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Multiband Carrierless Amplitude Phase Modulation

for High Capacity Optical Data Links
Miguel Iglesias Olmedo, Tianjian Zuo, Jesper Bevensee Jensen, Qiwen Zhong, Xiaogeng Xu,

Sergei Popov, and Idelfonso Tafur Monroy

Abstract—Short range optical data links are experiencing band-
width limitations making it very challenging to cope with the grow-
ing data transmission capacity demands. Parallel optics appears as
a valid short-term solution. It is, however, not a viable solution in
the long-term because of its complex optical packaging. Therefore,
increasing effort is now put into the possibility of exploiting higher
order modulation formats with increased spectral efficiency and
reduced optical transceiver complexity. As these type of links are
based on intensity modulation and direct detection, modulation
formats relying on optical coherent detection can not be straight
forwardly employed. As an alternative and more viable solution,
this paper proposes the use of carrierless amplitude phase (CAP) in
a novel multiband approach (MultiCAP) that achieves record spec-
tral efficiency, increases tolerance towards dispersion and band-
width limitations, and reduces the complexity of the transceiver.
We report on numerical simulations and experimental demonstra-
tions with capacity beyond 100 Gb/s transmission using a single
externally modulated laser. In addition, an extensive comparison
with conventional CAP is also provided. The reported experiment
uses MultiCAP to achieve 102.4 Gb/s transmission, corresponding
to a data payload of 95.2 Gb/s error free transmission by using a
7% forward error correction code. The signal is successfully recov-
ered after 15 km of standard single mode fiber in a system limited
by a 3 dB bandwidth of 14 GHz.

Index Terms—Fiber optics communication, multiband car-
rierless amplitude phase modulation (MultiCAP), short range
communications.

I. INTRODUCTION

D
ATA center links operating at lane rates of 100 Gb/s

per wavelength are required in order to cope with fu-

ture demands of bandwidth [1]. Link capacities as high as

400 Gb/s and even 1.6 Tbps are already projected as potential
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next steps [2]. Current and upcoming standards for 100 Gb/s,

such as 100GBASE-SR10, 100GBASE-SR4, and 100GBASE-

LR4 are based on using ten lanes of 10 Gb/s or four lanes at

25 Gb/s each. Traditionally, the strategy for capacity upgrades

has been to exploit the benefits of parallel optics and to rely

on higher bandwidth availability for the electronic and opti-

cal components. However, this approach would require, e.g. 16

lanes at 25 Gb/s in order to achieve the 400 Gb/s target, thereby

making it challenging to meet 400 Gb/s form-factor pluggable

(e.g., CDFP2 and CDFP4) requirements on power consumption

and footprint [3], [4]. Therefore, it is crucial to develop other

solutions for beyond 100 Gb/s data links satisfying these indus-

try requirements in terms of footprint, power consumption, and

cost efficiency.

Advanced modulation formats have gained increasing inter-

est from research as well as industry as a method to reduce the

number of lanes while increasing the total link capacity. Re-

cent reported experiments include 112 Gb/s half cycle - 16 level

quadrature amplitude modulation (QAM) [5], and 100 Gb/s,

25 Gbaud 4 level pulse amplitude modulation (PAM) [6].

Discrete multitone (DMT) modulation has also recently been

demonstrated to achieve 100 Gb/s [7]. However, all mentioned

approaches require either dual polarization or a wavelength

division multiplexing (WDM) scheme to achieve the claimed

bitrates, and thus double the number of lanes and light source-

photo detector pairs required in the system.

This paper reports on a feasible solution for the possible

upcoming 400 Gb/s, four lane standards targeting 2 to 10 km

reach applications. The proposed scheme employs four 100 Gb/s

single wavelength, single polarization lanes. An experimental

demonstration of a single lane with optical transmission over

15 km standard single mode fiber (SSMF) at a 1310 nm wave-

length has been carried out. A total capacity of 102 Gb/s us-

ing a novel multiband CAP modulation (MultiCAP) signal is

successfully generated, transmitted, and detected employing a

link with an end-to-end 3 dB bandwidth of only 14 GHz. The

bit error rate is below the 7% forward error correction (FEC)

limit, corresponding to a net bitrate of 95.2 Gb/s error free

transmission.

To the best of the authors knowledge, this approach achieves

the highest experimental reported bitrate using CAP modulation

in a single wavelength, single polarization, and direct detection

optical link. By the possible extension to four lanes, these results

demonstrate the prospect for 400GBASE solutions with more

than 10 km reach.

The paper is structured in seven sections. Section I reviews

the state of the art on short range optical links. Section II

0733-8724 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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motivates this study and introduces the concept of CAP.

Section III explains how to achieve 100 Gb/s using CAP. Sec-

tion IV introduces the principle of operation of MultiCAP and

how it overcomes the challenges of conventional CAP. Section V

presents an analytical comparison between CAP and MultiCAP

based on numerical simulations. Section VI presents the exper-

imental validation of the proposed scheme. Finally, the paper

concludes with a summary of the study presented.

II. MOTIVATION

CAP modulation is a multidimensional and multilevel mod-

ulation scheme proposed in mid 70s by Falconer et al. at Bell

Labs [8]. CAP displays certain similarities to QAM in its ability

to transmit two streams of data in parallel. In contrast to QAM,

however, CAP does not rely on a carrier, but uses filters with or-

thogonal waveforms to separate the different data streams. This

makes CAP receivers simpler than QAM receivers while achiev-

ing the same spectral efficiency and performance, a quality that

made it very popular for digital subscriber lines (DSLs) during

the 90s [9], [10]. As bandwidth demands raised and high speed

electronics became more affordable, there were strong efforts

put into exploiting the available bandwidth of deployed copper

cables [11], but CAP was proven to be very sensitive to non-flat

spectral channels, and required very complex equalizers [12],

sacrificing the inherent simplicity of CAP. Therefore, in 1999

the international telecommunications union (ITU) deprecated

it in favor of DMT [13]. By dividing the available bandwidth

into many subchannels, DMT could increase total throughput

and performance. Although the complexity of this scheme was

still higher than in case of un-equalized CAP, the electronics

needed to make it work at these bitrates were inexpensive, and

DMT remains the most widely used modulation format in most

asynchronous digital subscriber lines (ADSLs).

Lately, CAP has been investigated for short range optical

data links [14]–[16]. One of its most attractive features for this

scenario is the ability to use analog filters to generate the CAP

signal, allowing for low power consumption and footprint. How-

ever, the need of a very flat frequency response of the channel

inhibits its abilities to achieve beyond 100 Gb/s bitrates. In ad-

dition, a practical implementation of wide-band analog filters

with linear and orthogonal phase response is very challenging.

DMT could provide a solution in the same way it did for ADSL,

but in this case, the electronics needed to operate at these high

bitrates are still far from affordable [17], especially consider-

ing the growing high volume sales on active optical cables for

data-centers [18]. We propose to use a multiband approach to

CAP signalling (MultiCAP), where the CAP signal is divided

into smaller subbands. Thereby, the advantages of CAP such

as lower peak-to-average power ratio (PAPR) and simple im-

plementation, can be combined with the advantages of DMT.

Additionally, the CAP filters become easier to realize, since

the frequency bands covered by each pair of filters are nar-

rowed down. The viability of MultiCAP is investigated in this

paper.

Fig. 1. Principle of operation of a CAP system. Data refers to a binary stream
of data. M refers to the constellation order. Tx and Rx refers to transmitter and
receiver, respectively.

Fig. 2. CAP transmitter filters for channels I (top) and Q (bottom).

III. 100 GB/S CAP PRINCIPLE OF OPERATION

Fig. 1 shows the principle of operation of a conventional CAP

system. In order to achieve 100 Gb/s by using this principle, we

start with a stream of data generated from a pseudo-random bit

sequence (PRBS) length of 211 − 1 bits, which is repeated eight

times to achieve a total 214 bits. This is encoded into a 16-QAM

constellation using gray coding. The number of samples per

symbol is given by the ratio between the sampling frequency

and the symbol rate. At least three samples per symbol are

required for a CAP signal to be sampled without losing spectral

information; which means that the sampling frequency of the

system must be above 75 GSa/s for a 25 Gbaud signal. After

the binary sequence has been mapped into the constellation,

the I and Q channels can be extracted by taking the real and

imaginary parts of the signal.

The next step is the orthogonal filtering. Fig. 2 shows the two

orthogonal filters composed by the time-domain multiplication

of a root raised cosine (RRC) and a sine/cosine for channels

I and Q, respectively. There are three parameters that character-

ize such a filter: the sine and cosine frequency, the roll off factor,

and the filter length. The frequency of the sine and cosine deter-

mines the frequency band at which the signal is transmitted. A

particular property of this parameter is that, if set to an integer

multiple of the symbol rate, a conventional QAM receiver can be

employed [19]. Otherwise, the frequency can be arbitrarily cho-

sen as long as it is higher than the highest frequency of the RRC.

The roll off factor α determines the excess of bandwidth. Since
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(a) (b)

Fig. 3. (a) 100 Gb/s CAP signal spectrum. (b) Roll off factor versus filter
length for a BER of 10−9 under different SNR conditions.

Fig. 4. Effect of timing offset in a CAP system.

we are considering pass-band RRC filters, the total pass-band

bandwidth of the CAP signal is (1 + α) times the baud rate. The

closer α approaches to zero, the closer the frequency response

of the RRC can be approximated to a rect(·) function and the

bandwidth is most efficiently utilised. However, this implies a

higher PAPR as well as a larger number of taps [20]. The filter

length is a critical parameter to both performance and complex-

ity of the system. The lower the length of the filter, the simpler.

On the other hand, it requires higher roll-off factor in order to

keep the same performance. Fig. 3(a) shows the spectrum of a

CAP signal sampled at 75 GSa/s with a central frequency of

14.5 GHz, a roll off factor of 0.15, and a filter length of ten

symbols. Fig. 3(b) shows the roll off factor as a function of the

filter length required to achieve a BER of 10−9 for SNRs of 20

and 30 dB. The BER was estimated from the error vector mag-

nitude provided by the constellation [21]. After the filtering, the

signals from the two channels are added and transmitted.

At the receiver end, inverted matched filters separate the two

channels and the two orthogonal signals can be recovered. Fig. 4

shows the eye diagram of one of the channels after the filter,

along with an analysis of the timing offset. One of the disadvan-

tages of using CAP signals is the reduction in the horizontal eye

opening. This is a consequence of not having a carrier to trans-

port the data. Since there is no down-conversion to baseband,

demodulation process takes place in pass-band, and hence the

closed horizontal eye opening. Notably, simulations show that

the main effect of timing offset in a CAP signal is constellation

Fig. 5. Principle of operation of a MultiCAP system.

rotation. For this reason, we use the k-means algorithm [22] to

enhance not only the tolerance towards timing offset but also

the optimization of the decision thresholds [23].

In comparison to DMT, CAP is shown to offer advantages

in SNR requirements and robustness to multipath interferences

[24]. Additionally, (de)modulation can be implemented using

electrical filters without the need for carrier recovery, frames or

adaptive equalization.

IV. 100 GB/S MULTICAP PRINCIPLE OF OPERATION

The MultiCAP operation principle is illustrated in Fig. 5.

The principle relies on breaking the signal into independent

subbands occupying different frequency bands. Thereby, the

modulation order and signal power can be tailored to the SNR

in each subband. This effectively overcomes an important draw-

back of conventional CAP, namely the need of a flat frequency

response of the channel, while increasing the flexibility of the

total throughput.

Another relevant advantage of MultiCAP in systems employ-

ing digital signal generation is a relaxation of the requirement for

the digital-to-analog converter (DAC). Let us define Fs,Nyquist

as the minimum sampling frequency at which a MultiCAP sig-

nal can be recovered, and Fs,tx the sampling frequency at which

a MultiCAP signal is generated:






Fs,Nyquist > 2Rs(1 + α)

Fs,tx =
1

N
RsNss

where Rs is the total symbol rate that we aim to transmit, α is the

roll-off factor of the CAP filters, N is the number of subbands,

and Nss is the number of samples per symbol for all subbands.

Nss must be chosen so that Fs,tx > Fs,Nyquist . This resolves to

the condition:

Nss > 2N(1 + α).

For sufficiently low α values, it is possible to reduce the to-

tal sampling rate while keeping the same total baudrate. Table I

gathers examples of this concept with several MultiCAP config-

urations. Note how the requirement on the sampling rate Fs,tx

is reduced from 75 GSa/s for single band CAP to 62 GSa/s by
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TABLE I

MULTICAP EXAMPLES FOR LOWERING THE REQUIRED SAMPLING RATE FOR

SIGNAL GENERATION

Fig. 6. Optical simulation setup.

simply adding an additional band. However, four bands would

not further reduce it unless the α is reduced to 0.1; in which case

we observe that a five band configuration can have a sampling

rate equal to the Nyquist sampling frequency. Hence, a high up-

sampling factor can be used while the required sampling rate is

kept at a value that is closer to the Nyquist sampling frequency.

V. PERFORMANCE SIMULATIONS

In this section we show the performance improvement of

MultiCAP over traditional CAP by simulating the two previ-

ously discussed solutions under the same optical conditions.

The optical simulations are enabled by VPItransmissionMaker.

A. Simulation Setup

The schematics of the simulation is shown in Fig. 6. The

transmitter is composed of an import module, a Gaussian filter,

and an externally modulated laser (EML). The link is simulated

with a SSMF. The receiver is modeled with an optical attenuator,

a photo-diode (PD), and an export module. The input of import

module is a text file generated in Matlab containing the samples

that represent the MultiCAP signal. The output of the module is

the electrical signal, which is filtered with a first order Gaussian

filter of 25 GHz 3 dB bandwidth in order to simulate the electri-

cal bandwidth limitations of the transmitter. The EML converts

the electrical signal into the optical domain at a 1310 nm wave-

length. The EML is modeled with a relative intensity noise (RIN)

value of –160 dB/Hz and 100 KHz of linewidth. Dispersion and

attenuation values for SSMF are disabled by default. After 1 km

of transmission, the signal is photo-detected by a PD that is

modeled with a responsivity value of 0.75 A/W and a thermal

noise current of 30 pA/
√

Hz. Finally, the signal is exported as

a text file and processed in MATLAB. The parameters used for

both MultiCAP and CAP are summarized in Table II.

The BER of a CAP band is estimated from the error vector

magnitude provided by the constellation [21]. The BER of the

MultiCAP system is provided as the average of the BER of the

individual bands.

B. Simulation Results

Fig. 7 provides a comparative analysis of how MultiCAP per-

forms with respect to conventional CAP regarding received opti-

cal power, bandwidth, chromatic dispersion, and RIN. We define

TABLE II

SIGNAL PARAMETERS FOR THE SIMULATION

(a) (c)

(b) (d)

Fig. 7. (a) BER curves, (b) transmitter bandwidth tolerance, (c) chromatic
dispersion tolerance, and (d) RIN tolerance.

the sensitivity as the minimum acceptable value of received op-

tical power needed to achieve a BER of 10−3 . Fig. 7(a) presents

the BER as a function of the received optical power when there

are no bandwidth restrictions at the transmitter (the Gaussian

filter is disabled). We can observe that MultiCAP suffers 1 dB

of penalty in the sensitivity with respect to CAP. Fig. 7(b) shows

the sensitivity degradation of both schemes when the bandwidth

of the transmitter is swept from 30 to 12 GHz. While CAP can-

not tolerate channel bandwidths below 22 GHz, MultiCAP is

able to tolerate a 3 dB bandwidth as low as 14 GHz. In compar-

ison, single band CAP proves to perform better provided that

the bandwidth is higher than 24 GHz (note that these simulation

results do not take advantage of bit loading or power loading,

since all bands are set to the same power level and the same

modulation order (16-CAP) for comparison purposes). Fig. 7(c)

shows the tolerance of both signals towards chromatic disper-

sion values ranging from 0 to 80 ps/nm. In this case, MultiCAP

proves to tolerate up to 35 ps/nm more chromatic dispersion

than conventional CAP. Fig. 7(d) shows the tolerance toward

the RIN value of the laser source. In this case, conventional

CAP shows a constant gain of 0.4 dB over MultiCAP.

C. Discussion

A simulation analysis between conventional CAP and the pro-

posed MultiCAP signaling shows that MultiCAP outperforms
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Fig. 8. Experimental setup. DAC, EML, PD, and DSO.

conventional CAP in systems limited by bandwidth and disper-

sion. MultiCAP is able to maintain the line rate at the same

sensitivity as in CAP in 22% less bandwidth. This is because

the SNR is sufficiently flat across each of bands, as compared to

the single band CAP case. Regarding of chromatic dispersion,

MultiCAP can tolerate values up to 50% larger than CAP is

able to do. This is attributed to the fact that for a single CAP

band at 25 Gbaud, the symbol period is 20 ps; whereas for a

six bands CAP, the symbol period is englarged to six times

more. Moreover, in transmission links whose performance is

mainly limited by low SNR, our results shows that conventional

CAP offers a constant gain of 1 dB. This is induced by inter-

band-interference. Given the advantages in terms of reduced

bandwidth requirements and dispersion tolerance, we conclude

that MultiCAP is a better candidate for short range optical links,

in which multi-mode fiber is often used in combination with di-

rectly modulated lasers (DMLs), resulting in highly dispersive

and bandwidth limited channels with low attenuation.

VI. EXPERIMENTAL VALIDATION

In order to verify the results obtained in the previous section,

an experiment that tests a 102.4 Gb/s MultiCAP signal over 2,

and 15 km of SSMF was successfully executed.

A. Experimental Setup

The MultiCAP solution and experimental setup used in the

experimental demonstration is illustrated in Fig. 8. The main

building blocks are a transmitter comprising a DAC, a driver

amplifier, a bias-tee, and an EML; a 15 km SSMF link; and a

receiver consisting of a PIN PD with a trans-impedance ampli-

fier (TIA) and an 80 GSa/s digital storage oscilloscope (DSO).

Signal generation and demodulation is performed off-line us-

ing MATLAB. For the signal generation, 12 data sequences of

16384 randomly generated symbols are generated with modu-

lation orders from 2 to 6 according to the desired modulation

orders in the individual MultiCAP subbands. The 12 symbol

sequences are upsampled to 16 Sa/symbol and filtered by the

six pairs of MultiCAP subband transmitter filters. The filters

are finite impulse response (FIR) filters with a length of ten

symbols each. The roll-off factor used for the transmitter and

receiver CAP filters is 0.15, and the frequencies of the sines

and cosines that make up the CAP filters are spaced 4.56 GHz

apart, starting at 2.3 GHz in the first band. The modulation or-

ders for each band were chosen to be 36-QAM for the first three

bands, 16-QAM for the next bands bands, and 4-QAM for the

last band. This was empirically chosen to best fit the available

SNR at that specific frequency band. The combined 102 Gb/s

MultiCAP signal is generated by adding the outputs of the six

filter pairs. By adjusting the weights of each pair of filters, the

non-flat frequency response of the channel is pre-compensated.

The signal generation is performed in MATLAB, and used to

drive a 64 GSa/s DAC with an effective resolution of 5 bits.

The DAC output is amplified to a peak-to-peak voltage of 2 V

and used to drive a 1293.55 nm integrated distributed feedback

laser - electro-absorption modulator (DFB-EAM) with the 3-

dB bandwidth of 20 GHz. The signal from the DFB-EAM is

propagated through a 15 km SSMF link with a total link loss

of 7 dB. Launch power is 5 dBm. The optical spectrum back

to back (B2B) and after transmission is shown in Fig. 9(b).

The end-to-end channel frequency response is measured by per-

forming a discrete frequency sweep with the DAC and shown in

Fig. 9(a) along with the spectrum of the pre-compensated 6-band

MultiCAP signal normalized with respect to its maximum. We

can observe that the 3-dB bandwidth of the channel is 14 GHz,

while the signal occupies a total bandwidth of 28 GHz.

After photodetection, the signal is sampled and stored by the

DSO for off-line processing. The signal is demodulated by filter-

ing with a time inverted version of the transmitter filters. After

filtering, the signals are down sampled, and the two orthogo-

nal components of the six bands can be obtained to construct

the received constellation diagrams shown as inserts in Fig. 1
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(a) (b) (c)

Fig. 9. (a) Frequency response pre-DAC signal spectrum, (b) optical spectrums, and (c) BER curves.

together with the received spectrum. Demodulation and com-

pensation for constellation rotation and asymmetry caused by

local non-flat in-band spectral response is performed employing

the k-means algorithm [22].

B. Experimental Results

Fig. 9(c) shows the measured BER as a function of the re-

ceived optical power B2B and after 2 and 15 km SSMF trans-

mission. Receiver sensitivity at the 7%-overhead FEC limit of

4.8 · 10−3 is −3.3 dBm in all cases, and no signal degradation

or power penalty is observed from the transmission. This is in

agreement with the simulation results observed in Fig. 7, where

the sensitivity at 14 GHz is around −2 dBm without power or

bit loading and negligible penalty is observed up to 20 ps/nm

of chromatic dispersion. Due to the limited effective resolution

of the DAC [17], a BER floor of the electrical signal driv-

ing the EML is measured at 1.5 · 10−3 . The advantages of the

MultiCAP approach, including the ability for channel response

pre-compensation, reduced DAC sampling rate requirements,

and tailoring of the modulation order to the SNR of the indi-

vidual subbands are clearly observed, as these are exactly the

features that enable the generation of the 102.4 Gb/s signal us-

ing a 64 GSa/s DAC and transmitting it over an channel with an

end-to-end 3 dB bandwidth of 14 GHz.

VII. CONCLUSION

A novel approach named MultiCAP has been proposed as a

solution for beyond 100 Gb/s short range optical data links. Nu-

merical simulations have been performed showing significant

improvements for bandwidth and dispersion limited channels,

over traditional CAP, while showing comparable tolerance to-

ward SNR. Furthermore, the complexity of the transceivers in

terms of hardware requirements is reduced regardless using a

digital or analog implementation by either reducing the sam-

pling frequency, or reducing the bandwidth requirements of the

analog filters respectively. However, there is an increase of com-

plexity derived from the multi-band architecture, from where the

increase in performance is obtained. A tradeoff between perfor-

mance and complexity must be considered for different appli-

cations. The principle has been experimentally demonstrated by

realizing a 15 km optical link with a total bitrate of 102 Gb/s

using only a single wavelength and direct detection.

In the reported experiment, assuming FEC encoding an effec-

tive bitrate of 95.36 Gb/s is achieved. Despite the use of a high

speed (64 GSa/s) DAC, the signal generation relies on the use

of transversal filters in order to maintain a level of simplicity in

the digital signal processing. By extending these results to four

lanes, the prospects of 400 Gb/s optical interconnect have been

demonstrated for next generation client side data links.
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