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Multicarrier Orthogonal CDMA Signals for 
Quasi-Synchronous Communication Systems 

Victor M. DaSilva, Student Member, IEEE, and Elvino S .  Sousa, Member, IEEE 

Abstracf- We propose a multicarrier orthogonal CDMA sig- 
naling scheme for a multiple-access communication system, such 
as the reverse channel of a cellular network, as an alternative to 
the multi-user interference cancellation approach. The average 
variance of cross-correlations between sequences is used as a 
measure for sequence design. We search for sets of sequences 
that minimize the probability of symbol detection error, given 
that there is imperfect synchronization among the signals, that 
is, the signals are quasi-synchronous. Orthogonal sequences based 
on the Sylvester-type Hadamard matrices (Walsh functions) are 
shown to provide a significant improvement over the case where 
a Hadamard (orthogonal) matrix is chosen at random. Computer 
searches suggest that this set of codes is optimal with respect to 
the above measure. The issue of chip pulse shaping is investigated. 
Optimal pulses designed to minimize multiple-access interference 
in quasi-synchronous systems are obtained for various band- 
widths and are shown to provide a large improvement over 
the raised cosine pulses. A multicarrier signaling scheme is 
introduced in order to reduce chip level synchronization offsets 
between the users. 

I. INTRODUCTION 

IRECT sequence spread spectrum transmission has re- D ceived considerable attention for applications in mobile 
and personal communication networks as a result of its po- 
tential to provide higher spectral efficiencies in comparison 
to conventional modulation techniques [ 11-[3]. The potential 
increase in capacity over conventional modulation schemes 
is a result of the cellular structure of these systems and not 
a result of the efficiency of direct-sequence code-division 
multiple-access (DS CDMA) as a multiplexing scheme. In 
fact, in a one-cell system the efficiency of direct-sequence 
CDMA is considerably lower than that of TDMA or FDMA 
[4]. To improve on the capacity of a CDMA cellular network 
beyond the estimates in [I], more specialized signal processing 
techniques may be used in order to reduce the interference 
from terminals in the same cell. These techniques attempt to 
cancel the interference that arises as a result of nonzero cross- 
correlation of the spreading codes [5 ] .  Alternatively, we may 
attempt to synchronize the various transmissions at the chip 
level and to use orthogonal spreading codes, thus reducing 
the amount of multiple-access interference. This approach is 
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used in the forward channel for the CDMA proposal discussed 
in [6 ] .  However, its implementation in the reverse channel is 
more difficult, especially in the case of small chip periods. In 
an indoor environment the transmission delays are relatively 
small, hence, for low data rates and moderate processing gains, 
it may be feasible to maintain chip synchronization even in 
the reverse channel. This is the approach taken in the system 
proposed by Omura [3]. Assuming that there will be small 
errors in synchronization, orthogonal sequences with small 
cross-correlations for small synchronization offsets should be 
used. Some recent work that treats the problem of finding 
CDMA codes to reduce cross-interference is found in [7]-[9]. 
In [8] the 16 x 16 Sylvester matrix is found to minimize the 
mean square cross correlation for one chip offsets. A band- 
limited quasi-synchronous CDMA system which uses raised 
cosine chip pulses is considered in [lo]. 

We consider a one-cell system with one receiver base station 
and several mobile transmitters. While synchronization and 
orthogonality of signals can be maintained in the forward link, 
only quasi-synchronous operation can be maintained in the 
reverse link due to the differences in the transmitter clocks. 

In this paper we analyze the performance of a quasi- 
synchronous DS CDMA system and discuss a set of orthogonal 
codes that attempt to minimize the probability of symbol 
error. Optimal chip pulses of various bandwidths that minimize 
multiple-access interference under quasi-synchronous opera- 
tion are obtained. As a means to reduce the synchronization 
offsets we introduce a multicarrier signaling scheme. With this 
scheme the chip period in each of the subcarriers is increased 
thus reducing the synchronization offsets by a factor equal to 
the number of subcarriers. 

11. SINGLE-CARRIER CDMA 

We consider a CDh4A system with Nu users. The received 
signal at the base station is 

where si@) = Er="=_, dik,N, Eih(t - IcT,) is the spreading 
code signal modulated by the data sequence d; = fl and 
E;, Ai,  Bi, and ~i are the spreading code sequence, amplitude, 
carrier phase, and delay of the ith signal, respectively, and 
n(t)  is the background noise process which has power spectral 
density N0/2. 1x1 denotes the largest integer less than or equal 
to z , N  is the processing gain, h(t)  is the chip pulse shape, 
T, is the chip period, and Tb = NT, is the symbol period. To 
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simplify notation we define a new data-modulated chipping 
sequence r k  = 'ILk/Ar]':k. 

We assume a oorrelator receiver. The output of the correlator 
due to the kth symbol is 

+Ill+n ( 2 )  y "  *- 
where E, = J: s$ ( t )d t ,  ?,b is the multiple-access interference, 
and T/ is a zero-mean Gaussian random variable with variance 

To determine the probability of symbol error we need the 
distribution of 4 which depends on the cross-correlation of 
the codes. Since we are assuming that the data symbols are 
equiprobable then by the central limit theorem .II, approaches 
a Gaussian random variable as the number of interferers 
contributing to $1 increases. We are interested in relatively 
large symbol error probabilities (e.g., lop3). In this case and 
for a moderate processing gain it has been shown that II, can be 
approximated by a Gaussian distribution under quite general 
assumptions on the spreading codes (e.g., random codes, Gold 
codes). Under the Gaussian approximation the measure of 
interest is the variance of +,U$. We will use this measure 
to optimize the spreading code set. The variance of II, is 

&Es 
2 

NoEs/4. 

AhrU A2 
0; = q$z} = y f { R : t s J d }  (3)  

z=l ,z#k 

where E { . }  denotes expectation over the data and code sym- 
bols and the relative delay T,, and R,,,, = J;,'" s Z ( t  - 

The symbol error probability for the kth user is given by 
T2 ) s k ( t ) d t  . 

(e.g., see [ 1 I] for similar result) 

where E; = AS s: s S ( t ) d t / 2  = ASE,/2 is the energy per 
symbol of the ith user and 

is the normalized variance of the multiple-access interference. 
In this paper we study the performance of a quasi- 

synchronous CDMA system where the reverse link trans- 
missions from the different terminals arrive synchronized at 
the receiver base station to within a fraction of the chip period. 
We introduce the normalized offset Ai = q / T C  for the i th  
user. We refer to this variable generically as A(-1 < A < 1). 
For the different users we model A as a random variable 
with probability density function f ~ ( . ) ,  which is nonzero in 

For a synchronous system A, = 0 and, assuming orthog- 
onal codes and an appropriate chip pulse, the bit error prob- 
ability is given by (4) with y = 0. For a quasi-synchronous 
system (0 < A,,, < 1) with rectangular chip pulse, random 
spreading codes, and A uniformly distributed on [-A,, A,] 

[-A,,A,],O 5 A, < 1. 

we have y = (1 - A, + $A&)/N; for A, = l ,y = 2 3 N  and 
(4) becomes the well known result for asynchronous CDMA. 

A. Orthogonal CDMA Codes 
We assume that the spreading code period is equal to the 

symbol period and consider a rectangular chip pulse. The 
cross-correlation of the data-modulated code sequences for 
users i and k is 

N - 1  

l = O  

Given a specific set of orthogonal sequences, we can assign 
each sequence as the spreading code of a user. The error 
probability for a given user will depend on the set of active 
users (up to a maximum equal to the number of orthogonal 
sequences), and on the chip offsets for the interfering users 
relative to the user of interest. In previous research the criterion 
for sequence set design has been based on the worst case cross 
correlations (e.g., Gold codes). This criterion is applicable in 
the case of high SNR. The current trend, especially in mobile 
communications, is to use forward error correction codes and 
to design the system to operate at a relatively large symbol 
error rate (e.g., and higher). In this case a criterion that 
is based on the mean square cross correlation value is more 
appropriate. 

Taking all users into account, we would like to use a set 
of sequences where the average of the squares of the cross- 
correlations over all pairs of sequences is minimized. If it 
turns out that the squared cross-correlations for the different 
users vary considerably with respect to the overall average 
then the performance of the different users can be made equal 
by having each mobile change its code cyclically over the 
whole set of codes such that no two mobiles use the same 
code simultaneously. 

To minimize cross-interference, we seek an orthogonal set 
that minimizes E{Ri,,, (ATc)} ,  where the expectation is taken 
over the random variable A and over the data-modulated 
spreading sequences from the orthogonal set (i.e., average over 
all pairs of codes in the set). We write 

where 

To minimize (7) we need to minimize pLcor(N). Given an 
N x N orthogonal matrix C = [ci] with ci E {-1, l}, (a 
Hadamard matrix) the rows are assigned as code sequences 
to a maximum of N users. The average of the squared cross- 
correlations of the sequences, under a one chip offset, is 

1 
(9) bLcor(N) = ~ ( f i c o r +  + Pcor-) 

where 
~ N N I N - 1  
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and where c& = ch. We define pcor- the same as pcor+ except 
that we set cb = -cb. Our problem is to find the Hadamard 
matrix C which minimizes (9). 

For the variance of the multiple-access interference $ to be 
minimized, (7) suggests that pcor(N) should be a minimum, 
regardless of the distribution for A. If we take A to be uni- 
formly distributed on [-A,, Am] the symbol error probability 
of the resulting quasi-synchronous CDMA system can then be 
obtained by substituting 

into (4), hence P, is minimized when pcor(N) is minimized. 
The bit error probability given by (4) is not the average 

bit error rate for all users. We interpret (4) as the bit error 
rate associated with a typical user subjected to an averaged 
cross-interference noise. 

We wish to find Hadamard matrices C which minimize 
pcor(N).  We restrict the search to the case N = 2n. We 
note that interchanging and negating the rows of a Hadamard 
matrix produces an equivalent Hadamard matrix with the 
same pcor(N) value; nonequivalent matrices are referred to 
as distinct. If N is small, then it is a simple task to find all 
distinct N x N Hadamard matrices and to compute pcor(N) 
for each. However, for large N the set of distinct Hadamard 
matrices is unknown [12]. We have performed a search for 
Hadamard matrices with low values of pcor(N). In all cases 
of N considered, the best Hadamard matrices found were 
equivalent to the N x N Sylvester-type Hadamard matrix, 
which is defined recursively as follows 

where HI = 1. 
For the case N = 4, there exist two distinct Hadamard 

matrices, and the smallest correlation is pEor = 10/3.  For the 
case N = 8 an exhaustive search over all Hadamard matrices 
was performed and we obtained pEor = 6 corresponding 
to the 8 x 8 Sylvester matrix. For higher values of N, 
Hadamard matrixes were generated randomly by interchanging 
and negating the columns of a given Hadamard matrix. This 
process yields a large portion of the distinct matrices but not all 
of them in general [12, p. 481. We generated 100 OOO matrices 
for N = 16, 100 OOO for N = 32, 10 OOO for N = 64, 4OOO 
for N = 128, and 500 for N = 256. The histograms for the 
pcor values for two cases of N are shown in Figs. 1-2. In all 
cases the pcor values have a distribution concentrated around 
N .  The spread of the distributions decreases, relative to N, as 
N increases except for an isolated point (corresponding to the 
Sylvester matrix) at a value of approximately $ N .  The exact 
value, derived in the Appendix, is as follows 

(13) 
2 

pcor(N) = ? ( N  + 1 ) .  

B .  The Gaussian Approximation 
Given that the spreading sequences are the rows of a 

Hadamard matrix, it is of interest to verify the Gaussian 
approximation in computing the probability of bit error (4) 

3 

Fig. 1. Number of occurrences of pcor versus pcor for the case N = 16. 
100,OOO randomly generated orthogonal matrices were investigated. 

Fig. 2. Number of occurrences of p,,, versus pcor for the case N = 128. 
4OOO randomly generated orthogonal matrices were investigated. 

which was obtained under the assumption of random se- 
quences. We have performed an exact computation for the 
case Nu = N = 8 assuming that A is uniformly distributed 
on [ -Am,  A,], the signals are baseband signals, and that all 
users have the same bit energy E; = Et,. It turns out that 
the probability of error is code dependent. There are four 
classes of Spreading codes, with two codes per class, and each 
class has a different probability of error as shown in Fig. 3, 
for the case A, = .5. In Fig. 4(b), we show the average 
probability of bit error over the four classes of codes. By 
using the Gaussian approximation for each class of codes we 
obtain error probability expressions given by (4) with four 
corresponding 7’s; Fig. 4(a) shows the average of these. The 
curve obtained via the Gaussian approximation is pessimistic 
at an error probability of by approximately Eb/NO = 1.5 
dB. The approximation should be considerably better for larger 
values of N .  We can modify the signaling scheme by having 
each user change the spreading code after each bit (cyclically 
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Fig. 3. Exact probability of symbol error versus % for a system using the 
8 x 8 Sylvester matrix, Nu = 8, A, = . 5 .  
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Fig. 5. Error probability P, versus % for a typical user in the case of 
(a) nonorthogonal sequences, (b) non-Sylvester orthogonal sequences, and (c) 
Sylvester sequences. Nu = N = 128,A, = . 5 .  
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Fig. 4. Probability of symbol error versus 2 averaged over the users for 
a system using the 8 x 8 Sylvester matrix, Nu = 8,A, = .5:  (a) Gaussian 
approximation, (b) exact computation. 

Fig. 6. Error probability P, versus 2 for a typical user in the case of 
(a) nonorthogonal sequences, (b) non-Sylvester orthogonal sequences, and (c) 
Sylvester sequences. Nu = N = 128,A, = .75. 

through all codes) so that all users would have the performance 
shown in Fig. 4. simultaneous users for Sylvester and non-Sylvester Hadamard 

(11), we obtain = for the Sylvester level of background noise NO. Given a maximum operating 
probability of error, (4) may be solved for the maximum num- matrix. For a typical non-Sylvester matrix pCor M N and 
ber of simultaneous users. Quasi-synchronous CDMA systems y = A k / ( 3 N ) ;  thus the multiple access interference is 
based on Sylvester sequences and non-Sylvester Hadamard reduced by a factor of 312 in the case of a Sylvester matrix. sequences may then be compared in terms of capacity, whereas 
Figs. 5 and 6 compare them in terms of SNR. Fig. 5 and Fig. 6 show plots of the bit error probability given 

by (4) (assuming Ei = Ek = Eb), for typical users (i.e., using 
the average squared cross correlation values), for a) random 
sequences, b) typical non-Sylvester orthogonal sequences, and C .  General Chip Pulse Shape 
c) Sylvester sequences. We now consider the case of a nonrectangular chip pulse 

The improvement in performance of the Sylvester sequences shape. k t  g ( t )  = s-", h(u)h(u - t)&. With perfect synchro- 
over typical non-Sylvester sequences becomes more noticeable nization, orthogonality of signals can be maintained by using 
as A, increases. The difference in the maximum number of orthogonal spreading codes and a chip pulse which satisfies 

Assuming large N ,  and substituting pcor(N)  = 2 N / 3  into sequences, for a given probability Of On the 
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the Nyquist I criterion, 

Let us consider the case where the users are quasi- 
synchronous. The pulse that minimizes the cross-interference 
will not necessarily satisfy (14). Consider a pair of baseband 
CDMA signals, si(t + T )  = E,"=-, &h(t + T - mT,) and 
s k ( t )  = ckh(t - nT,), where -,Tc < T < T,. The 
design problem is as follows: for a given chip pulse bandwidth 
and pdf for the synchronization offset, find the optimum set 
of orthogonal sequences and optimum chip pulse shape. The 
cost function to be minimized is the average of the squared 
cross correlations for all pairs of signals. The cross correlation 
between two signals is 

00 

N-1 03 

M &e; h(t + 7 - mT,)h(t - nTc)dt 

(15) 
00 N-1 

I = - =  n=o 
r+o 

where in the second step we have assumed that h(t)  contains 
most of its energy in the interval t E [0, T,], that N is large, 
and that the codes are orthogonal. 

The variance of $ may be computed as follows, 

(17) 
where  CL+^ = f c j  depending on whether or not consecutive 
data symbols change sign. 

Define 

(18) 
1 
2 P1 = -(M+ + P l - )  

where 

and ch+j = c;, and p1- is defined similarly except that 
C k + j  ' - - -e:. Note that (18) with 1 = 1 is pcor (N)  in (9). 
We note that p1 = ,u-t since the expectation is taken over all 
pairs of rows of an orthogonal matrix. Since g ( . )  and fa(.) 
are even functions, we rewrite 0; as 

00 

(J; = 2 p1E{g2(1Tc - T)}. (20) 
1=1 

For a given bandwidth of h(t)  and a given processing gain 
N = 2", we wish to find the optimal set of orthogonal 
sequences and the optimal pulse shape such that (20) is mini- 
mized. Since the function g 2 ( t )  decays rapidly with increasing 
t we expect that the first few terms in the sum (20) dominate; 
hence we choose an orthogonal set of sequences with low 
p1 for small 1. For the Sylvester sequences pl = 2 N / 3  
for 1 = 1 , 2 ,  compared to pl = N for typical orthogonal 
sequences, hence we conclude that these are close to optimal 
and choose them. We have thus decoupled the problems for 
finding the optimum sequences and the optimum pulse shape. 

To solve for the optimum g ( t )  we minimize (20) subject 
to a constraint on the bandwidth and the energy of the 
pulse Jzmh2(t)dt = E h  = g(0). For small synchronization 
offsets we present an analytical solution. For larger offsets, we 
solve the problem using a numerical approach. Note that the 
optimum pulse will not necessarily be a Nyquist I pulse. 

For small synchronization offsets we can use a two-term 
Taylor series expansion of g ( t )  at lTc to obtain g(ZTc - T )  % 

g ( l T , )  - T g ' ( l T c ) .  Squaring, noting that the mean of 7 is 0, 
computing the expectation over the random variable T ,  and 
summing over I we express the cost function (20) as 

where U: is the variance of T .  If we approximate the pt's by 
a constant then we obtain a cost function that is similar to a 
cost function obtained in [ 131 for an unrelated problem. From 
[13] the following pulse minimizes (21), if we assume that pi 
is a constant and that U; is small: 

I f 1  2 
G(f)  = 41 - I f l T C ) ,  3 5 I f 1  I +g (22) 

1+P {:: If1 > 2T, 
where c is a constant such that s-", G(f)df = E h ,  and p is 
the fractional excess bandwidth. 

is a constant, for 
larger synchronization offsets the above Taylor series method 
cannot be used. In this case since g ( t )  is band-limited we 
expand it as a sum of weighted sine(.) functions 

Even if we make the approximation that 

where 

and sinc(z) = sin(nz)/(.lrz). The bandwidth of g ( t )  is z. 
Substituting (23) into (20), and defining fijl = E{$;( .  - 
lT,)+j(~ - lTc)}, we obtain the functional 

L to be minimized subject to the constraint ~ k . = O z ~ & ( 0 )  = 
Eh. 
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Fig. 7. Optimum chip pulse 8, for 0 = .5. 

The solution, based on Lagrange multipliers, reduces to the optimal pulse has the form 
solution for the linear system 

A x = b  

where the variables are defined at the bottom of the page, and 
A is a Lagrange multiplier. 

D. Optimum Chip Pulse Shape 

we expect that the probability density function of A should 
have a maximum at zero. As an example, we solve the optimal 
chip pulse problem for the following density function. 

Figs. 7-8 show G(f) for two different bandwidths, and for 
each bandwidth, the three cases A, = .7, .5, and .3. We have 
used L = 15. Also, note that the results for A, = .3 and all 
the p values resemble the analytical solution given by (22). 

N )  for sylvester sequences, and are as follows, 
If the system attempts to maintain the signals synchronized The values used for ~1 correspond to the limiting values (large 

(P~ICL~~CL~,CL~,~-~~,P~,P~,CL~,P~) 
2 2 5 2 7 5 7 2 7  
3 '  3 ' 6 '  3 '  8 ' 6 '  8 '  3 ' 8  
- - - - - - - - - 

pl = N, for E 2 10 (29) 
We discuss solutions to (26) for various values of Am and 

fractional excess bandwidths /3. In the frequency domain, the The value for 1 2 10 is an approximation. 

___ 

In (26) 

bT = 0,0,0,0,  [ ,o ,  31. 4 
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Fractional Normalized cost for 
sq. root R.C. pulse Excess bandwidth ( p )  

0 ,141 
.25 ,110 
.50 .OS2 
.67 .067 
.75 .061 
1 ,045 

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 12, NO. 5, JUNE 1994 

Normalized cost for Improvement 
optimal pulse factor 

.137 1.03 
,072 1.5 
,040 2.1 
,027 2.5 
,022 2.8 
,013 3.5 

~ A m = . 7  
A,,, = .5 
Am = .3 

_ -  
_ - -  

-1 - 0 . 5  

Fig. 8. Optimum chip pulse 8, for ,!? = 1. 

We now compare the performance of the optimal chip pulses 
versus the class of square root raised cosine pulses (30), see 
below. Table I lists the normalized costs a$/(E;N) associated 
with the optimal pulses and the square root raised cosine pulses 
for six different bandwidths for the case A, =.7. We note that 
the improvement of the optimal pulse over the raised cosine 
pulse becomes significant as the bandwidth is increased. 

We now consider the implications of Table I on the perfor- 
mance. Considering a CDMA system with Nu users, we can 
show that (5) reduces to 

Using the approximation E; = A:J? s: ( t ) d t / 2  M 

A ; N E h / 2 ,  that is, the bit energy is N times the chip energy, 
(31) reduces to, 

y=- 
N2Ei 

which is substituted into (4) to obtain the probability of error. 
In Fig. 9 we have plotted the probability of symbol error given 
by (4) for different pulse shapes and code sequences assuming 
A, =.7 and p = .5. Three combinations are considered: 1) 
randomly chosen orthogonal sequences and square root raised 
cosine chip pulses, 2) Sylvester sequences and square root 
raised cosine pulses, and 3) Sylvester sequences and optimal 
chip pulses. The b) and c) curves are computed using the 
two corresponding 7's computed from Table I. The a) curve 
is computed assuming pl = N,Z 2 1. At a probability of 
error of there is a difference of approximately 3 dB 
between the curve corresponding to the Sylvester sequences 
and optimum chip pulse shape and that corresponding to a 
typical set of orthogonal sequences with square root raised 
cosine chip pulse shape. 

111. MULTI-CARRIER CDMA 

To reduce the probability of bit error the synchronization 
offsets should be a small fraction of the chip period. Increasing 
the chip period would make it easier to synchronize the signals. 
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2 4 6 8 10 12 14 16 
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codes for the subcarriers may be chosen so as to minimize the 
peak amplitude of the signal. 

A .  Time-Limited Chip Pulses 

First we consider the case of a rectangular chip pulse 
h(t). We assume that the receiver demodulates the data in 
each stream independently. Assuming two users and reception 
of a particular bit stream, the variance of the out-of-band 
multiple-access interference at the integrator output, when 
the synchronization offset is uniformly distributed, can be 
shown to be (16+jpco,(N)[1 - sinc(2Ami)], where the 
frequency separation is Z/Tc Hz. This compares to the value 
of T:pcor(N)A$/24 for case where the two signals have the 
same carrier. For this multicarrier system we can show that 
the y for the lcth user’s mth bit stream, corresponding to that 
in (4), is 

TZ 

(34) 
Fig. 9. Probability of symbol error for different pulse. shapes and orthogonal 
sequences; A, = .7, fJ = .5 and Nu = N = 128: (a) raised cosine pulse 
and non-Sylvester Hadamard matrix, (b) raised cosine pulse and Sylvester 
matrix, (c) optimum pulse and Sylvester matrix. 

However, for a given processing gain, an increase in the chip 
period results in an increase in the symbol period, hence a 
decrease in the data rate. We can maintain the original data 
rate by using a multicarrier signaling scheme. The overall 
transmitted signal is comprised of several different bit steams, 
each modulated by a separate subcarrier. 

Increasing the chip period by a factor of M ,  the number 
of subcarriers, reduces the bandwidth of each of the subband 
signals by a factor of M relative to the bandwidth of the 
original spread spectrum signal so that the overall bandwidth 
is approximately the same as that of the single-carrier signal, 
assuming a spacing of l/Tc for the carrier frequencies. Fig. 10 
shows the block diagram of the transmitter for the kth user of 
a three-carrier DS CDMA system. 

The received signal is 

where s i ( t )  = E, czh( t  - nT,) and M is the number of 
different subcarriers. To compute the probability of bit error 
for a given data stream (subcarrier) we need to consider the 
interference from other data streams with the same carrier 
and interference from data streams using other carriers. For 
arbitrary carrier spacings the approach in [14] may be used 
to determine the variance of the multiple-access noise. For 

I carrier spacings equal to the chip rate the noise variance can 
be solved using a more direct approach. If carriers are spaced I 

I 
I 

at multiples of the chip rate, and if rectangular chip pulses 
are used, then all of the bit streams belonging to a single 
user do not interfere with one another due to the orthogonality 
(in time) of the carriers. For ease of implementation, each-bit 
stream corresponding to a single transmitter may be multiplied 
by the same spreading code. However in general the spreading 

I 

where vj = (1  - sinc[2Am(m - j)])&. 
The question arises as to what value of d’should be used. If 

chip pulses are not band-limited, we expect that as we increase 
the number of carriers, the in-band noise will decrease (since 
the chip period is increased by a factor of M )  whereas the total 
interference from the other subbands will rise; hence there is a 
trade-off between interference from in-band signals and inter- 
subcarrier (or out-of-band) interference. Also, the larger the 
M the greater the complexity of the system. To observe the 
effect of M on the interference, in Fig. 1 1  we have plotted the 
in-band interference, out-of-band interference, and the total 
interference for the case of a rectangular chip pulse, where 
the in-band and out-of-band interference are given by the 
first and second terms of (34) (after expanding), respectively. 
The curves have been suitably normalized, and plotted as a 
function of A4 where A4 is odd, and assuming m = + 1, 
that is, the mth band is the center band. To account for the 
increased chip period we have replaced A, by % in (34) 
and have assumed A, = 1. As M increases the in-band 
interference decreases monotonically; on the other hand, the 
out-of-band interference increases to a maximum value and 
then decreases. The decrease in the out-of-band interference 
is a result of the fact that as the fractional synchronization 
offset decreases the subcamer signals become orthogonal, 
even though the number of interfering bands increases. In this 
particular example a good choice for M is approximately 5 
since there is a negligible reduction in the total interference 
for larger M. 

B .  Band-Limited Chip Pulses 

Let us now assume that the chip pulse is not rectangular 
and that it is band-limited. Consider a pair of passband CDMA 
signals, belonging to two different users, and corresponding to 
different subcarrier frequencies, sS(t + ~ i )  cos(w,t + 8 ; )  and 
s T ( t + ~ k )  cos(wmt+8k). We will generalize to the case of X,& 
users later. Assuming the base station correlator is receiving 
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Fig. 10. Block diagram of a three-canier DS CDMA transmitter. 
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Fig. 1 1 .  
interference as a function of the number of subcaniers M .  

Normalized in-band interference, out-of-band interference, and total 

s r  ( t )  the variance of the multiple-access interference at the 
integrator output is 

(35) 

The expectation in (35) is with respect to 8, modeled as 
uniform on [0,2~], and T .  

Assuming that h(t)  has bandwidth equal to g, 0 5 ,Ll 5 1, 
we are interested only in the case where w, = 2 since the 
cross-correlation is 0 for w, = F, k > 1. Assuming fa ( . )  
and h(.) are even, it can be shown that each term in the 
summation in (35) is even with respect to 1. Using Parseval's 
relation, the above can be put into the following frequency 
domain form 

where 

Generalizing to the case of Nu users, we assume the 
received signal is as in (33) and that the receiver is demod- 
ulating the data for the mth stream of the ICth user, and that 
8 k  = Tk = 0. The integrator output is 

(37) 

where $in is the in-band multiple-access interference and gout 
is the out-of-band interference, due to the other Nu - 1 users. 
Assuming that the mth band is an interior band, we can show 
that 

&E, 
2 y Fz k- + $in -I- $out + 7 

where the rightmost expression in (38) was obtained assuming 
E,  ~z NEh. y1 is the y value for the single-carrier scheme 
(obtained from Table I), and a& is given by (36). Substituting 
(38) into (4) gives the bit error rate for the kth user's mth 
bit stream. 

y is composed of two terms, the first resulting from the in- 
band interference and the second arising from the out-of-band 
interference. In the design of the optimum pulse shape we 
minimized the first term. In a multicarrier system the criterion 
should be to minimize y in (38). However, since the first 
term can be much larger than the second, a criterion which 
minimizes the first should produce a pulse which is close to 
the optimal. 

Iv .  SYSTEM DESIGN ASPECTS 

The multiple-access capability of a signaling scheme is 
an important system design issue. The allowable number of 
simultaneous users will depend on the background noise level 
No which could be due to thermal noise or interference from 
other cells in the system, and on the required operating symbol 
error rate, P,. For small No and high P, the system will 
support N users resulting in all codes being used. If it is not 
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possible to support N users then users (spreading sequences) 
should be dropped until the multiple-access interference is 
reduced to an acGeptable level. In doing so the correlation 
matrix for all codes should be examined so that sequences 
resulting in large cross-correlations are dropped first. As an 
example the Sylvester matrix has one row which is equal to a 
cyclic shift (by one) of another row. One of these should be 
the first to be dropped. 

Even after dropping some codes-the probability of error 
for the users using the remaining codes will differ. This 
difference may be removed by having the users interchange 
their codes after each symbol in a manner similar to frequency 
hopping (i.e. “code hopping”). The algorithms for the hopping 
should be designed so as to achieve a maximum degree of 
randomization. Such algorithms will not significantly increase 
the complexity of the transmission scheme. Even with ran- 
domization and relatively stable clocks there will be some 
dependence between successive symbol errors if the variable 
A holds relatively constant from symbol to symbol. This effect 
could be removed by randomizing A every few periods of the 
spreading code. 

V. CONCLUSION 
A multicarrier orthogonal CDMA signaling scheme was 

introduced as a means to reduce interference in a multipoint-to- 
point CDMA network. Spreading codes and chip pulse shapes 
which minimize multiple-access interference in the case of 
quasi-synchronous operation were determined. 

A sequence design criterion based on the mean square 
value of the sequence cross correlations (denoted as p c o r ( N ) )  
was used. For a given N x N Hadamard matrix, there is 
associated with it a value of p c o r ( N ) .  The larger the pcor(N) 
value, the worse the performance of a quasi-synchronous 
CDMA system based on the given matrix. We searched for 
orthogonal matrices with small pcor( N )  values. Sylvester-type 
Hadamard matrices were shown to have a p c o r ( N )  value of 
approximately : N  for large N .  It appears that for moderate to 
large N most other Hadamard matrices have a pcor ( N )  value 
approximately equal to N .  

Optimal chip pulses of various bandwidths that minimize 
multiple-access interference for quasi-synchronous systems 
were obtained. They were compared with the raised cosine 
pulses and were shown to have better performance at the 
higher excess bandwidths considered. 

A multicamer signaling scheme, designed to reduce chip 
level synchronization offsets between the users, was intro- 
duced. This quasi-synchronous CDMA scheme, based on 
orthogonal spreading codes and multicamer modulation, is an 
alternative to an asynchronous scheme which utilizes sophis- 
ticated interference cancellation techniques. 

APPENDIX. 
N We derive (13). Defining X{ = c ; < + ~ ,  where c; 

is the ( 2 ,  k)th  element of an N x N Sylvester matrix, and 

85 I 

= cf, we use (10) to write 

N N  

J # t  

+ 16 (g ) (T - 1) 

where (A.l) follows because X{ equals 2Xi7 if i and 
jt-{l...$} , 0 if i c { l - . . $ }  and j c { $  + l . . .N} ,  or 

2x27 &! ,j- ~ - 4czGT - if i and j c { $  + l . . . N }  . We also 
note t2at 

N . N  

2 

N N  - -  

since ~2~ = -ciN = -c& for zc{l . . .  T}. (A.l) then 
reduces to 

- 
2 4 2 

. (A.3) 8( $) (+ - l )pcor+ ($) + 8N 
N ( N  - 1) pcor+(N)  = 

This is a recursive formula for p c o r + ( N ) ,  which may be 
interpreted as a first-order difference equation and solved using 
the initial condition pCor+(2) = 0 to obtain 

In a similar fashion, we can show that 

2N2 + 4 
pcor-(N) = ___ 3(N - 1). 

Equation (13) then follows from (A.4), (A.5), and (9). 
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