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Sparse subspace clustering (SSC) is one of the latest methods of dividing data points into subspace joints, which has a strong
theoretical guarantee. However, affine matrix learning is not very effective for segmenting multibody nonrigid structure from
motion. To improve the segmentation performance and efficiency of the SSC algorithm in segmenting multiple nonrigid
motions, we propose an algorithm that deploys the hierarchical clustering to discover the inner connection of data and
represents the entire sequence using some of trajectories (in this paper, we refer to these trajectories as the set of anchor
trajectories). Only the corresponding positions of the anchor trajectories have nonzero weights. Furthermore, in order to
improve the affinity coefficient and strong connection between trajectories in the same subspace, we optimise the weight matrix
by integrating the multilayer graphs and good neighbors. The experiments prove that our methods are effective.

1. Introduction

Nonrigid structure frommotion (NRSFM) is a hot topic in the
field of computer vision. It is aimed at recovering both cam-
era motion and nonrigid structure from two-dimensional
images of a monocular camera. At present, there are many
methods for solving this problem, which can achieve satisfied
results [1–3]. In 2020, Jensen et al. introduce a benchmark
and evaluate 18 different methods in sparse NRSfM [4].
However, most of the methods still assume that there is only
one nonrigid structure in the scene. Unfortunately, in the real
world, scenes tend to be much more complex; for instance,
several activities, such as playing a basketball game and walk-
ing, could be performed on the same scene simultaneously.
This is an example of scenes with multibody NRSFM. There-
fore, the assumption of a single object is not practical. There-
fore, the study of NRSFM reconstruction cannot be limited to
the case of a single object. However, as it is very difficult to
reconstruct the NRSFM with a single object, it is even more
difficult to reconstruct a multibody NRSFM.

For this problem, we can easily refer to a scene of multi-
ple rigid objects. In the case of multiple rigid objects, the
problem can be divided into two independent steps: first,
each object is divided from 2D coordinates [5, 6], and then,
the latest reconstruction technology is used for reconstruc-
tion [7, 8]. Alternatively, we can regard multiple objects in
the same scene as a whole, reconstruct the scene uniformly,
and then divide the 3D coordinates. This idea can also be
applied to multiple nonrigid motion scenes. However, this
idea has a high segmentation accuracy requirement; further-
more, because of nonrigidity and overlapping, it is easy to
obtain bad segmentation results.

Therefore, in order to improve the segmentation effect, in
this study, we propose a multiple nonrigid motion segmenta-
tion algorithm based on sparse subspace clustering. Through
subspace clustering, we can learn the affine matrix of the nat-
ural coding subspace and then obtain the number of deform-
able objects, different activities, and membership degree of
each sample by using the idea of spectral clustering [9, 10].
To improve the segmentation effect of SSC on multibody

Hindawi
International Journal of Digital Multimedia Broadcasting
Volume 2021, Article ID 6686179, 12 pages
https://doi.org/10.1155/2021/6686179

https://orcid.org/0000-0001-6166-5119
https://orcid.org/0000-0002-7245-6061
https://orcid.org/0000-0003-0164-402X
https://orcid.org/0000-0003-3013-4790
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6686179


NRSFM, we use random hierarchical clustering to select a
group of k trajectories as the set of anchor trajectories to rep-
resent the entire sequence. At the same time, to reduce the
influence of the input parameters on the algorithm and make
the algorithmmore extensible, we used a method for estimat-
ing the number of anchor trajectories, k. Finally, to improve
the robustness of the algorithm, we optimize the weight
matrix obtained using multilayer graphs [11] and the concept
of the good neighbors [12] to improve the result.

2. Related Work

In this section, we will analyze the research status on multi-
body NRSFM and SSC.

2.1. Multibody Nonrigid Structure from Motion. The multi-
body nonrigid structure from motion (multibody NRSFM)
is the inevitable extension direction of the research on non-
rigid motion structure. At present, there are two main
methods for analyzing a multibody nonrigid scene. The first
is to separate the tasks of segmentation and reconstruction
and tackle them separately. This approach can be regarded
as the extension of the approach to multiple rigid scenes to
multiple nonrigid scenes. In the second category, the cluster-
ing algorithm is added to the constraints of the model using
the spatiotemporal union method, and the segmentation and
reconstruction are processed simultaneously.

Russell et al. [13] proposed a method of simultaneously
segmenting a complex dynamic scene containing a mixture
of multiple objects into constituent objects and reconstruct-
ing a 3D model of the scene by formulating the problem as
hierarchical graph-cut-based segmentation, where the whole
scene is decomposed into background and foreground
objects, with the complex motion of non-rigid or articulated
objects modeled as a set of overlapping rigid parts. In 2014, in
addition to performing temporal clustering, Zhu et al. [14]
regarded modeling motion as a union of temporal subspaces.
Although their work still focuses on a single object, it pro-
vides ideas for extending the research to multibody NRSFM.
In 2016 and 2017, Kumar et al. [15, 16] proposed using the
SSC algorithm to establish a spatiotemporal union model
and segmented and reconstructed the multibody NRSFM
simultaneously. In two nonrigid bodies on the same scene,
it achieved good results. Now, with the development of arti-
ficial intelligence (AI) [17, 18] and deep learnings, more
and more fields begin to contact deep learnings to explore
the comparison between the neural network and early tradi-
tional algorithms. In reference [19], the neural network is
used to deal with NRSfM problems, which proves that the
neural network can also deal with NRSfM problems well.

2.2. Sparse Subspace Clustering. On multibody NRSFM
scenes, each object is distributed in different subspaces. As
time goes on, different feature points move to different trajec-
tories. Although a principal components analysis (PCA) [20,
21] can find the low-dimensional structure in high-
dimensional data, it does not take into account the situation
where the dataset contains multiple structures. Therefore, for
multiple nonrigid segmentations, the best approach is to

select multiple subspaces instead of a single subspace.
Therefore, subspace clustering [22] is a good way to solve
this problem. The best solution to the problem of subspace
clustering is based on a spectrum. First, calculate the sim-
ilarity between all the feature points. Then, cluster the
affine matrix by spectrum. Finally, we can achieve the goal
of separating a specified number of low-dimensional sub-
spaces in the data space. With the development of sparse
representation, an interesting concept, the attribute of
self-expression, has attracted significant attention in the
spectrum-based methods:

xi = Xci, ð1Þ

where X = fx1, x2, x3,⋯⋯ :,xi,⋯⋯ :,xNg ∈ℝ
d×N , repre-

sents the input data, and ci ∈ℝ
N×1 represents the weight

vector corresponding to xi. Equation (1) can be inter-
preted as follows. Each data point can be expressed as a
sparse linear combination of other data points in the same
subspace. The main representative methods of this part are
sparse subspace clustering, low-rank representative (LRR)
[23–25], and least square regression (LSR) [26]. In the
independent and nonintersecting subspaces [27–29], the
SSC has a strong theoretical guarantee in the case of noise
and nonnoise. In the presence of noise and disjoint sub-
space, the LRR cannot be effectively modeled. Compared
to the SSC and LRR, the LSR has the least computational
cost, when the subspace is independent.

However, despite the theoretical guarantee and empirical
success of the SSC, it is necessary to solve Equation (1) that is
equal to the total number of data points for each data point.
Therefore, when the data scale is large, the cost of solving this
least absolute shrinkage and selection operator (LASSO)
problem will be high. To solve the problem of the SSC’s poor
performance on large-scale datasets, the scalable sparse sub-
space clustering (SSSC) is proposed in [30]. This method
reduces the computational cost by randomly selecting a part
of datasets as a group and can be successfully extended to
large datasets. However, the algorithm is not stable, because
it uses a random way to select support points. In reference
[31], the author opted to not solve Equation (1) according
to the idea of a greedy algorithm, using orthogonal matching
pursuit (OMP) [32] instead to obtain the sparse representa-
tion of each data point. Although the OMP algorithm does
boost the effectiveness of the SSC algorithm on large-scale
data, it is based on a greedy algorithm. Therefore, the theoret-
ical guarantee is weak and the computational cost is high. In
order to solve the SSC problem better, reference [33] propose
an iterative weighting (reweighted) l1 minimisation frame-
work which largely improves the performance of the tradi-
tional l1 minimisation framework—RSSC. In reference [34],
they propose a method for controlling the connectivity and
sparseness of subspaces by combining the l1-norm and l2
-norm. In [35], a subspace clustering algorithm based on
Oracle, named elastic net subspace clustering (EnSC), is pro-
posed. However, this method is sensitive to the initially
sparse and connected parameters. Recently, the k-SSC [36]
and SR_SSC [37] that reduce the scale of the LASSO problem
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from all the datasets to the anchor points set were proposed
for selecting k anchor points as support sets.

3. Estimation k and Optimisation of
Weight Matrix

Considering that there is an image sequence with F frames,
each frame contains the number of β nonrigid motion and

P trajectories: S = fS1, S2,⋯⋯ , SPg ∈ℝ
3F×P, each S i =

ðX1i, Y1i, Z1i,⋯, XFi, Y Fi, ZFiÞ
T , i = 1,⋯⋯ , P is the 3D

motion trajectory of the ith point. The process of using the
SSC algorithm to segment S can be interpreted as follows:
there are β subspaces, and each trajectory S i in the sequence
can be represented using the sparse linear combination of
other trajectories in the same subspace (this can be under-
stood as the same non-rigid object), as: S i = Sci. This is illus-
trated in Figure 1, where each column of S is the trajectory of
the 3D point (shown in green). As shown in the visualisation,
S i can be represented by the linear combination of several
other trajectories.

Because of the nonrigidity and overlapping, the sparse
subspace algorithm alone cannot segment the multiple non-
rigid motions effectively. In Section 2.2, due to the LASSO
problem, the general SSC algorithm does not have good
expansibility. Therefore, to reduce the computational cost
of solving the LASSO problem, we refer to the work in [37]

and select a certain number of trajectories (anchor set), D ∈

ℝ
3F×k, as the support set of each trajectory through hierarchi-

cal clustering. Using indices Ω, we express D as
follows:D = Sð: ,ΩðjÞÞ, j = 1, 2, 3, : ⋯ ⋯ , k. We replace the
self-expression attribute with the following:

S i =Dci: ð2Þ

In this study, we use the SSC to segment the multiple
nonrigid motions in the same scene. Therefore, the SSC
model is applied to the multiple nonrigid datasets according
to our goal:

min
C∈ℝk×P

Ck k1 +
μ

2
S −DCk k2F such thatCi,i = 0 for i = 1, 2, 3,: ⋯⋯, k:

ð3Þ

Thus, the scale of solving the LASSO problem of the SSC
is reduced. Different sizes of datasets are suitable for different
k. Unfortunately, in literature [37], k is manually selected,
instead of being automatically calculated by the algorithm,
according to the different datasets. Apparently, it cannot be
effectively applied to real scenes. Therefore, to make k more
adaptable to multiple nonrigid motion datasets and improve
its robustness, we propose a method to estimate it reasonably
and optimise the weight matrix.

3.1. Estimating k. Inspired by reference [38], we attempt to
estimate the grouping of data itself using the simple idea of
clustering transmission among data and regard it as the cor-
responding anchor trajectories number k of the dataset.

For entire 3D motion trajectories set S, first, calculate the

first neighbourhood relationship matrixK1 ∈ℝP×1 using the
accurate distance method. Then, use the first neighbourhood
relationship of each trajectory to find the mutual links and
groups in all the trajectories. Through the index of the first
neighbour of each trajectory, we can directly define an adja-
cency matrix that is expressed as follows:

A m, nð Þ =
1, if n =K

1
m orK1

n =m orK1
m =K

1
n,

0, otherwise,

(

ð4Þ

where K
1
m is the first neighbour of m, the adjacency

matrix connects each trajectory m to its first neighbour

through n =K
1
m, forces symmetry through K

1
n =m, and

connects trajectories (m, n)with the same neighbors as K1
m

=K
1
n. Equation (4) can return a symmetric sparse matrix

and directly specify a connected graph in which the con-
nected components are clusters. Using the undirected graph
or directed graph G = ðV , EÞ, connected components can be
effectively obtained from the adjacency matrix, where V is
the set of nodes (clustered trajectories), E is the edge of the
connected node, and Aðm, nÞ = 1.

The condition in Equation (4) is actually the combination
of 1-NN and SNN. This method eliminates the need to solve
the problem of graph segmentation. In other words, the adja-
cency matrix obtained from Equation (4) has absolute con-
nection; thus, it is not necessary to use any distance value
as the edge weight, or solve the graph partition.

In paper [38], the main flow of the proposed algorithm is
straightforward. After computing the first partition, they
proceed to merge these clusters recursively. However, if we
set the exact grouping as the number of anchor trajectories
k, less error is allowed in the selection of anchor set. The
selected trajectories must have good representativeness.
However, this is very difficult, because there is no criterion
to determine whether the current trajectory can effectively
represent the whole sequence.

P1 P2 P3 P4 P5 P6 P7 P8 P9
�i

S Ci

3F 3F P P

0

0

0

0

Figure 1: The visual representation of the affine subspace
constraint, S i = Sci, in the trajectory space.
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Therefore, in this study, by calculating the first adjacency
matrix of the sequence once with Equation (4), we obtain a
general group ε and designate the number of groups ε the
number of anchor trajectories k, like Algorithm 1. This
ensures maximum flexibility in the selection of the anchor

set. For the convenience of calculation, we use K
1 ∈ℝP×1

when defining the first adjacency matrix; thus, we transpose

the sequence S and assume S# = ðSÞT .

3.2. Optimisation of Weight Matrix. After determining the
values of k, we use the hierarchical clustering based on the
factorisation of the rank-two nonnegative matrix given in
[39] to select the set of anchor trajectories. Although this
method is somewhat random, it has been proven in literature
[37] that this method is better than the random uniform
selection used by SSSC [30]. However, it is very difficult to
select the anchor trajectories without any prior conditions.
Although the author has provided theoretical proof for this
method in paper [37], the randomness in the algorithm can-
not be ignored. To reduce the decisive influence of the anchor
trajectories selection on the algorithm’s effectiveness, the idea
of multilayer graphs is added in reference [37]. In our subse-
quent experiments, it proves that in multiple nonrigid scenes,

the multilayer graphs alone cannot improve the effect of bad
selection. For this reason, we refer to [12], which uses a post-
processing technology, and modifies the weight matrix
through the good neighbors to optimise the sparseness and
connectivity, the importance of the anchor trajectories is
minimised.

GNγ S ið Þ = S j

� �γ

j=1
= argmax

x j

〠
γ

j=1

wij

�

�

�

�

: ð5Þ

For each trajectory, S i, we select γ, the most similar tra-
jectories from the affine matrixW, using Equation (5), while
γ < k, ðS i, S jÞ ∈ S, wij ∈W, and W:

W =
1

2
Zj j + ZT

�

�

�

�

� �

: ð6Þ

where j:j is the absolute value of matrix element, Z ∈

ℝ
P×P , ZðΩðjÞ, :Þ = Cðj, :Þ for j = 1, 2,⋯⋯ , k, and the other

rows of Z are equal to zero. To better reflect the strong con-
nection of the trajectories in the same subspace and the weak

1. Input: dataset S# ∈ℝP×3F , where S# = ðSÞT .
2. Output: number of anchor trajectories k.
3. Estimation k:
4. Compute the first adjacency integer matrix K1∈R(P ×1) using the exact distance method.
5. Given K1, obtain ε clusters by using Equation (4) and assume k = ε.

Algorithm 1: Estimation k.

1. Input: weight matrix Z ∈ℝP×P , γ, η, μ.

2. Output: new weight matrix Z∗ ∈ℝP×P .
3. Optimise the weight matrix.
4. Compute the affine matrix W using Equation (6);

5. Initialisation matrix G ∈ℝη×P = 0;
6. for i = 1: P.
7. Compute the γ-neighbors GNγðS iÞ = fS jσ

gγ
σ=1

using Equation (5)

8. num = 1;
9. for y = 1: γ do.
10. Compute linkij for S iy ∈ GNγðS iÞ using Equation (7);

11. If (linkij > μ) and (num < η) then

12. G i =G i ∪ S iy ;

13. num = num + 1;
14. End if
15. End for
16. If (num < η), then

17. G i =G i ∪ fŜgη−num, where fŜgη−num have the largest (η–num) similarity rate in GNγðS iÞ;

18. End if
19. End for

20. Compute Z∗ ∈ℝP×P using Equation (8).

Algorithm 2: Optimisation of weight matrix.
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connection of trajectories across different subspaces, the
following conditions are introduced:

linkij = 〠
γ

σ=1

1, for 1 =
1, S i ∈GNγ S jσ

� �

,

0, otherwise:

8

<

:

ð7Þ

Equation (7) can be understood as follows. In the dataset,
S, for eachS i, we have S j ∈ GNγðS iÞ and GNγðS jÞ =

fS jσ
gγ
σ=1

; thus, there are linkij common neighbors between

S i and S j. We take the linkij as the judging condition;

when linkij > μ, we assume that S j is one of the good neigh-

bors of S i. In terms of calculation efficiency, due to the
increased path length, the relationship between samples will
be weaker. Therefore, to ensure the calculation efficiency, we
assume μ = 1 in the rest of this study; that is, when there is
more than one common similarity between ðS i, S jÞ, S jcan

be referred to as the good neighbour of S i. Finally, for each
S i, we extract η good neighbors from GNγðS iÞ and express

the set of good neighbors as follows: G ∈ℝη×P, where η ≤ γ.
Finally, to reduce the error of spectral clustering, we limit: 0

≤ z∗ij < 1 and set the sum of each row of optimised Z∗ as 1:

z∗ij =

wij

∑jwij

, if S j ∈ G i ;

0, if S j ∉ G i,

8

>

<

>

:

ð8Þ

where∑jwij is the sum ofwij between S i and fS jg
η

j=1
and

fS jg
η

j=1
∈ G i:

4. Proposed Method

In the third section, we analyse the process of estimation
based on the number of anchor trajectories k and weight
matrix optimisation. Then, we integrate the theory and build
a complete multiple nonrigid segmentation framework.
Based on the idea of multilayer graphs [11], we choose the
L group, each group contains k anchor trajectories, using

indices ΩðiÞði = 1, 2,⋯⋯ , LÞ, express the dictionary dataset

of group L as fDðiÞ = Sð: ,ΩðiÞðjÞÞ ∈ℝ3F×kg
L

i=1, j = 1, 2, 3, : ⋯

⋯ , k. Similarly, fCðiÞ ∈ℝk×Pg
L

i=1 is the weight matrix C cor-
responding to a L-level graph. The optimisation problem
(3) can be converted to the following equation:

min
C ið Þ∈ℝk×P

C ið Þ
	

	

	

	

	

	

1
+
μ

2
S −D ið ÞC ið Þ

	

	

	

	

	

	

2

F
, C

ið Þ

j,Ω ið Þ jð Þ
= 0 for j = 1, 2; ;::k:

ð9Þ

For optimisation problem (9), we can use the alternating
direction method of multipliers (ADMM) algorithm to opti-
mise [37, 40]. Considering our requirements, the ADMM
algorithm is very suitable because it has a low computational
cost per iteration (linear in the number of variables). Further-
more, its slow convergence (linear at best) is not a bottleneck,
because a high precision is not necessary as we only need to

know the order of magnitude of the entries of CðiÞ. Moreover,
it is not necessary to solve (9) with high precision, because
the data is usually very noisy.

Then, when we obtain ðCðiÞÞ
L

i=1, we build a L-level graph

G, GðiÞ = ðV ,WðiÞÞ, where the trajectories to be clustered are

in V , andWðiÞ is the affine matrix of ith layer. In order to cal-
culate the affine matrix later, and at the same time to distin-

guish easily, we redefine the weight matrix, ZðiÞ ∈ℝP×P = 0:

Z ið Þ Ω ið Þ jð Þ, :

� �

= C ið Þ j, :ð Þ for j = 1, 2,⋯⋯ , k ð10Þ

We use Algorithm 2 to optimise the weight matrix ZðiÞ

for the ith layer, making the affinity coefficient more rep-

resentative. Then, WðiÞ can be obtained as follows:

W ið Þ =
1

2
Z ið Þ
�

�

�

�

�

�
+ Z ið ÞT
�

�

�

�

�

�

� �

: ð11Þ

Following the spectral clustering [9], we compute the

Laplacian matrix PðiÞ of each layer as follows:

P ið Þ = IE −D ið Þ
g

−1/2
W ið ÞD ið Þ

g

−1/2
, ð12Þ

where IE is the identity matrix and DðiÞ
g is the diagonal

matrix, whose value is the sum of each row of WðiÞ is
expressed as follows:

D ið Þ i, jð Þ = 〠
P

j=1

W ið Þ j, :ð Þ: ð13Þ

According to the derivation of reference [11], we inte-

grate the multilayer graphs. For each layer of graph, GðiÞ, it
is necessary to obtain its corresponding β-dimensional

subspace representation matrix ΓðiÞ ∈ℝP×β, which is com-
posed of the eigenvectors corresponding to the β smallest

eigenvalues in PðiÞ
:Finally, the information of the graph,

G, is integrated to obtain the expression of the final
Laplace matrix P f :

P f = 〠
η

i=1

P ið Þ − α〠
η

i=1

Γ ið Þ Γ ið Þ
� �T

: ð14Þ

By using the k-means to classify Γ ∈ℝP×β, the eigen-
vector corresponding to the β smallest eigenvalue of the
Laplacian matrix P f , we can obtain the final classification

of S.

5. Experiment

5.1. Data and Operating Environment. Most of the sparse
datasets used in this study are from http://cvlab.lums.edu
.pk/nrsfm; the others are from some open-source projects.
We make reference to Kumar et al. [15, 16] and merge
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multiple datasets to simulate multiple nonrigid motions on
the same scene, as shown in Figure 2(b). In Figure 2(b), dif-
ferent movements are represented by different color blocks.
The sparse NRSFM datasets that we used are as follows:
dance (75 feature points), shark (91 feature points), walk
(55 feature points), yoga (41 feature points), stretch (41 fea-
ture points), face (37 feature points), pickup (41 feature
points), and drink (41 feature points), some show in
Figure 2(a). The operating system used in this experiment
is macOS, which is configured as 3.1GHz Intel Core i5. The
memory is 8GB, and the MATLAB version is 2017b.

5.2. Performance Evaluation Index. To better compare the
difference between the segmentation results of the algorithm,
we measure the segmentation effect using two indicators: the
correct rate and the number of incorrectly classified
trajectories.

Accuracy rate:

Ra =
#of correctly classified trajectories

total#of trajectories
: ð15Þ

ErrorsðnÞ: the number of incorrectly classified trajecto-
ries is the algorithm segmentation errors, defined as follows:

Error nð Þ = #of incorrectly classified trajectories: ð16Þ

5.3. Experimental Parameter.When the algorithm is running,
three parameters are required: α, γ, and η.

α: in reference [11], a parameter, α, is required to balance
the connectivity between each layer of graphs and the repre-
sentation of the distance between subspaces, that is, Equation
(14). In [11], the author proposes setting it to 0.5 and states

(A) Shark (B) Yoga (D) Dance(C) Stretch

(a)

(b)

Figure 2: (a) Visualisation of some NRSFM datasets. (b) Example of synthetic datasets reference in [15, 16]. Different colors represent
different motion.
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the accuracy of segmentation, and the three-colour line graph
represents the experiment on three different datasets.
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Figure 4: The x-axis represents the value of η, the y-axis represents
the corresponding segmentation accuracy, and the three-colour line
graph represents the three datasets.
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that the theory of multilayer graphs is not sensitive to the set-
ting of α; at the same time, we need the contrast algorithm,
SR_SSC, to set α to 0.5. To facilitate the comparison between
the algorithms, we set α to be equal to 0.5

γ: in Section 3.2, when optimizing the weight matrix, for
each data point, it is necessary to select the largest similarity
points. To explain the influence of the γ setting on the algo-
rithm, we observed the effect of varying γ on the algorithm.
We chose three datasets of different sizes: (1) yoga+stretch
+pickup, (2) shark+yoga+dance+walking, and (3) shark
+yoga+stretch+pickup+dance. Furthermore, we will assume
η = γ (in other words, GNγ =G). Each dataset was tested 20

times to calculate the average accuracy. The results are shown
in Figure 3. From the trace of the curve in Figure 3, it can be
observed that after γ ≥ 6 in the three datasets, the segmenta-
tion accuracy tends to stabilise. Therefore, to improve the
scalability of the algorithm, in this study, we set γ as 10.

η: similarly, to illustrate the influence of η on the algo-
rithm, 20 experiments were conducted using the same three
datasets. Here, the value of γ is 10, and the average accuracy
is calculated, as shown in Figure 4. From the trend of the
curve in the figure, it can be seen that the assumption that
η is 7 is relatively reasonable.

5.4. Analysis of the Anchor Trajectories Number k Estimation.
To analyse the rationality of the estimation of k by Algo-
rithm 1 in Section 3.1, we construct five composite data, as
shown in Table 1. Because our Algorithm 3 refers to the basic
idea of the SR_SSC [37], Table 1 only compares the experi-
mental results of our Algorithm 3, namely, multibody non-
rigid segmentation (MNR_S) and the SR_SSC algorithm
using different k. The code of the SR_SSC provided open-
source links in the relative literature.

To mitigate the effect of the randomness of the anchor
trajectories selection on the reliability of the results, we con-
ducted 20 experiments on each dataset to calculate the aver-
age accuracy, and the results are shown in Table 1. In Table 1,
bold indicates the best effect on the dataset, followed by
italics. For comparison, all the parameters, with the exception
of the anchor trajectories and k, are set to be constant. By set-
ting the k in the SR_SSC algorithm as 60, 80, and 100, respec-
tively, and estimating the formula in Section.3.1, four
situations are obtained. In Table 1, in the section of SR_
SSC (Section 3.1), k, as obtained by the estimation of Algo-
rithm 1, is in parenthesis beside the accuracy value, and the
numbers in parentheses in the dataset represent the total
number of feature points in the dataset.

Table 1: Analysis of the anchor trajectories number k estimation.

Dataset
SR_SSC (60) SR_SSC (80) SR_SSC (100) SR_SSC (Section 3.1) MNR_S

Rα Rα Rα Rα Rα

Shark+dance+yoga (207) 0.985 0.986 0.990 0.988 (54) 0.993

Yoga+stretch+pickup (123) 0.967 0.945 0.926 0.974 (36) 0.980

Dance+pickup+stretch(157) 0.956 0.951 0.921 0.976 (41) 0.990

Shark+dance+yoga+walking (262) 0.961 0.978 0.983 0.969 (69) 0.981

Shark+pickup+stretch+dance (248) 0.907 0.902 0.943 0.920 (67) 0.970

Shark+dance+yoga+pickup+stretch (289) 0.730 0.742 0.768 0.750 (78) 0.930

Dance+walking+shark+yoga+stretch (303) 0.789 0.802 0.810 0.809 (82) 0.963

1. Input: 3D feature matrix S ∈ℝ3F×P , where F is the frame, and P is the number of feature points, and the number of multiple non-
rigid β (as number of layers L at the same time), α, γ, η.
2. Output: a clustering of the columns of S in subspaces
3. Segmentation

4. Computation of k using Algorithm 1 to ST .
5. for i = 1: β do

6. Obtain dictionary DðiÞ ∈ℝ3F×k by using random hierarchical clustering [2]

7. Compute CðiÞ using ADMM to solve (9).

8. Compute ZðiÞ using Equation (10).

9. Optimise ZðiÞ using Algorithm 2.

10. Compute WðiÞ using Equation (1).

11. Compute PðiÞ using Equation (12).

12. Compute ΓðiÞ ∈ℝP×β.
13. End for
14. Compute P f using Equation (14).

15. Compute the Γ ∈ℝP×β.
16. The final clustering of the columns of S is obtained by clustering the rows of Γ using the k-means with β clusters.

Algorithm 3: Multibody NRSFM segmentation
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From Table 1, we can see that the appropriate anchor
trajectories of SR_SSC are different for the different data
scales. Using the method of estimating k that we introduced
in Section 3.1, the experimental result shows that the results

are relatively good across different datasets. Moreover, after
combining the good neighbors in our method, our multi-
body nonrigid segmentation(MNR_S) is greatly improved,
and the average accuracy is more than 90%.

SR_SSC (section 3.1) MNR_S

(a) Shark-yoga-dance

SR_SSC (section 3.1) MNR_S

(b) Shark-yoga-stretch

SR_SSC (section 3.1) MNR_S

(c) Shark-yoga-dance-walking

SR_SSC (section 3.1) MNR_S

(d) Shark-yoga-stretch-pickup-dance

Figure 5: The affine matrix obtained by our algorithm and SR_SSC (Section 3.1).
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(c) Shark+dance+yoga+walking
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Figure 6: Influence of optimisation weight matrix on algorithm performance and comparison of the SR_SSC (Section 3.1) algorithm and ours
in 20 experiments on each flow.
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5.5. Analysis of the Influence of Optimisation Weight Matrix
on Algorithm. To observe the effect of optimising the weight
matrix in addition to using the multilayer graph method, we
visualized the difference of affinity matrices obtained by our
method MNR_S and SR_SSC (Section 3.1) in Figure 5.
Comparing the error correction ability of the same set of
anchor trajectories separately, draw ErrorðnÞ in 20 experi-
ments on the SR_SSC and our algorithm, as shown in
Figure 6. Furthermore, we show the clustering results for
one dataset, ‘Dance+walking+shark+yoga+stretch’ in the
same group of experiments, as shown in Figure 7. In
Figure 7, the same color indicates belonging to the same
motion, small blocks in different colors mean clustering
error, and abscissa is expressed as feature point. Because
each motion contains different feature points, so the color
block width displayed is different.

In Figure 5, it can be observed that the affine matrix cal-
culated in our algorithm effectively removes the interference
items around, ensures the more representative affinity coeffi-
cient is concentrated near the main diagonal, reduces the
influence of interference coefficient on segmentation, and
makes the algorithm more stable.

From the curve trend of Figure 6, that in the multiple
nonrigid scenes, our algorithm is obviously superior in terms
of stability and error rate. Especially in the ‘shark+dance
+yoga+stretch + pickup’ and ‘shark+dance+yoga+walking’
datasets, the error rate is not ideal under the influence of high
motion similarity when only the multilayer graphs is used. In

contrast, our algorithm cooperates with the optimisation of
the weight matrix, reduces the interference term of the final
obtained affine matrix, and visibly reduces the error.

5.6. Comparison with Other SSC Algorithms on Multibody
NRSFM. In this subsection, we compare the segmentation
results of other SSC algorithms to demonstrate the stability
of our algorithm in multibody NRSFM segmentation. We
compare our algorithm MNR_S with the SSC, SSSC [30],
EnSC [35], and k_SSC [36] algorithms on the synthesised
dataset. To rule out accidents, 20 experiments are conducted
on the same set of data, and the average accuracy is obtained.
The results are shown in Table 2. To ensure fairness, the ini-
tial parameters in the EnSC algorithm are different in each
dataset. For each dataset, we debug a variety of possible
parameter sets for the EnSC algorithm to achieve the best

30025020015010050

(a) SR_SSC (Section 3.1)

30025020015050 100

(b) MNR_S

Figure 7: Clustering result of ‘dance+walking+shark+yoga+stretch.’.

Table 2: Accuracy (RðaÞ) of five algorithms in the 15 datasets synthesised.

Dataset SSC EnSC k-SSC SSSC MNR_S

Three objects

Shark+dance+yoga (207) 0.992 1.000 0.903 0.928 0.993

Yoga+stretch+pickup (123) 0.919 0.959 0.920 0.903 0.986

Dance+pickup+stretch (157) 0.828 0.942 0.940 0.890 0.987

Shark+walking+drink (187) 1.000 0.983 0.968 0.902 0.989

Dance+yoga+drink (157) 0.917 0.920 0.902 0.886 0.980

Four objects

Shark+dance+yoga+walking (262) 1.000 0.996 0.901 0.907 0.980

Dance+stretch+pickup+shark (248) 0.714 0.810 0.779 0.800 0.968

Walking+face+pickup+drink (174) 0.701 0.850 —— 0.813 0.948

Dance+yoga+drink+walking (212) 0.755 0.780 —— 0.834 0.984

Dance+yoga+stretch+pickup (198) 0.858 0.803 0.737 0.785 0.989

Five objects

Shark+dance+yoga+pickup+walking(303) 0.736 0.799 0.742 0.783 0.939

Shark+yoga+pickup+stretch+dance (289) 0.773 0.775 —— 0.757 0.980

Shark+yoga+walking+drink+dance (303) 0.731 0.791 0.751 0.698 0.970

Dance+yoga+stretch+pickup+walking (253) 0.731 0.704 0.681 0.708 0.964

Drink+walking+yoga+pickup+stretch(219) 0.739 0.794 —— 0.750 0.937

Table 3: The effect of reconstruction using BMM after segmentation
in two objects.

Dataset
BMM+SSC (2D) BMM+MNR_S (2D)

e3D

Dance+yoga 0.170 0.150

Drink+walking 0.085 0.078

Pickup+yoga 0.185 0.151

Drink+stretch 0.092 0.073

Shark+dance 0.201 0.171
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effect in the current experimental dataset. The dictionary set
of the SSSC, with the size of 30 β, adopts the random uniform
selection method, where β is the number of nonrigid bodies.
(Remarks: in Table 2, bold indicates the best effect on the
dataset, followed by italics; ‘——’ indicates that the segmen-
tation effectiveness is still less than 50% after adjusting the
parameters.)

As can be seen from Table 2, in general, the segmentation
accuracy of our algorithm is above 90%. However, the effec-
tiveness of other algorithms is sometimes lower than or more
than 90%.

For the three nonrigid datasets, the five algorithms per-
form relatively well. Although the EnSC algorithm achieves
100% segmentation accuracy on the shark+dance+yoga data-
set, and the SSC achieves 100% segmentation accuracy on the
‘shark+walking+drink’ dataset. In contrast, our algorithm is
very stable on five synthetic datasets, with an average seg-
mentation accuracy of 98%.

For the four nonrigid scenes, the EnSC and SSC algo-
rithms achieve good results on the ‘shark+dance+yoga
+walking’ dataset; however, the accuracy of the remaining
four datasets is not as high as 90%. The average accuracy of
our algorithm in five datasets exceeds 94%.

For the five nonrigid scenes, our algorithm’s accuracy is
also more than 90%; the other algorithms are not ideal (for
the k-SSC, we also attempt to adjust the various parameters
and observe the effect. However, many synthetic data remain
unideal).

In Table 3, for two objects in the scene, SSC and MNR_S
are used to segment the 2D observation matrix first, and
then, the BMM is used for reconstruction. Because our seg-
mentation algorithm can segment the scene of two objects
very well, the effect is significantly better than that of SSC
+BMM(e3D is expressed as the 3D reconstruction error calcu-
lated by BMM).

We also extract a dataset, ‘shark+yoga+stretch+pickup
+dance,’ and show four comparison algorithms and our
method’s segmentation result in Figure 8, in which different
colors represent different motions, small blocks in different
colors mean clustering error. It can be seen that the segmenta-
tion result of our method is obviously better. The other algo-

rithms cannot segment the middle three motions because of
the high similarity, instead, our algorithm is very ideal.

MNR_S is less sensitive to the parameters. For example,
from Section 5.3, we can observe that the fluctuation of the
average accuracy rate when the value of γ exceeds 3 is mini-
mal. Likewise, for η, varying the initial parameters in the nor-
mal range has little effect on our algorithm. At the same time,
we use the combination of the good neighbour and the mul-
tilayer graphs to eliminate the influence of the poor selection
of anchor set on the algorithm. The experimental results
demonstrate that our algorithm is stable and performs
robustly on our synthetic dataset.

6. Conclusion

The main purpose of this study is to deepen the research on
‘3D reconstruction and segmentation of multi-body
NRSFM.’ To study the segmentation effect of current sub-
space clustering algorithms on multiple nonrigid bodies on
the same scene, we drew our inspiration from Abdullali
et al.’s study [37]. At the same time, we realised that because
the number of anchor trajectories in the SR_SSC algorithm
was manually determined, it could not be effectively adapted
to all datasets; and the segmentation has certain randomness.
With the first neighbour of each trajectory, we use the con-
cept of hierarchical clustering to mine the grouping between
data, estimate the number of anchor trajectories k, and
selected anchor trajectories by random hierarchical cluster-
ing. Then, we modify the weight matrix obtained by good
neighbors to improve the affinity coefficient. At present, from
the perspective of the experiments, our algorithm is effective
for the segmentation of multibody NRSFM. Furthermore, the
proposed algorithm can be more suitable for different scenes
of multibody NRSFM, because the initial parameters have lit-
tle influence on it.

Data Availability

The data used to support the study can be available upon
request

30025020015010050

(a) SSC

30025020015010050

(b) SR_SSC (Section 3.1)

30025020015010050

(c) SSSC

30025020015010050

(d) EnSC

30025020015010050

(e) MNR_S

Figure 8: Clustering result of ‘shark+yoga+pickup+stretch+dance.’.
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