a toler-
ance range is equally acceptable.) For this case, by anal-
ogous reasoning to that yielding (21), the target-oriented
decision with no uncertainty can be represented as

max
xa∈C

n∑
i=1
kiui�x

l
it� x

u
it� xia	� (24)

where C is the set of feasible xa = �x1a� x2a� � � � � xna	.
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An analogous process to that in §8.3 develops a gener-
alized version of (19) that is equivalent to (23) and (24).
Define 'l−i ≡max�xlit − xia�0	 and 'l+i ≡max�xia − xlit�0	
to represent deviations from the lower target levels xlit in
(23), and 'u−i ≡ max�xuit − xia�0	 and 'u+i ≡ max�xia −
xuit�0	 to represent deviations from the upper target levels.
Then, an equivalent formulation to (23) and (24) can be
written as

min
'�xa

n∑
i=1
�kiai'

l−
i + kici'u+i 	 (25)

subject to 'l−i − 'l+i = xlit − xia, 'u−i − 'u+i = xuit − xia,
'l+i � 0, 'l−i � 0, 'u+i � 0, 'u−i � 0, i = 1�2� � � � � n, and
xa ∈C, where at most one of the deviations will be nonzero
for a specified i in any optimal solution. If xia is a function
of a set of decision variables y, so that xia = fi�y	 with
y ∈Cy , and bi ≡ xit , w−

i ≡ kiai, and w+
i ≡ kici, then (25) is

made equivalent to a generalized form of (19). Because (23)
and (24) are special cases of u�xt& xa	 with target ranges,
the goal programming formulation in (25) is a special case
of the generalized target-oriented preference formulation in
this section.

9. Concluding Comments
This paper presents methods to model preference structures
involving targets on multiple evaluation attributes. This
approach can simplify the development of a multiattribute
preference function for some decisions, and it appears to
have particular applicability for situations where the out-
come of the decision is significantly determined by the
actions of other stakeholders to the decision. Examples of
these types of decisions include new product development
and decision making in a highly regulated environment.

Appendix
Following the notation of Keeney and Raiffa (1976), Xi
stands for all the attributes except Xi, x

′
i stands for an arbi-

trary specified level of Xi, x
′ stands for arbitrary speci-

fied levels of all the attributes, and �xi� x̄
′
i	 stands for any

level of Xi combined with any specified levels for the other
attributes.

Proof of Theorem 1. Consider two alternatives, a1,
which has a probability 1/n of yielding x and a probability
�n− 1	/n of yielding x′; and a2 which has a probability
1/n of yielding �xi� x̄

′
i	� i= 1�2� � � � � n. Because a1 and a2

have the same marginal probability distributions for each
xi, if the conditions of the theorem hold, then these two
alternatives must be equally preferred and hence have equal
expected values for uT .
The expected value of uT for a1 is given by �1/n	 ·

uT �x	+ ��n−1	/n�uT �x′	, and the expected value of uT for
a2 is given by �1/n	

∑n
i=1 uT �xi� x̄

′
i	. Because the decision

maker has independent targets, then uT �x	 has the form of
(6), and from inspection of (6)

uT �x	= ai�x̄i	pi�xi	+ bi�x̄i	�1−pi�xi	�
= bi�x̄i	+ ci�x̄i	pi�xi	� (A-1)

for i = 1�2� � � � � n, for some functions ai�x̄i	, bi�x̄i	, and
ci�x̄i	 ≡ ai�x̄i	 − bi�x̄i	. (Note that ai�x̄i	 and bi�x̄i	 are
not arbitrary because they are implicitly defined by (6).)
Thus, the expected value of uT �x	 for a2 is equal to
�1/n	

∑n
i=1�bi�x̄

′
i	+ ci�x̄′i	pi�xi	�. Equating this expression

to the expression for the expected value of uT for a1 and
rearranging terms leads to

uT �x	=−�n− 1	uT �x′	+
n∑
i=1
bi�x̄

′
i	+

n∑
i=1
ci�x̄

′
i	pi�xi	�

Defining Ki = ci�x̄′i	 leads to (8) except for the constant−�n−1	uT �x′	+
∑n
i=1 bi�x̄

′
i	. However, two target-oriented

preference functions that differ only by a constant are
strategically equivalent. Therefore, this constant can be
dropped from uT �x	, and hence (8) follows except that we
must establish that the Ki are nonnegative.
The nonnegativity of the Ki under the conditions of the

theorem will be proved if ci�x̄
′
i	= ai�x̄′i	− bi�x̄′i	� 0� i =

1�2� � � � � n. Compare ai�x̄
′
i	 and bi�x̄

′
i	 in (A-1) with (6).

From (6) it follows that ai�x̄
′
i	 and bi�x̄

′
i	 are made up of

terms that are pairwise identical except for the constants
kI . Each pair of corresponding terms represents an outcome
where the same targets are met except that for the term in
ai�x̄

′
i	, the target for xi is met in addition to the targets that

are met for the corresponding term in bi�x̄
′
i	. Hence, from

the statement of the theorem, the outcome for the term in
ai�x̄

′
i	 must not be less preferred than the outcome for the

corresponding term in bi�x̄
′
i	, and therefore the kI for each

term included in ai�x̄
′
i	 must be at least as great as the

kI for the corresponding term included in bi�x̄
′
i	. Hence,

Ki = ci�x̄′i	= ai�x̄′i	− bi�x̄′i	� 0. �

For the following three proofs, it must be true that u�x	
and ui�xi	 are all scaled to lie between zero and one, but
there is no such requirement on uT �x	 or the pi�xi	. How-
ever, these can be rescaled to yield functions that are scaled
between zero and one as follows:

u�x	≡ �uT �x	− uT �xo	�/�uT �x∗	− uT �xo	�� (A-2)

ui�xi	≡ �pi�xi	−pi�xoi 	�/�pi�x∗i 	−pi�xoi 	�� (A-3)

Because u�x	 as defined by (A-2) is a positive affine trans-
formation of uT �x	, then u�x	 and uT �x	 are strategically
equivalent.

Proof of Theorem 2. Keeney and Raiffa (1976, §6.5)
have shown that if

u�x	= ui�xi	u�x∗i � x̄i	
+ �1− ui�xi	�u�xoi � x̄i	� i= 1�2� � � � � n� (A-4)
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then u�x	 has the multilinear form in Theorem 2. (Equation
(A-4) is the same as (6.27) in Keeney and Raiffa (1976).
Note that in this equation u�x	 is scaled so that u�xo	= 0
and u�x∗	= 1 for some xo and x∗, and also ui�xoi 	= 0 and
ui�x

∗
i 	= 1.) Therefore, showing that uT �x	 in (6) is strate-

gically equivalent to u�x	 in (A-4) will prove the theorem.
From (A-1) in the proof of Theorem 1, we know that

uT �x	 = bi�x̄i	 + ci�x̄i	pi�xi	� i = 1�2� � � � � n, for some
functions bi�x̄i	 and ci�x̄i	. Solve (A-2) and (A-3) for uT �x	
and ui�xi	, respectively, and substitute the resulting expres-
sions into this equation. Rearranging terms leads to

u�x	= b′i�x̄i	+ c′i�x̄i	ui�xi	� i= 1�2� � � � � n� (A-5)

where b′i�x̄i	≡ �−uT �xo	+bi�x̄i	+ci�x̄i	pi�xoi 	�/�uT �x∗	−
uT �x

o	� and c′i�x̄i	 ≡ ci�x̄i	× �pi�x∗i 	− pi�xoi 	�/�uT �x∗	−
uT �x

o	�. Substituting first x = �x∗i � x̄i	 and then x =
�xoi � x̄i	 into (A-5) yields the equations u�x

∗
i � x̄i	= b′i�x̄i	+

c′i�x̄i	ui�x
∗
i 	 = b′i�x̄i	 + c′i�x̄i	 and u�xoi � x̄i	 = b′i�x̄i	 +

c′i�x̄i	ui�x
o
i 	 = b′i�x̄i	. Solving these for b′i�x̄i	 and c′i�x̄i	

and rearranging terms yields (A-4), and hence the result is
proved.
Because a key step in this proof is not intuitively

reversible, we will directly prove the converse of this
theorem. (The step that is not intuitively reversible is
going from (A-1) to (6).) We will proceed by induc-
tively constructing a strategically equivalent target-oriented
preference function (6) starting from any specified mul-
tilinear utility function. This proof requires some new
notation. Specifically, define yk = �x1� x2� � � � � xk	, ȳk =
�xk+1� xk+2� � � � � xn	, and Ik = �I1� I2� � � � � Ik	, where each
Ii is a zero-one indicator variable. Then, I

k
u is defined to

be the set of all 2k combinations of possible levels of Ik.
Finally, yI

k

k designates levels of x1� x2� � � � � xk as follows: If
Iki = 1 then xi = x∗i , and if Iki = 0 then xi = xoi . For exam-
ple, y�0�1�1	3 = �xo1� x∗2� x∗3	.
The induction proceeds as follows: Assume that for a

specific value of k

u�x	= ∑
I∈Iku
u
(
yI

k

k � ȳk
){ k∏

i=1
i	�Iki =1	

ui�xi	

}

·
{

k∏
i=1

i	�Iki =0	

�1− ui�xi	�
}
� (A-6)

(This is true from (A-4) for k= 1.) Then, apply (A-4) with
i= k+ 1 to expand u�yIkk � ȳk	 in (A-6). The result is
u�x	= uk+1�xk+1	

∑
I∈Iku
u
(
yI

k

k � x
∗
k+1� ȳk+1

)

·
{

k+1∏
i=1

i	�Iki =1	

ui�xi	

}{
k+1∏
i=1

i	�Iki =0	

�1− ui�xi	�
}

+ �1− uk+1�xk+1	�
∑
I∈Iku
u
(
yI

k

k � x
o
k+1� ȳk+1

)

·
{

k+1∏
i=1

i	�Iki =1	

ui�xi	

}{
k+1∏
i=1

i	�Iki =0	

�1− ui�xi	�
}
�

However, this can be rewritten as

u�x	= ∑
I∈Ik+1u

u
(
yI

k+1
k+1 � ȳk+1

)

·
{

k+1∏
i=1

i	�Ik+1i =1	

ui�xi	

}{
k+1∏
i=1

i	�Ik+1i =0	

�1− ui�xi	�
}
�

and this is the same as (A-6) with k replaced by k + 1.
Hence, if (A-6) holds for k it also holds for k+ 1. When
k = n, (A-6) is the same as (6) if we set u�x	 = uT �x	,
u�yI

n

n � ȳn+1	= kI , and pi�xi	= ui�xi	 in (A-6). (When k=
n, ȳn+1 is null, and hence u�yI

n

n � ȳn+1	 is equal to a con-
stant.) Because these substitutions result in valid values for
uT �x	, kI , and pi�xi	, we have constructed a strategically
equivalent target-oriented preference function for the multi-
linear utility function, and thus the converse of the theorem
is proved. �

Proof of Theorem 3. To show that there is always an
additive utility function that is strategically equivalent to
(8), solve (A-2) and (A-3) for uT �x	 and pi�xi	, respec-
tively, and substitute into (8). This yields

uT �x
o	+ �uT �x∗	− uT �xo	�u�x	

=
n∑
i=1
Ki*pi�x

o
i 	+ �pi�x∗i 	−pi�xoi 	�ui�xi	+�

Because uT �x
o	=∑n

i=1Kipi�x
o
i 	, this reduces to

�uT �x
∗	− uT �xo	�u�x	=

n∑
i=1
Ki�pi�x

∗
i 	−pi�xoi 	�ui�xi	�

Define �i =Ki�pi�x∗i 	−pi�xoi 	�/�uT �x∗	−uT �xo	� and the
result follows. If the �i do not sum to one, then multiply by
the appropriate (positive) constant so this is true. (Multipli-
cation by a positive constant always yields a strategically
equivalent utility function.)
To show that there is always an additive target-oriented

preference function (8) that is strategically equivalent to
any additive utility function, substitute into the additive util-
ity function u�x	=∑n

i=1 �iui�xi	 as follows: uT �x	= u�x	,
pi�xi	= ui�xi	, and Ki = �i. The result is a valid additive
target-oriented preference function. �

Proof of Theorem 4. Each part of this theorem is proved
in order. For Part (1) of the theorem, a reliability-structured
target-oriented preference function with series targets has
the form uT �x	=

∏n
i=1 pi�xi	. Solving (A-2) and (A-3) for

uT �x	 and ui�xi	, respectively, and substituting into this
equation yields

uT �x
o	+ �uT �x∗	− uT �xo	�u�x	

=
n∏
i=1
*pi�x

o
i 	+ �pi�x∗i 	−pi�xoi 	�ui�xi	+�

Define � = �uT �x
∗	 − uT �x

o	�/uT �x
o	 and ��i =

�pi�x
∗
i 	−pi�xoi 	�/pi�xoi 	. By the conditions of the theorem

pi�x
o
i 	 > 0, and therefore uT �x

o	=∏n
i=1 pi�x

o
i 	 > 0. Hence,
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both � and �i must be greater than zero because uT �x
∗	 >

uT �x
o	 and pi�x

∗
i 	 > pi�x

o
i 	. Substitute into the equation

above to yield

uT �x
o	�1+�u�x	�

=
{ n∏
i=1
pi�x

o
i 	

}{ n∏
i=1
�1+��iui�xi	�

}
�

But because uT �x
o	 =∏n

i=1 pi�x
o
i 	, therefore 1+ �u�x	 =∏n

i=1�1 + ��iui�xi	�, which proves the result in Part (1).
Each step of this proof is reversible, and so the con-
verse of Part (1) is true, which establishes Part (2) of the
theorem.
For Part (3) of the theorem, a reliability-structured target-

oriented preference function with parallel targets has the
form 1−uT �x	=

∏n
i=1�1−pi�xi	�. Solving (A-2) and (A-3)

for uT �x	 and ui�xi	, respectively, and substituting into this
equation yields

1− uT �xo	− �uT �x∗	− uT �xo	�u�x	

=
n∏
i=1
*1−pi�xoi 	− �pi�x∗i 	−pi�xoi 	�ui�xi	+�

Define � = −�uT �x∗	 − uT �xo	�/�1 − uT �xo	� and ��i =
−�pi�x∗i 	− pi�xoi 	�/�1− pi�xoi 	�. By the conditions of the
theorem, pi�x

o
i 	 < 1, and therefore 1− uT �xo	=

∏n
i=1�1−

pi�x
o
i 	� > 0. Because uT �x

∗	 > uT �xo	, pi�xoi 	 < 1, and
pi�x

∗
i 	 > pi�x

o
i 	, then −1 < � < 0 and 0 < �i. Substitute

into the equation above to yield

�1− uT �xo	��1+�u�x	�

=
{ n∏
i=1
�1−pi�xoi 	�

}{ n∏
i=1
�1+��iui�xi	�

}
�

However, because 1−uT �xo	=
∏n
i=1�1−pi�xoi 	�, therefore

1+ �u�x	 =∏n
i=1�1+ ��iui�xi	�, which proves the result

in Part (3). Each step of this proof is reversible, and so the
converse of Part (3) is true, which establishes Part (4) of
the theorem. �
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