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Abstract

It is well known that a suspended monolayer graphene has a weak light absorption efficiency of about 2.3% at

normal incidence, which is disadvantageous to some applications in optoelectronic devices. In this work, we will

numerically study multiband and broadband absorption enhancement of monolayer graphene over the whole

visible spectrum, due to multiple magnetic dipole resonances in metamaterials. The unit cell of the metamaterials is

composed of a graphene monolayer sandwiched between four Ag nanodisks with different diameters and a SiO2

spacer on an Ag substrate. The near-field plasmon hybridizations between individual Ag nanodisks and the Ag

substrate form four independent magnetic dipole modes, which result into multiband absorption enhancement of

monolayer graphene at optical frequencies. When the resonance wavelengths of the magnetic dipole modes are

tuned to approach one another by changing the diameters of the Ag nanodisks, a broadband absorption

enhancement can be achieved. The position of the absorption band in monolayer graphene can be also controlled

by varying the thickness of the SiO2 spacer or the distance between the Ag nanodisks. Our designed graphene

light absorber may find some potential applications in optoelectronic devices, such as photodetectors.
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Background

Graphene, a monolayer of carbon atoms tightly arranged

in two-dimensional (2D) honeycomb lattice, was first

separated from graphite experimentally in 2004 [1].

Since then, graphene has attracted enormous attentions

in the scientific community, partly owing to its excep-

tional electronic and optical properties, including fast

carrier velocity, tunable conductivity, and high optical

transparency [2]. As one kind of 2D emerging materials,

graphene has promising potentials in a wide variety of

fields ranging from optoelectronics [3–6] to plasmonics

[7–10], to metamaterials [11–15], etc. Due to its unique

conical band structure of Dirac fermions, the suspended

and undoped graphene exhibits a universal absorption of

approximately 2.3% within the visible and near-infrared

regions, which is related to the fine structure constant in

a monolayer atomic sheet [16, 17]. The optical absorp-

tion efficiency is impressive, considering that graphene is

only about 0.34 nm thick. However, it is still too low to

be useful for optoelectronic devices such as photodetec-

tors and solar cells, which need considerably higher ab-

sorption values for efficient operation.

To overcome this problem, various physical mecha-

nisms [18–43] to enhance absorption of graphene in the

visible region have been proposed, which include strong

photon localization on the defect layer in one-dimensional

(1D) photonic crystals [18, 28, 33, 38], total internal reflec-

tion [19, 20, 23, 27], surface plasmon resonances [21, 22,

30, 31, 33], evanescent diffraction orders of the arrays of

metal nanoparticles [34], and critical coupling to guided

mode resonances [25, 26, 32, 34, 35, 37, 39–41]. Besides
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the absorption enhancement in graphene, achieving multi-

band and broadband light absorption in graphene is also

important for some graphene-based optoelectronic de-

vices from a practical point of view. But, it is still a chal-

lenge, as pointed out in the very recent reports [44–46].

At present, different approaches have been proposed to

broaden the bandwidth of graphene absorption in wide

frequency range from THz [44–62] and infrared [63–65]

to optical frequencies [19, 23, 29, 31, 34–36, 38–40, 43].

Especially, a multi-resonator approach was proven to be a

very effective method to resolve the bandwidth limitation

of graphene absorption in the THz and infrared regions

[45, 46, 62, 63]. In the multi-resonator approach, deep-

subwavelength multiple resonators with different sizes are

closely packed, which could extend the absorption band-

width when their resonance frequencies overlap with each

other. However, to the best of our knowledge, up to now

there are only a few reports on such a multi-resonator ap-

proach to obtain multiband and broadband light absorp-

tion of graphene in the visible region.

In this work, by employing similar multi-resonator ap-

proach, we will numerically demonstrate multiband and

broadband absorption enhancement of monolayer gra-

phene in the whole visible wavelength range, which arise

from a set of magnetic dipole resonances in metamateri-

als. The unit cell of metamaterials consists of a graphene

monolayer sandwiched between four Ag nanodisks with

different diameters and a SiO2 spacer on an Ag sub-

strate. The near-field plasmon hybridizations between

individual Ag nanodisks and the Ag substrate form four

independent magnetic dipole modes, which result into

four-band absorption enhancement of monolayer gra-

phene. When the magnetic dipole modes are tuned to

be overlapped spectrally by changing the diameters of

Ag nanodisks, a broadband absorption enhancement is

achieved. The position of the absorption band in mono-

layer graphene can be also controlled by varying the

thickness of the SiO2 spacer or the distance between the

Ag nanodisks.

Methods/Experimental

The designed metamaterials for multiband and broad-

band absorption enhancement of graphene at optical fre-

quencies are schematically shown in Fig. 1. The unit cell

of the metamaterials consists of a graphene monolayer

sandwiched between four Ag nanodisks with different

diameters and a SiO2 spacer on an Ag substrate. We cal-

culate the reflection and absorption spectra, and the dis-

tributions of electromagnetic fields by the commercial

software package “EastFDTD, version 5.0,” which is

based on finite difference time domain (FDTD) method

(www.eastfdtd.com). In our numerical calculations, the

refractive index of SiO2 is 1.45, and the frequency-

dependent relative permittivity of Ag is taken from

experimental data [66]. Under the random-phase approxi-

mation, the complex surface conductivity σ of graphene is

the sum of the intraband term σintra and the interband

term σinter [67, 68], which are expressed as follows:

σ intra ¼
ie2kBT

πℏ
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E f
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þ 2In e

−

E f
kBT þ 1

� �� �

; σ inter

¼
ie2

4πℏ
In

2Ef − ωþ i=τð Þℏ

2Efþ ωþ i=τð Þℏ

� �

;

ð1Þ

where ω is the frequency of incident light, e is electron

charge, ħ is reduced Planck constant, Ef is Fermi energy (or

chemical potential), τ is the relaxation time of electron-

phonon, kB is Boltzmann constant, T is temperature in K,

and i is the imaginary unit. Graphene has an anisotropic

relative permittivity tensor of εg expressed as

εg ¼
1þ iσ= ωε0tg
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where ε0 is the permittivity of the vacuum, and tg is the

thickness of graphene sheet.

Results and Discussion

Figure 2 shows the calculated absorption spectra of gra-

phene, Ag, and total metamaterials at normal incidence.

Fig. 1 Schematic of metamaterials for multiband and broadband

absorption enhancement of graphene at optical frequencies, which

are composed of a graphene monolayer sandwiched between four

Ag nanodisks and a SiO2 spacer on an Ag substrate. Geometrical

parameters px and py are the array periods along the x and y

directions, respectively; t is the thickness of the SiO2 spacer; d1, d2,

d3, and d4 are the diameters of four Ag nanodisks (d1 > d2 > d3 > d4);

h is the height of the Ag nanodisks. Ein, Hin, and Kin are the electric

field, magnetic field, and wave vector of the incident light, which

are along the x, y, and z axes, respectively
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One can clearly see four absorption peaks, whose

resonance wavelengths are λ1 = 722.9 nm, λ2 = 655.7 nm,

λ3 = 545.5 nm, and λ4 = 468.8 nm. At four absorption

peaks, the light absorption in graphene can reach as high

as 65.7, 61.2, 68.4, and 64.5%, respectively. Compared with

a suspended monolayer graphene whose absorption effi-

ciency is only 2.3% at optical frequencies [16, 17], the

monolayer graphene in our designed metamaterials has an

absorption enhancement of more than 26 times. It is also

clearly seen in Fig. 2 that the absorbed light is mainly dis-

sipated in graphene rather than in Ag. Moreover, the total

absorption at the third peak exceeds 98.5%, very similar to

much reported metamaterial electromagnetic wave perfect

absorbers [69–75], which have many potential applica-

tions such as solar cells [76–81].

To find the physical origins of above four absorption

peaks, Figs. 3 and 4 plot the distributions of electric and

magnetic fields at the resonance wavelengths of λ1, λ2,

λ3, and λ4. At the resonance wavelength of λ1, the elec-

tric fields are mainly concentrated near the left and right

edges of the first Ag nanodisk with a diameter of d1 (see

Fig. 3a), and the magnetic fields are highly confined

within the SiO2 region under the first Ag nanodisk (see

Fig. 4a). Such field distributions correspond to the exci-

tation of a magnetic dipole mode [82–86], which steps

from the near-field plasmon hybridization between the

first Ag nanodisk and the Ag substrate. At the resonance

wavelengths of λ2, λ3, and λ4, the electromagnetic fields

have the same distribution properties, but are localized

in the vicinity of the second, third, and fourth Ag nano-

disks with diameters of d2, d3, and d4, respectively. In

short, the excitations of four independent magnetic di-

pole modes lead to the appearance of four absorption

peaks in Fig. 2.

Fig. 2 Normal-incidence absorption spectra of monolayer graphene

(red circle), Ag (green triangle), and total metamaterials (black

square) in the wavelength range from 450 to 800 nm. Geometrical

and physical parameters: px = py = 400 nm, d1 = 140 nm, d2 = 110 nm,

d3 = 80 nm, d4 = 50 nm, h = 50 nm, t = 30 nm, Ef = 0.50 eV, τ =

0.50 ps, T = 300 K, tg = 0.35 nm

Fig. 3 (a)-(d) Corresponding normalized electric field intensity (E/Ein) on the xoz plane across the center of the SiO spacer for the resonance

wavelengths of λ , λ , λ , and λ labeled in Fig. 2. Red arrows represent the field direction, and colors show the field strength
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In our designed metamaterials, the near-field plas-

mon hybridizations between individual Ag nanodisks

and the Ag substrate form four independent magnetic

dipole modes, which result into multiband absorption

enhancement of monolayer graphene in the visible

wavelength range from 450 to 800 nm, with an aver-

age absorption efficiency exceeding 50% (please see

Fig. 2). The resonance wavelength of each magnetic

dipole mode can be conveniently tuned by changing

the diameter of the corresponding Ag nanodisk. If the

diameters of the Ag nanodisks are varied for the ab-

sorption peaks in Fig. 2 to approach one another, a

broad high-absorption band of monolayer graphene

will be formed. To demonstrate this, Fig. 5a presents

the normal-incidence absorption spectra of monolayer

graphene, when the diameters d1, d2, d3, and d4 of

four Ag nanodisks are equal to 110, 90, 70, and

50 nm, respectively. In this case, a broadband absorp-

tion enhancement in the wavelength range from 450

to 650 nm is achieved by the spectral design on the

overlapped absorption peaks, with the lowest (highest)

absorption efficiency more than 50% (73%). For the

diameters of the Ag nanodisks to be increased grad-

ually, this broad high-absorption band is red-shifted,

as shown in Fig. 5b, c.

Besides the diameters of the Ag nanodisks, we can tune

the position of the absorption band in monolayer graphene

by changing the thickness t of the SiO2 spacer. Figure 6

shows the normal-incidence absorption spectra in mono-

layer graphene, for t to be increased from 25 to 45 nm.

With the increasing t, the absorption band in monolayer

Fig. 4 The same as in Fig. 3, but for normalized magnetic field intensity (H/Hin)
2

Fig. 5 (a)-(d) Corresponding normal-incidence absorption spectra of

monolayer graphene in the wavelength range from 450 to 800 nm

with the diameters of four Ag nanodisks are varied, but the other

parameters are the same as those in Fig. 2
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graphene will have an obvious blue-shift, because the near-

field plasmon hybridizations between individual Ag nano-

disks and the Ag substrate become weaker and thus mag-

netic dipole modes are blue-shifted [83].

In the above calculations, the coordinate points of four

Ag nanodisks are (±px /4, ±py /4), so the center distance

l between the nearest-neighbor Ag nanodisks is 200 nm.

By varying l, we can also tune the position of the absorp-

tion band in monolayer graphene. Figure 7 gives the

normal-incidence absorption spectra in monolayer gra-

phene, for l to be decreased from 220 to 160 nm. With

the decreasing l, the absorption band in monolayer gra-

phene is slightly blue-shifted, owing to the plasmon in-

teractions among the Ag nanodisks.

Conclusions

In this work, we have numerically investigated multi-

band and broadband absorption enhancement of mono-

layer graphene at optical frequencies from multiple

magnetic dipole resonances in metamaterials. The unit

cell of the metamaterials consists of a graphene mono-

layer sandwiched between four Ag nanodisks with differ-

ent diameters and a SiO2 spacer on an Ag substrate. The

near-field plasmon hybridizations between individual Ag

nanodisks and the Ag substrate form four independent

magnetic dipole modes, which result into multiband ab-

sorption enhancement of monolayer graphene in the vis-

ible wavelength range. When the magnetic dipole modes

are tuned to be overlapped spectrally by changing the di-

ameters of Ag nanodisks, a broadband absorption en-

hancement is achieved. The position of the absorption

band in monolayer graphene can be also controlled, by

varying the thickness of the SiO2 spacer or the distance

between the Ag nanodisks. The numerical results may

have some potential applications in optoelectronic de-

vices, such as photodetectors.
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