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Introduction 

Three intense bunches (two electron and one positron) 
are accelerated on each RF pulse in the SLC Linac. Careful 
control of the energy and energy spectrum of each bunch is 
needed to provide acceptable beams at the collision point and 
the positron production target. The required RF amplitude, 
timing, and phase adjustments can be calculated and adjusted in 
real tiine to correct for changing conditions. BNS damping and 
energy feedback systems reduce the available reserve energy, 
which is limited. Observations and stability of actual beams are 
reviewed. Implications for a future collider are disCussed. 

Specifications of Energy 

The energy of both positrons and electrons must be 
carefully set to produce collisions at the Z” resonance (91.1 
GeV). Since synchrotron radiation in the Arcs removes about 1 
GeV from each beam, the required beam energies at the end of 
the linac are 46.6 GeV [ 1.21. (The beam energy defmed here is 
the average energy of all particles in the bunch.) In the Final 
Focus extraction lines there are spectrometers which define the 
absolute energy to about +/- 0.05 percent. However, relative 
energy measurements are made in a dispersive region at the end 
of the linac which are used in a feedback loop to ensure the 
energy stability to +/- 0.1 percent. A second energy feedback is 
located near the scavenger bunch extraction point (30 GeV). 
An over head of about 0.25 GeV is needed for each feedback 
system to provide an adequate operating range. 
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Fig. 1 Measured energy and spectrum versus RF phase 

Average Bunch Phase Beam Loading 

The energy spectra are adjusted by using the overall 
linac phases (the phase between the linac RF and the damping 
ring / bunch length compressor RF) for each of the bunches. 
These phases are adjusted to minimize the final spectrum 
widths at low currents and to make the proper ‘double homed 
spectra at high currents 13.41. The spectrum measurements of 
the beams destined for the IP are taken in a dispersive region at 
the end of the linac where the acceptance is - 0.5 96 to +1.5 96 
(defined by collimators). The measured spectrum and energy as 
a function of linac phase is shown in Fig. 1. The spectrum ,of 
the scavenger bunch is taken in the extraction line at about 30 
GeV. The energy window there is +/- 1.5 %. The overall phase 
must be maintained within 0.4 degrees for energy stability. 

‘lie individual klystrons are most accurately phased by 
measuring the energy gain as a function of its RF phase, 
si&lar to Fig. 1. The measurement error is about 3 degrees. 
The 227 klystrons can be phased with an automated computer 
program in about 8 hours [5]. The absolute phases are then 
recorded. All subsequent phase changes (for example BNS 
changes) are ma& relative to this absolute value. 

l Work supported by Department bf Energy contract DE-AC03- 
76SF00515. 

Measurements over several years have shown that these 
absolute phases are stable to about 5 degrees over six months. 
of course, hardware changes or cable adjustments often cause 
the loss of knowledge of the absolute phase of an individual 
klystron. Then, rephasing must be done. 

Longitudinal wakefields produce energy reductions 
within each bunch and on all trailing bunches. For example, at 
5 X lOlo particles per bunch with a gaussian bunch length of 
1 mm, the average longitudinal self loading over the two mile 
linac is 1.3 GeV, the loading for a bunch trailing by 60 nsec is 
0.89 GeV, and 0.61 GeV for 120 nsec separation [3,4]. The self 
beam loading varies (approximately) inversely with the bunch 
length. The loading on subsequent bunches does not depend on 
the bunch length of the leading bunch as only the fundamental 
wakefields remain coherent after about 15 nsec. All loading is 
linear in the leading beam intensity. 

The desired average phases have been calculated using 
the wake potentials for the SLAC structure under many bunch 
length and current conditions. The measured variation of the 
bunch energy spread and energy with linac phase for one beam 
condition are shown in Fig. 1 and agree with calculations. 
Values of the best average phases and best bunch lengths for 
various intensities using BNS damping are shown in Fig. 2. 
Values within the range are chosen during operations. 

BNS Damping 
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--BNS damping is used to reduce the effects of 
transverse wakefields [6]. BNS damping is implemented by 
backward phasing early klystrons to introduce a head to tail 
energy spread [7]. The energy spread is removed by forward 
phasing the later klystrons. The present BNS arrangement at 3 
X 10’ particles per bunch has the first 55 klystrons backward 
phased at -20 degrees and the remaining klystrons at +I5 
degees. The average bunch phase over the linac is independent 
of the BNS setup as that phase is determined by the 
longitudinal wakes, the bunch length, and the RF curvature. 
The penalty for the use of BNS is the loss of overall energy 
given by the offset phases. 
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Fig. 2 Desired average phase and bunch length versus current 

Effective Klystron Energy Gain 

‘Ihe acceleration provided by each klystron is measured 
using the spectrometer in the early Arc. The position resolution 
of the spectrometer is about 15 microns (with some averaging) 
at a location where the dispersion function is 70 mm. Thus. the 
energy resolution is about 7.5 MeV or 3 % of the expected 
klystron gain. Each measurement takes about 5 minutes and 
disrupts collisions. Alternatively, the energy gain of a klystron 
can be calculated from RF power measurements and the 
calibrations of the RF couplers. These RF measurements are 
not absolutely accurate (10% ). but are relatively accumte. They 
are used for short and long term observations. From many 
measurements, the ‘average’ klystron provides 249 +/- 8 MeV. 

.- An additional factor, g, is included in the energy 
calculation due to inefficiencies. Maintenance crews routinely 
tpne the modulators and klystrons for peak performance but can 
not keep them all at their maximum simultaneously. A&o, the 
beam phase measurements are not done very often and slow but 
small phase errors can appear. Therefore, an average inefficiency 
loss of 2 % (g =0.98) is used. 

SLEDTiming 

The acceleration provided by the 67 MW klystrons is _ 
enhanced using SLED RF pulse compression ( X 1.77 at 3.5 
ms ). The SLED pulse 181 produces a time dependent output 
which is used to adjust the energy difference between bunches 
spaced about 60 nsec apart. The measured SLED energy gain 
[9] for a group of eight klystrons is shown in Fig. 3. Even 
though a parabola nearly fits the curve, a six term polynomial 
has been used in the calculation to accurately represent the .. 
SLED curve which is sharper on the delayed time side. The - 
measured curve for a single klystron is a little sharper than the 
eight klystron data as small relative timing errors between 
klystrons smooths the peak. 

Klystron Population 

There are 232 potential slots for klystrons and 
accelerators between the damping ring exit (1.15 GeV) and the ,-w 
end of the linac. Not all slots are tilled. Several slots are used 
for injection and extraction transport lines and a spin 
manipulation solenoid. Many structures have been shortened to 
accommodate diagnostic equipment. Thus. the useful number of 
accelerating klystrons is 226. At any given moment several 
klystrons are out of service for repairs or tuning. Also, several - 
klystrons are operating on standby (not at beam time) to 
prepare for replacement of future failures. The maximum energy 
reachable by the SLC for three bunches must include these 
‘unavailable’ klystrons. For this study three out-of-service 
klystrons and three standby klystrons are assumed for the whole _ 
accelerator. Thus, a total of 220 ‘effective’ klystrons is available 
for a total single particle energy of 55.9 GeV (= 54.75 + 1.15). :’ 

The klystron population is designated in three regions 
for calculations. (1) The early linac region where the RF is 
back-phased for BNS. (2) The middle linac region with BNS 
forward-phases but ahead of the scavenger extraction line. 
Regions (1) and (2) share 139 klystrons (- 2 broken and - 2 
standby ) for 135 ‘effective’ klystrons. (3) The linac region 
downstream of the exvaction line with BNS forward phases has 
87 klystrons for 85 effective. 
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Fig. 3 Measured SLED multiplier versus bunch time for eight 
klystrons. A value of 1.0 means the gain is 1.77 times the 
acceleration without SLED. 
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.- Energy Gain Equations 

The contxt energy spectra and energies of the three 
SLC bunches must be obtained simultaneously through 
choosing the RF phases, the number of used klystrons, and the 
SLED timing. Basically, the damping ring phases set the 
energy spectra, the number of klystrons sets the energy of the 
first electron bunch at the end of the linac. and the SLED 
timing adjusts the energy difference between the electron and 
positron bunches. The energy of the scavenger electron bunch 
is made as high as is convenient given the number of available 
klystrons and the above constraints but the spectrum is set 
correctly using a rapid phase change 1101. 

The geneaic energy equation for each bunch is 

E=Eg+gdESLED(t)(nlcos(~l+ODR) 
+ n2 mS( 92 + +DR )) + bload 

where Eo = 1.15 GeV, dE = 249 MeV, t = bunch time on the 
SLED curve. bload the beam loading for that bunch, and $1 

- (nl) and +2 (n2) are upstream and downstream BNS phases 
(number of klystrons), respectively. $1, nl, and 92 are usually 

_ chosen in advance to provide the proper energy spectrum profile 
._ along the early linac. The respective damping ring phases $DR 

atedetermined by choosing the proper average phase according 
to the Fig. 2 given that all bunches must share BNS phases $1 
and 4~. The BNS phases are usually set to make the bunch 
with the most charge stable with its QDR = 0. 

These equations have been solved for the SLED time t 
and for n2 &sing a minimization algorithm. Many examples of 
high current SLC running have been explored. Several of the 
results are shown in Table 1. The number of klystrons needed 
is a strong function of beam current. Furthermore, a difference 
between the electron and positron energies (given the sum is 

- constant) is also important since raising the positron energy 
allows all three bunches to have SLED time values nearer the 
peak. As the beam intensities increase the bunch lengths are 
increased to reduce beam loading whidr keeps the required 

_ energy within limits. Consequently, the transverse wakefields 
become stronger and better launch control at the linac entrance 
isneeded. 

Next Linear Collider 8) 

In most designs for future linear colliders many 
bunches per beam (10 to 200) are used. Fortunately, the SLC 
has successfully controlled the spectra and energies of three 
bunches, signaling well for the future. The control of these 
quantities requires independent phase and amplitude control for 

each bunch. Some control may be relaxed if a spread in final 
average bunch energies is acceptable. Independent controls for 
the next linear collider means: (1) rapid RF structure filling 
times to allow RF power changes from bunch to bunch (a few 
nsec), (2) careful attention to the RF rise time and phase 
stability, (3) rapid phase adjustments ( a few nsec) to allow 
bunch to bunch phase changes, (4) careful control of single 
bunch currents, and (5) a wide energy acceptance in the final 
focus system. Instrumentation required for independent 
measurement and feedback of each bunch is very important and 
needs fresh approaches. Many investigations around the world 
are concentrating on these problems. 
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Table 1 Multibunch parameters for various beam currents in the SLC Linac at 46.6 GeV average per beam 

N-=N+ 1 az 1 nt I 91 n2 1 h 1 ntarl 1 tsu?o IE-b~21 E--E+ 
x 1010 mm klysuons degree klystrons degree klystrons met GeV MeV .- 

t-l 
- 1 0.50 160 192 -86 32.6 

z 0.75 1.25 ;: :g -15 152 136 iti 

!: 1.35 1.50 iti -12 -12 127 124 z 

z -122 - 164 30.5 30.6 E 0 

2: - - 213 190 30.7 30.3 i 
: 1.25 1.25 4 72 -15 -15 132 141 z 22 El :z 30.5 30.3 +500 -500 
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