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BLUP (best linear unbiased prediction) is widely used to predict complex traits in plant and animal breeding, and in-
creasingly in human genetics. The BLUP mathematical model, which consists of a single random effect term, was adequate
when kinships were measured from pedigrees. However, when genome-wide SNPs are used to measure kinships, the BLUP
model implicitly assumes that all SNPs have the same effect-size distribution, which is a severe and unnecessary limitation.
We propose MultiBLUP, which extends the BLUP model to include multiple random effects, allowing greatly improved
prediction when the random effects correspond to classes of SNPs with distinct effect-size variances. The SNP classes can be
specified in advance, for example, based on SNP functional annotations, and we also provide an adaptive procedure for
determining a suitable partition of SNPs. We apply MultiBLUP to genome-wide association data from the Wellcome Trust
Case Control Consortium (seven diseases), and from much larger studies of celiac disease and inflammatory bowel disease,
finding that it consistently provides better prediction than alternative methods. Moreover, MultiBLUP is computationally
very efficient; for the largest data set, which includes 12,678 individuals and 1.5 M SNPs, the total analysis can be run on
a single desktop PC in less than a day and can be parallelized to run even faster. Tools to perform MultiBLUP are freely
available in our software LDAK.

[Supplemental material is available for this article.]

BLUP (best linear unbiased prediction) is perhaps the most widely

used tool for prediction of complex traits. Developed in the 1950s

as a way to predict random effects in a mixed model (Henderson

1950; Henderson et al. 1959), the advent of genomic selection has

further increased its role in animal and plant breeding (Meuwissen

et al. 2001; Goddard and Hayes 2007; Habier et al. 2011; Scutari

et al. 2013). Recently, as SNP-based heritability analyses have

demonstrated the polygenic nature of many human traits (The

International Schizophrenia Consortium 2009; Yang et al. 2010),

BLUP has also gained popularity among human geneticists, where

it is beginning to replace a previous emphasis on sparsity in

genome-wide analyses (Makowsky et al. 2011; Yang et al. 2011a;

de los Campos et al. 2013).

Central to genetic applications of BLUP is amatrix that encodes

genetic similarities between pairs of individuals. It is sometimes

called a genomic relatedness matrix, although we consider genomic

similarity matrix (GSM) to be more appropriate. The GSM is used to

specify the correlation structure of a random effect term in a mixed

regression model (‘‘mixed’’ means that the model includes both

fixed and random effects). In the past, the only availablemeasure of

genetic similarity was a kinship coefficient computed as a probabil-

ity of identity by descent in a pedigree, and so a single randomeffect

term sufficed to model genome-wide additive effects. Nowadays

genetic similarity can be measured directly, and in many different

ways, from genome-wide SNP data. Yet most SNP-based applica-

tions of BLUP, referred to as Genomic BLUP or GBLUP, continue

to use a single random effect, which corresponds to the unre-

alistic assumption that all SNP effect sizes are drawn from a com-

mon Gaussian distribution. Other authors have attempted to

relax the Gaussian assumption, discussed further below, but we

believe that the assumption of a common prior distribution is the

more important limitation, and so we focus on relaxing that.

We proposeMultiBLUP, which generalizes the BLUPmodel to

accommodate multiple random effects. Different SNP classes can

be allocated separate random effects, which benefits prediction

when the effect-size variance differs markedly across the classes.

There are many ways to define SNP classes for which different ef-

fect-size distributions may be appropriate, for example: coding,

intronic, flanking, and intergenic SNPs;MHCandnon-MHCSNPs;

SNPs categorized according to conservation across species; and sets

of eQTL SNPs for different cell types. Alternatively, we provide

Adaptive MultiBLUP which automatically identifies SNP classes

with different effect sizes. This adaptive approachbegins bydividing

the genome into many small regions, which are then merged

according to rules intended to identify a small number of genomi-

cally contiguous regions, eachwith effect-size variance distinct from

a baseline region comprising the rest of the genome. To ease ter-

minology, we will refer to SNP classes as if defined by genomic

regions, although there is no need for the SNPs in a class to be

contiguous and classes can overlap. MultiBLUP assigns a random

effect to each region, whose correlation structure is determined by

a GSM calculated from the SNPs in the region. Here, we focus on

GSMs encoding additive genetic effects, but it is possible to include

further random effect terms corresponding to dominance or forms

of epistasis.

We first apply MultiBLUP to the seven human diseases stud-

ied by The Wellcome Trust Case Control Consortium (2007)

(WTCCC1). Although relatively small data sets (each comprising

;5000 individuals recorded for 280,000 SNPs), these allow us to

demonstrate the advantages of MultiBLUP over a range of diseases

with different genetic architectures. For rheumatoid arthritis and

Type 1 diabetes, we show improvements in predictive accuracy
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from assigning distinct random effects to SNPs within and outside

the major histocompatibility complex (MHC), because for these

two traits, MHC SNPs tend to have larger effects. Compared to

BLUP, genetic risk scores (Wray et al. 2007), stepwise regression

(Purcell et al. 2007), and Bayesian sparse linear mixed models

(BSLMM) (Zhou et al. 2013), we find AdaptiveMultiBLUP to be the

overall top performing method, regardless of whether we measure

the accuracy of predicted phenotypic values by correlation, mean

squared error, median absolute error, or area under curve (AUC).

Moreover, Adaptive MultiBLUP requires only a fraction of the

computational time andmemory resources of BSLMM, the second

best performing method.

We next tackle larger data sets—for celiac disease (;15,000 in-

dividuals, 200,000 genotypedSNPs) and inflammatorybowel disease

(13,000 individuals, 1.5 M imputed SNPs). Genetic screening of pa-

tients is routinely used to guide diagnosis and hence treatment for

celiac disease (Husby et al. 2012; Abraham et al. 2014); and so for this

trait, improved prediction can have immediate impact. Due to the

size of these data sets, it is not feasible to run stepwise regression or

BSLMM; in contrast, AdaptiveMultiBLUP requires <4GBofmemory,

and completes in ;6 h for celiac disease and 24 h for inflammatory

bowel disease. Again, we find Adaptive MultiBLUP to be greatly su-

perior to both standard BLUP and genetic risk scores.

Lastly, we consider 139 phenotypes from the Wellcome Trust

Heterogeneous Stock mouse collection, where individuals are

highly related as is typical in plant and animal breeding. Although

there is little difference between the performance of BLUP,

BSLMM, and Adaptive MultiBLUP, our results demonstrate that

MultiBLUP can also be used when the data set contains high levels

of structure.

The tools required to performMultiBLUP prediction are freely

available in our software LDAK.

Results
The WTCCC1 data consist of two control and seven case data sets

for bipolar disorder (BD), coronary artery disease (CAD), Crohn’s

disease (CD), hypertension (HT), rheumatoid arthritis (RA), Type 1

diabetes (T1D), and Type 2 diabetes (T2D). Our quality control (see

Methods; Supplemental Fig. 1) removed individuals inferred to be of

non-Caucasian ancestry and reduced the number of genotypes to

;280,000. For our simulation study, we use the 2959 control in-

dividuals and the 47,546 SNPs from chromosomes 1 and 2. For the

analysis of observed phenotypes, we combined in turn the 2959

controls with the;2000 case individuals for each of the seven traits

and used all SNPs.

For celiac disease, we use the data of Dubois et al. (2010). In-

dividuals were sourced from five cohorts, labeled according to

country of origin (UK1, UK2, Finland, Netherlands, and Italy). After

quality control, 15,283 individuals and 190,948 SNPs remained (see

Methods; Supplemental Fig. 2). For inflammatory bowel disease, we

combine data from WTCCC and the National Institute of Diabetes

and Digestive and Kidney Disease (NIDDK): Starting with the 1916

Crohn’s disease cases from WTCCC1, we add 8033 individuals

from WTCCC2 (5200 population controls and 2833 ulcerative

colitis cases) and 2788 individuals from the NIDDK (813 cases for

Crohn’s disease and 947 matched controls, and 1028 ulcerative

colitis cases). As genotyping was performed using multiple SNP

arrays, we first imputed using IMPUTE2 against the 1000 Genome

reference panel (The 1000 Genomes Project Consortium 2010;

Howie et al. 2011). After quality control, 12,678 individuals and

1,487,824 SNPs remained (see Methods; Supplemental Fig. 3).

Themouse data set consists of 1940 heterogeneous stockmice

descended from eight founder lines (Valdar et al. 2006). After

quality control, there were 8516 SNPs across 19 autosomes. The

equal-tailed 95% interval for the kinship coefficients is [�0.11,

0.24], indicating high levels of relatedness (the corresponding in-

terval for the WTCCC1 data is [�0.01, 0.01]). For our simulation

study, we use all individuals and SNPs. For the real data analysis, of

the >150 traits available, we focus on the 139 quantitative traits

that have measurements available for at least 1300 mice and a co-

efficient of kurtosis less than six (the kurtosis of the Gaussian

distribution is three). The chosen traits, which all had a coefficient

of skewness <1.5 (the Gaussian distribution has skewness zero),

span behavioral, hematological, biochemical, and disease-related

phenotypes. For many of the traits, the phenotypic values are

strongly correlated with cage ID. Therefore, when performing

cross-validation, we ensure that individuals in the same cage re-

main in the same fold.

Simulation study

First, we demonstrate the potential of MultiBLUP in a simple, albeit

unrealistic, setting in each of two data sets (WTCCC1 and mouse).

We divide the SNPs into five distinct regions and simulate quanti-

tative phenotypes in which each region contributes a specified

heritability. We consider three scenarios: (1) The five regions con-

tribute equally toheritability; (2) regions contribute toheritability in

the ratios 1:2:3:4:5; and (3) only Region 5 contributes to heritability.

In each region that contributes to heritability, we assign additive

genetic effects to 20 random SNPs, with effect sizes drawn from

a Gaussian distribution with mean zero and variance chosen to

achieve the required heritability. When applying BLUP, we used

a single GSM computed as average allelic correlations across all five

regions. WithMultiBLUP, we used five GSMs, each calculated in the

same way but using SNPs from only one of the regions. For both

BLUP and MultiBLUP, we divided individuals between training and

test sets in the ratio 5:1, then measured prediction performance of

models fitted on the training set by the correlation between simu-

lated and predicted phenotypes in the test set.

Figure 1 shows that for both data sets, the two methods per-

form similarly for Scenario 1, indicating little disadvantage to as-

suming the more general MultiBLUP model when it is not needed.

The performance of BLUP does not improve with increasing con-

centration of causal variation in Scenarios 2 and 3, whereas Multi-

BLUP does exploit the heterogeneity of effect sizes to improve

prediction, dramatically so for the WTCCC1 data. Prediction per-

formance is good in all scenarios for the mice, because close re-

latedness implies that almost all causal variants are tagged, but even

here the improvement of MultiBLUP is noticeable. We repeated the

analysis when heritability was distributed across all SNPs, rather

than only a selected 20, and observed similar results (Supplemental

Fig. 4). As well as prediction performance, we also measure genomic

selection performance, which is the accuracy of estimation of the

sum of the random effects. This is known in animal and plant ge-

netics as the ‘‘breeding value,’’ and represents the phenotypic value

after discounting environmental noise. MultiBLUP also provides

better genomic selection performance than BLUP (Supplemental

Fig. 5).

WTCCC1 data

For the real phenotypes, we evaluate predictionmethods using 10-

fold cross-validation. When comparingmethods applied to binary
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outcomes, it suffices to treat case/control status as a continuous

variable (cases 1, controls 0), because there exists a linear re-

lationship between prediction performance on the observed and

underlying liability scales (Dempster and Lerner 1950; Yang et al.

2011a; Zhou et al. 2013). Moreover, this permits us to minimize

any effects of confounding by first regressing case/control status

on sex and the first 20 principal component axes.

Columns 1–4 of Table 1 report the performance of BLUP, ge-

netic risk scores, stepwise regression, and BSLMM (seeMethods for

details of parameter choices). Of the first threemethods, there is no

clear winner: Stepwise regression performs best for RA and T1D,

the two traits with strongest marginal associations, while BLUP

and genetic risk scores fare better for the more polygenic traits BD

and HT. In contrast, BSLMM,whosemodel allows for both sparsity

and shrinkage, performs well regardless of the genetic architecture

of the trait and overall is the best of the current methods.

As a first demonstration of MultiBLUP, we consider two re-

gions: one corresponding to the extendedMHC (chr. 6: 25–34Mb)

and one to all other SNPs (Table 1, Column 5). This relatively

simple change to the BLUP model leads to greatly improved pre-

diction for the autoimmune traits RA and T1D (correlation 0.35

and 0.56, respectively, compared to 0.21 and 0.25 for BLUP).

Supplemental Figure 6 shows Manhattan

plots for each trait, from which the en-

hanced role of the MHC for RA and T1D

can be seen. Supplemental Table 1 shows

heritability estimates for the MHC and

non-MHC regions and how much each

contributes to prediction. Separating SNPs

according to MHC improves prediction

when the MHC harbors substantial heri-

tability; conversely, high heritability can

be attributed to non-MHC SNPs without

this contributing much to prediction,

because a single SNP effect-size variance

is inadequate for a large, heterogeneous

region.

The SNPs in each region need not be

contiguous. To illustrate this, we partition

the genome into two regions according to

eQTL status. For this application, we

classify ‘‘eQTL SNPs’’ as those associated

(P < 10�10) with changes in expression

levels for at least one gene, according to Curtis et al. (2012). Using

this threshold, ;5% of SNPs are classified as eQTLs. Compared to

BLUP, we achieve improved prediction for RA and T1D (see Sup-

plemental Table 2), indicating that for these traits the eQTL SNPs

tend to have a larger influence than the non-eQTL ones. Similarly,

MultiBLUP regions can overlap, which we illustrate for CD by

constructing regions based on two pathways (IL-2 receptor beta

chain in Tcell activation and IL12 pathway) and two genes (NOD2

and IL23R), all of which have shown association with the trait in at

least two data sets other than the WTCCC1 (Agura et al. 2001;

Hugot et al. 2001; Duerr et al. 2006; Wang et al. 2009; Ballard et al.

2010). A fifth region contains all other SNPs. Prediction is slightly

improved compared to BLUP (correlation 0.319 versus 0.316) (see

Supplemental Table 3)

Rather than rely on prior information to define SNP regions,

MultiBLUP can be run adaptively, starting with many small ge-

nomic regions which are then merged as described below and in

Methods. For each of theWTCCC1 traits, we begin by dividing the

genome into ;68,000 regions of size 75 kb (on average, eight

SNPs), with a 37.5-kb overlap between neighboring regions. Al-

though our aim is to identify regionswith above-average effect-size

variance, because the individuals are predominantly unrelated,

Figure 1. Prediction performance of BLUP and MultiBLUP on simulated quantitative traits. The two
plots correspond to unrelated humans (left) and related mice (right). They show across 50 repetitions
the correlation between predicted and observed phenotypes in the test set for BLUP (white boxes) and
MultiBLUP (shaded boxes). The x-axis indexes the simulation scenarios, with increasing heterogeneity of
effect sizes across the five regions. Here, MultiBLUP uses five GSMs, one for each region. Within each
plot, the true (simulated) heritability is 0.5 (left half) or 0.8 (right half).

Table 1. Prediction of case/control status for WTCCC1 human traits

Current methods MultiBLUP

Trait BLUP Risk score [Llog10(P)] Stepwise regression BSLMM Two-region MHC/non-MHC Adaptive

Bipolar disorder 0.27 0.25 (1) 0.02 0.27 0.27 0.27
Coronary artery disease 0.13 0.12 (1) 0.08 0.15 0.13 0.16
Crohn’s disease 0.32 0.28 (1) 0.18 0.34 0.29 0.36
Hypertension 0.15 0.14 (1) 0.00 0.14 0.14 0.17
Rheumatoid arthritis 0.21 0.28 (3) 0.32 0.33 0.35 0.37
Type 1 diabetes 0.25 0.34 (5) 0.54 0.57 0.56 0.59
Type 2 diabetes 0.16 0.14 (1) 0.10 0.17 0.16 0.18

Average across seven traits 0.21 0.22 0.18 0.28 0.27 0.30

Current methods BLUP, genetic risk scores, stepwise regression, and BSLMM (Bayesian sparse linear mixed models) are compared with MultiBLUP
(regions defined according to MHC/non-MHC) and Adaptive MultiBLUP (starting with 75-kb regions). Values report correlation between observed and
predicted phenotypes based on 10-fold cross-validation. For the genetic risk scores, we consider five P-value thresholds (1–5 on the �log10 scale) and
report the best prediction across these (and the corresponding threshold in brackets). The largest correlation observed for each trait is marked in bold.
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most effect-size variances will be very small; therefore, it suffices

(and is much faster) to test instead whether each effect-size vari-

ance is nonzero. Each region with P < 10�6 is merged with any

neighboring region with P < 10�2. At the end of this process, all

remaining regions are merged into a background region. For the

highly polygenic traits BD, CAD, HT, and T2D, this process gen-

erates one to two regions (including the background region);

for CD, RA, and T1D, we find on average seven, five, and eight

regions, respectively (see Supplemental Fig. 7). Overall, we find

AdaptiveMultiBLUP (Table 1, Column6) to be the best-performing

method; it ranks first for six of the seven traits and is only narrowly

beaten by BLUP for BD. AdaptiveMultiBLUP remains top if instead

we measure prediction accuracy according to mean squared error,

median absolute error, or AUC (Supplemental Table 4).

Celiac disease and inflammatory bowel disease

For these two traits, the sizes of the data sets make it infeasible to

run stepwise regression or BSLMM, so we restrict comparison to

BLUP, genetic risk scores, and Adaptive MultiBLUP (starting as

before with overlapping 75-kb regions). Increasing the sample size

improves the resolution of Adaptive MultiBLUP; for example, for

inflammatory bowel disease, the method identifies on average 27

distinct local regions (Supplemental Fig. 8).We again findAdaptive

MultiBLUP to be the best performing method (Table 2; Supple-

mental Table 5). For celiac disease, we additionally consider a linear

prediction model constructed from 77 susceptibility SNPs: 6 SNPs

tagging four human leukocyte antigen (HLA) haplotypes (Monsuur

et al. 2008) and 71 SNPs based on Romanos et al. (2014). For this

model, the average correlation is 0.40 and the average AUC is 0.78

(see Supplemental Table 6), demonstrating here that it is better to

incorporate genome-wide SNP data than use only top associated

SNPs. Unlike celiac disease, genetic testing is not yet routinely used

for inflammatory bowel disease, but its potential for distinguishing

subtypes has been discussed. For example, although the low

prevalence of Crohn’s disease makes prediction at the population

level difficult, genetic data could aid in the diagnosis of patients

presenting with abdominal pain, diarrhea, and weight loss (Jostins

and Barrett 2011), and the case for this is strengthened by the

improved predictive accuracy of MultiBLUP.

Mouse data

Supplemental Figure 9 shows the performance of BLUP, genetic

risk scores, BSLMM, andAdaptiveMultiBLUP across the 139mouse

phenotypes. Again, we start AdaptiveMultiBLUPwith overlapping

75-kb regions, but owing to the smaller size of the mouse genome,

relax the initial significance threshold to P < 53 10�6.We find that

genetic risk scores is by far the worst performing method (average

correlation 0.27), because the basic single-SNP association test it

uses copes poorly with the structure present in the data set. Overall,

the performances of BLUP, BSLMM, and Adaptive MultiBLUP are

very similar (average correlations 0.335, 0.336, and 0.336, respec-

tively), with different methods performing best for different phe-

notypes. As explained below, the advantage of BSLMM and

Adaptive MultiBLUP relative to BLUP comes from being able to

identify individual causal loci with relatively strong influence on

the phenotype; however, the high levels of relatedness and low

SNP density present in the mouse data will generally make this

difficult.

In this application, AdaptiveMultiBLUP is slowed downdue to

the high levels of relatedness; despite there being fewer than 2000

individuals, it now takes ;3 h to analyze each phenotype, approx-

imately as long as BSLMM. This is because when deciding how to

divide SNPs into regions, the shortcut used for the human data

(testing whether each initial region has effect-size variance greater

than zero) is no longer valid. However, this step is parallelizable, and

we anticipate that it can be made orders of magnitude faster by

implementing algorithmic speed-ups similar to those proposed by

Listgarten et al. (2012).

Comparison between Adaptive MultiBLUP and BSLMM

The prediction models used by Adaptive MultiBLUP and BSLMM

have much in common. For both methods, a relatively small

number of SNPs are used to capture the contributions of distinct

causal loci, whereas the majority of SNPs influence the prediction

model only through a polygenic term (in AdaptiveMultiBLUP, this

corresponds to the background region). The major difference is

that in BSLMM, each causal locus is typically represented by only

one or two SNPs,whereas a local region inAdaptiveMultiBLUPwill

generally include multiple SNPs. The former approach might be

expected to performbetter when a reasonably strong causal variant

is well tagged by a single SNP, but even then, prediction is unlikely

to suffer much by including some extra SNPs. In contrast, when

the causal variant is difficult to detect through single-SNP analysis,

either because it is not well tagged or has effect size too weak, or

when a local region contains two or more causal variants, using

multiple SNPs can provide improved prediction.

This would suggest that the accuracy of Adaptive MultiBLUP,

and the potential to outperform BSLMM, will tend to increase

with SNP density. Adaptive MultiBLUP was noticeably better than

Table 2. Prediction of case/control status for celiac disease and inflammatory bowel disease

BLUP Risk score [Llog10(P)] Adaptive MultiBLUP

Trait (number of samples) r AUC r AUC r AUC

Celiac disease, all samples (15,283) 0.46 0.79 0.45 (1) 0.79 (1) 0.57 0.86
Celiac disease, UK cohorts only (10,118) 0.42 0.78 0.44 (1) 0.79 (1) 0.55 0.86
Celiac disease, UK2 ! UK1 (6785 ! 3333) 0.41 0.78 0.44 (1) 0.80 (1) 0.53 0.86
Inflammatory bowel disease (12,678) 0.15 0.58 0.21 (1) 0.61 (1) 0.33 0.68
Crohn’s disease (8826) 0.16 0.60 0.25 (4) 0.67 (4) 0.29 0.68
Ulcerative colitis (9978) 0.15 0.59 0.17 (3) 0.61 (3) 0.27 0.66

Average correlation (r) and area under curve (AUC) between observed and predicted phenotypes for BLUP, genetic risk scores, and Adaptive MultiBLUP
(starting with 75-kb regions). For celiac disease, we consider all samples and separately UK samples only; for inflammatory bowel disease, we consider all
samples, only Crohn’s disease cases, and only ulcerative colitis cases. The results are based on 10-fold cross-validation, except that for celiac disease, we
also perform out-of-sample predictions from one UK cohort into the other. The best performing method for each measure is marked in bold.
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BSLMM for the WTCCC1 data sets, which have on average eight

SNPs per 75 kb, and we predict that had it been feasible to apply

BSLMM to the inflammatory bowel disease data set (44 SNPs per

75 kb), the gap between the two methods would have been even

larger. Conversely, for the mouse data the genotyping is much

more sparse (most 75-kb regions contain only a single SNP), and

Adaptive MultiBLUP no longer has an advantage. The difference

between prediction models also explains the disparity in compu-

tational demands. The BSLMM model has one effect size for each

SNP, plus additional parameters, whose values are estimated using

Markov Chain Monte Carlo (MCMC). In contrast, Adaptive

MultiBLUP has many fewer parameters (one variance component

for each region, plus one for the environmental noise term); this

allows the prediction model to be fitted deterministically, which

is much faster than using MCMC and avoids issues of parameter

convergence. Similarly, the memory demands of Adaptive

MultiBLUP are much lower. Both methods must store a (genome-

wide) GSM, but whereas BSLMMmust also read in the entire data

set, Adaptive MultiBLUP requires only those SNPs included in

local regions (which is typically a small fraction of the total

number of SNPs). For this reason, although it was not possible to

apply BSLMM to the celiac or inflammatory bowel disease data

sets, Adaptive MultiBLUP could realistically be run on even larger

data sets: up to around 50,000 individuals with full-genome se-

quence data.

Discussion
Wehave presentedMultiBLUP, a powerful and efficientmethod for

prediction of complex traits from genome-wide SNP data. The

statistical model underlying BLUP was developed for use with

kinship coefficients derived from pedigrees, but SNP data allows

additional flexibility that has not previously been exploited. Spe-

cifically, the BLUP model assumes that SNP effect sizes have the

same distribution for all SNPs. MultiBLUP generalizes this model

by introducing multiple random effects, allowing different effect-

size variances for different classes of SNPs. The SNP classes used in

MultiBLUP can be identified using prior information, for example,

about genes and pathways relevant to the trait or other functional

annotation of SNPs. Alternatively, Adaptive MultiBLUP can auto-

matically identify SNP regions with different effect-size variances.

In fact, there is no need for the correlation structure ofMultiBLUP’s

random effects to be defined by SNPs; its prediction model can

integrate multiple sources of data including copy number vari-

ants, measures of gene expression or methylation, and pedigree

information.

Previous attempts to generalize the BLUP model have mainly

focused on weakening the Gaussian assumption for SNP effect

sizes, which has been rightly criticized because of the ‘‘thin tails’’

property of the Gaussian distribution. The t, double-exponential

and normal-exponential-gamma distributions have been sug-

gested as alternatives, as well as mixture distributions that allow

many SNPs to have zero or negligible effect (for review, see Zhou

et al. 2013). It is not practical to compare MultiBLUP with all rival

methods; so in addition to BLUP, genetic risk scores and stepwise

regression, we chose BSLMM, an approach that seeks to in-

corporate ideas from many of the BLUP generalizations and that

has been shown to outperform a number of alternative methods

(Zhou et al. 2013). The advantage of BSLMM over BLUP, genetic

risk scores, and stepwise regression was apparent in our analyses of

the WTCCC1 data, but we found it to be inferior to Adaptive

MultiBLUP for all traits, with Adaptive MultiBLUP requiring only

10%of the computation time and 5%asmuchmemory as BSLMM.

For the much larger celiac disease and inflammatory bowel disease

data sets, we showed that MultiBLUP continued to outperform the

computationally feasible alternatives, whereas the mouse data

demonstrated that MultiBLUP can also performwell for structured

data sets.

Consortia now exist for a wide variety of traits, combining

data across tens of thousands of patients, while initiatives such as

the 100,000Genomes Project (http://www.genomicsengland.co.uk)

are set to recruit individuals in even larger numbers. At the same

time, with next generation sequencing becoming more widely

available and with our ability to interrogate other sources of

information (for example, transcriptomic and epigenomic) con-

stantly improving, the number of predictors available will con-

tinue to increase. Withmuch of the algorithm parallelizable, there

is essentially no limit to the number of predictors that MultiBLUP

can analyze. Instead, the runtime of MultiBLUP depends primarily

on the number of individuals because this affects how long it takes

to estimate the variance components. The current implementation

of Adaptive MultiBLUP can analyze 50,000 individuals, and we

expect algorithmic advances to lead to increases in this number.

We also envisage a meta-analysis version of MultiBLUP, in which

prediction models are constructed locally and then combined,

allowing MultiBLUP to be used by meta-analysis consortia, where

data cannot be shared centrally.

SNP-based prediction of phenotype is central to genomic se-

lection, which is revolutionizing animal and plant breeding. For

humans, prediction is more challenging because we are largely

outbreeding, which leads to low levels of relatedness in most

populations. Moreover, the binary nature and low prevalence of

many disease phenotypes imply that prediction of disease onset is

typically not useful in a general population. However, prediction

of disease state from genotype already has clinical utility in in-

dividuals selected to be of high risk on the basis of nongenetic risk

factors. Moreover, where decisions about treatment options are

already based on risk factor scores, genomic information can

contribute substantially to improved decision making at the pop-

ulation level, even when individual predictions are imprecise. As

the costs of genome-wide genotyping continue to fall, additional

clinical uses of genomic information for prediction of traits

in humans will be found, for example, to generate more realistic,

individual-specific baselines from which to assess environmen-

tal impacts in population health studies. These will allow addi-

tional benefits to be obtained from the superior predictions of

MultiBLUP.

Methods
The usual BLUP model assumes that Y, the vector of pheno-
typic values for n individuals, is influenced by random effects
g (genetic) and e (environmental) via

Y = g + e with g ;N
�
0;Ks2

�
and e ; N

�
0; Is2

e

�
; ð1Þ

where K is a GSM specifying the correlation structure of g, I is an
n 3 n identity matrix, and s2 and s2

e are variances (for simplicity,
fixed effects have been ignored). A common SNP-based GSM is
allelic correlations averaged over SNPs (Astle and Balding 2009):

K =XX9=p ; ð2Þ

where X is a matrix of (normalized) SNP genotypes, X9 is its
transpose, and p is the number of SNPs. If Equation 2 holds, then
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Equation 1 can be expressed as a linear regression with random
coefficients (Hayes et al. 2009):

Y = +
j

Xjbj + e with bj ;N
�
0;s2

�
p
�
; ð3Þ

where Xj denotes the jth column of X, and bj is a measure of effect
size for the jth SNP.

MultiBLUP extends Equation 1 to include random effects
g1, . . ., gM, with correlation structures specified by K1, . . ., KM, and
the corresponding variances s2

1; . . . ;s
2
M :

Y = +
M

m =1

gm + e with gm ;N
�
0;Kms2

m

�
and

e;N
�
0; Is2

e

�
: ð4Þ

When each Km is of the form of Equation 2 for a matrix Xm with
columns corresponding to a set of SNPs Rm of size pm, the corre-
sponding random regression model is

Y = +
M

m=1

+
j2Rm

Xm
j b

m
j + e with bm

j ;N
�
0;s2

m

�
pm

�
: ð5Þ

As with BLUP, the key computational step of MultiBLUP is the
estimation of the variance parameters s2

1; . . . ;s
2
M and s2

e . This can
be achieved using (a generalized version of) REML (Corbeil and
Searle 1976), which maximizes the log likelihood:

� n

2
logð2pÞ � 1

2
Y 9V�1Y � 1

2
logjV j

where V =s2
e I +s

2
1K

1 + . . . +s2
MKM : ð6Þ

MultiBLUP computes ŝ2
1; . . . ; ŝ

2
M and ŝ2

e , estimates of the variance
components, using average information REML (Gilmour et al.
1995; Lee and van der Werf 2006). If the total proportion of vari-
ance explained by a kinship matrix is below 0.01% for two con-
secutive iterations, its contribution is set to zero; there is no limit on
howmany variance terms can be set to zero, allowingMultiBLUP to
be run with very many regions.

MultiBLUP includes two computational optimizations to reduce
memory usage and time requirements. First, when a region contains
fewer SNPs than the number of individuals, the corresponding GSM,
Km = Xm(Xm)9/pm, is computed on-the-fly, meaning that only Xm,
rather than Km, need be stored. Second, in each iteration, the most
time-consuming step is invertingV; however, this process can be sped
upwhenever at most one GSM has full rank, and the total number of
SNPs contributing to the remaining GSMs is less than the number of
individuals (which is generally the case for Adaptive MultiBLUP).
Suppose thatK1 is theGSMwith full rank, then it can be decomposed
as K1 = UEU9, where U is orthogonal and E diagonal, and therefore
s2
e I +s

2
1K

1 =Uðs2
e I +s

2
1EÞU 9. The Woodbury Matrix Identity states

that

ðA+ZDZ9Þ�1 = A�1 �A�1Z
�
D�1 +Z9A�1Z

��1
Z9A�1: ð7Þ

Let A =s2
e I +s

2
1K

1, concatenate the remaining regional SNP
matrices into Z = [X2X3 . . .XM], and construct the diagonal matrix
D with diagonal elements consisting of s2

m=pm repeated pm times,
form = 1, . . .,M. ThenV is in the form required to apply Equation7.
Because A�1 =Uðs2

e I +s
2
1EÞ�1U9 and D is diagonal, the only in-

version required is of the lower-dimensioned matrix (D�1 +
Z9A�1Z)�1. Moreover, by keeping V�1 in the form UWU9, it is
possible to carry out the REML iterations without computing V�1

explicitly, avoiding the need to multiply matrices of size n 3 n.
Additionally, this implementation avoids problems caused by
local region kinship matrices being low-rank and therefore not
invertible.

Predicting phenotypes

Suppose that phenotypes are recorded for individuals indexed by
the set S, andwewish to predict those for individuals in the setT. In
addition to estimating the variance parameters, REML also obtains
ĝ1
S ; . . . ; ĝ

M
S , estimates of the genetic random effects for individuals

in S. To predict phenotypes for individuals in T, we estimate
g1
T ; . . . ; g

M
T by their expected values given ĝ1

S ; . . . ; ĝ
m
S :

ĝm
T =E

�
gm
T j ĝM

S

�
=Km

TS

�
Km

SS

��1
ĝm
S ; ð8Þ

whereKm
TS andKm

SS are submatrices ofKm defined by the subscripts.
We can then predict phenotypes for individuals in T via
ŶT = ĝ1

T + . . . + ĝM
T .When theGSM takes the formof Equation 2, we

have

ĝm
T =Xm

T b̂
m where b̂m =X mT

S

�
Xm

S

�
Xm

S

�9��1
ĝm
S ; ð9Þ

so that b̂m is the vector of effect sizes for SNPs in Xm. When Km

corresponds to a local region, it is typically not invertible, so in-
stead we use

ĝm
T =Xm

T b̂
m where b̂m =

��
Xm

S

�9
Xm

S

��1�
Xm

S

�9
ĝm
S : ð10Þ

Using Equations 9 and 10 is often more convenient than using
Equation 8 because then phenotypes for test individuals can be
predicted without needing to refer to data for training individuals.

Adaptive MultiBLUP

If regions m and m9, of sizes pm and pm9, have equal effect-size
variances (i.e., s2

m=pm =s2
m9=pm9), then Equation 5 is unaffected by

merging the two regions or, equivalently, replacing gm and gm9 in
Equation 4 with a single random effect with correlation structure
(pKm + p9Km9)/(p + p9). Therefore, our adaptive strategy starts by
dividing the genome into genomically local SNP regions, then
testing for each region whether its effect-size variance is signifi-
cantly greater than that for all other regions combined. The formal
test for Region m is performed by calculating l0, the maximum
value of Equation 6 using a single GSM

K =+m9pm9K
m
�
+m9pm9;

and l1, the maximum value using two GSMs: Km and its comple-
ment

K�m =+m96¼mpm9K
m9
.
+m9 6¼m pm9:

A P-value is obtained by comparing the test statistic 2(l1� l0) to a x2

(1) distribution. When levels of relatedness are low, it suffices to
instead test whether the contribution to heritability from each
region is significantly different from zero, using highly efficient
computations similar to those outlined by Listgarten et al. (2013).
The starting region size (we chose 75 kb for the human data) is
intended to be small enough to separate distinct causal loci, but in
case a causal locus spans multiple 75-kb regions, we then merge
adjacent significant regions as described above. To test sensitivity
for the WTCCC1 data, we additionally ran Adaptive MultiBLUP
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starting with 37.5 and 150-kb regions, or using significance
thresholds P < 10�5 and P < 10�7 (instead of the Bonferroni-derived
P < 10�6); in all cases we observed little difference in prediction
performance, and Adaptive MultiBLUP remained the best per-
forming method (see Supplemental Table 7).

Equation 4 is the same as that used by genome partitioning,
a method for estimating the variance explained by subsets of SNPs
(Yang et al. 2011b). The advantage of MultiBLUP over BLUP arises
when relatively large fractions of phenotypic variance can be
assigned to relatively small SNP classes. However, it is important to
bear in mind that the focus of MultiBLUP is to obtain the pre-
diction model Y =+M

m=1g
m (or equivalently Y =+M

m=1+j2Rm
Xm

j b
m
j );

the estimates ŝ2
1; . . . ; ŝ

2
M will only accurately reflect variance

explained when individuals are distantly related and when the
decision of how to construct each Km was made a priori, rather
than adaptively, based on the data.

Data quality control

All analyses used only autosomal SNPs. For theWTCCC1data (http://
www.wtccc.org.uk), we filtered to remove population outliers iden-
tified through principal component analysis (Supplemental Fig. 1),
after which 2959 controls remained and each of the case/control
studies were left with between 4859 and 4928 individuals. Then we
removed SNPs with either minor allele fraction (MAF) < 0.01 or call-
rate (CR) < 0.995, or P < 0.05 from either a test for Hardy-Weinberg
equilibrium (HWE) or differential missingness between cases and
controls, afterwhich studies containedbetween270,319 and284,913
SNPs. Even subtle differences in population between cases and con-
trols can lead to artificial gains in prediction. To guard against this, we
first regressed disease status on sex plus the top 20 principal com-
ponent axes, then used the (continuous-valued) residuals for sub-
sequent analyses. A potential drawback of this approach is that any
true causal signal contained within the top axes is discarded and so is
unable to contribute toward prediction; however, as population
stratification is likely to benefit most methods whose prediction
models contain very many SNPs, we thought it better to err on the
conservative side. Byway of comparison, we instead regressed disease
status on sex and two ancestry axes derived from the HapMap refer-
ence panel (The International HapMap Consortium 2003) observing
slightly higher prediction performance for the WTCCC1 traits (see
Supplemental Table 7), suggesting that the true prediction potential
lies somewhere in between these two sets of values.

For the celiac disease data, the initial quality control steps are
described in Dubois et al. (2010). Principal component analysis in-
dicated that the data setwas sufficientlyhomogeneous (Supplemental
Fig. 2), so we retained all 15,283 individuals, but removed SNPs with
MAF < 0.01, CR < 0.995, or HWE P < 0.05, after which 190,948
remained. For inflammatory bowel disease, the data came from five
cohorts: 1916 Crohn’s disease cases from WTCCC1; 5200 controls
and 2833 ulcerative colitis cases fromWTCCC2; 813 Crohn’s disease
cases and947matched controls; and1028ulcerative colitis cases from
NIDDK (http://www.niddk.nih.gov). Separately for each cohort, we
first removed outlying samples based on principal component anal-
ysis (Supplemental Fig. 3), and SNPs with MAF < 0.01, CR < 0.95, or
HWE P < 10�6, then imputed against the 1000 Genome reference
panel using IMPUTE2 (The 1000 Genomes Project Consortium 2010;
Howie et al. 2011). Then we combined samples, filtering out SNPs
with (expected) MAF < 0.01, (expected) CR < 0.995, or IMPUTE2 Info
Score <0.98, and finally excluding213 individualswho appeared to be
duplicates (estimated kinship >0.7with another individual in the data
set): 12,678 individuals and 1,487,824 SNPs remained.

For the mouse data (downloaded from http://mus.well.ox.ac.
uk/mouse), no individuals were excluded, but SNPs were removed
if they had MAF < 0.01, HWE P < 10�4, or call-rate <0.99. Each of

the supplied phenotypes had been preadjusted for marginally
significant covariates, such as age, sex, and bodyweight, andwhen
performing 10-fold cross-validation, we ensured that mice in the
same cage were kept in the same fold.

Genetic risk scores

We constructed a linear predictor +jbjXj using all SNPs achieving
P-values from marginal association analysis below a specified
threshold, with effect sizes estimated from the same analysis. We
considered five threshold values (1–5 on the �log10 scale),
expecting higher P-value thresholds to provide better prediction
for more highly polygenic traits and vice versa. Prediction from
genetic risk scores can be impaired due to high levels of linkage
disequilibrium; so for the human data we repeated the analysis
having first pruned to obtain a subset of SNPs in approximate
linkage equilibrium. Results were noticeably different only for the
inflammatory bowel disease data set, which uses imputed geno-
types; so for this trait, we instead report results from the pruned
analysis. Because genetic risk scores estimate SNP effect sizes in-
dependently, the method is not expected to perform well when
judged according to mean squared error or median absolute error,
and this proved to be the case for all traits.

Stepwise regression

We performed multiple runs of single-SNP association analysis,
each time conditioning on the SNPs already selected and adding
the most strongly associated SNP to the model. We stopped when
no SNP was (conditionally) significant at P < 10�6, then estimated
coefficients for the selected SNPs using least squares. For BD, CAD,
HT, and T2D, the average model size was between zero and two
SNPs, whereas for CD, RA, and T1D, the average model size was
seven, six, and 17 SNPs, respectively.

BSLMM

We ran BSLMM with the parameters at their default values,
meaning that the first 100,000 MCMC iterations were discarded,
then posterior estimates were obtained from the next 1,000,000.
For both the human and mouse data, we used a standardized
kinship matrix (option -gk 2), matching the way GSMs were
computed for BLUP and MultiBLUP.

Computing resources

The first step in MultiBLUP is to compute one or more GSMs.
When these represent allelic correlations, the time required scales
approximately linearly in the total number of SNPs and quadrati-
cally in the number of individuals; for example, with optimized
code (Gray et al. 2012), this step took ;15 h for the inflammatory
bowel disease data (;13,000 individuals, 1.5 M SNPs), and is
readily parallelized. For Adaptive MultiBLUP, each initial region
must be tested, which when individuals are predominantly un-
related is very fast (about 1 h for the inflammatory bowel disease
data), but slower when individuals are highly related (about 3 h for
the mouse data); however, this step can also be parallelized. The
time to estimate the variance terms scales approximately quadrati-
cally in the number of individuals, taking;5h for the inflammatory
bowel disease data. The memory required by MultiBLUP scales
quadratically with the number of individuals and, if each GSM has
full rank, linearly with the number of random effects (e.g., with two
full-rank GSMs, MultiBLUP requires about twice the memory of
BLUP); however, GSMs corresponding to small subsets of SNPs can
be computedon-the-fly,meaning that AdaptiveMultiBLUP typically
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requires only slightly more memory than BLUP (;4 Gb for the in-
flammatory bowel disease data).

Software availability

The tools required to apply MultiBLUP are freely available in our
software LDAK (http://www.ldak.org).

Acknowledgments
We thank David van Heel of Queen Mary University of London for
providing the celiac disease data, Sang Lee of the Queensland
Institute of Medical Research for helpful advice regarding average
information REML, and three anonymous reviewers for their con-
structive suggestions. Analyses were performed with the use of the
UCL Legion High Performance Computing Facility (Legion@UCL)
and with the help of the associated support services. Access to Well-
come Trust Case Control Consortium data was authorized as work
related to the project ‘‘Genome wide association study of suscepti-
bility and clinical phenotypes in epilepsy’’; and access to data from
the National Institute of Diabetes and Digestive and Kidney Disease
was granted under Project 5938, ‘‘Using genome-wide SNP data to
predict disease behavior for Crohn’s disease.’’ This work is funded by
the UK Medical Research Council under grant G0901388, with sup-
port from the National Institute for Health Research, University
College London Hospitals Biomedical Research Centre.

References

The 1000 Genomes Project Consortium. 2010. A map of human genome
variation from population-scale sequencing. Nature 467: 1061–1073.

Abraham G, Tye-Din J, Bhalala O, Kowalczyk A, Zobel J, Inouye M. 2014.
Accurate and robust genomic prediction of celiac disease using statistical
learning. PLoS Genet 10: e1004137.

Agura Y, Bonen D, Inohara N, Nicolae D, Chen F, Ramos R, Britton H,Moran
T, Karaliuskasn R, Duerr R, et al. 2001. A frameshift mutation in NOD2
associated with susceptibility to Crohn’s disease. Nature 411: 603–606.

Astle W, Balding D. 2009. Population structure and cryptic relatedness in
genetic association studies. Stat Sci 24: 451–471.

Ballard D, Abraham C, Cho J, Zhao H. 2010. Pathway analysis comparison
using Crohn’s disease genome wide association studies. BMC Med
Genomics 3: 25.

Corbeil R, Searle S. 1976. Restrictedmaximum likelihood (REML) estimation
of variance components in the mixed model. Technometrics 18: 31–38.

Curtis C, Shah S, Chin S, Turashvili G, RuedaO,DunningM, SpeedD, Lynch
A, Samarajiwa S, Yuan H, et al. 2012. The genomic and transcriptomic
architecture of 2,000 breast tumours reveals novel subgroups. Nature
486: 346–352.

de los Campos G, Hickey J, Pong-Wong R, Daetwyler H. 2013. Whole
genome regression and prediction methods applied to plant and animal
breeding. Genetics 193: 327–345.

Dempster E, Lerner I. 1950. Heritability of threshold characters.Genetics 35:
212–236.

Dubois P, Trynka G, Franke L, Hunt K, Romanos J, Curtotti A, Zhernakova A,
Heap G, �Ad�any R, Aromaa A, et al. 2010. Multiple common variants for
celiac disease influencing immune gene expression.Nat Genet 42: 295–302.

Duerr R, Taylor K, Brant S, Rioux J, Silverberg M, Daly M, Steinhart A,
Abraham C, Regueiro M, Griffiths A, et al. 2006. A genome-wide
association study identifies IL23R as an inflammatory bowel disease
gene. Science 314: 1461–1463.

Gilmour A, Thompson R, Cullis B. 1995. Average information REML: an
efficient algorithm for variance parameter estimation in linear mixed
models. Biometrics 51: 1440–1450.

Goddard M, Hayes B. 2007. Estimation of genetic parameters. J Anim Breed
Genet 124: 323–330.

Gray A, Stewart I, Tenesa A. 2012. Advanced complex trait analysis.
Bioinformatics 28: 3134–3136.

Habier D, Fernando R, Kizilkaya K, Garrick D. 2011. Extension of the Bayesian
alphabet for genomic selection. BMC Bioinformatics 186: 186–197.

Hayes B, Bowman P, Chamberlain A, Goddard M. 2009. Genomic selection
in dairy cattle: progress and challenges. J Dairy Sci 92: 433–443.

Henderson C. 1950. Estimation of genetic parameters. Ann Math Stat 21:
309–310.

Henderson C, Kempthorne O, Searle S, von Krosigk C. 1959. The estimation
of environmental and genetic trends from records subject to culling.
Biometrics 15: 192–218.

Howie B, Marchini J, Stephens M. 2011. Genotype imputation with
thousands of genomes. G3 (Bethesda) 1: 457–470.

Hugot J, Chamaillard M, Zouali H, Lesage S, C�ezard J, Belaiche J, Almer S,
Tysk C, O’Morain C, Gassull M, et al. 2001. Asssociation of NOD2
leucine-rich repeat variantswith susceptibility toCrohn’s disease.Nature
411: 599–603.

Husby S, Koletzko S, Korponay-Szab�o I, Mearing M, Phillips A, Shamir R,
Troncone R, Giersiepen K, Branski D, Catassi C, et al. 2012. European
society for pediatric gastroenterology, hepatology, and nutrition
guidelines for the diagnosis of coeliac disease. Pediatr Gastr Nurtr 54:
136–160.

The International HapMap Consortium. 2003. The International HapMap
Project. Nature 426: 789–796.

The International Schizophrenia Consortium. 2009. Common polygenic
variation contributes to risk of schizophrenia and bipolar disorder.
Nature 460: 748–752.

Jostins L, Barrett J. 2011. Genetic risk prediction in complex disease. Hum
Mol Genet 20: R182–R188.

Lee S, van der Werf J. 2006. An efficient variance component approach
implementing an average information REML suitable for combined LD
and linkagemapping with a general complex pedigree.Genet Sel Evol 38:
25–43.

Listgarten J, Lippert C, Kadie C, Davidson R, Eskin E, Heckerman D. 2012.
Improved linearmixedmodels for genome-wide association studies.Nat
Methods 9: 525–526.

Listgarten J, Lippert C, Kang E, Xiang J, Kadie C, Heckerman D. 2013. A
powerful and efficient set test for genetic markers that handles
confounders. Bioinformatics 29: 1526–1533.

Makowsky R, Pajewski NM, Klimentidis YC, Vazquez AI, Duarte CW, Allison
DB, de los Campos G. 2011. Beyond missing heritability: prediction of
complex traits. PLoS Genet 7: e1002051.

Meuwissen T, Hayes B, Goddard M. 2001. Prediction of total genetic value
using genome-wide dense marker maps. Genetics 157: 1819–1829.

Monsuur A, de Bakker P, Zhernakova A, Pinto D, Verduijn W, Romanos J,
Auricchio R, Lopez A, van Heel D, Crusius J, et al. 2008. Effective
detection of human leukocyte antigen risk alleles in coeliac disease using
tag single nucleotide polymorphisms. PLoS ONE 3: e2270.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M, Bender D, Maller J,
Sklar P, de Bakker P, Daly M, et al. 2007. PLINK: a toolset for whole-
genome association and population-based linkage analysis. Am J Hum
Genet 81: 559–575.

Romanos J, Ros�en A, Kumar V, Trynka G, Franke L, Szperl A, Gutierrez-
Achury J, van Diemen C, Kanninga R, Jankipersadsing S, et al. 2014.
Improving coeliac disease risk prediction by testing non-HLA variants
additional to HLA variants. Gut 63: 415–422.

Scutari M, Mackay I, Balding D. 2013. Improving the efficiency of genomic
selection. Stat Appl Genet Mol 12: 517–527.

ValdarW, Solberg L,GauguierD,Burnett S, KlenermanP,CooksonW,TaylorM,
Rawlins J, Mott R, Flint J, et al. 2006. Genome-wide genetic association of
complex traits in heterogeneous stock mice. Nat Genet 38: 879–887.

Wang K, Zhang H, Kugathasan S, Annese V, Bradfield J, Russell R, Sleiman P,
Imielinski M, Glessner J, Hou C, et al. 2009. Diverse genome-wide
association studies associate the IL12/IL23 pathway with Crohn disease.
Am J Hum Genet 84: 399–405.

The Wellcome Trust Case Control Consortium. 2007. Genome-wide
association study of 14,000 cases of seven common diseases and 3,000
shared controls. Nature 447: 661–678.

Wray N, Goddard M, Visscher P. 2007. Prediction of individual genetic risk
to disease from genome-wide association studies. Genome Res 17: 1520–
1528.

Yang J, Benjamin B, McEvoy B, Gordon S, Henders A, Nyholt D, Madden P,
Heath A, Martin N, Montgomery G, et al. 2010. Common SNPs explain
a large proportion of the heritability for human height. Nat Genet 42:
565–569.

Yang J, Lee S, Goddard M, Visscher P. 2011a. GCTA: a tool for genome-wide
complex trait analysis. Am J Hum Genet 88: 76–82.

Yang J, Manolio T, Pasquale L, Boerwinkle E, Caporaso N, Cunningham J, de
Andrade M, Feenstra B, Feingold E, Hayes M, et al. 2011b. Genomic
partitioning of genetic variation for complex traits using common SNPs.
Nat Genet 43: 519–525.

Zhou X, Carbonetto P, Stephens M. 2013. Polygeneic modeling
with Bayesian sparse linear mixed models. PLoS Genet 9:
e1003264.

Received November 7, 2013; accepted in revised form June 20, 2014.

MultiBLUP: improved prediction for complex traits

Genome Research 1557
www.genome.org

http://www.ldak.org

