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Multibreed genome wide association can improve
precision of mapping causative variants
underlying milk production in dairy cattle
Lesley-Ann Raven1,2,3*, Benjamin G Cocks1,2,3 and Ben J Hayes1,2,3

Abstract

Background: Genome wide association studies (GWAS) in most cattle breeds result in large genomic intervals of

significant associations making it difficult to identify causal mutations. This is due to the extensive, low-level linkage

disequilibrium within a cattle breed. As there is less linkage disequilibrium across breeds, multibreed GWAS may

improve precision of causal variant mapping. Here we test this hypothesis in a Holstein and Jersey cattle data set

with 17,925 individuals with records for production and functional traits and 632,003 SNP markers.

Results: By using a cross validation strategy within the Holstein and Jersey data sets, we were able to identify and

confirm a large number of QTL. As expected, the precision of mapping these QTL within the breeds was limited. In

the multibreed analysis, we found that many loci were not segregating in both breeds. This was partly an artefact

of power of the experiments, with the number of QTL shared between the breeds generally increasing with trait

heritability. False discovery rates suggest that the multibreed analysis was less powerful than between breed

analyses, in terms of how much genetic variance was explained by the detected QTL. However, the multibreed

analysis could more accurately pinpoint the location of the well-described mutations affecting milk production such

as DGAT1. Further, the significant SNP in the multibreed analysis were significantly enriched in genes regions, to a

considerably greater extent than was observed in the single breed analyses. In addition, we have refined QTL on

BTA5 and BTA19 to very small intervals and identified a small number of potential candidate genes in these, as well

as in a number of other regions.

Conclusion: Where QTL are segregating across breed, multibreed GWAS can refine these to reasonably small

genomic intervals. However, such QTL appear to represent only a fraction of the genetic variation. Our results

suggest a significant proportion of QTL affecting milk production segregate within rather than across breeds, at

least for Holstein and Jersey cattle.
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Background
Variation in milk production traits and functional traits in

dairy cattle have a major genetic component [1]. Genome

wide association studies have been successful for identify-

ing genomic regions which associate with these traits but

few have led to identification of the underlying mutation

(Eg. [2]). Within breed variation has been the focus of

most analyses, however, within a cattle breed LD is

extensive (eg r2 > 0.3 at 250 kb) making it difficult to map

the mutation precisely, or even to a small number of

candidate genes [3-7]. Between breeds however, linkage

disequilibrium phase among SNP is only conserved at

5-10 kb, for Bos taurus breeds at least [7]. So, expanding

cattle GWAS to multiple breeds could potentially refine

QTL intervals [8].

This strategy has been used extensively in dogs [9].

The long distance LD in a single dog breed (r2 > 0.3 at

0.4-3.2 Mb) means that less markers are required for the

initial association, but the precision of the mapping is

poor [9]. To overcome this problem a two-stage map-

ping strategy is applied. A single breed with long
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distance LD is used to identify QTL, then multiple

breeds and dense SNP typing are used for fine mapping

[10]. As breeds can share ancestral mutations, recom-

bination events can be used to refine QTL region [11].

The multibreed strategy allows mapping to a region

of ~100 kb (reflecting the ancestral haplotype block size

in multibreed dog populations) which typically contains

a limited number of candidate genes.

Applying a multibreed strategy in dairy cattle may

be useful to refine the location of QTL. It should be

remembered, however, that while modern cattle breeds

have been created relatively recently (< 400 generations,

[12]), in some cases there has been strong selection

since breed divergence [13]. As a result, some QTL seg-

regating in one breed may not be segregating in the

other. This study investigates the power of multibreed

GWAS and explores the proportion of QTL segregating

in multiple dairy cattle breeds, namely Holstein and

Jersey dairy cattle. We hypothesise that a GWAS com-

bining breeds will have more power to detect variation

and that such GWAS should be able to map QTL to a

smaller genomic interval. We conducted GWAS in 5240

Jerseys and 12685 Holsteins, both within breed and

multibreed. Our results demonstrate that within breed

analyses actually have more power to detect a higher

proportion of the variation but multibreed GWAS

results in the more precise mapping of the QTL that do

segregate across breeds.

Results
Within breed analysis

To firstly determine how well we could map and validate

QTL within breeds, we split the Holstein and Jersey data sets

into cows and bulls within each breed (Additional file 1:

Table S1 describes number of phenotypes for each trait in

each data set). A GWAS was conducted using a mixed

model including a regression on SNP genotype (0, 1 or 2

copies of the second allele), fixed effects of breed and gender,

and a random polygenic breeding value effect to account for

population structure. The significant SNP (P < 10-8) in the

two genders within a breed were then compared.

For production traits, Holstein bulls and cows had ap-

proximately equal number of significant SNP except for

protein where more SNP were significant in cows

(Table 1), perhaps reflecting the greater range of pheno-

types for this trait in the cows (Additional file 2: Table S2).

Jersey cows and bulls differed in the number of SNP sig-

nificant for all milk production traits with notably fewer

SNP significant in Jersey bulls for fat, fat percentage and

protein percentage. False discovery rates (FDR) were used

to determine which group had more power to detect vari-

ation. FDRs were consistently low among milk production

traits in all data sets (Additional file 3: Table S3). We then

used a correlation of the common significant SNP to

determine whether SNP effects went in the same direction

in bulls and cows within breeds. Significant SNP shared

between Holstein cows and Holstein bulls were highly

positively correlated for all five milk production traits

(Table 2). Correlation coefficients were lower between

effects of significant SNP in Jersey bulls and cows for

percentage traits (and significant SNP in Jerseys were

mostly located on BTA14 and BTA20). Fewer SNP were

shared for fat and fat percentage in Jerseys. To account for

the possibility that different SNP were detecting the same

QTL in the bulls and cows, we also investigated if for the

cows there were significant SNP within 100 kb of the most

significant SNP in the bulls and vice versa, however this

did not greatly affect the number of SNP shared between

Jersey cows and Jersey bulls (Table 1).

For some functional traits, namely fertility (measured as

calving interval), there were no SNP significant at P < 10-8.

Therefore, we also considered a suggestive significance

threshold of P < 10-5 for these traits. In Holsteins, there

Table 1 Results of within breed and within gender

genome wide association analysis

Trait Bulls Cows Overlapping Number of 100 kb
intervals containing
SNP significant in
both breeds

Jerseys

Fat 806 984 25 (3.10) 44 (4.0)

Milk 2117 3969 461 (21.8) 242 (23.5)

Protein 4016 2606 557 (13.9) 504 (24.1)

Fat% 677 5093 66 (9.75) 141 (16.1)

Protein% 692 5444 150 (21.7) 368 (34.2)

Fertility 16 1 0 0

Mamm. Syst. 1721 51 0 0

Survival 4302 206 1 (0.5) 10 (2.9)

SCC 248 3600 42 (16.9) 28 (19.0)

Holsteins

Fat 2100 3899 1543 (73.5) 228 (82.0)

Milk 5321 5488 1529 (28.74) 1023 (31.6)

Protein 3288 8730 2936 (89.3) 178 (90.5)

Fat% 2084 3422 1353 (64.9) 372 (67.3)

Protein% 3378 4374 1644 (48.7) 1512 (54.1)

Fertility 1567 10 0 0

Mamm. Syst. 14770 147 28 (19.0) 79 (24.5)

Survival 3522 220 20 (9.1) 138 (14.5)

SCC 729 701 26 (3.7) 82 (7.0)

The number of SNP which are significant in both genders within Jerseys and

Holsteins are presented (percentage of significant SNP that are significant in

both genders given in parenthesis), as well as the number of 100 kb intervals

containing significant SNP for that trait in both genders (percentage of 100 kb

windows with a significant SNP in either gender with significant SNP in both

genders given in parenthesis). Milk production traits were tested at P < 10-8

and reproductive and functional traits at P < 10-5.
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were fewer SNP significant for SCC and Holstein cows

displayed far fewer significant associations than Holstein

bulls, which was also reflected in higher FDRs (Table 1;

Additional file 3: Table S3). Jersey bulls showed a much

larger number of significant SNP for the functional traits

than Jersey cows (Table 1). Few SNP were significant for

fertility and Jersey cows had many more significant SNP

for SCC than Jersey bulls. There were few SNP shared

within breeds for fertility and mammary system in Jerseys

and fertility within Holsteins (Table 1). Although a much

lower significance threshold was used, the proportion of

common SNP for mammary system, survival and SCC still

did not reach the levels observed for milk production

traits.

The observation that fewer SNP are shared between

cows and bulls for Jerseys than for Holsteins is likely a

reflection of smaller sample size. Further, for non-

production traits, the lower heritability of these traits

likely leads to lower power, in both the Holstein and the

Jersey analysis, and particularly for cows. There was a

much larger number of cows in the analysis (Additional

file 1: Table S1) but more accuracy associated with the

phenotype for the bulls, which are daughter trait devia-

tions from thousands of daughters in some cases. There

were especially large variations in the number of signifi-

cant SNP between genders for mammary system and

survival.

Comparison of QTL between breeds

The cow and bull data sets were combined within breed

and GWAS performed. Results were then compared

between the breeds. For milk production traits, some

SNP were significant in both breeds, however, Holsteins

showed more significant SNP for all traits except fat and

fat% (Table 3). We identified very significant milk pro-

duction QTL (P < 10-20) on BTA5, BTA14 and BTA20 in

both breeds (Additional file 4: Table S4). For Holsteins,

we also identified very significant QTL on BTA26 for fat,

BTA6 for fat percentage and protein percentage and

BTA29 for protein percentage. Very significant QTL

were observed in Jerseys, but not for Holsteins, on

BTA17 for fat, BTA19 for protein percentage and BTA3,

BTA10 and BTA29 for fat percentage. Smaller protein

and milk QTL were distributed throughout most chro-

mosomes. The proportion of significant SNP shared be-

tween the breeds was less than 8% for all traits except

fat percentage and protein percentage which had 38.96%

and 27.33% respectively (Table 3). To account for the

fact that LD phase may be different between the breeds,

and breeds exhibit variation in LD patterns, we searched

for significant SNP (P < 10-8) within a 100 kb window of

any SNP that was significant in one breed but not the

other (i.e. those not common to both breeds). This in-

creased the proportion of SNP shared by 3-8%. There

was a moderate positive correlation in the effects of the

SNP for significant SNP associating with fat percentage

in Holstein and Jerseys (Table 2).

Fewer significant associations were found for health and

reproductive traits in either breed. However, for mammary

system, a number of significant associations were detected

in Holsteins and also for survival in Jerseys (Table 3).

Health and reproductive traits were significant at P < 10-8

across many chromosomes, however at P < 10-20 we were

only able to identify major QTL for BTA18 for survival,

BTA11 for mammary system and BTA10 for SCC in

Holsteins. Jerseys showed very significant QTL on BTA2,

BTA6, BTA11 and BTA25 for survival. False discovery

rates were very high for fertility, particularly in Jerseys

Table 2 Correlations of SNP effects for very significant

SNP (P < 10-20) within genders within each breed, and

between breeds for milk production, reproduction and

health traits

Bull/
Cow

Hol/
Jer

Holstein Jersey
Bull/Cow Bull/Cow

Fat 0.984 0.394 0.983 0.969

Milk 0.973 0.082 0.978 0.973

Protein 0.979 0.273 0.986 0.984

Fat% 0.973 0.629 0.955 −0.057

Protein% 0.977 0.034 0.965 −0.081

Survival 0.979 0.997

Mamm. Syst 0.979

SCC 0.999

Fertility 0.979

Table 3 Results of within breed genome wide association

analysis

Trait Holsteins Jerseys Overlapping Number of 100 kb
intervals containing
SNP significant in
both breeds

Fat 2654 5718 124 (4.7) 633 (7.5)

Milk 23808 17573 1210 (6.9) 6341(14.2)

Protein 33671 21065 1327 (6.3) 8804 (14.9)

Fat% 7688 12141 2996 (38.9) 2416 (43.1)

Protein% 12141 7434 2032 (27.3) 3243 (33.4)

Fertility 2276 125 0 1 (0.8)

Mamm. Sys 12088 3032 130 (4.3) 707 (11.1)

Survival 3930 6263 300 (7.6) 739 (12.3)

SCC 1693 3507 36 (2.1) 101 (6.1)

The number of SNP which are significant in both breeds are presented

(percentage of significant SNP that are significant in both breeds given in

parenthesis), as well as the number of 100 kb intervals containing significant

SNP for that trait in both breeds (percentage of 100 kb windows with a

significant SNP in either breed with significant SNP in both breeds given in

parenthesis). Milk production traits were tested at P < 10-8 and reproductive

and functional traits at P < 10-5.
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(Additional file 3: Table S3). Estimates for survival and

SCC appear less powerful than milk production traits

with moderate error rates, again likely reflecting lower

heritabilities for these traits. When the suggestive thresh-

old was used (P < 10-5) there were still few SNP common

between Holsteins and Jerseys for these traits. Where sig-

nificant SNP were common to each breed, we used a cor-

relation analysis to determine whether the direction of

effects was the same in both breeds. We identified a

strong positive correlation between the common SNP

significantly associating with survival, however, there

were few significant SNP in the comparison, so sample

size may be inadequate to affirm this (Table 2).

Multibreed analysis

We performed a multibreed GWAS using all the combined

Holstein and Jersey data to investigate the potential of such

analyses to refine confidence intervals. In the multibreed

GWAS, very significant QTL (P < 10-20) were identified for

all milk production traits (Table 4; Additional file 4: Table

S4). A number of QTL were located within several previ-

ously described genomic regions. These QTL regions typic-

ally had effects on a number of the milk production traits.

Significant associations (P < 10-8) were identified for all

health traits but not fertility (Additional file 4: Table S4). Of

the non-production traits, very significant QTL (P < 10-20)

were only identified for survival.

Interestingly, in the multibreed analysis there were

more significant SNP located within genes than in single

breed analysis (Table 5). While enrichment was not

overwhelming and did not hold across the functional

traits, it does appear that we are closer to refining QTL

using multibreed data, at least in the milk production

traits.

False discovery rates were consistently low for all milk

production traits and survival suggesting that the multi-

breed GWAS is powerful for detecting associations and

minimising errors (Additional file 3: Table S3). However,

FDRs were higher than in the between breed analyses, and

there were a smaller number of QTL regions significant at

P < 10-8 than the between breed GWAS (Additional file 4:

Table S4). Breed differences are quite clear in some cases;

for example, when plotting the GHR region of BTA20 the

QTL is not segregating in Holsteins or Jerseys (Figure 1).

Within breeds there were less very significant QTL identi-

fied (P < 10-20) than in the multibreed analysis (Additional

file 4: Table S4). For QTL segregating in both breeds, the

multibreed analysis does seem to increase power.

Known QTL were used to determine whether the multi-

breed GWAS was more effective at narrowing QTL regions

than single breed models. SNPs in the region surrounding

the ABCG2 locus [14] on BTA6 showed a much stronger

signal in Holstein within breed analysis than the multibreed

analysis (Figure 2), as there was no evidence that this

mutation was segregating in our Jersey population. Hence,

the multibreed analysis would not refine the QTL interval

in this case. The putative QTL at GHR gene on BTA20 was

also mapped (Figure 1). Our results, and those of others,

strongly suggest that GHR may not be the associated gene

in this region [15]. There most significant SNP are 1 Mb to

the right of GHR. This peak at least is somewhat sharper in

the multibreed analysis. Several genes may be associated in

this region, as there is another peak at approximately

36 Mb, and the multibreed analysis does appear to resolve

these peaks to somewhat smaller intervals. For both fat per-

centage and protein percentage, the Holstein QTL was

much more significant at DGAT1 than the Jersey QTL

(Figures 3a and 3b). The multibreed peak was very slightly

closer to DGAT1 than when breeds were considered separ-

ately (~80,000 bp), and the level of significance was consid-

erably higher for both traits. So for large QTL that

segregate in multiple breeds, there, appears to be more pre-

cision in the multi-breed analysis.

We identified a highly significant fat percentage and

protein percentage QTL at 42.7 Mb on BTA19. The

most significant SNP in this region sits within ACLY, a

fatty acid biosynthesis gene [16] (Figures 4a and 4b).

Previously, ACLY was described within this region along

with several other fat metabolism genes FASN, GH,

SREPB1 and STAT5A but there has been little power to

refine this region [17]. In the multibreed analysis, we

can actually identify separate peaks for SREBP1, FASN

and GH (Figures 4a and 4b). However, STAT5A lies only

300 kb upstream of ACLY so we cannot rule out STAT5A

as potentially harbouring a causal mutation associated

with these significant SNP. There was another peak on

BTA5, at 85-110 Mb which showed highly significant

QTL across all milk production traits. The top SNP of

two close peaks localised to within 3000 bp of MGST1

and to within EPS8 (Figure 5). The significant SNP corre-

sponding to MGST1 and EPS8 sit 600 kb apart on BTA5

and appear to be individual QTL, as the r2 between the

SNP in these genes is very low (The r2 between the most

significant SNPs in the two genes is only 0.06, so it is un-

likely that they are picking up the same QTL).

Discussion
We performed a GWAS in a large multibreed dairy cow

population with 632,003 SNP to identify the genomic re-

gions associating with milk production, health and

reproduction traits. We aimed to determine whether

multibreed data sets are more powerful and result in

more precise mapping of QTL. The results suggest that

the multibreed analysis is actually less powerful in terms

of number of QTLs identified, as there are a consider-

able number of QTL that only segregate in one breed.

However, when QTL did segregate across breeds, the

multibreed analysis refined QTL to smaller genomic
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Table 4 Most significant SNP regions and candidate genes for production and functional traits in dairy cattle from a

large multibreed GWAS

Trait SNP name Chr Position
(bp)

log(10)
P

Within Gene 100 kb LD <500 kb LD Gene name

Fat

ARS-BFGL-NGS-4939 14 1801116 255.551 DGAT1 diacylglycerol O-acyltransferase 1

BTB-00932332 26 22118554 24.142 BRTC Beta-transducin repeat containing

BovineHD0500026662 5 93945655 23.718 MGST1 microsomal glutathione S-transferase 1

BovineHD1800017481 18 60506726 12.907 LOC788871 zinc finger protein 85-like

BovineHD1200015001 12 54273515 12.918 RNF219 ring finger protein 219

Milk

ARS-BFGL-NGS-4939 14 1801116 416.491 DGAT1 diacylglycerol O-acyltransferase 1

BovineHD2000009925 20 34582764 44.167 LOC782462 sorting nexin-13-like

BovineHD0500026852 5 94562606 24.636 EPS8 epidermal growth factor receptor
pathway substrate 8

BovineHD0600024338 6 88865430 22.814 GC group-specific component (vitamin D
binding protein)

BovineHD4100003579 5 32784231 19.562 RPAP3 RNA polymerase II associated protein 3

Protein

ARS-BFGL-NGS-4939 14 1801116 144.166 DGAT1 diacylglycerol O-acyltransferase 1

BovineHD4100005296 6 87180731 31.840 CSN2 casein beta

BovineHD2600004009 26 15654751 21.778 PLCE1 phospholipase C, epsilon 1

BovineHD0500029843 5 104307736 19.303 CD27 CD27 molecule

BovineHD2600011254 26 40809501 18.214 PPAPDC1A phosphatidic acid phosphatase type 2
domain containing 1A

Fat%

ARS-BFGL-NGS-4939 14 1801116 1684.117 DGAT1 diacylglycerol O-acyltransferase 1

BovineHD0500026662 5 93945655 93.370 MGST1 microsomal glutathione S-transferase 1

BovineHD2000009925 20 34582764 61.199 LOC782462 sorting nexin-13-like

ARS-BFGL-NGS-57448 27 36155097 32.124 GINS4 GINS complex subunit 4 (Sld5
homolog)

BovineHD0200034371 2 119076939 13.851 SP110 SP110 nuclear body protein

Protein
%

ARS-BFGL-NGS-4939 14 1801116 398.865 DGAT1 diacylglycerol O-acyltransferase 1

BovineHD2000009927 20 34587828 180.352 LOC782462 sorting nexin-13-like

BovineHD0600023879 6 87160102 70.809 CAS1A casein alpha s1

BovineHD0300005054 3 15451257 44.404 GBA glucosidase, beta, acid

BovineHD4100003579 5 32784231 34.001 RPAP3 RNA polymerase II associated protein 3

Fertility

BovineHD1800016761 18 57548213 7.445 LOC786539 carcinoembryonic antigen-related cell
adhesion molecule 18-like

BovineHD0600024357 6 88922396 6.712 NPFFR2 neuropeptide FF receptor 2

BovineHD0500024481 5 86451512 6.441 SOX5 SRY (sex determining region Y)-box 5

BovineHD0400015668 4 57384888 6.371 LOC100298628 HIG1 domain family, member 1D-like
pseudogene

BovineHD0100005095 1 16862494 6.215 LOC100140852 magnesium transporter NIPA2-like

Mamm.
System

BovineHD2600006024 26 23379482 9.478 SUFU suppressor of fused homolog
(Drosophila)

BovineHD0200030267 2 105149497 8.263 SMARCAL1 SWI/SNF related, matrix assoc., actin
dep. Reg. of chromatin, subfamily a-like
1

BovineHD1100008368 11 28171549 8.175 PRKCE protein kinase C, epsilon

BovineHD0200035718 2 123208383 8.069 SDC3 syndecan 3

BovineHD2000008146 20 27565339 7.890 ISL1 ISL LIM homeobox 1

Survival

BovineHD1100031193 11 107227039 67.300 NLRP6 NLR family, pyrin domain containing 6

Hapmap40387-BTA-
107848

9 104960154 35.305 WDR27 WD repeat domain 27
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regions, allowing a small number of potential candidates

to be identified.

Our results suggest that a significant proportion of

QTL segregate only within one breed or the other. Com-

bining cows and bulls provided more power to identify

more QTL affecting the traits than separating the sexes

within breed, however combining breeds did not.

Holstein and Jersey cattle showed obvious genetic differ-

entiation in a principle components analysis (Figure 6, a

principal component analysis of genetic diversity), thus

it was perhaps not surprising that all QTL were not

shared between Holsteins and Jerseys. However, the pro-

portion of QTL that we observe to be shared between

breeds will be affected by the power of the experiments.

The effect of power is demonstrated by the different

proportion of QTL shared for traits within different her-

itabilities. Generally, those with the highest heritabilities

(protein percentage and fat percentage) had the largest

number of shared QTL while those traits with the lowest

heritabilties had the lowest numbers of shared QTL

(Table 3).

Results for functional traits were inconsistent within

and between breeds. For example, there was a limited

overlap of significant QTL within the Jersey breed.

Lower heritabilities (in particular larger environmental

variation) reduced power for these traits particularly in

Jerseys and in cows of both breeds. We observed very

few QTL that segregated across breeds for these traits.

Again, this is likely an artefact of the low power for these

traits. Another possible explanation would be strong se-

lection for these traits has fixed QTL in one breed and

not the other. The common significant SNP shared

within Holsteins (between bulls and cows) were highly

positively correlated, in effect and in direction. This sug-

gests that sample size may be more important than gen-

der differences in power. This was previously shown in

beef breeds where using breeds with smaller sample

sizes reduced the power to identify segregating loci [18].

Very significant QTL (P < 10-20) were identified in

both the multibreed analysis, and the within breed ana-

lyses. Among these were several QTL that had been pre-

viously described. SNP close to DGAT1 were highly

Table 4 Most significant SNP regions and candidate genes for production and functional traits in dairy cattle from a

large multibreed GWAS (Continued)

BovineHD3000041679 30 144726003 33.731 TBL1X transducin (beta)-like 1X-linked

BovineHD2000006692 20 22290945 31.258 MIER3 mesoderm induction early response 1,
family member 3-like

BovineHD1700000492 17 2237102 30.497 NPY2R neuropeptide Y receptor Y2

SCC ARS-BFGL-NGS-92033 1 2582894 12.503 MIS18A MIS18 kinetochore protein homolog A
(S. pombe)

ARS-BFGL-NGS-57102 3 31219298 10.716 CTTNBP2NL CTTNBP2 N-terminal like

BTA-104934-no-rs 7 67940770 10.324 LARP1 La ribonucleoprotein domain family,
member 1

BovineHD1100009904 11 32859722 9.169 NRXN1 neurexin 1

BovineHD1600008712 16 30646220 8.556 ADCK3 aarF domain containing kinase 3

Table 5 Comparison of the proportion of SNP occurring within genes in the whole genome (632 K SNP) and SNP

significant (P < 10-8) in the multibreed and single breed analyses

Proportion of SNP Within Genes

632 K SNP Multibreed (P < 10-8) Holsteins (P < 10-8) Jerseys (P < 10-8)

Fat 0.319 0.381 0.361 0.324

Milk 0.319 0.348 0.330 0.323

Protein 0.319 0.363 0.329 0.327

Fat% 0.319 0.374 0.356 0.332

Protein% 0.319 0.327 0.332 0.311

SCC 0.319 0.375 0.200 0.399

Survival 0.319 0.296 0.344 0.392

Mamm D 0.319 0.150 0.328 0.191
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associated for all milk production traits in both breeds.

A very significant QTL on BTA20 has been previously

ascribed to a mutation in GHR [15,19], but is more likely

a number of separate QTL given the results of our multi-

breed analysis. Another very significant QTL was identi-

fied on BTA14 at approximately 70Mb for fat percentage,

protein percentage and milk. This QTL appears to locate

around the SDC2 gene. Previous studies have shown

evidence of QTL at the telomeric end of BTA14 but this

was not confirmed here [20]. We also identified a major

QTL on BTA6 for protein kg, which centres within

CSN1. For protein kg, a major QTL on BTA5 centres

within CD27.

The value of the multibreed analysis was highlighted

by the fact that more SNP were located within genes

than when breeds were separated, suggesting there is

Figure 1 Association analysis of SNP surrounding GHR on BTA20. Associations of SNP in a 30 Mb region of BTA20 with protein percentage

in Holsteins (Black dots), Jerseys (Orange dots) and in a multibreed GWAS (lower panel). The yellow vertical line represents the position of the

GHR gene.

Figure 2 Association analysis of SNP surrounding ABCG2 on BTA6. Associations of SNP in a 12 Mb region of BTA6 with protein percentage

in Holsteins (Black dots), Jerseys (Orange dots) and in a multibreed GWAS (lower panel). The yellow vertical line represents the position of the

ABCG2 gene.
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Figure 3 Association analysis of SNP surrounding DGAT1 on BTA14. Associations of SNP in a 7 Mb region of BTA14 for a) fat percentage

and b) protein percentage for Holsteins (Black dots), Jerseys (Orange dots) and in a multibreed GWAS (lower panel). The yellow vertical line

represents the position of the DGAT1 gene.
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Figure 4 Association analysis of SNP on BTA19. Associations of SNP on BTA19 encompassing a cluster of fat metabolism genes for a) fat

percentage and b) protein percentage in Holsteins (black dots, upper figure), Jerseys (orange dots, upper figure), and in a multibreed population

(lower panel of each Figure).
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more precision in refining QTL in the multibreed ana-

lysis. Inspection of several QTL regions support this.

For example, a region on BTA19 was refined such that a

strong candidate, the lipid metabolism gene ACLY,

could be identified. ACLY is differentially express in rat

mammary tissue during pregnancy and lactation [21].

This region of BTA19 was identified in a GWAS pheno-

typing the ratio of saturated to unsaturated fats in the

milk of Danish Holstein cows but is otherwise unde-

scribed [17]. The multibreed analysis shows a clear

benefit over breed dependent methods in refining the

precise locations of these fat metabolism genes.

The very significant QTL affecting fat kg and fat per-

centage on BTA5 centred within 3000 bp of MGST1, an

inflammation response gene which is highly expressed

through pregnancy and lactation [22]. MGST1 was upreg-

ulated during adipocyte development in the Longissimus

muscle in Japanese Black cattle [23]. Slightly upstream, a

highly significant peak centred within EPS8. EPS8 acts as

a receptor tyrosine kinase substrate for epidermal

growth factor receptor (EGFR) and thus increases the

signalling response to epidermal growth factor (EGF)

[24]. A previous study on German Holsteins identified

EPS8 as a candidate fat percentage gene [25]. Another

study found a milk yield QTL from 92.1-93 Mb but did

not localise to near MGST1 [26]. Our results suggest

both MGST1 and EPS8 may contain QTL affecting milk

production.

Other QTL have been identified at the telomeric end

of this chromosome which do not align with our results.

Cole et al. identified fat yield QTL at 98.7 Mb, but our

peak was 1 Mb downstream within LOH12CR1 [1]. A

50 k GWAS of Canadian Holsteins identified several fat

yield candidate genes including SLC2A3 and LOC786521

(GDF3) at 101.7-101.8 Mb and LRP6, LOC786490 (EMP1)

and DUSP16 at 97-98 Mb [27]. This region was highly sig-

nificant for milk and protein in our study rather than fat

and their candidate genes do not lie within our QTL peak.

Figure 5 Association of SNP on BTA5. Associations of SNP in a 20 Mb QTL region of BTA5 with fat percentage in Holsteins (black dots, upper

figure), Jerseys (orange dots, upper figure) and in a multibreed population (lower panel).
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A limitation of this study is the use of a set of ascer-

tained SNP to map QTL. Interpretations regarding the

position of QTL which segregate across breeds must be

treated with caution, as this will depend on the extent of

linkage disequilibrium between breeds with causative

mutations. As whole genome sequence data becomes in-

creasingly available, this study could be replicated using

imputed, full-sequence genotypes to determine whether

the Holsteins and Jerseys still maintain a larger propor-

tion of significant variants than the multibreed sample.

Finally, population stratification is a key cause of false

positive results in GWAS as admixture occurs subtly in

the form of relationships among animals [8]. In our ana-

lysis, where breeds are combined, we have attempted to

account for stratification both by fitting a breed effect

and pedigree effect within breed. As previously seen

(and in QQ plots, Additional file 5: Figure S1), our

within breed analysis actually reduced the number of

significant effects suggesting combining the breeds is

not leading to an increase in the number of false posi-

tives [6,28]. Finally, multibreed GWAS is likely to iden-

tify older, conserved mutations but may not be as

effective as a single breed model for recently diverged

mutations.

Conclusion
A multibreed analysis together with dense SNP genotypes

has allowed us to refine QTL locations for milk produc-

tion and functional traits – for example this approach

allowed us to refined QTL on BTA5 and BTA19 to a lim-

ited number of candidate genes. Further evidence that the

multibreed analysis refines QTL regions is that we ob-

served an enrichment of significant SNP within genes in

the multibreed analysis. However, there is still a consider-

able role for studies on individual breeds as our results

suggest a considerable proportion of QTL do not segre-

gate across breeds (for Holstein and Jersey cattle at least).

In future, using sequence data rather than SNP array

genotypes combined with a multibreed analysis could

potentially lead to direct identification of the causative

mutation.

Methods
Phenotypes and genotypes

There were 17925 dairy cattle in the study in total. Of

these 9289 were Holstein cows, 3396 were Holstein

bulls, 4226 were Jersey Cows and 1014 were Jersey Bulls

(Additional file 1: Table S1). Phenotype records were

available for a range of milk production, health and

reproductive traits including milk yield, fat yield, pro-

tein yield, fat%, protein%, protein kg, fertility (calving

interval), mammary system, somatic cell count and sur-

vival [29,30]. The phenotypes were trait deviations for

cows and daughter yield deviations for bulls. Trait devia-

tions were calculated from raw phenotypes in a very large

data set of approximately one million cows, fitting a

model which included herd year season, age of cow and

permanent environment effect. Daughter trait deviations

Figure 6 Principal component analysis of the genomic relationship matrix, with animals coloured by breed and sex.
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for bulls were then calculated from the trait deviations of

their daughters, corrected for breed of mate. Records

were standardised to have a mean of zero and standard

deviation of one in both breeds.

Each animal was SNP genotyped either using the

Illumina BovineHD BeadChip or the Illumina 50 k Bovine

chip. Filtering of SNP was performed as described by [31].

Animals genotyped for 50 k were imputed to HD geno-

types as described by Erbe, Hayes et al. (2012). Map posi-

tions of these SNP (and candidate genes) were from the

Bovine Genome UMD3.1 assembly in the NCBI database

(NCBI, www.ncbi.nlm.nih.gov) [32].

Animals were divided into subsets for analysis

(Additional file 1: Table S1). First, the sample was divided

by gender within breed to create a dataset for within breed

comparisons. To compare the proportion of significant

SNP for each trait for each breed, cows and bulls within

each breed were analysed together. Finally, the entire

sample of 17925 animals was used for a full multibreed

analysis (Additional file 1: Table S1).

Association analysis

A mixed model including a regression on the number of

second alleles was fitted using ASReml [33]. The linear

mixed model was

y ¼ μþ Xβþ Ζu ¼ e

where y is a vector of phenotypes (DTDs for bulls and

TDs for cows. In all analyses, bull phenotypes were

weighted following Garrick et al. [34].

1−h2

1þ 4−h2ð Þ
n

� �

where n represents the number of daughters. Cow

phenotypes were weighted using the formula

1−h2

1þr2 n−1ð Þ
n

h i

Where r
2 is the repeatability and n is the number of

observations (e.g. lactations). For the percentage traits

and survival in the bulls we were unable to fit weights in

the model due to convergence problems). Other terms

in the model were μ, the mean, X is the vector of animal

genotypes (0,1or 2 copies of the second allele), β is the

SNP effect, Z is the incidence matrix mapping pheno-

type to animal, u is the vector of polygenic effects and e is

the vector of random residuals. The polygenic breeding

values were fitted to control for population structure as

random effects following a normal distribution N 0;Aσ2
a

� �

where A is the expected relationship among individuals

constructed from the pedigree (which dated back to the

1940s) and σ
2
a is the polygenic genetic variance (e.g. [35]).

Significant SNP were selected at P-value thresholds of

P ≤ 10-8 for milk production traits, SCC and survival. As

no SNP were significant at this threshold for fertility,

a suggestive threshold of P ≤ 10-5 was also used for fertil-

ity and other functional traits. We calculated the false

discovery rate (FDR) for our GWAS at P ≤ 10-8 and

P ≤ 10-5. FDR was defined as

m⋅
P

S

where, m is the number of tests, P is the probability value

of the F-test and S is the proportion of significant SNP

[36]. A Q-Q plot showing the distribution of significant

effects is provided (Additional file 5: Figure S1).

For Holstein cows and Holstein bulls and Jersey cows

and Jersey bulls we assessed how many of the significant

SNP were the same in both GWAS. We then expanded

to 100 kb either side of the SNP in order to account for

the possibility that the same causative mutation may be

in LD with a different SNP in the different breeds. We

also correlated the effects of these SNP for the two

breeds to determine if the SNP were in the same linkage

phase with the QTL. We also investigated genes reported

to have mutations affecting milk production, namely

DGAT1, GHR and ABCG2 , to further describe the preci-

sion of mapping within breeds and in the multibreed

analysis for refining QTL position [14,19,37].

Availability and requirements

A full SNP map and P-values for 9 traits are provided in

Additional file 6. Programs, scripts and information for

setting up the analysis can be obtained from the authors

upon request.

Ethics statement

There were no animal studies conducted for this manu-

script. Where animal data was used references have

been provided.

Additional files

Additional file 1: Table S1. Number of phenotypes for production and

functional traits in the data set.

Additional file 2: Table S2. The minimum and maximum phenotypes

for production and functional traits in dairy cattle. Phenotypes are

expressed in standard deviations, with a mean of zero within each breed.

Additional file 3: Table S3. False discovery rates for comparative GWAS

at a) P < 10-8 significance and b) a suggestive threshold of P < 10-5. (NS)

No significant SNP to test.

Additional file 4: Table S4. The number of very significant QTL (P < 10-20)

identified for milk production traits and significant QTL (P < 10-8) for

production and functional traits, within breeds, within genders, and in the

multibreed data set.
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Additional file 5: Figure S1. Q-Q Plot of significant effects for milk

production traits in Holstein and Jersey cattle. (a) The large number of

significant SNP in the milk production trait plots are driven by a small

number of QTL regions, as demonstrated by re-drawing the plots with

BTA6, BTA14, and BTA20 removed from the analysis (b).

Additional file 6. SNP map and P-values for multibreed GWAS of 9

milk production traits.
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