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D17

Darmstadt 2012



“And mankind have not been given of knowledge except a little.”

To Allah and my parents

To my family members

And...to wife, my supporter, my inspirer, and my companion in the long journey

“And mankind have not been given of knowledge except a little.”

To Allah and my Parents

To Prof. Dr. Alex Gershman

To Prof. Dr.-Ing. Marius Pesavento

To Prof. Dr.-Ing. Abdelhak Zoubir

“And mankind have not been given of knowledge except a little.”

To Allah and my Parents

To Prof. Dr. Alex Gershman

To Prof. Dr.-Ing. Marius Pesavento

To Prof. Dr.-Ing. Abdelhak Zoubir

“And mankind have not been given of knowledge except a little.”

i



ii



Acknowledgments

First and foremost, I would like to express my deepest gratitude to my supervisors,

Prof. Dr.-Ing. Marius Pesavento and Prof. Dr. Alex Gershman, for all the support

and guidance they have offered me during my PhD study. I am very much grateful for

the knowledge they have shared with me throughout the development of my thesis

and academic papers. I would also like to gratefully thank and acknowledge my

co-supervisor in the Graduate School of Computational Engineering Prof. Dr.-Ing.

Abdelhak Zoubir for his trust in me and for his support and encouragement. Many

thanks to Prof. Dr. Shahram Shahbazpanahi for his contribution to this work and

all the interesting discussions and helpful comments and suggestions. Special thanks

to all the members of the Communication Systems Group who contributed in one

way or another in the successful completion of this work. I would like to thank the

Graduate School of Computational Engineering for the prestigious scholarship that

I received during my Ph.D. study. Finally, I am grateful to my family members for

their support and encouragement.

Ahmed

iii



iv



Zusammenfassung

Zahlreiche Anwendungen wie mobiles Fernsehen und Podcasts erfordern die par-

allele Verbreitung von Daten an mehrere Nutzer. Drahtlose Multicast-Verfahren

ermöglichen dies in einer effizienten Weise, indem die für eine Gruppe von Nutzern

bestimmten Daten und Services diesen simultan zugestellt werden. Aus diesem Grund

spielen drahtlose Multicast-Verfahren eine wichtige Rolle für zukünftige zellulare

Mobilfunksysteme. In modernen Mobilfunksystemen werden Mehrantennensysteme

eingesetzt, um eine hohe spektrale Effizienz zu erreichen. Im Fall von Mehranten-

nensystemen können Beamformingverfahren verwendet werden, um unterschiedlicher

Nachrichten gleichzeitig jedoch räumlich unterschiedlich abgestrahlt werden.

In dieser Arbeit entwickeln wir recheneffiziente Beamformingalgorithmen für Multi-

cast-Systeme. Die vorgeschlagenen Algorithmen erreichen einen verbesserten Kom-

promiss zwischen Sendeleistung und Rechenkomplexität im Vergleich mit existieren-

den Verfahren.

Zuerst untersuchen wir Single-Group Multicast-Systeme, in denen alle Nutzer

dieselben Daten empfangen. Wir entwickeln ein neues Verfahren zur näherungsweisen

Minimierung der Sendeleistung unter Nebenbedingungen für die Signal-zu-Rausch-

verhältnisse an den Empfängern. Das vorgeschlagene Verfahren beruht auf der Or-

thogonalisierung der Kanalsignaturen einzelner Nutzer. Es erreicht einen verbesserten

Kompromiss zwischen Sendeleistung und Rechenkomplexität im Vergleich mit ex-

istierenden Algorithmen für Single-Group Multicast-Systeme.
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Als nächstes betrachten wir Multi-Group Multicast-Systeme, bei denen unter-

schiedliche Daten an mehrere Gruppen von Nutzern gesendet werden. Wir schlagen

ein neues Multicast-Verfahren vor, bei dem eine geringe Sendeleistung mittels einer

hierarchischen Modulation erreicht wird. Das vorgeschlagene Verfahren hat einen

geringeren Rechenaufwand und führt zu einer niedrigeren Sendeleistung im Vergleich

zu existierenden Verfahren.

Danach erweitern wir das für Mehrantennensysteme vorgeschlagene Kanal-Orthogo-

nalisierungsverfahren auf nicht triviale Weise für den Einsatz in kooperative Re-

laynetze. Auch in dieser Anwendung lsst sich mit dem vorgeschlagenen Verfahren

eine geringe Rechenkomplexität und eine niedrigere Sendeleistung als die bekannten

Verfahren für kooperative Relaynetze erzielen.

Schließlich entwickeln wir verteiltes Beamformingverfahren für nicht synchronisierte

kooperativen Relaynetzen. Wir verwenden ein orthogonale Frequenzmultiplexver-

fahren, um die Intersymbolinterferenz am Empfänger zu vermeiden, ohne Verzögerungsglieder

an den Relays zu benötigen. Dadurch wird der für vollständig synchronisierte Re-

laynetze ansonsten erforderliche Signalisierungsoverhead vermieden. Wir vergleichen

dann die erforderliche Sendeleistungen für das vorgeschlagene Verfahren mit der

Sendeleistung für ein vollständig synchronisiertes Relaynetzwerk.
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Abstract

Many of the current and future Internet and digital multimedia applications such as

Internet TV, streaming media, and localized services rely on the concept of mass con-

tent distribution. Wireless multicasting enable this in an efficient way, since it allows

the provision of data and services to a group of users simultaneously using the same

frequency band. In this context, wireless multicasting has emerged as a key technol-

ogy for the next generation cellular and indoor/outdoor wireless networks. Several

techniques have been proposed to enhance the spectral efficiency of the wireless mul-

ticast network while meeting the quality of service requirements of the network users.

One of the most promising techniques is transmit beamforming, since it allows the

exploitation of space as a resource at the transmitter in addition to the conventional

resources such as time and frequency.

In this thesis, we develop computationally efficient techniques to solve the beam-

forming problem for single-group and multi-group multicast networks. Our proposed

techniques offer improved trade-off between performance in terms of transmitted

power and computational complexity.

First, the beamforming problem for single-group multicasting is considered, where

all users receive the same datastream. The design approach is based on power mini-

mization subject to individual signal-to-noise-ratio constraints at each user. We pro-

pose a channel orthogonalization and local refinement technique to efficiently solve
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this problem in an approximate way. The proposed techniques are shown to of-

fer an attractive performance-to-complexity tradeoff as compared to state-of-the-art

multiple-antenna multicasting algorithms.

Next, we consider the beamforming problem for multi-group multicasting, where

different datastreams are sent to multiple groups of users. A new approach is proposed

to solve the power minimization problem using hierarchical modulation. The proposed

approach enjoys a significantly reduced computational complexity and achieves a bet-

ter performance in terms of the total transmitted power compared to the conventional

approaches.

Then, a non trivial extension of the channel orthogonalization-based approach,

which was developed to approximately solve the beamforming problem for conven-

tional single-group multicasting is proposed to the beamforming problem in single-

group multicasting in cooperative relay networks. Similarly as in the previous net-

work, the proposed technique has a small computational complexity and achieves a

better performance in terms of transmitted power compared to other existing tech-

niques.

Finally, we propose a solution to the relay synchronization problem in cooperative

relay networks with large delay spread. The proposed approach uses orthogonal

frequency division multiplexing techniques to eliminate the effects of inter-symbol

interference at the destination without applying artificial delays at the relays. In this

approach, the additional traffic requirements of a fully synchronized relay network is

completely avoided. The performance of the proposed scheme in terms of transmitted

power is then compared to the performance of a fully synchronized relay network.
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Chapter 1

Introduction

Recent advances in Internet and digital multimedia have promoted a variety of ap-

plications based on multicast services, where a common message is broadcasted to

a mass audience. Examples of these applications are digital audio/video streaming,

mobile TV, localized services, and messaging. The ever growing demand and the wide

popularity of these applications require next generation wireless systems to support

multicast services on the network layer level and also on the physical layer level.

The radio transmission of a datastream to a group of receivers is typically referred

to as physical layer multicasting [97]. Based on the number of datastreams which are

transmitted simultaneously in the same frequency band, physical layer multicasting

is further classified into two classes: single-group multicasting, where a single datas-

tream is transmitted to a single group of users and multi-group multicasting, where

multiple datastreams are transmitted simultaneously on the same frequency resource

and each datastream is intended to one group of users. In a wireless multicast net-

work, the choice between these two strategies is based on how well each strategy

fulfills a number of objectives, while taking into account the resource limitations of

this particular network such as the power allocated for transmission and the licensed

radio frequency (RF) spectrum. One important objective is maximizing the efficiency

of utilization of the available resources, which is achieved by increasing the number

of accommodated users in the network. However, in single-group multicasting, for
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2 Chapter 1. Introduction

example, for a fixed transmit power budget, the quality of service (QoS) provided for

each user decreases as the number of users in the multicast group increases, since it

is no longer possible to fully adapt the spatial transmission to the individual chan-

nel conditions of each user. Furthermore, if multiple multicast groups are admitted,

more users will be served but the QoS at each user will be affected by the interference

arising from the reception of undesired datastreams. Taking into consideration that

the provision of high QoS to each user is another important objective, it is clear that

striking a balance between these two objectives is a quite challenging task which has

triggered numerous research activities, see [11], [34], [65], [75], and references therein.

Several of these activities focused on adaptive techniques specifically designed

for multicast networks to avoid the reduction of QoS for the receivers. Examples

of these techniques include power control [66] and error control mechanisms [88],

macro-diversity [9], and non-uniform modulation [85]. Beside these techniques, the

deployment of multiple antennas at the transmitter was recognized as one of the

most effective means for improving the performance of wireless multicast networks

significantly without additional power and RF spectrum requirements. By deploying

multiple antennas at the transmitter, it is possible to consider space as an additional

resource which can be exploited. In this context, several techniques have been pro-

posed, such as antenna subset selection [82], precoded orthogonal space-time block

coding [120], and transmit beamforming [10], [11], [12], [24], [25], [26], [30], [31], [34]

[42], [50], [51], [52], [53], [62], [63], [65] [75], [77], [90], [91], [97], [105], [106], [108],

[126].

In transmit beamforming, it is assumed that the transmitter has some knowledge

about the channel conditions of each user, which is a valid assumption in modern

subscription-based multicast networks, in which the basestation can, e.g., acquire

spatial information about the geographical location of the users , or more generally,

the instantaneous or statistical channel state information (CSI) of each subscribed

user via feedback channels during the subscription phase. Using this information, the

transmitter designs the beamforming weights at every transmit antenna to transmit
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the datastream(s) in a spatially selective manner so that, in the best case, each user

only receives its intended datastream at the desired QoS. In the literature, several

approaches have been proposed to solve the beamforming problem by considering

different optimization criteria, which will be summarized in the following. Note that

a more detailed overview of state-of-the-art techniques which were developed to solve

these optimization problems for single-group and multi-group multicasting is provided

at the beginning of Chapter 3 and Chapter 4, respectively.

For single-group multicasting, the beamforming problem was first considered with

the objective of maximizing the average signal-to-noise-ratio (SNR) perceived by all

users subject to a constraint on the maximum allowable transmit power [62], [77].

Using the average SNR as an objective function does not promote fairness among

users. For this reason, the problem of maximizing the minimum SNR was proposed in

[108] in order to guarantee fairness among users. In [126], the problem of minimizing

the transmitted power subject to satisfying the individual SNR requirement of each

user was proposed and in [97] it was proved that this problem is equivalent to the

SNR maximization problem up to a scaling factor. The authors also proved that both

problems are non-convex and NP-hard, thus requiring efficient suboptimal algorithms

which can provide good approximate solutions in polynomial runtime. One of the

most successful approaches to approximately solve both problems was suggested in

[97] and was based on the popular and well established semi-definite relaxation (SDR)

procedure.

Similarly, for multi-group multicasting, the beamforming problem was investigated

by taking several objectives into account. In [62], the idea of designing the beam-

formers to completely suppress the interference at each user was briefly introduced,

where the design was based on the assumption that the number of multicast groups

and the number of users per group is relatively smaller than the number of transmit

antennas. In [53], a design based on the sum-rate maximization was proposed, which

is generally highly unbalanced with respect to the individual QoS of each user. In [31],

[50], and [51], a more fair design which is also suitable for networks with large number
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of users was considered. The idea is to minimize the total transmitted power subject

to satisfying the individual signal-to-interfere-plus-noise-ratio (SINR) requirement of

each user. In [31] and [52], it was shown that the solution of the previous problem

can be obtained from solving the problem of maximizing the SINR of the worst user

subject to a power constraint by means of a bisection method.

Over the last decade, cooperative communication has emerged as a new trend in

wireless communications and currently, it is an active topic of research due to the

potential of performance improvement of numerous existing wireless communication

systems with requiring additional infrastructure. The main idea of cooperative com-

munication is that the users in a wireless network act as relays that mutually assist

each other in transmitting data through the network.

One of several cooperative relaying strategies which have been proposed is dis-

tributed beamforming [5], [13], [14], [19], [27], [28], [38], [39], [40], [48], [92], [93],

where multiple single-antenna devices together with the source node act as a virtual

transmitter with multiple-antennas. In this way, the users in the network can enjoy

similar benefits as in conventional multiple-antenna networks without the need for the

deployment of multiple antennas at each user. This is important for many wireless

applications such as wireless sensor networks, where the communicating devices are

required to be small and inexpensive. In [13], the concept of distributed beamform-

ing was applied to multi-group multicasting for the first time. Based on the CSI,

the beamforming weight of each single-antenna relay was designed in [13] so that

the total power transmitted by all the relays is minimized subject to individual SINR

constraints at each user. In this case, high QoS, expressed in the SINR at the receiver

of each user, is maintained without the need for a multiple-antenna transmitter as in

the case of conventional multiple-antenna multicast networks. However, distributed

beamforming has a major drawback: As it is based on coherent processing of the

antenna signals, it requires all the relays to be synchronized on the symbol level in

order to a provide constructive superposition of the desired signals and destructive

superposition of the undesired signals and noise components at the receivers. Global
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synchronization of the relays requires the exchange of information among the relays.

This represents a signaling overhead and processing power which consumes a part

of the available resources in the network. Furthermore, synchronization typically re-

quires each relay to apply an artificial delay to the signal it receives so that in the

transmission phase, the signals transmitted from all relays are synchronized and add

up coherently at the users. Based on the artificial delay applied at each relay, the

storage capacity required for the delaying process can become prohibitively large and

expensive.

1.1 Thesis Contributions and Overview

In this thesis, advanced techniques for solving the beamforming problem for single-

group and multi-group multicasting in conventional multicast networks and coop-

erative relay networks are developed. The proposed techniques, which are based on

channel orthogonalization and local refinement provide good approximate solutions to

the non-convex NP-hard beamforming problem and offer an attractive performance-

to-complexity trade-off compared to state-of-the-art techniques. The outline and

contributions of the thesis are as follows:

Chapter 2: Background

In this chapter, a brief overview of the wireless channel characteristics and the con-

cepts of multicasting and beamforming are provided. Moreover, the multiple-antenna

multicast networks are introduced and the different transmission modes existing in

these networks such as single-group and multi-group multicasting are presented. A

generalized system model for multicast networks is then developed. Based on this

model and by properly adjusting its parameters, the single-group and multi-group

multicasting transmission modes are considered in Chapter 3 and Chapter 4, re-

spectively. Finally, cooperative relay networks are introduced with an emphasis on

distributed beamforming techniques. A system model for distributed beamforming
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in cooperative relay networks is also presented.

Chapter 3: Transmit Beamforming for Single-Group Multicasting

In this chapter we examine the beamforming problem for single-group multicasting.

Several optimization problems which were proposed in other works based on different

optimization criteria are surveyed. Subsequently, the optimization problem based

on power minimization subject to SNR constraints is formulated and our proposed

techniques are introduced. We show via simulations and real measured data that our

proposed techniques outperform state-of-the-art techniques in terms of transmitted

power and enjoy a smaller and in some cases the same computational complexity as

the SDR-based technique, which achieves the best performance among the existing

techniques. This chapter is based on the following publications:

• A. Abdelkader, I. Wajid, A. B. Gershman, and N. D. Sidiropoulos, “Trans-

mit beamforming for wireless multicasting using channel orthogonalization and

local refinement,” Proceedings of the IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP’09), pp. 2281-2284, Taipei, Taiwan,

April 2009.

• A. Abdelkader, A. B. Gershman, and N. D. Sidiropoulos, “Multiple-antenna

multicasting using channel orthogonalization and local refinement,” IEEE Trans-

actions on Signal Processing, vol. 58, no. 7, pp. 3922-3927, July 2010.

Chapter 4: Transmit Beamforming for Multi-Group Multicasting

In this chapter we examine the beamforming problem for multi-group multicasting.

The optimization problems which were proposed in other works and state-of-the-

art techniques which were developed to solve these problems are first introduced.

Then, the power minimization problem is formulated and the SDR-based technique,

which was proposed in [52] to solve this problem is explained. A modification to the

SDR-based technique is introduced in order to reduce its computational complexity,
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while maintaining the same performance. Moreover, a novel approach based on hi-

erarchical modulation is developed to solve the power minimization problem. This

approach enjoys a significantly reduced computational complexity and achieves a bet-

ter performance in terms of the total transmitted power compared to the conventional

approaches. Another important advantage of the proposed approach is that it avoids

solving the beamforming problem for multi-group multicasting, which often becomes

infeasible if the number of users in the network is large. Instead, the QoS targets

are satisfied by solving a beamforming problem for single-group multicasting, which

is always feasible.

Chapter 5: Distributed Beamforming in Cooperative Amplify-and-Forward

Relay Networks

In this chapter, we consider the distributed beamforming problem in cooperative re-

lay networks. The channel orthogonalization-based approach, which was developed

in [4] to approximately solve the beamforming problem for conventional single-group

multicasting is extended to solve the beamforming problem for single-group multi-

casting in cooperative relay networks. We show via simulations that the proposed

technique outperforms the existing state-of-the-art techniques in the scenarios under

consideration. Moreover, a practical solution to the relay synchronization problem in

distributed beamforming with large delay spread is developed. The solution is based

on applying orthogonal frequency division multiplexing (OFDM) at the source and

the destination nodes, while jointly optimizing the complex weights applied at the

relays and the power allocation for each subcarrier of the OFDM transmission. This

chapter is based on the following publications:

• A. Abdelkader, S. Shahbazpanahi, and A. B. Gershman, “Joint subcarrier power

loading and distributed beamforming in OFDM-based asynchronous relay net-

works,” Proceedings of the Fourth International Workshop on Computational

Advances in Multi-Sensor Adaptive Processing (CAMSAP2009), pp. 105-108,

Aruba, December 2009.
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• A. Abdelkader, M. Pesavento, and A. B. Gershman, “Orthogonalization tech-

niques for single group multicasting in cooperative amplify-and-forward net-

works,” Proceedings of the Fourth International Workshop on Computational

Advances in Multi-Sensor Adaptive Processing (CAMSAP2011), pp. 225-228,

San Juan, Puerto Rico, December 2011.



Chapter 2

Background

Wireless communication has experienced huge advances over the last few decades and

today it is, by far, the most vibrant segment of the communication industry [113].

This fast growth was driven mainly by two complementary factors. The first factor is

the technological advances in the large scale integrated circuits which opened the door

for digital wireless communications and within few years, efficient and sophisticated

digital signal processing techniques were already implemented on small-sized and

energy-saving communication platforms. This revolutionary step, accompanied by

the outstanding success of the global system for mobile communications (GSM), the

first mobile cellular system with digital services, has increased the interest of the

public and the media in wireless communication. Ever since, the growing demand for

mobility, higher data rates, and better QoS has been another important factor for

driving the industry and shaping the future of wireless communication. Fig. 2.1 shows

the growth in the data rates in mobile cellular systems over the last two decades.

In wireline communications, the transmitter and the receiver can be thought of

as a pair of communicating terminals connected through a copper wire and isolated

from their surroundings. This is not the case in wireless communication, where elec-

tromagnetic waves propagate freely in space. Due to free space propagation, the

communicating terminals are significantly less isolated from their surroundings and

9
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100 Mbps 

Figure 2.1: Data rates of different generations of mobile cellular systems.

the impact of the wireless communication channel has to be taken into considera-

tion. This makes the design of wireless communication systems more challenging.

One main advantage of the wireless channel is its broadcasting nature which allows

transmitting the same signal to multiple receivers simultaneously. On the other hand,

this may lead to interference, for example, if multiple transmitters are transmitting

simultaneously to a single receiver as in the uplink of systems [113]. How to ben-

efit from the characteristics of the wireless channel and avoid its drawbacks is the

target of numerous research activities. The answer to this question clearly requires

a deep understanding of the characteristics of the channel and the development of

realistic channel models. In the next section, we describe the main characteristics of

the wireless channel and introduce a statistical channel model.

2.1 Wireless Channel Model

One of the important characteristics of the wireless channel is fading. It accounts for

the variation in the strength of the signal at the receiver due to the channel and can

be divided into three main components: path loss, large scale, and small scale fading.
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2.1.1 Path Loss Fading

In perfect conditions, the signal arrives at the receiver via the direct path propa-

gation of the transmitted electro-magnetic wave, which is commonly known as the

line-of-sight (LOS) component. The power of this received signal, PR, is inversely

proportional to the square of the distance d between the transmitter and the receiver,

i.e., PR ∝ d−2. However, in the presence of obstacles such as buildings between the

transmitter and the receiver, the LOS component vanishes and the power of the re-

ceived signal usually drops off at a rate higher than d−2. As a result, the path loss is

assumed to vary as d−αp where αp denotes the path loss exponent which is typically

between 2.5 for rural areas and 4.5 for urban areas where the density of obstacles is

higher [55].

2.1.2 Large Scale Fading

This type of fading, which is also known as “log-normal fading”, occurs due to the

shadowing effect of the obstacles which lie in the propagation path of the signal from

the transmitter to the receiver. It is modeled based on the assumption that each

obstacle between the transmitter and the receiver attenuates the signal by a factor

of 10−ξn, where ξn is a random value. If there are N0 randomly located obstacles,

the overall fading term varies as ∝ 10−
∑N0

n=1
ξn = 10−ξ, where ξ ,

∑N0

n=1 ξn. From

the central limit theorem, if N0 is assumed to be very large, the exponent ξ can be

considered as a random variable with normal (Gaussian) distribution of mean µ and

variance σ2, i.e., ξ ∼ N (µ, σ2). This explains the term ”log-normal“, which means

that the logarithm of the fading term, i.e., ξ is normally distributed.

2.1.3 Small Scale Fading

In the presence of many obstacles, the transmitted wave is subject to reflection,

refraction, diffraction, and scattering as shown in Fig. 2.2. This leads to the generation

of multiple waves propagating in multiple different paths. The arrival of multiple
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copies of the transmitted signal at the receiver, each with a slightly different path

length, is known as multipath fading or small scale fading. The term “small scale

fading” comes from the fact that huge fluctuations in the signal strength can occur if

the location of the receiver is slightly changed, i.e., sensitive to small scale movements.

Since most wireless communications occur in the 1-3 GHz band, i.e., the wave length

λ ∼ 30−10 cm, a variation in the location of the receiver as small as λ/2 can cause two

waves coming from two different paths to add destructively rather than constructively,

thus reducing the strength of the total received signal significantly. In order to model

the small scale fading term, we make use of the baseband equivalent signal model [41]

which is used to model the communication signals of limited bandwidth.

Figure 2.2: Multipath propagation scenario.

Assuming P random paths over which the signal arrives at the receiver, the re-

ceived signal at time instant t can be written as

y(t) = s(t)

P∑

i=1

aie
jφi (2.1)

where s(t), ai, and e
jφi denote the complex baseband representation of the transmit-

ted signal, the attenuation factor due to the ith path, and the random phase shift
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due to the ith path, respectively. The Rayleigh fading channel model assumes that

the attenuation over all P paths is equal, i.e., a1 = · · · = aP . Based on this assump-

tion and using the central limit theorem, as P increases, the received signal can be

written as

y(t) = s(t)h(t) (2.2)

where h(t) has a circularly symmetric complex Gaussian distribution with zero mean

and variance σ2
h ,i.e., h(t) ∼ CN (0, σ2

h). Its magnitude |h(t)| in this case is a Rayleigh

random variable with the p.d.f.

p|h(t)|(x) =
x

σ2
h

e
− x2

2σ2
h , x ≥ 0. (2.3)

If the LOS component exists and has a non-negligible power, the channel coefficient

h(t) is distributed as CN (µh, σ
2
h), where µh denotes the channel gain associated with

the LOS component. Its magnitude |h(t)| in this case is a Rician random variable

with the p.d.f.

p|h(t)|(x) =
x

σ2
h

e
−x2+|µh|2

2σ2
h I0

( |hµh|
σ2
h

)

, x ≥ 0, (2.4)

where I0(·) denotes the modified Bessel function of the first kind of zero-order [55].

This is known as the Rician fading model and the factor k2 =
|µh|2
2σ2

h

, which is known

as the Rician factor, is used to define the ratio of the power received via the LOS

path to the power received via the other paths [113].

So far, we have considered the channel model when the signals arriving at the

receiver over different paths have slight differences in their path lengths, which leads to

a variation in their phases at the receiver. If the path differences increase significantly

such that they exceed the symbol duration Ts, the channel becomes frequency selective

and another characteristic of the wireless channel becomes more pronounced, namely,

inter-symbol interference (ISI). In the following section, we describe the frequency

selective channels and introduce their channel model.
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2.1.4 Frequency Selectivity

The delay spread of a wireless communication channel Tm is defined as the delay dif-

ference between the longest and the shortest paths over which the signal is received

with significant power. If Tm < Ts, then the signals from all paths arrive within

one symbol duration and individual paths can not be resolved. Therefore, the fading

effect appears as a single multiplicative coefficient h(t) as in (2.2).

On the other hand, if Tm > Ts, the signals from all paths arrive over multiple sym-

bol durations creating ISI. The fading effect can therefore be resolved into multiple

coefficients and the time domain representation of the channel can be written as [41]

h(t) =

Lp∑

i=1

hiδ(t− τi) (2.5)

where Lp and δ(t) denote the total number of paths that can be resolved and the

Kronecker delta function, respectively. If we assume Rayleigh fading, each coefficient

hi in (2.5) has a complex Gaussian distribution, i.e., hi ∼ CN (0, σ2
hi
), i = 1, . . . , Lp.

In the frequency domain, the coherence bandwidth of the channel is defined as the

bandwidth over which the channel’s frequency response is considered to be approxi-

mately constant and is given by the relation

Bc ≃
1

Tm
. (2.6)

Given that the bandwidth B required in any efficient transmission scheme is approxi-

mately equal to 1/Ts [41], if Tm < Ts, it directly follows that Bc > B and the channel

response is approximately constant over the entire transmission bandwidth, i.e., the

channel is frequency flat. However, if Bc < B, different frequency components of the

transmitted signal will experience different frequency responses of the channel. In

this case, the channel is frequency selective and its impulse response is given in (2.5).

2.1.5 Time Selectivity

Another important characteristic of the wireless communication channel is the rate

with which the channel impulse response is changing with time. This divides the
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channels into two groups: fast fading and slow fading channels. If either the trans-

mitter or the receiver or both are moving, the characteristics of the multipath fading

channel will change. The rate of change depends on the wavelength λ and the relative

velocity v between the transmitter and the receiver. This is commonly referred to as

the Doppler frequency which is given as

fd =
v

λ
. (2.7)

The channel coherence time, Tc, is defined as the time over which the channel is

approximately constant, i.e., Tc ≃
1

fd
. If Tc > Ts, the channel is considered constant

over the entire symbol duration. This is known as slow fading. On the other hand,

if Tc < Ts, the channel changes within one symbol duration and has to be modeled

as a linear time varying system [55]. This is known as fast fading. In this work, we

will assume slow fading channels where Tc ≫ Ts. This is a valid assumption for fixed

wireless networks or if the symbol duration is relatively very small due to high data

rate requirements.

2.2 Multiple-Antenna Multi-User Networks

In the previous section, we considered the effect of the surrounding medium, such as

reflectors, scatterers and the motion of the communicating terminals on the reliabil-

ity of the wireless communication. We showed that the channel suffers from fading,

frequency selectivity (ISI in time domain), and time selectivity. This channel model

is only valid if we assume that a single datastream is transmitted over a given fre-

quency band. However, this assumption is impractical since the RF spectrum which

is suitable for wireless communication is limited and must be shared among different

network operators. Additionally, the demand for wireless communication services is

steadily increasing, which means that more users have to be accommodated within

the available RF spectrum. Therefore, multiple access (MA) techniques are required

to improve the spectral efficiency of the wireless networks by serving multiple users

simultaneously and in the same frequency band.
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Efficient MA techniques allow the transmission of multiple datastreams while

maintaining their separability at the receivers. This is achieved by orthogonal allo-

cation of the available resources, such as time and frequency, to each of the intended

receivers. However, the orthogonality is not always preserved at the receivers side

due to the influence of the channel. This introduces another type of interference to

the wireless channel which known as multiple access interference (MAI). A common

way of quantifying the MAI is to express the SINR at the receivers, which is the ratio

of the power of the desired signal to the power of the unwanted signals or interferers

plus noise. The SINR is an important measure of the QoS at each receiver in MA

networks. Increasing the number of users in the wireless network may lead to reduc-

tion of the SINR at some receivers due to the increase in MAI. In order to maintain

a high QoS, the transmitter may need to invest more power in the signals intended

to receivers suffering from MAI. This reduces the power efficiency of the network.

Traditional MA techniques include time division multiple access (TDMA), fre-

quency division multiple access (FDMA), and code division multiple access (CDMA).

These techniques which are based on exploiting three resources or degrees of freedom:

time, frequency, and spreading code, have been implemented and used for many years

[56], [113]. Also recently, multiple-input multiple-output (MIMO) antenna systems

have been identified as one of the key technologies which can increase the reliabil-

ity of communication and support higher data rates without additional bandwidth or

transmit power. MIMO systems can also facilitate another type of MA to the wireless

system, which can be easily combined with other MA techniques. As MIMO exploits

space as an additional degree of freedom, this MA scheme is generally termed space

division multiple access (SDMA). Through the deployment of multiple antennas at

the transmitter, it is possible design a particular beam pattern and to steer it in a

way which creates multiple spatial channels, one channel in the direction of each user.

The process of steering the beam pattern of a transmitter with multiple antennas

in the direction of the intended receivers is commonly known as transmit beamforming.

Beamforming is a powerful tool which allows transmission as well as reception of single
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or multiple signals of interest in a spatially selective manner [34]. Beamforming can

be regarded as a spatial filtering mechanism where a spatial filter or a beamformer is

designed for each datastream.

In conventional transmit beamforming for narrow band signals, for each datas-

tream, a single filter coefficient or a beamforming weight is applied at each antenna-

element [115]. These coefficients change the phase and the amplitude of the signal

at each antenna-element in order to create a pattern of constructive and destruc-

tive interferences in the wavefront. By careful adjustment of the coefficients of each

beamformer based on the CSI of each user, it is possible to create peaks in the desired

directions and nulls in the undesired directions for each user in order to reduce MAI.

However, in practice it is not always possible to perfectly adjust the beamformers to

avoid MAI at all users due to several reasons: Normally, the CSI is measured at the

receiver and fed back to the transmitter. For wireless networks with fading channels

where the channel is continuously changing, the CSI used in the design of the beam-

former may not be the actual CSI due to the feedback delay. Furthermore, the CSI is

subject to estimation and quantization errors introduced at the receiver side as well

as thermal noise introduced at the transmitter side. For these reasons, the design of

the beamformers at the transmitter assuming imperfect CSI has been proposed which

is known as robust beamforming [18], [75], [110], [117], [118]. In addition to imperfect

CSI, the distribution of the users in different spatial directions is random and is pos-

sibly changing with time. As a result, it might occur that users requesting different

datastreams are in close proximity of each other such that their complete spatial sep-

aration is impossible. This leads to the reduction of the SINR and consequently the

QoS at these users. Therefore, techniques for admission control have been developed

[17], [68], [69], [70], [71], [72]. Admission control aims at choosing the largest subset

of users to be admitted to the network while preserving a high QoS at each admitted

user. It is important to point out that the spatial selectivity of the transmitter can be

improved by increasing the number of transmit antennas. However, for technical and
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practical considerations, the number of transmit antennas in most wireless applica-

tions is limited. In the literature, numerous techniques have been proposed to design

the beamforming weights for multiple-antenna multi-user networks. The complexity

of the technique depends strongly on the design criteria and the transmission mode

in the network. There are three different modes of transmission which can occur in a

multi-user network:

Multi-User Unicast Transmission

This transmission mode corresponds to the conventional multi-user transmission which

was explained earlier. Multiple datastreams are transmitted simultaneously and in

the same frequency band to multiple users. The CSI of each user is used at the trans-

mitter to design multiple beamformers where each beamformer directs one signal in

the direction of its intended receiver. Over the last two decades, numerous advances

in this field have promoted spatial multiplexing to become an essential part of the

standards of the third generation (3G) and the fourth generation (4G) of mobile

cellular networks [22], [23], [24], [25], [26], [56], [73], [90], [91], [105], [106], [116].

Single-Group Multicast Transmission

The term ”multicast” describes the process of sending the same message to multiple

destinations simultaneously, also known as point-to-multipoint communication. Mul-

ticast services are expected to become very popular in the next generation wireless

systems due to a huge variety of applications which target mass audience. These

applications range from audio/video streaming and mobile TV to localized services

and messaging. Together with tremendous growth in the number of users, these ap-

plications are rapidly changing the nature of the traffic in almost all types of commu-

nication systems from the traditional point-to-point to point-to-multipoint. Efforts

to support multicast services in mobile cellular networks have taken place and spec-

ifications for multimedia broadcast/multicast services (MBMS) were introduced for

GSM and UMTS networks [1], [9], [78]. Also recently, enhanced MBMS (eMBMS)
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was proposed for LTE and worldwide interoperability for microwave access (WiMax)

networks [2], [44].

The eMBMS as well as MBMS services introduce additional functionalities and

procedures which have a strong impact on the network architecture. One main ob-

jective is to be able to support both point-to-point and multicast connections over

multiple hops within the core network or over a single wireless hop between the source

and the destinations. The problem of finding the best routes for multi-hop multicast

data has been considered in several other works [73], [116]. In this thesis, we focus on

physical layer multicasting where the multicast connection is assumed to be realized

directly over the radio link between the base station (BS) and the mobile stations

(MS). The group of MS which belong to the same multicast connection is called mul-

ticast group. This could be a group of users which have requested the same multicast

service such as Mobile TV.

In single-group multicasting the BS allocates a single frequency resource for all

users belonging to one multicast group, which is an efficient way of frequency resource

utilization. Also single-group multicasting reduces the data traffic in the core network

significantly, since it avoids the establishment of redundant point-to-point connections

if the users requesting the same service were to connect separately. On the other hand,

the BS, in case of point-to-multi-point connections, can no longer fully adapt to the

conditions of the radio link of each user individually. This limited adaptivity has a

negative impact on the QoS perceived by each user. Therefore, a trade-off between the

number of admitted users and guaranteeing high QoS for each user has to be met.

Note that in part of the wireless communication and signal processing literature,

single-group multicasting is also referred to as broadcasting transmission, which is

intuitive from the previous description [49], [96], [126], [127]. However, in the context

of information theory, the term broadcasting generally describes the transmission of

multiple independent messages to multiple users. hence, the transmission mode that

we have previously introduced as multi-user unicasting [15], [95].
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Multi-Group Multicast Transmission

This type of transmission is a combination of multiuser unicasting and multicasting,

since multiple datastreams are transmitted simultaneously and in the same frequency

band to multiple multicast groups, where each multicast group can have more than

one user. In this way, the transmitter is able to allocate a single frequency resource

to a large number of users, which is more efficient than single-group multicasting

and multi-user unicasting in terms of spectrum utilization. However, multi-group

multicasting can suffer from strong MAI in case of large number of multicast groups

and large number of users per group.

In general, finding a good operation point of the network is achieved by choos-

ing among the multi-user unicast, single-group multicast, and multi-group multicast

transmission modes in order to strike a balance between spectral efficiency, power

efficiency and the QoS that has to be delivered to the users [62]. The design of the

beamforming filters at the transmitter for the aforementioned transmission modes is

the main topic of this thesis and will be discussed in the following chapters in de-

tail. In the following section, we introduce the system model for multiple-antenna

multi-user networks and provide the main assumptions which will be used later in

this thesis. We consider the multi-group multicasting transmission, since it contains

the other two modes as special cases. The proposed model includes the transmission

and reception chain and provides the system parameters which can be easily adjusted

to represent particular modes of transmission.

2.2.1 System Model

Fig. 2.3 depicts the transmit beamforming scenario in a multi-group multicast net-

work. We consider a wireless communication system, where a single transmitter with

N transmit antennas communicates with M users each equipped with one receive

antenna. The input of the transmitter are L independent bitstreams which are si-

multaneously mapped to complex modulation symbols using, e.g., phase shift keying
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(PSK) or quadrature amplitude modulation (QAM). Within one symbol duration, L

complex symbols s1, . . . , sL are generated. These symbols are precoded before trans-

mission by passing through the beamforming filter. The beamforming filter generates

a set of intermediate symbols x1, . . . , xN , where each symbol is a linear combination

of the input symbols s1, . . . , sL. Stacking the input symbols in vector s , [s1, . . . , sL]
T

and the output symbols in vector x , [x1, . . . , xN ]
T , the input-output relation of the

beamforming filter is given as

x = W∗s =
L∑

k=1

w∗
ksk (2.8)

where (·)∗, W, and wk denote the complex conjugate operator, the N × L beam-

forming matrix, and the kth column vector of W which is also known as the kth

beamforming vector. Each symbol xi, i = 1, . . . , N , at the output of the linear

precoder passes through the analogue RF front-end, where the pulse-shape filtering,

upconversion, and amplification are performed. The output signals are then fed to

the antennas and transmitted simultaneously over the channel. Each of the M users

belongs to one of the L multicast groups denoted by the sets G1, . . . ,GL. Each of

the L multicast groups is interested in only one of the L simultaneously transmitted

signals.

Assuming slow flat fading channels between all the transmit antennas and all

the receivers, the baseband representation of the channel between the nth transmit

antenna, n = 1, . . . , N and the ith receiver, i = 1, . . . ,M can be modeled as in (2.2) by

the complex Gaussian random variable hn,i. The channel vector hi , [h1,i, . . . , hN,i]
T

can then be used to model the channel between all the transmit antennas and the

ith receiver, i = 1, . . . ,M . Also, rich local scattering is assumed at the transmitter

and the receivers such that the elements of hi, i = 1, . . . ,M are independent and

identically distributed (i.i.d.) random variables. If we denote the received signal

at the ith user after the demodulation block as yi, and assuming that the ith user

belongs to the kth multicast group Gk, then using (2.8), the baseband representation



22 Chapter 2. Background

Digital 

modulator

Digital 

modulator

Digital 

Demodulator

Precoding

filter

Receive

filter

W

User 1

Digital 

Demodulator

Receive

filter

User M 
sL

s1

xN

x1

vM

v1

h1,1

hN,1

h1,M

hN,M

y1

yM

s1

sL

Multicast group L

Multicast group 1

Figure 2.3: Generalized baseband system model for multiple-antenna multicast net-
works.

of yi in terms of s is given as

yi =

N∑

n=1

xnhn,i + νi

=xThi + νi

= wH
k hisk

︸ ︷︷ ︸

desired signal

+
∑

j 6=k

wH
j hisj

︸ ︷︷ ︸

MAI

+ νi
︸︷︷︸

noise

for all i ∈ Gk and j, k = 1, . . . , L (2.9)

where νi denotes a complex circularly symmetric Gaussian random variable which

models the additive white Gaussian noise (AWGN) at the jth receiver. The received

signal yi is processed via a receive filter to obtain an estimate ŝk of the desired symbol

sk.

Based on the values of the parameters L andM , single-group multicasting and multi-

user unicasting transmission modes can be described as special cases of this general

model as follows:
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• L =M and |G|s = 1, k = 1, . . . , L, where | · |s denotes the cardinality of the set.

This corresponds to the multi-user unicasting transmission mode where the kth

multicast group contains only a single user labeled as user k, k = 1, . . . , L. In

this case, equation (2.8) remains the same, while equation (2.9) simplifies to

yi = wH
i hisi

︸ ︷︷ ︸

desired signal

+
∑

j 6=i

wH
j hisj

︸ ︷︷ ︸

MAI

+ νi
︸︷︷︸

noise

for all i, j = 1, . . . , L.

• L = 1 which corresponds to single-group multicasting. In this case, the trans-

mitter is broadcasting a single datastream, i.e., all users belong to the same

multicast group. The transmitted signal vector is given as

x = w∗s (2.10)

where s and w denote the information symbol and the beamforming weight

vector at the transmitter, respectively. Note that in single-group multicasting,

no MAI exists and equation (2.9) is given as

yi = wHhisk
︸ ︷︷ ︸

signal component

+ νi
︸︷︷︸

noise

, for all i = 1, . . . ,M. (2.11)

2.3 Cooperative Relaying Networks

Cooperative communication aims at increasing the data rates and the reliability of the

communication in a wireless network by allowing the cooperation between co-located

devices. Due to the diversity of technologies used and the different topologies of exist-

ing wireless networks, cooperative communication has different forms and strategies.

Cooperative communication can be applied in modern multi-user wireless communi-

cation systems where the transmitter typically knows the number of subscribers and

has some information about the quality of their channels. In many cases, several

subscribers temporarily switch to the idle mode since they are inactive and do not

wish to exchange information with the transmitter. If another subscriber with poor
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channel quality is trying to communicate with the transmitter, it could make use of

the existing idle subscribers to relay its message to the transmitter. Fig. 2.4 shows

an example of cooperative communication in mobile cellular networks.

sh
ad

owin
g (N

LOS)

Base station

Mobile station

Coverage area

Relay station  

Subscribers acting as relay nodes

Figure 2.4: Relay stations and cooperative relaying in mobile cellular networks.

Another application is in wireless sensor networks, where several sensors are dis-

tributed over a certain geographical area, e.g., in order to perform some measure-

ments. In this case, the communication device in each sensor is limited in size and

can not deploy multiple antennas due to the size limitations of the sensor. Also,

the devices have a limited transmission range in order to extend the life time of the

sensors batteries. A simple strategy to collect the measurement data is to allow the

devices to receive the signals from their neighbors and forward them to other devices

in the network as shown in Fig. 2.5. After multiple hops, the message arrives at a cen-

tral processing unit where it could be further processed. This is known as multi-hop

cooperative communication which requires joint routing and resource allocation.

In many cases, the communicating devices are required to be cheap and mobile.

This imposes some limitations on the cost and size of the devices which makes MIMO

communication impractical. One of the applications of cooperative communication
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is that a pair of single-antenna devices can communicate through multiple single-

antenna relays. The relays act as a virtual multiple-antenna transmitter that forwards

or “relays” the signal it receives from the source to the destination. In this way, it is

possible to provide similar advantages of conventional MIMO communication, such as

the higher data rates and the improved reliability of communication for single-antenna

systems. In this context, MIMO techniques such as distributed beamforming [5], [13],

[14], [27], [28], [38], [39], [40], [48], [80], [81], [89], [92], [93], [111] and distributed

space-time coding (STC) [6], [7], [58], [59], [76], [92], [93] have been developed for

cooperative relay networks, where the term “distributed” emphasizes the fact that

the processing of the signals is done in a distributed fashion at the relays, hence

without mutual exchange of relays received data, in contrast to conventional MIMO

techniques, where the data received at all antennas is processed jointly.

Figure 2.5: Multi-hop relaying in wireless sensor networks.

In the scenarios where the relays act as virtual multiple-antenna transmitter, it

is required that the relays are globally synchronized at the symbol level. This type

of networks is known as synchronous relay networks. Denoting τd as the difference

in the propagation delay between the shortest path and the longest path relays, i.e.,

the relays which have the shortest and the longest total propagation delay from the

source to the relay and from the relay to the destination, respectively. If τd << Ts,

this means that the total propagation delays over all the relaying paths are compara-

ble and the relays are assumed to synchronized. However, if τd >> Ts, the relays need

to perform time synchronization. Since the relays are typically randomly located, the
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synchronization procedure requires some information exchange between the relays so

that each relay knows its relative delay with respect to the relay of the shortest path.

The information exchanged to perform the synchronization represents a traffic over-

head which is a major disadvantages of synchronous relay networks. For this reason,

asynchronous relay networks, where the relays are not assumed to be synchronous,

have been proposed as an alternative for cooperative relaying [3], [37], [59], [122].

In the literature, several relaying protocols have been proposed. These protocols

are classified based on the type of processing at the relays into two main classes:

Amplify-and-forward (AF) and decode-and-forward (DF) protocols. In AF protocols,

the signal processing at the relays is kept at the minimum level. Every relay node

receives the signal from the source in one time slot, multiplies it with a complex

coefficient, and forwards it in the next time slot to the destination [5], [13], [14], [27],

[28], [38], [39], [40], [48], [80], [81], [92], [93]. The complex coefficient applied at each

relay is chosen based on the availability of the CSI. If the CSI of the forward channels

from the source to all the relays and the backward channel from all the relays to the

destination are known at a centralized processing node, distributed beamforming can

be employed at the relays. In this case, the complex coefficients at the relays resemble

the beamforming weights of a transmitter with multiple-antennas. If the CSI is not

available, distributed STC techniques are considered.

In DF protocols, the relays decode the received signal in the first time slot and

forward the newly encoded signals to the destination in the next time slot [6], [7], [58],

[92], [93]. Similar to the AF protocols, distributed beamforming techniques can also

be applied in DF relay networks by multiplying the decoded signal at each relay with

a beamforming coefficient before transmission. In the absence of CSI, distributed

STC techniques can be applied.

Note that the AF protocol enjoys a low complexity at the relays, however, it has

the disadvantage of forwarding a distorted version of the source signal due to the

noise added at the receiver of each relay. Nevertheless, the destination node still

benefits from the diversity offered by receiving multiple independently faded replicas
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of the source signal. For the DF protocol, the effect of the noise is removed since each

relay restores the signal through decoding. However, if the received signal is highly

contaminated with noise, i.e., when the receive SNR at the relay is low, decoding

errors may occur at the relay and, consequently, at the destination.

Both AF and DF protocols can be used in full duplex or half duplex modes.

The type of the duplexing mode used in the relay network is determined based on the

capabilities of the relay nodes and the nature of the wireless application. In full duplex

scenarios, it is assumed that the relays can transmit and receive simultaneously on

two different frequency bands, whereas in the half duplex case, the relays can either

transmit or receive in one time slot. In most of the cases, it is assumed that the

relays are half-duplex. The reason is that in applications such as sensor networks,

the devices are typically of simple architectures which do not support full duplex

transmission. Other examples of full-duplex relaying are in mobile cellular networks

where fixed relays are deployed as a part of the infrastructure of the network to

improve the coverage at cell edges, see Fig. 2.4.

Cooperative relay networks can be further classified based on the number of com-

municating devices and the direction of the traffic flow in the network. In one-way

relaying, it is assumed that the traffic flows in one direction from the source to the

relays and from the relays to the destination. In bi-directional relaying, two communi-

cating devices use the relays to exchange infromation, i.e., each device is transmitting

and receiving signals over the relays [6], [7], [89], [39], [111]. Networks with multiple

sources and multiple destinations, where each source destination pair are communi-

cating with each other through a group of relays, are known as multiple peer-to-peer

relay networks [27], [28].

In the next section, we introduce cooperative relaying in the context of multicast

networks. We provide the system model and the main assumptions which will be

used later in Chapter 5.
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2.3.1 System Model

We consider a distributed beamforming scenario for single-group multicasting in one-

way half-duplex AF relay networks. Fig. 2.6 depicts a network consisting of a single

source node, R relay nodes and M destination nodes, where all nodes are assumed

to be single-antenna devices and there is no direct link between the source and the

destination nodes. It is also assumed that all the wireless channels between the

transmitter and the relays, and between the relays and the receivers are flat fading

channels. In the first time slot, the transmitter sends the symbol s to the relays with

transmit power P0. Each of the R relays multiplies its received signal with a complex

weight and forwards it to the receivers in the next time slot. Note that we assume

that the relays are globally synchronized at the symbol level. This means that in the

second time slot, the signals arriving from all the relays will add up coherently at each

receiver. If we define fi as the complex channel coefficients between the transmitter

and the ith relay and ni as the AWGN of the ith relay, respectively, the received

signal at the ith relay ri can be written as

Source

f1

fi

fR

wi

wR

g
i,1

g
R,1

g
1,1

M Destinations

R Relays

g
i,M

g
R,M

g
1,M
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Figure 2.6: System model for distributed beamforming in AF relay networks.
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ri =
√

P0fis+ ni. (2.12)

Let w∗
i denote the complex weight at the ith relay. The signal transmitted by the ith

relay ti is given by

ti =
√

P0fiw
∗
i s+ w∗

i ni. (2.13)

The signal received at the jth receiver is then given by

yj =

R∑

i=1

tigi,j =

R∑

i=1

√

P0fiw
∗
i gi,js+

R∑

i=1

w∗
i nigij + νj (2.14)

where gi,j and νj are the complex channel coefficients between the ith relay and the

jth receiver and the AWGN of the jth receiver, respectively. We define the vectors

w , [w1, . . . , wR]
T

f , [f1, . . . , fR]
T

n , [n1, . . . , nR]
T

gj , [g1,j, . . . , gR,j]
T , j = 1, . . . ,M, (2.15)

as the vector of complex coefficients at the relays, the vector containing the R for-

ward channels from the source to the relays, the vector of AWGN at the relays, and

the vector containing the M backward channels from the relays to the jth receiver,

respectively. Equation (2.14) can then be written as

yj =
√

P0w
H(f ⊙ gj)s+wH(n⊙ gj) + νj (2.16)

where ⊙ denotes the Hadamard product, hence element-wise multiplication. As it

was mentioned in Section 2.2.1, a rich scattering environment is assumed such that all

channel coefficients are i.i.d. random variables. We also assume that the information

symbols are uncorrelated with average power equal to one, i.e., E{|s|2} = 1. If we

define hj , f ⊙ gj as the vector of random coefficients which models the composite

channel from the transmitter via the relays to the jth receiver, then the signal power
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at the jth receiver Psj can be written as

Psj = P0E
{
wH(f ⊙ gj)(f ⊙ gj)

Hw
}

= P0E
{
wHhjh

H
j w
}

= P0w
HRhj

w (2.17)

where Rhj
, E

{
hjh

H
j

}
denotes the overall channel covariance matrix for the com-

posite link of the jth receiver. Note that if the instantaneous value of hj is known at

the transmitter, i.e., hj is deterministic, Rhj
becomes a rank-one matrix, otherwise

it is generally a full rank matrix. Therefore, we distinguish two types of scenarios

depending on the CSI available, either instantaneous CSI or covariance CSI. In instan-

taneous CSI scenarios, hj is assumed to be perfectly known, whereas in covariance

CSI scenarios, we assume that some estimate of Rhj
can be obtained, e.g., from the

sample covariance matrix.

Assuming that the AWGN at the jth receiver, the AWGN at the relays, and

the backward channel coefficients from the relays to the jth receiver are mutually

statistically independent and the noise is spatially white, the total noise power at the

jth receiver can be written as

Pnj
= E

{
wH(n⊙ gj)(n⊙ gj)

Hw
}
+ E

{
νjν

∗
j

}

= σ2
nw

HDgjw + σ2
ν (2.18)

where σ2
n and σ2

ν denote the variance of the AWGN at the relays and the jth receiver,

respectively, and Dgj , diag(E{gjg
H
j }) where diag(·) denotes the diagonal matrix.

Similarly, the total transmitted relay power is given by

Pt =

R∑

i=1

E{tit∗i } = wHDfw (2.19)

where Df , diag(E
{
f fH

}
) + σ2

nI and I denotes the R ×R identity matrix.



Chapter 3

Transmit Beamforming for

Single-Group Multicasting

In this chapter, we consider the transmit beamforming problem for single-group mul-

ticast networks. This problem has been investigated in several works and different

solutions have been proposed. In Section 3.1, we present a review of state-of-the-art

techniques and the recent advances in single-group multicast beamforming algorithms.

The beamforming problem based on minimizing the transmitted power subject to sat-

isfying the minimum SNR requirement of each user is formulated in Section 3.2. This

is a quadratic programming (QP) problem with non-convex constraints and it was

proved to be NP-hard problem in [97]. In Section 3.3, a computationally efficient

technique, which was developed in [97] to solve this problem is explained in detail.

The technique uses the semi-definite relaxation (SDR) approach to obtain an approx-

imate solution to the problem. A modified version of the damped Lozano with Lopez

Initialization (dLLI) algorithm, which was originally developed in [70] to solve the

admission control problem, is proposed in Section 3.4 to solve the power minimiza-

tion problem. In Section 3.5, we explain our proposed algorithms based on channel

orthogonalization techniques. The problem of maximizing the minimum SNR subject

31
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to a power constraint as well as the achievable bit rates in a multicast network are

considered in Section 3.6. In Section 3.7, the performance of our proposed techniques

is compared to the performance to state-of-the-art techniques based on simulation

results and real data experiments. The results show that the proposed techniques

outperform the state-of-the-art techniques in terms of transmitted power and offer

an attractive performance-to-complexity trade-off. Finally, a conclusion is made in

Section 3.8.

3.1 Motivation and Preliminary Work

In multicast networks, a trade-off between the transmitted power and the QoS at the

intended receivers has to be met. Finding the best trade-off is achieved by solving

an optimization problem, where the beamforming vector (vectors in case of multiple

groups) is the optimization variable. Since the single-group multicasting problem can

be specified in alternative ways, several optimization problems have been proposed

based on different objectives and cost functions [42], [49], [62], [63], [77], [96], [97],

[99], [100], [101], [108], [126], [127].

In [62], [77], the first optimization problem for single-group multicasting has been

formulated. The objective is to maximize the average of the receive SNR of all

users. This approach has a reduced computational complexity, since the solution,

also known as the average SNR beamformer, is obtained directly by solving an eigen-

decomposition problem. However, the average SNR approach has the disadvantage

of being unfair to some users since it maximizes the average but not the individual

SNR. This may lead to the existence of users with very poor SNRs. However, in

multicasting applications, the worst SNR is an important limiting value, since it

determines the common information rate. For this reason, several other works have

proposed different objectives which guarantee fairness among users.

A reasonable optimization objective which promotes fairness among users is the

maximization of the minimum SNR among all users subject to an upper bound on



3.1 Motivation and Preliminary Work 33

the transmitted power P0. This is known as max-min fair beamforming and the

associated problem and can be written as

max
w

min
i

γi s.t. PT ≤ P0, i = 1, . . . ,M (3.1)

where w, PT , and γi denote the beamforming weight vector, the average transmitted

power, and SNR at the ith receiver, respectively. In [126] and [127], Zhang et al.

proposed numerical methods to solve the max-min fair beamforming problem based

on iterative spatial diagonalization (ISD). The algorithm proposed is restricted to the

case where the number of users is less than or equal to the number of antennas at the

transmitter.

Another optimization problem which is interesting from the view point of the

network operator is to minimize the average transmitted power while satisfying the

prescribed QoS requirements of all users. Since the SNR at the ith receiver, denoted

as γi, can be taken as a good measure of the QoS, the power minimization problem

is defined

min
w

PT s.t. γi ≥ γmin,i, i = 1, . . . ,M (3.2)

where γmin,i denotes the minimum required SNR at the ith receiver to achieve the

QoS requirement, respectively. This problem was first formulated in [108] and was

solved using sequential quadratic programming (SQP). However, the existing SQP

solvers have a high computational cost and they require careful selection of the ini-

tialization points to avoid local minima. Furthermore, it was shown in [108] that the

diversity techniques such as STC, which typically have a much lower complexity and

do not require CSI at the transmitter, perform better than beamforming techniques

in terms of transmitted power especially in multicasting scenarios with significantly

large number of users [120].

In [97], a more computationally efficient approach for solving the max-min fair

and the power minimization problems was proposed. The authors first proved that

both problems are NP-hard and showed that the optimal solutions to both problems

are equivalent to each other up to power scaling. As a result, the authors proposed an
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approximate solution based on semi-definite relaxation (SDR) followed by customized

randomization techniques. The algorithm developed in [97] was shown to perform

substantially well even in the case where the network had more users than transmit

antennas. Furthermore, the SDR-based technique, in particular cases, e.g., when the

number of users is relatively small, can directly find the optimal solution by solving

the relaxed version of the original problem without employing the randomization

step that only yields suboptimal solutions. The high performance and relatively low

complexity which falls within practical limits have promoted this technique to be

considered as a bench-mark technique and for this reason it will be explained in more

detail in Section 3.3.

More recently, the traditional beamforming techniques developed for unicast sce-

narios, such as the matched filter or the zero-forcing techniques, were extended to

the multicast case in [99]-[101]. The proposed techniques enjoy a low computational

complexity and achieve a performance close to the SDR-based technique especially

in the case of small number of users.

Another promising approach that applies to the single-group multicasting problem

has been proposed in [63]. The iterative algorithm of [63] is very efficient from the

computational point of view, yet in some cases its performance is very sensitive with

respect to initialization and it may fail to converge as limit cycles can be easily

demonstrated via constructed examples [70], [72]. To improve the performance of the

latter approach, the authors of [72] proposed its enhancement using i) the average

SNR beamformer of Lopez [62] as initialization; and ii) a step-size damping strategy

that was empirically optimized. In [72], the so-obtained technique is referred to as

dLLI (damped Lozano with Lopez Initialization) algorithm.

The use of channel orthogonalization in the context of single-group multicasting

was originally proposed in [42], which also included a successive orthogonal refinement

algorithm that is similar in spirit to the one introduced in [63]. The best algorithm

in [42] is called reduced-complexity combine-2 (RCC2) and incorporates successive

orthogonal refinements. The simulations in [42] suggest that this combination can
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slightly outperform the SDR-based technique of [97] when 100 randomization in-

stances are used. However, this number of instances is an order of magnitude lower

than the number suggested in [97] for the given problem size and it is generally known

that increasing the number of randomizations significantly improves the performance

of the SDR solution.

The performance of the approach in [42] is limited mainly by the suggested order

of orthogonalization and scaling in the successive refinement algorithm, as well as by

its (RCC2) initialization. In contrast to [42], our proposed approach examines various

orthogonalization orders in a pseudo-random way [57] and then chooses the best one

based on the criterion of minimum transmitted power.

3.2 Problem Formulation

Consider a single-group multicasting scenario, where the transmitter is broadcasting

a single datastream to all users. The users are randomly distributed within a certain

coverage area of the transmitter as shown in Fig. 3.1. The objective is to design

the beamformer to minimize the total transmitted power subject to individual SNR

constraints. Taking into account the system model presented in Section 2.2.1 and

assuming that the information symbols at the transmitter are typically uncorrelated

and have a variance equal to one, i.e., E{s∗s} = 1. The average transmitted power

can be computed as

PT = E{xHx} = E{s∗s}‖w‖2 = ‖w‖2. (3.3)

From (2.11), the SNR expression of the ith receiver can be written as

γi =
E{wHhiss

∗hH
i w}

σ2
i

, i = 1, . . . ,M (3.4)

where σ2
i denotes the variance of noise at the ith receiver. Assuming that the trans-

mitter accurately knows the CSI for all users, i.e., the instantaneous value of the
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Figure 3.1: A transmitter with multiple-antennas broadcasting to a single multicast
group.

random vector hi, i = 1, . . . ,M , is known, (3.4) can be written as

γi =
|wHhi|2
σ2
i

, i = 1, . . . ,M (3.5)

and the power minimization problem in (3.2) can be expressed as

min
w

‖w‖2

s.t. |wHh̃i|2 ≥ 1, i = 1, . . . ,M (3.6)

where

h̃i , hi/
√

γmin,iσi2

denotes the ith user’s normalized downlink channel vector. The problem in (3.6)

represents a quadratically constrained quadratic program (QCQP) and the constraints

are non-convex since the ith constraint, i = 1, . . . ,M , requires the convex quadratic

function wHh̃ih̃
H
i w to be greater than equal a constant and not smaller or equal, as

in convex quadratic constraints.

In the case where M = 1, we only have one user in the network and the problem

reduces to a matched filter design problem and the optimal beamforming weight

vector wopt is directly given by

wopt =
h̃

‖h̃‖2
(3.7)
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where h̃ denotes the normalized downlink channel vector. As the number of users

increases, the difficulty of the problem increases and a closed form solution as in

(3.7) generally does not exist. Although several techniques were developed to provide

computationally efficient solutions to the problem in (3.6) in the case where M ≤ N ,

in most current MIMO wireless networks, the number N is small due to cost and size

limitations. Therefore, restricting the number of admitted users M to be less than N

may not allow the full exploitation of the benefits of multiple-antenna transmission.

In the following, single-group multicasting networks with M > N are considered,

where the constraints in (3.6) form a system of overdetermined inequalities. It was

shown in [97] that this problem contains a binary partitioning problem as a special

case and therefore, it is NP-hard [32], i.e., solving an arbitrary instance of this problem

in polynomial run-time is highly unlikely, hence efficient algorithms are required to

obtain suboptimal solutions.

3.3 SDR-Based Technique

SDR is a popular and well established approach which has been commonly used in

a number of communications applications, e.g., [67], [98], [114], [128]. Following the

same procedure as in [97], let us define the matrices X , wwH and Qi , h̃ih̃
H
i for all

i = 1, . . . ,M . Using the fact that |wHh̃i|2 = trace{wHh̃ih̃
H
i w} = trace{wwHh̃ih̃

H
i },

the problem in (3.6) can be rewritten as

min
X

trace(X)

s.t. trace(XQi) ≥ 1, i = 1, . . . ,M

X � 0

rank{X} = 1 (3.8)

where the constraint X � 0 means that X belongs to the set of positive semi-definite

matrices which is convex. Similarly, the trace constraints and the cost function in

(3.8) are linear inequalities and a linear function in X, respectively. This motivates
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using convex optimization techniques to solve the problem in (3.8). However, the

constraint rank{X} = 1 is non-convex. Therefore, the problem is first relaxed by

dropping the rank constraint. The resulting convex optimization problem after the

relaxation step is written as

min
X

trace(X)

s.t. trace(XQi) ≥ 1, i = 1, . . . ,M

X � 0 (3.9)

which is a semi-definite programming problem (SDP) that can be easily solved using

SDP solvers such as SeDuMi [107] or CVX [36]. Both solvers use the interior point

methods to efficiently solve the SDP problem in (3.8) with a worst case computational

complexity of O((M +N2)3.5) [97]. The solution of the problem in (3.9), denoted as

Xopt, is generally not a rank-one matrix. In order to obtain a solution to the original

problem in (3.8), the rank of Xopt is determined. If rank{Xopt} = 1, this means

that Xopt = woptw
H
opt where wopt is the optimal solution to the original problem. If

rank{Xopt} > 1, randomization techniques are used to generate multiple candidate

weight vectors {wcand,j}nrand

j=1 from Xopt, where nrand denotes the number of random-

izations performed. In [97], three different randomization techniques were considered.

Rand A:

The eigen-decomposition of Xopt is computed as: Xopt = USUH , and the jth candi-

date vector, j = 1, . . . , nrand, is chosen as wcand,j = US
1

2ej , where ej is N × 1 vector

of complex random variables uniformly distributed on the unit circle of the complex

plane. This choice of ej satisfies the equality: wH
cand,jwcand,j = trace(Xopt), i.e., the

cost function of each candidate weight vector is equal to that of Xopt.

Rand B:

The elements of the jth candidate vector are chosen as: [wcand,j]k =
√

[Xopt]kk[ej ]k,

where [·]m and [·]mn denote themth element of a vector and the element in themth row

and the nth column of a matrix, respectively. This ensures that |[wcand,j]k|2 = [Xopt]kk

[114], which is a stricter condition than that of Rand A.
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Rand C:

The jth candidate vector is computed as: wcand,j = US
1

2zj, where zj is N × 1 vec-

tor of zero mean circularly symmetric complex Gaussian random variables with unit

variance. This satisfies E{wcand,jw
H
cand,j} = Xopt [64]. Note that the previously men-

tioned randomization techniques are heuristic in nature and were designed such that

their computational cost is negligible compared to that of computing Xopt [97].

For each of the candidate weight vectors generated by Rand A, Rand B and Rand

C, the constraints in (3.6) are checked. If one or several constraints are violated, a

minimum scaling of the candidate weight vector is computed by satisfying the most

violated constraint with equality. The jth candidate weight vectors is rescaled as

w̃cand,j =
1

mini |wH
cand,jhi|

wcand,j, i = 1, . . . ,M. (3.10)

Finally, out of the scaled candidate weight vectors, the weight vector with the least

norm is selected. The additional computational complexity due to the randomization

step is O(nrandMN), which, for reasonably small nrand, can be neglected compared to

the complexity of the interior point methods. Therefore, the overall computational

complexity of the SDR-based technique is determined as O((M + N2)3.5) [97]. It is

important to point out that if the solution of the relaxed problem Xopt is not rank-

one, then trace(Xopt) represents a lower bound on the power required to satisfy all

the constraints of the original problem in (3.6). This bound is exact if and only if

a solution Xopt with rank equal to one can be obtained. In the simulations section,

trace(Xopt) is used to assess the efficiency of different techniques which approximately

solve the problem in (3.6).

3.4 DLLI-Based Technique

The dLLI is a highly heuristic algorithm, which was originally formulated in [70] to

solve the joint beamforming and admission control problem in multi-group multicast

networks with limited transmit power. In case of power minimization under prescribed



40 Chapter 3. Transmit Beamforming for Single-Group Multicasting

QoS constraints for single-group multicasting as described in (3.6), the problem is

always feasible and no admission control is required. Therefore, a slightly modified

version of the dLLI algorithm is developed in this section to solve the problem in

(3.6).

The dLLI algorithm computes the beamforming weight vector iteratively. The

initialization step starts by computing the weight vector w0 which maximizes the

average SNR of all users. This weight vector is given as the principal eigenvector of

the channel pseudo-correlation matrix, i.e., the matrix obtained by computing the

ensemble average [62]

Ch =
1

M

M∑

i=1

h̃ih̃
H
i . (3.11)

The tth iteration of the weight vector, wt, is computed from the previous value wt−1

by taking a step in the direction of the gradient of the worst SNR while keeping the

norm of wt equal to one by rescaling. In order to avoid limit cycles and to ensure that

the algorithm converges, the step size in the tth iteration is controlled by a back-off

factor µt which is (aggressively) reduced every 10 iterations [72]. The algorithm stops

if the change in the worst SNR is less than or equal to a certain threshold. We remark

that this algorithm can be considered as a linearization of the original problem, since

in every iteration, a linear approximation of the SNR function of the current worst

SNR user is used to update the weight vector. The dLLI algorithm is summarized

in Table 3.4. The computational complexity of the dLLI algorithm is of O(IMN),

where I is a bound on the number of iterations that depends only on the initial µt.

3.5 The Proposed Orthogonalization Techniques

In this section, we develop a channel orthogonalization with local refinement based

approach to solve the problem in (3.6) in an approximate way [4]. As typically

the number of users in the network is larger than the number of transmit antennas

(M > N), hereafter only this case will be considered. In the proposed approach,
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Table 3.1: Summary of the dLLI algorithm.

Step 1. Compute w0 = P{Ch} where Ch is defined in (3.11) and P{·} denotes
kjdthe principal eigenvector.

Step 2. Rescale w0 as w0 = w0/‖w0‖.

Step 3. Set t=1 and initiate µt.

Step 4. If t mod 10 = 0 then µt =
µt−1

t/10 else µt = µt−1.

Step 5. Find the user with the worst SNR and denote its index k.

Step 6. Update the weight vector as wt = wt−1 + µth̃kh̃
H
k wt−1.

Step 7. Rescale wt as wt = wt/‖wt‖ and increment t.

Step 8. Repeat Steps 4 to 7 until no significant change in the worst SNR occurs.

Step 9. Scale the final w to satisfy the worst SNR with equality.

first a subset of N vectors is chosen from the set {h̃i}Mi=1 to generate N orthonormal

vectors qi, i = 1, . . . , N . As these vectors span the whole N -dimensional space, the

desired weight vector w can be represented as a linear combination:

w =
N∑

i=1

ciqi, (3.12)

where c = [c1, . . . , cN ]
T is the vector of complex coefficients. From the orthonormality

property of the vectors qi, it follows that

‖w‖2 = ‖c‖2. (3.13)

The key idea of this approach is to choose each component ciqi of w in (3.12) to

satisfy the QoS constraints in (3.6) corresponding to the chosen subset of channel

vectors with equality. The remaining (M −N) QoS constraints can be then satisfied

by scaling the so-obtained vector w so that the most violated constraint is satisfied

with equality.
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3.5.1 The QR Decomposition-Based Beamforming Technique

Consider the N × M matrix H , [h̃1, . . . , h̃M ] whose columns are the vectors h̃i,

i = 1, . . . ,M . Let the N ×N matrix V be obtained by discarding (M −N) randomly

selected columns of H. Applying QR decomposition to V, we obtain

V = [q1, . . . ,qN ]










r11 r12 · · · r1N

0 r22 · · · r2N
...

...
. . .

...

0 · · · 0 rNN










, QR (3.14)

where rii > 0 for all i = 1, . . . , N . Equation (3.12) can be rewritten as

w = Qc (3.15)

and using (3.14), (3.15), and the property QHQ = IN , we have

wHh̃i = cHQH h̃i = cHQHQrl = cHrl (3.16)

where it is assumed without any loss of generality that h̃i has been chosen as the lth

column of V and rl denotes the lth column of R. Then, using (3.13) and (3.16), and

keeping in (3.6) only the N QoS constraints that correspond to the columns of V,

the latter problem can be transformed to

min
c

‖c‖2

s.t. |cHri|2 ≥ 1, i = 1, . . . , N. (3.17)

Although the problem (3.17) has the same mathematical form as (3.6), an impor-

tant difference between these two problems is that the vectors ri inherit the upper-

triangular structure of the matrix R. Also, as N < M , the number of constraints in

(3.17) is less than in (3.6). These two facts make it possible to satisfy the constraints

in (3.17) with equalities by computing the coefficients ci, i = 1, . . . , N successively.

In particular, from the first constraint |cHr1| = 1, we obtain that |c1r11| = 1 and,

hence, |c1| = 1/r11. Note that the phase of c1 can be chosen arbitrarily. Indeed, due
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to the successive way of computing the coefficients ci (i = 1, . . . , N), any change of

arg{c1} will only cause a rotation of the computed weight vector and, clearly, such a

rotation will not alter the cost function. Therefore, without any loss of generality, we

can set arg{c1} = 0. That is, the first coefficient can be computed as

c1 = 1/r11. (3.18)

From the kth constraint |cHrk| = 1 for any k = 2, . . . , N , we have

∣
∣
∣
∣
∣

k∑

i=1

c∗i rik

∣
∣
∣
∣
∣
= 1. (3.19)

Defining βk ,
∑k−1

i=1 c
∗
i rik for k = 2, . . . , N , we can rewrite (3.19) as

|c∗krkk + βk| = 1. (3.20)

Equation (3.20) illustrates the kth step of our proposed successive algorithm to com-

pute the vector c. In this step, all ci for i = 1, . . . , k− 1 have already been computed

(that is, the value of βk is given), and ck should be obtained from (3.20) so that the

increase of the cost function ‖c‖2 caused by ck is minimized. Obviously, this is equiv-

alent to selecting ck that satisfies (3.20) with the smallest absolute value ck. From

the fact that rkk is positive, it readily follows that such an optimal value of ck can be

found as

ck =

{
1−|βk|
rkk

e−j arg{βk} , |βk| < 1

0 , |βk| ≥ 1.
(3.21)

Equations (3.18) and (3.21) describe the proposed technique to successively compute

the coefficients ck, k = 1, . . . , N . After computing the whole coefficient vector c

in this way, the associated weight vector can be found from (3.12). The remaining

(M−N) QoS constraints to be satisfied correspond to the (M−N) discarded columns

of H. To satisfy the latter constraints, we check if any of them is violated and then

rescale the resulting weight vector so that the most violated constraint is satisfied

with equality.
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Since the choice of the columns of V from H and their particular order can greatly

affect the resulting performance of our technique, multiple candidate values of w

are computed. These candidate weight vectors correspond to different choices of the

discarded columns of H and different orders of the remaining columns of V. Then,

from these candidate weight vectors, the vector with the smallest norm, i.e., with the

lowest total transmitted power, is finally chosen.

The process of finding the best (in terms of performance) ordered subset of N

vectors out of the set of M channel vectors {h̃i}Mi=1 requires generating the weight

vector and checking the cost function for all M !/(M − N)! possibilities. Clearly, for

large M and N this is prohibitive. Therefore, we propose to consider J ≪M !/(M −
N)! random permutations where J is a design parameter that can be used to trade

off between computational complexity and performance. As a result, there will be J

candidate weight vectors {wcand,j}Jj=1 and the resulting dominant complexity of our

algorithm is given by O(J(N3 +MN)). Therefore, for a reasonably low choice of

J , the proposed technique represents a computationally attractive alternative to the

SDR-based technique of [97].

3.5.2 The Gram-Schmidt Orthogonalization-Based Beamform-

ing Technique

As the computational complexity of the QR decomposition based technique of Section

3.5.1 can be still considerably high, let us consider a computationally more efficient

ad hoc approach for selecting the columns of V and the order in which the columns

are selected in the scheme proposed in the previous subsection. Our approach uses

the Gram-Schmidt procedure to orthogonalize the selected channel vectors.

We start by choosing an arbitrary initial channel vector v1 from the set {h̃i}Mi=1.

In what follows, we denote the N vectors chosen from this set at the N steps of

the Gram-Schmidt procedure as vi, i = 1, . . . , N , so that V = [v1, . . . ,vN ]. The

rule for selecting these vectors will be discussed in the sequel. The Gram-Schmidt
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orthogonalization procedure can be expressed as

bk= vk −
k−1∑

i=1

(qH
i vk)qi, qk = bk/‖bk‖ (3.22)

for k = 2, . . . , N where q1 = v1/‖v1‖. In the kth step of this procedure, the interme-

diate weight vector can be obtained as

wk =
k∑

i=1

ciqi (3.23)

where the principle of computing the coefficients ci is the same as in the QR decom-

position based technique of the previous subsection, i.e.,

ck =

{
1−|µk |
‖bk‖ e−j arg{µk} , |µk| < 1

0 , |µk| ≥ 1
(3.24)

where µk ,
∑k−1

i=1 c
∗
i (q

H
i ṽk) and bk is computed as in (3.22). The key of our approach

to select the channel vectors vk from {h̃i}Mi=1 can be described as follows. At the

kth step (k > 1) of the above Gram-Schmidt procedure, the vector vk is chosen such

that it is the vector which has the smallest magnitude of its inner product with the

intermediate weight vector of the previous step wk−1, i.e., the channel vector of worst

SNR user. Since the newly added component to the weight vector in the kth step ckqk

is orthogonal to all the previously selected channel vectors v1, . . . ,vk−1, updating the

weight vector with this component will not violate any of the previously satisfied

constraints. Finally, (3.12) is used to compute the resulting w. This vector is then

rescaled to satisfy the “most violated” of the remaining (M − N) constraints with

equality. Note that selecting the channel vectors in the Gram-Schmidt process in the

order described previously resembles a special case of QR-decomposition with pivot-

ing, where the permutation matrix for the pivoting in this case is defined such that

the channel vector of the worst SNR user is always selected in each orthogonalization

step.

The whole orthogonalization process is repeated M times, where each time a new

channel vector is chosen as the initial vector v1 for the Gram-Schmidt procedure.



46 Chapter 3. Transmit Beamforming for Single-Group Multicasting

As a result, we end up with M candidate weight vectors {wcand,j}Mj=1 and the one

having the smallest norm is chosen as the final weight vector. The complexity of this

technique is O(MN3 +M2N).

3.5.3 Local Refinement

To further improve the performance of the techniques developed in Subsections 3.5.1

and 3.5.2, we introduce a local search based refinement step. The idea is to perform

a norm-constrained local search for any candidate weight vector wcand,j used in these

techniques.

For all values of j, the local refinement algorithm takes wcand,j as an initial value

and then searches for another vector w̃j in its neighborhood that maximizes the worst

user SNR and has the same cost function ‖wcand,j‖. This can be achieved by finding

the local minimum of

f(w̃j) =
‖w̃j‖

mini |w̃H
j h̃i|

, i = 1, . . . ,M.

The resulting vectors are then treated as the refined candidate weight vectors, which

are rescaled such that the worst SNR is satisfied with equality. Note that global max-

imization of the worst user SNR under a norm(power) constraint is also non-convex,

NP-hard, and closely related to our original problem [97]; but what we advocate here

is a local optimization in the vicinity of the candidate weight vector wcand,j, which can

be easily accomplished using a variety of standard methods. We will use the damped

version of Lozano’s algorithm [63], as shown in Section 3.4, where the initialization

vector w0 is chosen as wcand,j. Both algorithms of Section 3.5.1 and Section 3.5.2

with local refinement are summarized in Tables 3.2 and 3.3, respectively.
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Table 3.2: Summary of the beamforming technique of Section 3.5.1.

Step 1. Obtain the matrix V by randomly selecting and permuting
abN columns of H.

Step 2. Obtain the matrices Q and R using QR decomposition of V.

Step 3. Compute the candidate weight vector using (3.12), (3.18) and (3.21).

Step 4. Locally refine this weight vector.

Step 5. Rescale the refined vector so that the most violated from all
abcthe M constraints in (3.6) is satisfied with equality.

Step 6. Repeat steps 1 to 5 for J times to obtain {w̃i}Ji=1.

Step 7. Select from {w̃i}Ji=1 the vector with the minimum norm to be the final
abcsolution.

3.5.4 The Proposed Beamforming Approach in Case of Co-

variance CSI

The availability of instantaneous CSI at the transmitter requires that the channel

variations sensed by the receiver are promptly fed back to the transmitter. This

may introduce a huge feedback overhead in the network, especially in the case of

fast fading channels. An alternative approach is to design the beamformer based on

information about the channel covariance matrix of each user, which is known as

covariance CSI. In this case, the CSI is fed back only if major changes in the channel

occur and the transmitter takes the expectation over a number of samples and not the

exact value of h̃ih̃
H
i to evaluate the SNR of the ith user, i = 1, . . . ,M . Although this

approach has less feedback requirements, it comes at the cost of sacrificing the QoS

guarantees. The reason is that the beamformer based on the covariance CSI will only

satisfy the SNR constraint of each user on an average basis and the instantaneous

values may sometimes be below the average. Furthermore, the channel covariance

matrix computed is usually the sample covariance matrix and not the exact one



48 Chapter 3. Transmit Beamforming for Single-Group Multicasting

Table 3.3: Summary of the beamforming technique of Section 3.5.2.

for j = 1, . . . ,M

Step 1. Define H = {h̃i}Mi=1 and select v1 = h̃j .

Step 2. H := Hr h̃j . Re-index all vectors in H.

Step 3. Compute q1 = v1/‖v1‖.

Step 4. Compute c1 using (3.18) and obtain w1 = c1q1.

Step 5. For k = 2, . . . , N

1. For all current vectors inH, compute αi = |wH
k−1h̃i|, i = 1, . . . ,M−k+1.

2. Select vk = h̃l where αl is the minimum value from {αi}M−k+1
i=1 and h̃l

is the corresponding channel vector.

3. H := H r h̃l. Re-index all vectors in H.

4. Compute qk using (3.22) and ck using (3.24).

Step 6. Compute the candidate weight vector w̃j using (3.12).

Step 7. Locally refine this weight vector.

Step 8. Rescale the refined vector so that the most violated from all
abcthe M constraints in (3.6) is satisfied with equality.

end for

Step 9. Select from {w̃j}Mj=1 the vector with the minimum norm to be the final
abcsolution.

which makes it subject to measurement errors as well as errors due to the limited

number of samples taken. Nevertheless, this design offers a good trade-off between

practicality and system performance.

Let R̂i ,
∑Ns

n=1 h̃nh̃
H
n /Ns denote the normalized sample covariance matrix of the

ith user where Ns denotes the number of channel samples used for the computation

of R̂i. For a large number of Ns, R̂i approaches the exact channel covariance matrix

of the ith user Ri, i.e., as Ns increases, R̂i ≈ Ri. Therefore, the normalized SNR
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expression for the ith user computed at the transmitter based on R̂i is given as

γ̃i = wHR̂iw, i = 1, . . . ,M (3.25)

and similar to (3.6), the power minimization problem can be formulated as

min
w

‖w‖2

s.t. wHR̂iw ≥ 1, i = 1, . . . ,M. (3.26)

For the SDR-based technique, the same algorithm developed to solve the problem

in (3.6) is used here to approximately solve the problem in (3.26). Rewriting the

problem in (3.26) and dropping rank constraint, we have:

min
X

trace(X)

s.t. trace(XQ̂i) ≥ 1, i = 1, . . . ,M

X � 0

(3.27)

where Q̂i , R̂i. Note that the only change is that the matrices Qi in (3.9) which are

rank-one are now replaced by the matrices Q̂i which are, per definition, of higher rank.

In order to solve the problem in (3.26) using our proposed techniques of Section 3.5,

an additional approximation step has to be introduced, since the orthogonalization

techniques can only be applied to SNR constraints in the vector product form as in

(3.6). Consider the SNR constraint of the ith user in (3.26), which can be written as

wHR̂iw =

ri∑

k=1

λk,i|wHuk,i|2 ≥ 1 (3.28)

where ri, λk,i, uk,i denote the rank, the non-zero eigenvalues, and the corresponding

non-zero eigenvectors of R̂i, respectively. Note that, per definition, the matrix R̂i

is a positive semi-definite matrix with non-negative eigenvalues. This allows the

approximation of the constraint in (3.28) by ri separate constraints, one per non-zero
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eigenvalue, where each of these constraints has the same vector product form as in

(3.6). For the ith user, the approximation is written as

|wHul,i|2 ≥
1

∑ri
k=1 λk,i

, l = 1, . . . , ri. (3.29)

If all the constraints in (3.29) are satisfied with equality, the original constraint in

(3.28) will also be satisfied with equality but the reverse is not always true. To prove

this, let us consider the SNR constraint of the ith user and assume for simplicity that

ri = 2, i.e., the approximation in (3.29) will yield two separate constraints. Assuming

that the vector w satisfies both constraints, it follows that

|wHu1,i|2 =
α1

λ1,i + λ2,i
, |wHu2,i|2 =

α2

λ1,i + λ2,i
(3.30)

where α1, α2 ≥ 1. The SNR of the ith user in (3.28) is then given as

wHR̂iw =
λ1,iα1

λ1,i + λ2,i
+

λ2,iα2

λ1,i + λ2,i
≥ 1 (3.31)

If α1 = α2 = 1, the constraints in (3.30) and the SNR constraint in (3.31) are

all satisfied with equality. However, if we define a small positive value β < 1 and

substitute α1 and α2 with α1−β and α2+β(
λ1,i

λ2,i
), respectively, then the SNR constraint

in (3.31) will still be satisfied with equality while the first constraint in (3.30) will be

violated. This means that the inequalities in (3.29) describe a feasible set that is an

inner approximation of the original feasible set for the SNR constraint of the ith user

in (3.28). Using (3.29), the power minimization problem in case of covariance CSI

can be approximated as

min
w

‖w‖2

s.t. |wHũl,i|2 ≥ 1 l = 1, . . . ri, i = 1, . . . ,M (3.32)

where

ũl,i , ul,i

√
√
√
√

ri∑

k=1

λk,i l = 1, . . . ri, i = 1, . . . ,M. (3.33)



3.5 The Proposed Orthogonalization Techniques 51

The problem in (3.32) has the same mathematical form as the problem in (3.26)

and the orthogonalization-based techniques can be directly applied. However, the

problem in (3.32) is a strict approximation and has more constraints than the original

problem in (3.26). Therefore, the orthogonalization techniques are applied with a

slight modification.

For the technique based on QR decomposition, the only change is in the rescaling

in Step 5 in Table 3.2. After the candidate vectors are computed and locally refined

as in Steps 1-4 of Table 3.2, the vectors are rescaled to satisfy the most violated of

the M original SNR constraints in (3.26) with equality and not the approximated

constraints in (3.32).

For the technique based on the Gram-Schmidt procedure, we first assume without

loss of generality that λ1,i ≥ · · · ≥ λri,i > 0. Let the matrix Ũi , [ũ1,i, . . . , ũri,i]

contain the scaled non-zero eigenvectors of R̂i, as defined in (3.33), where the vectors

of Ũi are sorted based on their respective eigenvalues in descending order. Similar to

the procedure in section 3.5.2, the initial vector in the Gram-Schmidt procedure de-

noted as v1 is chosen arbitrarily from one of the principal eigenvectors of the matrices

Ũ1, . . . , ŨM . The first intermediate weight vector w1 is computed as in (3.23), where

q1 and c1 are given by equations (3.22) and (3.24) by substituting k = 1. Then,

the respective column of the matrix from which v1 is chosen, is discarded. Using

w1, we find the index, η, of the user with the “most violated” SNR constraint, i.e.,

miniw
H
1 R̂iw1, i = 1, . . . ,M . The second vector in the Gram-Schmidt procedure,

denoted as v2, is taken as the first column vector in Ũη and the coefficient c2 is

computed as in (3.24) to satisfy the constraint corresponding to v2 in (3.32) with

equality. Since the order of the vectors in Ũη is based on the decreasing value of

their respective eigenvalue, satisfying the constraint of the first vector with equality

provides the strongest contribution to the SNR of the ηth user. This strategy gradu-

ally satisfies the original SNR constraints on a greedy basis. The matrix Ũη is then

updated by dropping the vector v2 and the second intermediate weight vector w2 is

computed as in (3.23). The above routine is repeated in every step of the remaining
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R − 2 steps of the Gram-Schmidt procedure in order to generate a candidate weight

vector. The entire orthogonalization process is repeated M times, where each time a

different principal eigenvector is chosen as the initial vector v1 for the Gram-Schmidt

procedure. Finally, the local refinement step is performed on each of theM generated

candidate weight vectors {wcand,j}Mj=1 and the vector with the least norm is chosen.

The beamforming algorithms in the case of covariance CSI using and QR decom-

position are summarized in Tables 3.4 and 5.1, respectively.

Table 3.4: Summary of the beamforming technique of Section 3.5.1 in case of covari-
ance CSI.

Step 1. Define U = [Ũ1, . . . , ŨM ] and obtain the matrix V by randomly selecting
abcand permuting N columns of U.

Step 2. Obtain the matrices Q and R using QR decomposition of V.

Step 3. Compute the candidate weight vector using (3.12), (3.18) and (3.21).

Step 4. Locally refine this weight vector.

Step 5. Rescale the refined vector so that the most violated from all
abcthe M constraints in (3.26) is satisfied with equality.

Step 6. Repeat steps 1 to 5 for J times to obtain {w̃i}Ji=1.

Step 7. Select from {w̃i}Ji=1 the vector with the minimum norm to be the final
abcsolution.

3.6 The Max-Min Fair Problem

So far, we have considered the power minimization problem in case of perfect and

covariance CSI. In this section, we consider the max-min fair problem. It was proved

in [97] that the maximum common information rate C0 for a given power P0 is achieved

by solving the Lagrangian dual of the problem in (3.6) which is in fact equivalent to
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Table 3.5: Summary of the beamforming technique of Section 3.5.2 in case of covari-
ance CSI.

for j = 1, . . . ,M

Step 1. Define U = {ũ1,i}Mi=1 and select v1 = ũ1,j .

Step 2. Compute q1 = v1/‖v1‖.

Step 3. Compute c1 using (3.18) and obtain w1 = c1q1.

Step 4. For k = 2, . . . , N

1. Compute wH
k−1R̂iwk−1, i = 1, . . . ,M .

2. Select vk = Ũ
(1)
η where η = arg miniw

H
k−1R̂iwk−1, i = 1, . . . ,M and

Ũ
(1)
η is first column vector of the corresponding matrix Ũη.

3. Update Ũη by discarding Ũ
(1)
η .

4. Compute qk using (3.22) and ck using (3.24).

Step 5. Compute the candidate weight vector w̃j using (3.12).

Step 6. Locally refine this weight vector.

Step 7. Rescale the refined vector so that the most violated from all
abcthe M constraints in (3.26) is satisfied with equality.

end for

Step 8. Select from {w̃j}Mj=1 the vector with the minimum norm to be the final
abcsolution.

the max-min fair formulation. Hence, the dual problem is given by

max
w

min
i

|wHh̃i|2, i = 1, . . . ,M

s.t. ‖w‖2 ≤ P0.
(3.34)

It is clear from (3.34) that the optimal w is achieved when the inequality constraint

is satisfied with equality, otherwise w can be scaled to increase the minimum SNR

and therefore, contradicting with the condition of optimality. Following the same
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procedure to write (3.6) and applying SDR, the relaxed problem of (3.34) can then

be written as

max
X

min
i

trace(XQi), i = 1, . . . ,M

s.t. trace(X) = P0

X � 0

(3.35)

where the constraint rank{X} = 1 is dropped and the inequality constraint in (3.34)

is replaced with equality. The problem in (3.35) can be solved using SDP solvers and

the solution X′
opt is equivalent to the solution of (3.6) up to a scaling and it was shown

in [97] that X′
opt, which is generally not rank-one, is the optimal transmit covariance

matrix that maximizes the common mutual information rate over the MIMO channel

described by the channel matrix H [46], [97]. Therefore,

C0(H, P0) = log2
(
1 + P0(min

hi

hH
i X

′
opthi)

)
. (3.36)

In case of beamforming transmission strategies, the additional rank-one constraint

leads to suboptimal performance. The maximum achievable bit rate in this case is

given by

Rbf (H, P0) = log2
(
1 + P0(min

hi

|wHhi|2)
)

(3.37)

where w denotes the beamforming vector provided by the beamforming algorithm.

The general rank technique requires the simultaneous transmission of multiple (pos-

sibly N) independent bitstreams from each antenna. This may introduce larger en-

coding and decoding overheads as compared to beamforming which typically trades

off reduction in information rate for implementation simplicity.

3.7 Simulation and Real Data Processing Results

In all our examples, the acronyms QR-dL and GS-dL stand for the proposed QR

decomposition based algorithm of Section 3.5.1 and the Gram-Schmidt orthogonal-

ization based technique of Section 3.5.2, respectively, both using damped Lozano’s
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(dL) local refinement step. The QR-dL and GS-dL techniques are compared with the

dLLI technique of [72], the RCC2 algorithm with successive orthogonal refinement

of [42] (referred to as RCC2-SOR), the SDR-based approach of [97], and the same

SDR-based technique combined with the dL local refinement. The latter technique is

referred to as SDR-dL. The choice of the initial step-size µ and the stopping threshold

in the dL technique were empirically optimized to achieve fast convergence and good

performance. To optimize the parameters of the SDR-based approach, we have fol-

lowed the guidelines of [97] where three different randomization procedures have been

used in parallel, with 1000 randomizations for each. The number of iterations in the

successive orthogonal refinement part of the RCC2-SOR technique was chosen equal

to the number of randomizations used in the SDR-based technique (nrand = 3000).

For the QR-dL technique, J = 200 has been selected. This value of J corresponds

to nearly equal computational complexities (measured in terms of MATLAB run-

times) of the SDR, SDR-dL and QR-dL methods. Note that the run time of the

GS-dL technique is substantially smaller than that of the QR-dL, SDR and SDR-dL

techniques.

3.7.1 Rayleigh Fading Channels with Instantaneous CSI at

the Transmitter

Throughout our simulations, a Rayleigh fading channel with i.i.d. circularly symmet-

ric unit-variance channel coefficients is assumed. We also assume that σ2
i = σ2 = 1

and γmin,i = γmin for all i = 1, . . . ,M . All our results are averaged over 1000 Monte

Carlo runs.

In the first example, we assume that γmin = 5 dB. In Table 3.6, the so-called boost

ratio [97]

ε = ‖wfin‖2/trace{Xopt}

is used to characterize the performance, where wfin is the final beamformer weight

vector of each technique tested. The mean and the standard deviation (std) values of
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Table 3.6: Comparison of the boost ratios of different multicasting techniques; first
simulation example.

M
RCC2-SOR dLLI SDR SDR-dL GS-dL QR-dL
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

10 1.41 0.52 1.21 0.25 1.24 0.23 1.11 0.14 1.08 0.08 1.06 0.07

20 1.99 0.73 1.60 0.59 1.71 0.37 1.36 0.29 1.24 0.14 1.21 0.12

30 2.59 1.02 2.04 0.72 2.07 0.45 1.61 0.39 1.40 0.18 1.35 0.16

40 3.05 1.19 2.39 0.98 2.40 0.51 1.87 0.48 1.55 0.21 1.48 0.18

50 3.38 1.25 2.75 1.21 2.75 0.59 2.09 0.57 1.68 0.25 1.60 0.22

60 3.66 1.42 3.14 1.31 3.03 0.65 2.31 0.63 1.83 0.29 1.72 0.24

70 4.10 1.45 3.43 1.50 3.37 0.74 2.52 0.72 1.94 0.30 1.83 0.26

80 4.29 1.57 3.88 1.76 3.66 0.81 2.71 0.79 2.09 0.33 1.96 0.28

the boost ratio are summarized in this table for N = 4 and M = [10, . . . , 80]. As it

can be observed from the table, the QR-dL and GS-dL techniques have substantially

lower values of both the mean and standard deviation as compared to the SDR, SDR-

dL, RCC2, and dLLI techniques. This implies that the QR-dL and GS-dL techniques

are more power-efficient than the other techniques tested.

In our second example, we illustrate the achievable rates of the different beam-

formers for fixed transmit power. Fig. 3.3 shows these rates versus the number of

users M for P=1. Also, the multicast capacity is shown in the figure as an upper

bound on the achievable rate, where both Xopt and wfin are normalized to satisfy the

transmit power constraint trace{Xopt} = ‖wfin‖2 = P .

It can be observed from this figure that the proposed QR-dL and GS-dL techniques

have increased achievable rates over the remaining multicasting algorithms tested. As

previously observed, QR-dL performs slightly better than GS-dL. Another interesting

observation is that the multicast capacity can be seen as a relatively loose upper

bound on the rates that can be achieved via beamforming. This is expected due to

the additional rank-one constraint which is imposed on the design of the transmit

covariance matrix in the beamforming case.
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Figure 3.2: Total transmitted power versus number of users; first simulation example.

In our third example, we choose N = 4, M = 80, and the minimum required SNR

is varied. All the other parameters are the same as in the first simulation example.

Fig. 3.4 shows the transmitted powers versus the minimum required SNR. As in the

first example, we can observe from this figure than the proposed GS-dL and QR-dL

techniques perform better in terms of transmitted power than the other techniques

tested. Also, as before, the QR-dL beamformer has a slightly better performance

than the GS-dL one.

3.7.2 Rayleigh Fading Channels with Covariance CSI at the

Transmitter

In our fourth example, we assume that the transmitter uses the sample covariance

matrix R̂i to design the beamforming vector. We assume the number of samples
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Figure 3.3: Achievable multicast rates versus number of users; second simulation
example.

Ns = 10 and choose N = 4, and M = [10, . . . , 80]. All the other parameters are the

same as in the first example. We note that RCC2 and RCC2-SOR were implemented

to be applied only in the case of instantaneous CSI, therefore, we compare the perfor-

mance of our proposed algorithms only with SDR, SDR-dL and the dLLI techniques

which can straightforwardly be applied in the covariance CSI case. Fig. 3.5 shows

the average transmitted power required by the methods tested versus the number of

users.
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Figure 3.4: Total transmitted power versus minimum required SNR; third simulation
example.
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Figure 3.5: Total transmitted power versus number of users; fourth simulation example.
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We observe from this figure that both GS-dL and QR-dL have an improved per-

formance in terms of the transmitted power over the other techniques tested. The

performance gap becomes significant as M increases. Also, interestingly, the gap

in performance between GS-dL and QR-dL is reduced as compared to the gap in

performance in the instantaneous CSI case.

3.7.3 Measured Indoor Data

To further compare the performance of the proposed and existing multicasting meth-

ods, we used measured channel data collected in the 902 − 928 MHz ISM band by

the iCORE HCDC Lab, University of Alberta in Edmonton [35]. The raw data and

associated documentation files can be found at http://www.ece.ualberta.ca/∼mimo/.

Channel selection and preprocessing have been performed as detailed in [72]. The

specific data set that we used here corresponds to the indoor scenario in [72].
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Figure 3.6: Total transmitted power versus number of users; measured channel data.
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There are N = 4 transmit antennas, and M = 12 user channels, measured every 3

seconds for a total of 30 temporal snapshots. In order to test with a large number of

users, we randomly selected and concatenated 4 out of 30 snapshots (there are 27405

possible combinations), and averaged the results over 1000 such draws. Fig. 3.6 shows

the transmitted power versus the number of users M . The required minimum SNR

has been set to 0 dB.

It can be seen that in this figure, the QR-dL and GS-dL techniques show compa-

rable performance. Both of them outperform the remaining methods tested. These

performance improvements become more significant when increasing M .

3.8 Conclusion

The problem of single-group multicasting has been considered in the case of the avail-

ability of instantaneous CSI and covariance CSI for all users. Two methods have been

developed to approximately solve this problem using channel orthogonalization and a

subsequent local refinement algorithm to further improve the beamformer weight vec-

tor. The results of our simulations and measured data processing clearly demonstrate

an improved performance of the proposed QR-dL and GS-dL techniques with respect

to the state-of-the-art multicasting methods such as the SDR, dLLI and RCC2-SOR

algorithms. These improvements become especially pronounced when the number of

users is large.
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Chapter 4

Transmit Beamforming for

Multi-Group Multicasting

The spatial multiplexing capabilities of a transmitter with multiple-antennas can be

exploited by allowing multiple multicast groups, instead of a single-group, to share the

same frequency band, thus increasing the number of accommodated users. This leads

to a more efficient utilization of the available RF spectrum which is indeed a strong

motivation for multi-group multicasting. On the other hand, multi-group multicasting

will result in MAI since the signal intended to a certain multicast group is an undesired

signal for the other groups. Therefore, efficient algorithms are required to reap the

merits of multi-group multicasting while suppressing the effects of undesired MAI. In

the present chapter, the transmit beamforming problem for multi-group multicasting

is considered. Several existing techniques which solve the beamforming problem are

briefly introduced in Section 4.1. In Section 4.2, the problem of minimizing the

transmitted power subject to individual SINR constraints is formulated and the SDR-

based technique is explained. A modification to the SDR-based technique which

reduces the computational complexity while maintaining the same performance is also

proposed in this section. In Section 4.3, we develop a novel approach to deal with

the beamforming problem for multi-group multicasting. The proposed approach is

based on broadcasting using hierarchical modulation. In contrast to the conventional

63
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multicasting approaches, our proposed approach results in a problem formulation

which is always feasible, has a significantly less computational cost, and achieves

a better performance in terms of transmitted power. Furthermore, the approach

naturally incorporates the reception of multiple datastreams while meeting the QoS

requirement for each datastream. In Section 4.4, we compare the proposed techniques

with existing state-of-the-art techniques and verify the improved performance via

simulations.

4.1 Motivation and Preliminary Work

As a result of being a natural extension to the single-group multicasting and multi-user

unicasting problems, the beamforming problem for multi-group multicast networks

has gained enormous interest over the last decade. In this context, several problem

formulations were proposed and some existing techniques were extended or modified

as well as several others were developed particularly to solve this problem [8], [13],

[14], [30], [31], [34], [46], [50], [51], [52], [53], [62], [70], [72], [75], [102], [103], [104].

The multi-group multicasting problem was first discussed by Lopez in his PhD thesis

[62]. In his work, he suggested using the null-space projection technique to eliminate

the MAI at the receivers. The main advantage of this technique is its reduced com-

putational complexity. However, this technique is a good candidate only for scenarios

where the number of users and multicast groups is relatively small compared to the

number of transmit antennas.

Null-space-based methods have inspired several other works such as the methods

in [102], [103], [104], [105], and [106]. In [105] and [106], a null-space-based method,

referred to as the block diagonalization (BD) method, was developed to solve the sum-

rate maximization problem in MIMO multi-user unicast networks, where it is assumed

that each user has multiple receive antennas. In [104], Silva and Klein exploited the

analogy between the multi-group multicast scenario and the MIMO multi-user unicast
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scenario1 to propose the so-called multicast-aware zero-forcing technique. The idea

is to stack the symbols received at all the receivers in a vector v and then design

the beamformers at the transmitter in order to minimize the mean square estimation

error (MSE) of v subject to a total transmit power constraint and a zero-forcing

constraint which forces the estimation error to be equal to zero in the absence of

noise. The solution to this problem was found by using the multicast variant of

the BD algorithm [105], [106]. Moreover, several linear and non-linear precoding

techniques, such as vector precoding or Tomlinson Harashima precoding [29], [112],

have been proposed using the MSE and the minimum MSE (MMSE) as optimization

criteria in [102], [103], and [104].

In [53], a precoding strategy which employs dirty paper coding (DPC) [20] was

proposed to maximize the sum-rate in multi-group multicast networks. This opti-

mization criterion is not essentially fair in terms of the individual SINRs achieved at

the receivers, since the power allocation in sum-rate maximization problems is the

water filling algorithm [79] which favors the users with strong channels.

Other beamforming designs which promote fairness among the users are based

on the power minimization subject to individual SINR constraints as well as the

maximization of the minimum SINR problem, which is also known as the max-min

fair beamforming design. Both beamforming designs were first formulated for multi-

group multicasting by Karipidis et al. in [50] and [51]. The authors in [51] used

the SDR approach to obtain approximate solutions to both problems. Moreover, a

through analysis of both problems and an explanation of their relation to each other

was provided in [51] . Similar to the single-group case, the SDR-based technique

serves as a non-achievable performance bound and will be discussed later in more

detail in Section 4.2.1. Note that the SDR approach for solving the beamforming

problem for multi-group multicasting is, in fact, a generalization of the multi-user

unicasting case which was studied by Bengtsson and Otterson in [10] and was solved

using the same approach.

1The analogy comes from the fact that the receive antenna of a particular user in MIMO unicas-
ting can be thought of as single-antenna users which are members of the same multicast group.
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In [30] and [31], a technique based on DPC was proposed to solve the power

minimization problem. By applying such a precoding strategy, the MIMO channel

matrix, which is constructed by stacking the individual channel vectors of all users

is transformed into a matrix with a block triangular structure. This structure allows

designing the beamformers on a group-by-group basis since in each step, the inter-

ference from all previous groups is known. The authors in [30] and [31] designed the

beamformer for each group using the SDR-based technique for single-group multicas-

ting [97].

More recently, Bornhorst and Pesavento proposed a technique based on iterative

second-order cone programming (SOCP) to solve the power minimization problem in

[12]. The idea is to approximate the original problem as a SOCP problem. Then,

through an iterative feasibility search procedure, the problem approximation is suc-

cessively improved. In each iteration, the feasibility search problem is formulated

as a SOCP problem. The iterative SOCP technique outperforms the SDR-based

technique in terms of transmitted power and enjoys a relatively small computational

complexity. Moreover, the computational complexity of the iterative SOCP tech-

nique becomes less than that of the SDR-based method as the total number of users

increases.

4.2 Problem Formulation

Consider the wireless multicast network of Section 2.2.1 in the case where the trans-

mitter is sending L datastreams simultaneously to M users. Each user is equipped

with a single antenna and can choose to receive one or several datastreams out of

the available L datastreams. The users are assumed to be randomly located within

a certain coverage area of the transmitter as shown in Fig. 4.1. Due to the random

distribution of the users, it is possible that the downlink channels of users belonging

to different multicast groups are strongly correlated. This leads to the reception of

undesired signals with fairly high powers at each user.
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Figure 4.1: Transmit beamforming for a multicast scenario with two multicast groups.

In conventional multi-group multicasting networks, it is assumed that each user

receives only one datastream, i.e., Gi∩Gj = ∅, for all i, j = 1, . . . , L [51]. If we consider

the input side of the transmitter, Fig. 4.2 shows the L parallel datastreams in their

bitstream format before mapping the bits to complex information symbols. The

kth bitstream represents a multicast service offered to the corresponding multicast

group Gk, k = 1, . . . , L. Based on the multicast service specifications, the transmitter

determines the number of bits mk to be transmitted to the kth multicast group in

one symbol duration and forms a binary codeword bk of length mk bits out of the kth

bitstream, k = 1, . . . , L. It is assumed that QAM schemes are used such that, the

codeword bk is mapped to a symbol sk using QAM of order 2mk , k = 1, . . . , L. The

symbols {sk}Lk=1 are then fed to the transmitter.

The objective is to design L beamformers at the transmitter so that the resulting

beam-pattern for each datastream is directed towards the intended users while mini-

mizing the leakage in other directions. The benefit of this design is two-fold: First, the

transmitted power is reduced significantly compared to isotropic radiation patterns.

Second, the MAI is limited and the transmitter is able to provide a high QoS to each
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Figure 4.2: The input side of the transmitter in conventional multi-group multicast-
ing.

user. In this context, two optimization problems for the design of the beamformers

are presented. Taking into account the system model of Section 2.2.1 and assuming

that the symbols sk, k = 1, . . . , L, are mutually uncorrelated with average power per

symbol is equal to one, i.e., E{|sk|2} = 1, the total transmitted power is given as

PT = E{xHx} =

L∑

k=1

‖wk‖2. (4.1)

Using equation (2.9) and assuming that the transmitter knows the instantaneous CSI

of all users, the SINR of the ith user γi is computed at the transmitter as

γi =
|wH

k hi|2
∑

j 6=k |wH
j hi|2 + σ2

i

, for all i ∈ Gk and j, k = 1, . . . , L. (4.2)

The problem of finding the beamforming weight vectors {wk}Lk=1 which minimize the

total transmitted power subject to satisfying the SINR constraint of the ith user can

be written as

min
{wk}Lk=1

L∑

k=1

‖wk‖2

s.t. γi ≥ γmin,i , i = 1, . . . ,M

(4.3)
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where γmin,i is the minimum SINR which guarantees the QoS of the ith user. The

problem in (4.3) is a QCQP with non-convex constraints [16], which becomes infeasible

if the SINR requirements are high or if the number of users is significantly larger than

the number of transmit antennas, i.e., M ≫ N [51]. A similar beamforming design

is the max-min fair optimization aiming at maximizing the worst SINR subject to a

constraint on the maximum transmitted power. In this case, the transmitter serves

the users on a “best effort” basis with no QoS guarantees. The optimization problem

can be expressed as

max
{wk}Lk=1

min
i

γi , i = 1, . . . ,M

s.t.

L∑

k=1

‖wk‖2 ≤ P0

(4.4)

where P0 denotes the maximum allowed transmit power. Similar to (4.3), the problem

in (4.4) is a QCQP with a non-convex constraint. The main difference between the two

problems is that the max-min fair problem in (4.4) is always feasible. Moreover, the

inequality constraint in (4.4) will be always met with equality at the optimum. This

can be proved by contradiction: Let us assume that the optimum beamformers do not

satisfy the power inequality constraint with equality. This means that there is some

power left in the power budget. This remaining power can be distributed, e.g., evenly

among all the beamformers by multiplying each one with a constant α > 1. This

leads to an increase in the minimum SINR, thus contradicting optimality. Therefore,

the problem can be equivalently rewritten by substituting the inequality constraint

with equality. The resulting problem is given as

max
{wk}Lk=1

t

s.t.
γi

γmin,i

≥ t , i = 1, . . . ,M

L∑

k=1

‖wk‖2 = P0, and t ≥ 0

(4.5)

where t is a positive real variable denoting a lower bound on the minimum of the

weighted SINRs, i.e., mini
γi

γmin,i
, i = 1, . . . .M . In (4.5) the weighted SINR of the
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“worst user” is maximized, thus ensuring a weighted fairness among all users. If we

define d , [γmin,1, . . . , γmin,M ] and t0 as the optimum value of the problem in (4.5),

then the SINR levels provided by the optimum beamformers are shown to be equal

to t0d, i.e., all the weighted SINR constraints are active at the optimum [51]. In

other words, if t0d is regarded as a vector of target SINRs for the problem in (4.3),

then the total transmitted power required to optimally satisfy these constraints is

P0. This interesting fact, which relates the problems in (4.3) and (4.5) can be used

to obtain the solution of one problem from the other. For the problem in (4.5), the

optimum value, t0, can be found by iteratively solving the problem in (4.3), where

td is taken as the vector of SINR targets and the value of t is gradually increased

until the power approaches the limit value P0. Similarly, the problem in (4.3) can be

solved by applying the bisection technique to the problem in (4.5) over P0, provided

that the problem in (4.3) can be solved optimally [51].

Another interesting feature of these two problem formulations is that they contain

the single-group and the multi-user unicast beamforming problems as special cases.

In the case where L = 1, the problems in (4.3) and in (4.5) reduce to the power

minimization problem and the max-min fair problem in (3.2) and in (3.34), respec-

tively. The latter problems were proved to be NP-hard in [97], which motivated the

claim by Karipidis et al. in [51] that the problems in (4.3) and (4.5) are NP-hard

in general. On the other hand, if L = M , i.e., each multicast group has only one

user, both problems represent the popular multi-user unicasting problem which has

been extensively explored in the literature, see [11], [24], [34], [65], [75], [124], and

references therein. In [11], the authors showed that the SDP relaxation of the multi-

user unicasting problem is guaranteed to have at least one optimal solution which

is rank-one. In [90] and [91], computationally efficient iterative techniques were de-

veloped based on the uplink-downlink duality approach and it was proved that the

algorithm always converges to the optimal value. These surprising results to this

seemingly non-convex problem were confirmed by a solid equivalent reformulation of

the problem as a convex SOCP problem in [124].
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4.2.1 SDR-Based Technique

Following the same approach of the single-group case, the authors in [51] define the

matrices:

Qi , hih
H
i , Xk , wkw

H
k , i = 1, . . . ,M, k = 1, . . . , L.

Using the fact that

|wH
k hi|2 = trace{wkw

H
k hih

H
i } = trace{XkQi},

the problem in (4.3) can be rewritten as [51]

min
{Xk}Lk=1

L∑

k=1

trace{Xk}

s.t. trace{XkQi} ≥ γmin,i

∑

j 6=k

trace{XjQi}+ γmin,iσ
2
i

for all i ∈ Gk, for all j, k ∈ {1, . . . , L}
Xk � 0, rank{Xk} = 1 k = 1, . . . , L.

(4.6)

The L rank constraints in (4.6) are the only non-convex constraints. By dropping

these constraints, the problem translates to a convex SDP problem which can be

solved using available convex optimization tools [107], [36]. The resulting convex

optimization problem reads

min
{Xk}Lk=1

L∑

k=1

trace{Xk}

s.t. trace{XkQi} ≥ γmin,i

∑

j 6=k

trace{XjQi}+ γmin,iσ
2
i

for all i ∈ Gk, for all j, k ∈ {1, . . . , L}.
Xk � 0 k = 1, . . . , L.

(4.7)

If the solution of the convex problem in (4.7), denoted by {Xk,opt}Lk=1, contains only

rank-one matrices, then the relaxation is tight and the optimal beamforming vectors

{wk,opt}Lk=1 are the principal components of {Xk,opt}Lk=1. If one of the matrices in
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{Xk,opt}Lk=1 is not rank one, randomization techniques are used to generate multiple

candidate weight vectors [51]. In every randomization, a random weight vector with

unit-norm is generated from each matrix in {Xk,opt}Lk=1 which is not rank-one. For

the rank-one matrices in {Xk,opt}Lk=1, the normalized principal component is used.

For the so-obtained set of candidate weight vectors {wk,cand}Lk=1, a set of optimal

scaling coefficients {√pk}Lk=1 can be obtained by solving the following optimal power

allocation problem [51]:

min
{pk}Lk=1

L∑

k=1

pk

s.t.
pkak,i

∑

j 6=k plaj,i + σ2
i

≥ γmin,i , pk ≥ 0

for all i ∈ Gk, j, k = 1, . . . , L,

(4.8)

where ak,i , |wH
k,candhi|2. The problem in (4.8) is a linear programming (LP) problem.

If a solution {p̃k}Lk=1 exists, the candidate weight vectors are updated as {w̃k,cand}Lk=1 =

{√p̃kwk,cand}Lk=1, otherwise they are discarded. After a number of randomizations

nrand, the set of candidate weight vectors with the least value of
∑L

k=1 ‖w̃k,cand‖2 is

chosen.

Almost all modern SDP solvers use interior point methods to solve the problem

in (4.7). For L variables of size N × N and M linear constraints, the interior point

methods require O(
√
LN log(1/ǫ)) iterations, where ǫ denotes the accuracy of the

solution after termination. Each iteration requires in the worst caseO(L3N6+MLN2)

arithmetic operations [125]. For the LP program in (4.8), the optimal solution can be

found using interior point methods which require O
(√

Llog(1/ǫ)
)
iterations, where

each iteration requires O(L3 +ML) arithmetic operations at the most [125]. The

overall computational complexity of the SDR-based technique involves solving the

SDP in (4.7) and nrand LP problems as in (4.8) for each of the candidate weight

vector generated via randomizations. This resembles a relatively high computational

cost especially for large-sized problems, i.e., when the problem parameters L,M, and

N are large. In [12], it was shown that the iterative SOCP approach provides better
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performance compared to the SDR-based technique at a reduced computational cost.

The reason is that in the iterative SOCP approach, the randomization step and the

accompanying LP problem are avoided altogether and are substituted by a SOCP

problem, which can be solved within a few iterations. In the following section, a

modification to the SDR-based technique is proposed in order to avoid solving the

LP problem for the outcome of each randomization trial. This modification reduces

the overall complexity of the SDR-based technique proposed in [51] while maintaining

almost the same performance.

4.2.2 Modified SDR

In this section, we propose a modification to the SDR-based technique of [51], which

reduces the overall computational complexity. The idea is to apply a simple test for

each set of the randomly generated candidate weight vectors {wk,cand}Lk=1 to verify

if it admits a positive SINR at the ith user, i = 1, . . . ,M . If the set of candidate

vectors passes this test, the LP problem in (4.8) is formulated and the optimal scaling

coefficients {√p̃k}Lk=1 are computed, otherwise, the set of vectors is discarded. We

start by rewriting the problem in (4.3) by defining the LN ×1 complex weight vector

wT as

wT , [wT
1 , . . . ,w

T
L]

T . (4.9)

The total transmitted power PT is then given as

PT =

L∑

k=1

‖wk‖2 = ‖wT‖2. (4.10)

Similarly, for the ith user, i = 1, . . . ,M , the matrices Ei and Hi are defined as

[Ei]mn ,







1 , m = n = i

−γmin,i , m = n,m 6= i

0 otherwise

(4.11)

and

Hi ,
1

σ2
i γmin,i

Ei ⊗ hih
H
i , (4.12)
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respectively, where ⊗ denotes the Kronecker product. The SINR constraint of the

ith user can then be written as

1

σ2
i γmin,i

(

|wH
k hi|2 − γmin,i

∑

j 6=k

|wH
j hi|2

)

= wH
T HiwT ≥ 1 (4.13)

and the problem in (4.3) can be equivalently rewritten as

min
wT

‖wT‖2

s.t. wH
T HiwT ≥ 1

for all i ∈ Gk, k = 1, . . . , L.

(4.14)

By definition, the matrix Hi is of dimension NL × NL, Hermitian, block-diagonal,

and indefinite. The fact that Hi is indefinite means that a vector wT which satisfies

all the SINR constraints in (4.14) might not exist. This is another way to explain why

the problem in (4.3) could turn out to be infeasible. In order to check the feasibility

of the problem, the SDR-based technique requires solving the LP in (4.8) for each

of the randomly generated sets of candidate weight vectors {wk,cand}Lk=1 for a large

number of randomizations nrand [51]. If no solution is found from all generated sets,

the problem is considered infeasible. This is an inconclusive check since it depends on

the number of randomizations to explore whether a solution exists or not. Another

inconclusive check which requires less computations can be performed as follows: For

each randomization, check if

wH
T,candHiwT,cand > 0, for all i = 1, . . . ,M, (4.15)

is satisfied, where wT,cand , [wT
1,cand . . . ,w

T
L,cand]

T . If any of the inequalities in (4.15)

is not satisfied, the candidate weight vectors are discarded. On the other hand, if all

the inequalities in (4.15) are satisfied, then a set of candidates can be made feasible for

(4.14) by simple scaling. This is similar to the single-group case. However, solving the

LP in (4.8) may be more appropriate, since it computes the optimal scaling coefficients

{√pk}Lk=1. This simple check allows to explore more random candidates while solving

the LP only to those which satisfy the constraints in (4.15). Note that excluding the
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candidate weight vectors which do not satisfy the constraints in (4.15) may damage

the performance of the SDR-based technique. The reason is that the constraints in

(4.15) are stricter than the constraints of the LP in (4.8). This makes it possible for

some candidate weight vectors to be excluded via the check in (4.15), although they

satisfy the constraints of the LP in (4.8) and have smaller cost functions than the

ones which are considered. However, the simulation results show negligible reduction

in performance compared to the SDR-based technique. Note that the computational

complexity of the proposed check is O(MNL). Comparing with the complexity of

solving the LP problem with a standard termination accuracy ǫ0 = 0.01, the proposed

check has a much reduced complexity especially when N < L2.5. The modified-SDR

beamforming technique is summarized in the following table.

Table 4.1: Summary of the modified-SDR beamforming technique.

Step 1. Define Qi = hih
H
i , Xk = wkw

H
k , i = 1, . . . ,M, k = 1, . . . , L.

Step 2. Formulate the convex SDP problem as in (4.7) and find
abcthe solution {Xk,opt}Lk=1 .

Step 3. if rank{Xk,opt} = 1, k = 1, . . . , L
abcdfff The final solution is given as wk,opt = PC{Xk,opt}, k = 1, . . . , L
abelse

1. Generate a set of candidate weight vectors {wk,cand}Lk=1

abcvia randomizations.

2. Define wT,cand = [wT
1,cand . . . ,w

T
L,cand]

T and Hi as in (4.12).

3. if wH
T,candHiwT,cand > 0, i = 1, . . . ,M

Formulate the LP as in (4.8) and compute the scaling
abcdeff coefficients {√pk}Lk=1.

else Discard the candidate weight vectors {wk,cand}Lk=1.

4. Repeat 1 to 3 for nrand randomizations.

Step 4. Select the set of candidate weight vectors with the minimum
abc
∑L

k=1 ‖wk,cand‖2 to be the final solution.
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4.3 Multicasting Through Hierarchical Modulation

A novel approach to deal with the beamforming problem for multi-group multicasting

is proposed in this section. The concept of hierarchical modulation, which is explained

later in Subsection 4.3.1, is used to formulate the problem in (4.3) as a beamforming

problem for single-group multicasting. The main advantage of the proposed approach

is that the optimization problem for single-group multicasting, as discussed in the

previous chapter, is always feasible, whereas, in case of conventional multi-group

multicasting, the feasibility of the problem is limited due to the presence of MAI [51].

Furthermore, the proposed approach allows to naturally incorporate multiple service

subscription (MSS) per user, where each user can receive multiple datastreams while

meeting the QoS for each datastream. This is a generalization of the conventional

multi-group multicasting scenario considered in section (4.2), since it is assumed here

that Gi ∩ Gj 6= ∅, for some i, j ∈ {1, . . . , L}, i 6= j.

A practical application of the MSS scenario is a network providing two multi-

cast services, such as different video and audio streaming programs. Each service

is intended to a different multicast group and there are users, e.g., access points or

high-end mobile devices, which are subscribed to both services simultaneously and

receive both streams with high quality. Such a scenario was studied in the literature

but with restrictions on the number of users per group or on the number of users in

general. In [101], one multicast group was considered to have multiple users while

the rest were restricted to have only one user per group. In [8], a technique based on

a predetermined threshold was used to schedule either the multicast or the unicast

traffic. In [94], the sum-rate maximization criterion was employed to find the beam-

forming weight vectors for simultaneous unicast and multicast services in the case of

two users only.
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4.3.1 Background

The basic idea of hierarchical modulation dates back to the early seventies when Cover

in [21] performed an information-theoretical study on a strategy which guarantees

a basic level of communication in broadcast channels. The idea is to divide the

broadcast information into two or more classes with different degrees of protection,

where the level of protection depends on the importance of the information. Then,

the most important information, also known as “base layer or basic data”, should be

recovered by all receivers. Only the receivers which have better channels or better

receive capabilities can recover the less important information or the “higher-layer

data”. From that time on, this study has triggered several research efforts which

aimed at designing practical implementations of this strategy.

One practical implementation is based on hierarchical modulation [45], [74], [86],

[109], [123]. This technique has been used since the early nineties for digital video

broadcasting [45], [86] and has been included in various standards, such as digital

video broadcasting-terrestrial (DVB-T) and ultra mobile broadband (UMB) for mo-

bile communications. Recently, hierarchical modulation has gained a increasing inter-

est in the initiative of upgrading the existing digital broadcast systems [45]. In con-

trast to traditional modulation schemes, hierarchical modulation uses several QAM

schemes with variable constellation sizes based on the importance of the datastream.

For the base layer, smaller constellation sizes are used, whereas for less important

datastreams, higher QAM constellations are used. Fig. 4.3 shows how hierarchical

modulation is applied in a broadcast network with one base layer and one enhance-

ment layer. The more important bits of the base layer are mapped to QPSK symbols.

The less important bits of the enhancement layer are used to increase the constel-

lation size of QPSK symbols to 16 QAM such that the bits of the base layer are in

the most significant bit locations (MSB) of the 16 QAM symbols. If the receive SNR

at one particular user in the network is very low, the receiver can only distinguish

in which quadrant the received symbol lies. Therefore, it can only extract the ba-

sic information in the bits of the base layer. On the other hand, if another user in
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the network has a high receive SNR, the receiver will have more precise estimates of

the phase and the amplitude of the received signal and will be able to extract the

basic information and the enhancement information in the base layer bits and the

enhancement layer bits, respectively.

Re

Im
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1000 1010

0011 0001

00000010

1100 1110

1101 1111

0110 0100

01010111

11

10 00

01

Figure 4.3: Example of QPSK and 16 QAM constellations in hierarchical modulation.

4.3.2 The Proposed Approach

The proposed approach is based on the hierarchical modulation scheme discussed in

the previous subsection. The L parallel bitstreams available at the transmitter for the

different groups are multiplexed to form a single bitstream. In one symbol duration,

the multiplexer takes mk successive bits from the kth bit stream, k = 1, . . . , L, to

construct a binary codeword b of length m =
∑L

k=1mk bits as shown in Fig. 4.4. We

assume that the indexing of the multicast groups and the corresponding bitstreams

is predefined at the transmitter based on a certain criterion. A simple criterion is to

perform the indexing to be equivalent to the order with which the multicast groups are

admitted during the initialization phase of the system. Therefore, the bits b1 intended

to the first admitted multicast group G1 are multiplexed at the least significant bit

(LSB) locations while the bits intended to the newly admitted multicast group GL
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are multiplexed at the MSB locations of the codeword b:

b = bL
︸︷︷︸

MSB

· · · b1
︸︷︷︸

LSB

The codeword b is then mapped to a symbol s using the QAM scheme of order 2m.

The symbol s is then broadcasted to all M users. Note that, in contrast to the

conventional hierarchical modulation scheme, the L bitstreams multiplexed at the

transmitter do not belong to the same multicast service. Therefore, it is important

that each user can demodulate and identify the bitstream intended to it. During the

subscription phase of each user, the transmitter sends to the user the index of its

multicast group k, the number of bits per symbol mk, and the value rk =
∑k

i mi/mk

which is a multiple of 2 for k > 1. The order of the QAM scheme, which is used by

the users of the kth multicast group to demodulate the received signal is given by

Mk = 2rkmk , k = 1, . . . , L. (4.16)

Based on this information, each user can demodulate the received signal and suc-

cessfully select the mk MSB bits out of the received codeword. For example, if

mk = 2, k = 1, 2, then the users of multicast groups G1 and G2 will use QAM schemes

of order 4 and 16 to generate the received codewords b̃1 and b̃2b̃1 and select b̃1 and b̃2

respectively. We note that this reception technique can be considered as a multi-user

detection technique, since the users of the kth multicast group must successfully de-

tect all the codewords intended to multicast groups of lower indices, i.e., b1, . . . , bk−1,

in order to detect the required codeword bk.

Due to multiplexing the multiple bitstreams into one bitstream, the power min-

imization problem in (4.3) will now take the form of a single-group multicasting

problem, i.e., L = 1. The power minimization problem is now written as

min
w

‖w‖2

s.t.
|wHhi|2
σ2
i

≥ βmin,i, i = 1, . . . ,M
(4.17)
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Figure 4.4: The input side of the transmitter using hierarchical modulation.

where w is N × 1 beamforming vector and βmin,i is the minimum required SNR to

guarantee the minimum QoS requirement of the ith user.

The main difference between the problem in (4.3) and the problem in (4.17) is

that the former can easily become infeasible as the number of constraints increases

or if the constraints become more strict, while the latter always admits a solution by

scaling the transmitted power and therefore, it is always feasible [97]. Furthermore,

approximate solutions to the problem in (4.17) can be obtained with significantly less

computational complexity than the problem in (4.3), e.g., [4]. Similar to the proce-

dure followed to obtain the relaxed problem in (4.7), we define X , wwH and drop

the rank constraint rank{X} = 1 which results in a SDP problem. The final weight

vector is obtained from the solution of the SDP, denoted by Xopt, via randomization

techniques [97]. Note that for L = 1, the problem in (4.8) boils down to a simple

scaling problem and therefore, it is always feasible.

In (4.17), the value of βmin,i, i = 1, . . . ,M , is chosen so that the same QoS is

maintained as in the conventional multi-group multicasting case. In order to find

the value βmin,i, we note that for a given modulation scheme, the QoS requirement

of the ith user expressed as γmin,i, is directly related to the maximum bit error rate

(BER) tolerated at the receiver. Therefore, if a higher order modulation scheme is
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used, βmin,i should be increased in order to achieve the same BER as that achieved

by γmin,i, hence maintaining the same QoS.

The relation between γmin,i and βmin,i for the Rayleigh fading channel model can

be obtained from the BER curves for different QAM schemes in [61], [87]. In the high

SNR region, the following relation holds

(βmin,i)
2rkmk

dB = (γmin,i)
2mk

dB + 10log10(rk) + c0(rk − 1) , k = 1, . . . , L (4.18)

where c0 ∼= 3dB and (·)2mdB denotes the SNR or the SINR in dB in case of 2m QAM

scheme. The term 10log10(rk) is the power normalization term which guarantees a

fair comparison between the different QAM schemes by fixing the energy per symbol

at the transmitter for all QAM schemes. The value c0 denotes the additional SNR

that has to be invested to be able to transmit an extra bit per quadrature component,

i.e., two extra bits per symbol, while maintaining the same BER. It was shown in

[61] that the value of c0 is about 3-4 dB. It is important to point out that the BER

achieved with βmin,i refers to the error rate in the total number of bits received. Users

of the kth multicast group, for k > 1, will select only one bitstream out of the multiple

bitstreams they receive. Therefore, the actual BER will be less than the one provided

using equation (4.18) and the QoS constraints will be oversatisfied. Nevertheless, for

simplicity of comparison, we use equation (4.18) to compute βmin,i for the problem in

(4.17).

One important aspect of our proposed approach is that it easily allows a single

user to subscribe to multiple services and to receive multiple bitstreams with high

SNR. Every time the ith user subscribes to a new service, the transmitter sends the

subscription parameters mentioned previously and the ith user computes a new QAM

order from these parameters as in (4.16). The user then selects the highest QAM order

from all the ones it computed to demodulate the received signal. Another important

property of the proposed scheme is that the process of adding/admitting users to

the system does not alter the QoS experienced by the users that have already been
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admitted in previous steps.

4.4 Simulation Results

Throughout our simulations, we assume a Rayleigh fading channel model, where the

elements of each channel vector are i.i.d. circularly symmetric complex Gaussian

random variables with zero mean and unit-variance. We consider the case where

N = 4 and γmin,i = γmin and σ2
i = 1, i = 1, . . . ,M . The users are considered

to be evenly distributed among the multicast groups. The following techniques are

compared:

• The SDR-based technique for multi-group multicasting (MGM) of Section 4.2.1,

denoted by SDR-MGM.

• The modified SDR-based technique for MGM of Section 4.2.2, denoted by

mSDR-MGM.

• the single-group multicasting (SGM) technique proposed in Section 4.3 based

on hierarchical modulation, denoted by SDR-SGM.

We use the values
∑L

k=1 trace{Xk,opt} andXopt as lower bounds on the transmitted

power in the case of MGM and in the case of SGM and denote them as LB-MGM

and LB-SGM, respectively.

In our first example, we compare the performance of the SDR-MGM technique

with the mSDR-MGM technique in terms of the average transmitted power and the

percentage of infeasible runs out of 1000 Monte-Carlo runs. We assume L = 2,

γmin = 6 dB, and the number of users in each multicast group is increased from 2 to

8. For the randomization step, 300 randomization samples are generated and used for

both techniques. Fig. 4.5 depicts the average of the total transmitted power of both

techniques. Note that the average is taken only over the runs where both techniques

generate a feasible solution. It can be observed from the figure that both technique

show almost identical performance.
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Figure 4.5: Total transmitted power versus number of users per multicast group; first
simulation example.

A Similar observation can be made from Fig. 4.6, where the percentage of infeasible

Monte-Carlo runs for both techniques is depicted. Table 4.2 shows the percentage

of Monte-Carlo runs where the randomization with LP routine is employed, i.e., the

relaxed problem is feasible and the solution contains matrices which are not rank-one.

The average number of LP problems solved for each run in the case of mSDR-MGM

is compared to 300 LPs for each run in the case of SDR-MGM. As it can be observed

from the table, the mSDR-MGM technique requires solving significantly less number

of LP problems, which results in a significant reduction in the total computational

cost of the algorithm. This reduction becomes more evident as the number of users

per group increases.
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Figure 4.6: Percentage of infeasible runs versus number of users per multicast for
group N = 4, L = 2, and γmin = 6 dB; first simulation example.

Number of users per group 2 4 6 8
Percentage of runs where LP is employed 0% 20% 22.2% 2.6%
Average number of LPs (mSDR) 0 47.7 11.3 3.00
Number of LPs (SDR) 0 300 300 300

Table 4.2: Average number of LPs in mSDR-MGM versus SDR-MGM for N = 4,
L = 2, and γmin = 6 dB; first simulation example.

In our second example, we compare the performance of the SDR-MGM technique

and its lower bound LB-MGM in terms of the average transmitted power with the

SDR-SGM technique and its lower bound LB-SGM. We should remark that the av-

erage transmitted power is computed differently for each technique. This is due to

the fact that in conventional MGM, feasibility is not always guaranteed. Therefore,
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Figure 4.7: Total transmitted power versus number of users per multicast group for
N = 4, L = 2, and γmin = 6 dB; second simulation example.

we average only over the runs where the SDR-MGM technique generates a feasi-

ble solution. For the SDR-SGM, we average over all runs since a feasible solution

is always obtained. For both techniques, 300 randomizations are assumed and 1000

Monte-Carlo runs are performed. Fig. 4.7 shows the performance when L = 2 groups,

m1 = m2 = 2 bits/symbol, and the number of users in each group is increased from

1 to 6 users. We assume γmin = 6 dB and βmin is computed as in equation (4.18)

which is equal to 13 dB in this case. It can be observed from Fig. 4.7 that the SDR-

SGM technique outperforms the SDR-MGM technique in terms of transmitted power,

when the number of users per group exceeds 3. The performance gap between both

techniques grows substantially as the number of users per group increases.

In Fig. 4.8 the same example is plotted in the case of γmin = 14 dB and βmin = 21 dB.

It can be observed that as the number of users per group exceeds 2, the SDR-SGM

technique outperforms the SDR-MGM technique in terms of the transmitted power.
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Figure 4.8: Total transmitted power versus number of users per group for N = 4,
L = 2, and γmin = 14 dB; second simulation example.

In our third simulation example, we compare the performance of the SDR-MGM

technique and its lower bound LB-MGM in terms of the average transmitted power

with the SDR-SGM technique and its lower bound LB-SGM. We consider the case

when L = 3 and γmin = 6 dB and the number of users in each groups is increased from

1 to 6 users. It can be observed from the figure that the SDR-SGM outperforms the

SDR-MGM as the number of users per multicast group exceeds one. Furthermore, as

the number of users per group increases and the SDR-MGM technique fails to provide

a solution while the SDR-SGM technique only suffers a relatively small increase in

the transmitted power. The same observations can be made on the behavior of the

theoretical lower bounds which suggests that the problem formulation as a single-

group multicasting problem is more power efficient than the multi-group multicasting

formulation in case of large number of users per group.
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Figure 4.9: Total transmitted power versus number of users per group for N = 4,
L = 3, and γmin = 6 dB; third simulation example.

4.5 Conclusion

We proposed a modification to the SDR-based technique to reduce its computational

complexity while maintaining the same performance in terms of the total transmitted

power and maintaining the ability to provide a feasible solution, if one exists. The

reduction in complexity becomes more pronounced in the scenarios where the number

of multicast groups is large. We also proposed a multicasting approach based on

hierarchical modulation, where we showed via simulations that for a large number

of users per group, our proposed approach outperforms the conventional multi-group

multicasting approach in terms of transmitted power and computational complexity.

Although an additional overhead is introduced during the subscription phase, our

approach easily allows multiple service subscription, where users can receive multiple

datastreams.
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Chapter 5

Distributed Beamforming in

Cooperative Relay Networks

In this chapter, we consider the distributed beamforming problem in AF relay net-

works with an emphasis on single-group multicasting scenarios. In Section 5.1, the

channel orthogonalization techniques which were developed in Chapter 3 for conven-

tional single-group multicasting are extended to approximately solve the distributed

beamforming problem in AF relay networks. We examine the cases where perfect CSI

or covariance CSI is available. Simulation results show that the proposed technique

outperforms the popular SDR-based technique and provides a better performance

to complexity trade-off over a large range of QoS constraints as compared to other

existing techniques. The distributed beamforming problem relies on the assumption

that all the relays in the network are fully synchronized at the symbol level. This

assumption is valid only if the delay spread across different relaying paths is small

compared to the symbol duration. In Section 5.2, we deal with the problem of dis-

tributed beamforming in AF relay networks with large delay spreads. We propose

an OFDM-based transmission scheme which alleviates the requirement for relay syn-

chronization. The performance of our proposed algorithms is analyzed in Section 5.3

via simulations. Finally, the main conclusions are drawn in Section 5.4.

89
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5.1 Single-GroupMulticasting in Synchronous Re-

lay Networks

In modern subscription-based multicast networks, several users connect to the net-

work to receive a single or multiple datastreams with acceptable QoS requirements.

In order to guarantee these requirements, the transmitter relies on the CSI which it

typically acquires from each subscriber via a feedback channel. In this context, the

problem of transmit beamforming for single-group multicasting has been solved in

[4], [42], [49], [62], [63], [77], [96], [97], [99], [100], [101], [108], [126], [127]. A common

approach is to design the beamformer based on the CSI, such that the total trans-

mitted power is minimized while satisfying the QoS requirement of each user [4], [42],

[97], [108].

In some cases, conventional multicasting may lead to inefficient solutions and re-

laying in the form of fixed infrastructure or cooperating users may be required. Among

the available relaying schemes, the AF relaying protocol is particularly popular due to

its low processing complexity at the relays [5], [13], [14], [27], [28], [38], [39], [40], [48],

[80], [81], [92], [93]. The problem of distributed beamforming for single-group as well

as multi-group multicasting in AF relay networks was first introduced in [14] where

the objective is to minimize the total relay transmitted power subject to the QoS

constraints at the receivers. Based on the system model introduced in Section 2.3.1

and expressing the QoS constraints as SNR constraints at the intended receivers, the

problem of total relay power minimization can be written as

min Pt s.t.
Psj

Pnj

≥ γj j = 1, . . . ,M, (5.1)

where γj denotes the minimum required SNR to satisfy the QoS constraint of the jth

user. Using (2.17), (2.18), and (2.19) to substitute for the values of Psj , Pnj
and Pt,
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respectively, (5.1) can be rewritten as

min
w

wHDfw

s.t.
P0w

HRhj
w

σ2
nw

HDgjw + σ2
ν

≥ γj, j = 1, . . . ,M, (5.2)

where the optimization variable w denotes the R × 1 vector of beamforming coeffi-

cients applied at the relays. The problem in (5.2) is NP-hard [14], therefore, efficient

suboptimal algorithms which can provide good approximate solutions in polynomial

runtime are required. In order to convert problem (5.2) into a more convenient form,

we define

w̃ , D
1

2

f w (5.3)

and

Rj ,
D

− 1

2

f (P0Rhj
− γjσ

2
nDgj)D

− 1

2

f

σ2
νγj

(5.4)

Inserting (5.3) and (5.4) in (5.2) we have

min
w̃

‖w̃‖2

s.t. w̃HRjw̃ ≥ 1, j = 1, . . . ,M. (5.5)

By definition, the matrix Rj in (5.3) is indefinite and a solution to problem (5.5)

satisfying all M constraints might not exist, which renders the problem infeasible.

This is the fundamental difference between the problem in (5.5) and the conventional

transmit beamforming problem for single-group multicasting of Section 3.2, where a

feasible solution can always be obtained, e.g., by increasing the transmitted power.

However, in the special case where no noise is present at the receivers of the relays, the

term γjσ
2
nDgj in (5.5) vanishes andRj becomes positive semi-definite and the problem

becomes equivalent to the transmit beamforming problem in case of covariance CSI,

which was discussed in Section 3.5.4. The similarity between both problems motivates

the extension of the orthogonalization techniques [4] and the SDR-based technique

[97], which were originally developed in the context of single-group multicasting to

approximately solve the problem of distributed beamforming in relay networks.



92 Chapter 5. Distributed Beamforming in Cooperative Relay Networks

The SDR-based technique for distributed beamforming can be obtained by fol-

lowing the approach of [97] and performing the variable transformation X , w̃w̃H .

Then, using the property w̃HRjw̃ = trace{w̃w̃HRj}, the problem in (5.5) can be

converted into the following equivalent form:

min
X

trace{X}

s.t. trace{XRj} ≥ 1, j = 1, . . . ,M

X � 0, rank{X} = 1. (5.6)

The problem in (5.6) is then relaxed by dropping the rank constraint rank{X} = 1

which results in a SDP problem which can be solved using convex optimization tools.

If the solution of the SDP, denoted by Xopt, is rank-one, problem (5.5) has its global

optimum w̃opt which is the principal component of Xopt. For higher rank cases, the

final weight vector is obtained from Xopt via randomization techniques combined with

proper power scaling to ensure that the SNR constraints of all users are satisfied, as

explained in Section 3.3. The trace{Xopt} in this case marks a strictly lower bound

on Pt. This lower bound, which is generally not achievable is used in the simulations

section to assess the performance of all techniques.

5.1.1 The Proposed Orthogonalization Technique

Consider the SNR constraint of the jth user in (5.5):

w̃HRjw̃ =

rj∑

k=1

λk,j|w̃Huk,j|2 ≥ 1, rj = rank{Rj} (5.7)

where λ1,j, . . . , λrj ,j and u1,j, . . . ,urj ,j are the nonzero eigenvalues and the correspond-

ing eigenvectors ofRj, respectively, and it is assumed that the eigenvalues are indexed

based on the descending of their values, i.e., λ1,j > . . . > λrj ,j. Note that from the

definition in (5.3), the matrix Rj is generally indefinite, i.e., some of the eigenval-

ues λk,j, k = 1, . . . , rj, may be negative. Let r̃j denote the index of the smallest

non-negative eigenvalue of Rj, j = 1, . . . ,M . In order to satisfy the constraints in
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(5.5), it is required that at least one eigenvalue of Rj is positive, i.e., rj ≥ r̃j ≥ 1,

j = 1, . . . ,M . Hereafter, only this case will be considered. If r̃j = rj, j = 1, . . . ,M ,

the problem in (5.5) becomes equivalent to the conventional single-group multicas-

ting problem in (3.26) and the technique proposed in Section 3.5.4 can be directly

applied to solve the problem in (5.5). However, in the case where 1 ≤ r̃j < rj for

j ∈ {1, . . . ,M}, a slightly modified version of the technique proposed in Section 3.5.4

is used. Similar to the stricter approximation made in (3.29), the jth constraint is

approximated by r̃j separate constraints, one constraint for each positive eigenvalue

of Rj. The approximation is given as

|w̃Hul,j|2 ≥
1

max{ǫ,∑r̃j
k=1 λk,j}

, l = 1, . . . , r̃j, j = 1, . . . ,M, (5.8)

where ǫ denotes a small positive value which we define to guarantee that the right

part of the inequality does not approach infinity. The reason behind the above ap-

proximation is the following: As the number of positive eigenvalues of Rj decreases,

the jth user becomes spatially more selective which makes the design of the beam-

former more challenging. This fact is captured in the approximated constraints in

(5.8), since the value of
∑r̃j

k=1 λk,j decreases with the decreasing number of positive

eigenvalues of Rj, thus strengthening the approximated constraints. If we define

ũl,j ,
√

max{ǫ,∑rj
k=1 λk,j}ul,j, the approximated problem can be written as

min
w̃

‖w̃‖2

s.t. |w̃Hũl,j|2 ≥ 1, l = 1, . . . , r̃j, j = 1, . . . ,M.
(5.9)

It is important to note that unlike the approximation (3.29) for the constraint set of

problem (3.26), a weight vector which satisfies the approximate constraints in (5.9) is

not necessarily feasible for the original problem in (5.5). Nevertheless, this approach

provides good candidate weight vectors as will be shown in the simulation results.

Since the constraints in (5.9) exhibit exactly the same structure as the conventional

single-group multicasting problem in (3.32), the orthogonalization-based procedure in

Section 3.5.4 can be directly applied. For the technique based on the Gram-Schmidt
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orthogonalization procedure, let the matrix Ũj , [ũ1,j , . . . , ũr̃j ,j], j = 1, . . . ,M . Simi-

lar to the procedure in section 3.5.2, the initial vector in the Gram-Schmidt procedure

denoted as v1 is chosen arbitrarily from one of the principal eigenvectors of the ma-

trices Ũ1, . . . , ŨM . The first intermediate weight vector w1 is computed as in (3.23),

where q1 and c1 are given by equations (3.22) and (3.24), respectively, by substi-

tuting k = 1. Then, the respective column of the matrix from which v1 is chosen,

is discarded. Using w1, we find the index, η, of the user with the “most violated”

SNR constraint, i.e., η = arg miniw
H
1 Riw1, i = 1, . . . ,M . The second vector in the

Gram-Schmidt procedure, denoted as v2, is taken as the first column vector in Ũη

and the coefficient c2 is computed as in (3.24) to satisfy the constraint correspond-

ing to v2 in (3.32) with equality. Since the order of the vectors in Ũη is based on

the decreasing value of their respective eigenvalue, satisfying the constraint of the

first vector with equality provides the strongest contribution to the SNR of the ηth

user. This strategy follows a greedy approach in satisfying the SNR constraints. The

matrix Ũη is then updated by dropping the vector v2 and the second intermediate

weight vector w2 is computed as in (3.23). The above routine is repeated in every

step of the remaining R−2 steps of the Gram-Schmidt procedure in order to generate

a candidate weight vector. The entire orthogonalization process is repeated M times,

where each time a different eigenvector is chosen as the initial vector v1 for the Gram-

Schmidt procedure. After generating M candidate weight vectors {wcand,j}Mj=1, the

norm constrained local search step explained in Section 3.5.3 is performed in order to

find a solution in the neighborhood of each of the candidate vectors or. If no solution

is found, the problem is considered infeasible.
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Table 5.1: Summary of the orthogonalization-based beamforming technique in single-
group multicasting relay networks.

for j = 1, . . . ,M

Step 1. Define U = {ũ1,i}Mi=1 and select v1 = ũ1,j .

Step 2. Compute q1 = v1/‖v1‖.

Step 3. Compute c1 using (3.18) and obtain w1 = c1q1.

Step 4. For k = 2, . . . , N

1. Compute wH
k−1Riwk−1, i = 1, . . . ,M .

2. Select vk = Ũ
(1)
η where η = arg miniw

H
k−1Riwk−1, i = 1, . . . ,M and

Ũ
(1)
η is first column vector of the corresponding matrix Ũη.

3. Update Ũη by discarding Ũ
(1)
η .

4. Compute ck using (3.21) and qk using (3.22).

Step 5. Compute the candidate weight vector w̃j using (3.12).

Step 6. Perform a norm-constrained local search in the neighborhood of w̃j.

Step 7. Rescale so that the most violated from all the M constraints in (5.5)
abcis satisfied with equality, otherwise discard.

end for

Step 8. From the remaining vectors, select the vector with the minimum norm
abcto be the final solution.

5.2 Joint Power Loading and Distributed Beam-

forming in Asynchronous Relay Networks

5.2.1 Background

In the previous section, we considered the problem of distributed beamforming in

synchronous AF relay networks for single-multicasting. Assuming that the relays are
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fully synchronized at the symbol level is only valid in the case where the delay spread

across different source-to-destination paths is small compared to the symbol duration.

However, in practice one can expect scenarios with large delay spreads.

There are several approaches to combat substantial propagation delays. One most

straightforward approach is to directly compensate the delays at the relay nodes.

However, in such a synchronous scheme the relays have to know their corresponding

source-to-destination delays as well as the maximum delay in the network; otherwise,

differently delayed replicas of the signal will cause ISI at the destination. Moreover,

the relays should deploy a variable-length memory block to enable delay compensation

over a wide range of possible delays. This significantly increases the relay complexity

and cost and requires extra destination-to-relay feedback.

A natural alternative way to combat ISI caused by unknown delays is to apply

the OFDM) approach at all nodes including the relays [60]. However, this approach

may be limited by the necessity to implement the OFDM processing at all the relay

nodes, which substantially increases their overall cost.

We propose a different OFDM-based approach to ISI removal at the destination

node. In our approach, the OFDM processing will be used only at the source and

destination nodes, while the relays will use the simple AF scheme. Therefore, the

relays remain simple and inexpensive in our technique. According to our developed

model, the network can be viewed as an artificial “multipath” channel where each

path corresponds to a different relay. Unlike the traditional multipath channel models

where there is no control of the channel impulse response, in our model the channel

taps can be controlled by adjusting the relays complex weights. This additional

degree of freedom in controlling the properties of the relay channel impulse response

has been our motivation in this work. In fact, the proposed scheme can be viewed as

a distributed equalizer applied to the artificial “multipath” channel.
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5.2.2 System Model

Consider a network of a source, a destination, and R single-antenna relays which

establish a connection between the source and the destination as shown in Fig. 5.1.

Note that we consider here a simple case of single-group multicasting with only one

user. The signal transmitted from the source node and arriving at the destination

through the ith relay is assumed to have the delay τi and all channels from the source

to the relays and from the relays to the destination are assumed to be flat fading

channels. With these assumptions, the relay channel can be modeled as the following

S/P
s(t)

P F
H

Tcp P/S

w
1

w
R

S/P

n'

Rcp F P/S

zs

s(t)

f
1

f
R

g
1

g
R

Figure 5.1: System model for distributed beamforming in OFDM-based asynchronous
AF relay networks.

artificially generated finite impulse response (FIR) “multipath” channel:

h(t) =

R−1∑

i=0

αiδ(t− τi) (5.10)

where αi , wifigi is the ith tap of the equivalent FIR channel model, wi is the relay

complex weight, while fi and gi are the source-to-relay and relay-to-destination flat

fading channel coefficients. The signal transmitted from the source node to the relays

can be written as

s(t) =

∞∑

k=−∞
skp(t− kTs) (5.11)

where p(t) is the pulse shaping filter response of the duration Ts, sk is the kth trans-

mitted symbol, and Ts is the symbol length. Hence, the signal component at the

destination node can be expressed as

r(t) = s(t) ∗ h(t) =
∞∑

k=−∞
sk

R−1∑

i=0

αip(t− kTs − τi) (5.12)
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where ∗ denotes the convolution. Sampling r(t) at the symbol rate 1/Ts, we express

the discrete-time received sequence r[n] as

r[n] = r(t)
∣
∣
∣
t=nTs

=
∞∑

k=−∞
sk

R−1∑

i=0

αip
(
(n− k)Ts − τi

)

= sn ∗ hn (5.13)

where

hn ,

R−1∑

i=0

αip(nTs − τi). (5.14)

This channel model will result in ISI at the destination, and exploiting the OFDM

scheme is a natural approach to suppress such ISI components [41], [55]. Therefore, it

is assumed that the source uses the OFDM transmitter while the destination deploys

the corresponding OFDM receiver, see Fig. 5.1. In this figure, “S/P” and “P/S” stand

for “serial to parallel” and “parallel to serial”, respectively, F and FH are the fast

Fourier transform (FFT) and the inverse FFT (IFFT) matrices [121]. The matrix Tcp

inserts the cyclic prefix and is defined as Tcp , [ITNcp
, ITNc

]T , which is a concatenation

of the last Ncp rows of an Nc ×Nc identity matrix INc
, denoted here as INcp

, and the

identity matrix INc
itself. Similarly, the matrix Rcp removes the cyclic prefix at the

receiver and is defined as Rcp , [ONcp
, INc

], where On is the n × n all-zero matrix

[121]. Let h , [h0, . . . , hLn−1, 0]
T be Nc × 1 zero-padded vector, where Ln is the

length of the discrete channel sequence hn. Note that the length of the cyclic prefix

Ncp should greater than or equal to Ln − 1 to guarantee ISI-free transmission [121],

therefore, we assume hereafter that Ncp = Ln−1. We can express (5.14) in the vector

notation as

h = Asw (5.15)

where w , [w1, . . . , wR]
T is R×1 vector of the relay complex weights andAs is Nc×R

matrix whose (k, i)th element describes the contribution of the ith relay to the kth

tap of hn. Similarly for the noise, let ψi(t) denote the spatially and temporally white
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noise at the ith relay. This noise is multiplied by wigi and arrives at the destination

simultaneously with the signal component coming from the ith relay. Therefore,

similar to (5.15), we define the Nc × 1 vector n as

n = Anw (5.16)

where An is Nc × R matrix whose (k, i)th element describes the contribution of the

ith relay to the kth element of n. At the output of the FFT block, the vector of

received signals over all subcarriers is given by

z = PDs+ Fn+ FRcpn
′ (5.17)

where D , diag{Fh}, P , diag{√p1, . . . ,√pNc
}, pj is the power allocated to the ith

subcarrier, F is the Nc-point FFT matrix, and n′ is (Ncp +Nc)× 1 vector of AWGN

receiver noise of variance σ2. The received signal power at the jth subcarrier can be

expressed as

Psj = pjE{|sj|2}hHeje
H
j h

= pj|hHej |2

= pj|eHj Asw|2 (5.18)

where ej is the jth Vandermonde column vector of FH and we have used the fact that

E{|sj|2} = 1. Using (5.17), the noise power at the jth subcarrier can be written as

Pnj
= E{wHAH

n eje
H
j Anw}+ E{n′HRH

cpeje
H
j Rcpn

′} (5.19)

= wHDw + σ2, (5.20)

where D is the diagonal matrix with the elements

[D]ii = σ2
i |gi|2, i = 1, . . . , R. (5.21)

and σ2
i is the noise variance per subcarrier at the ith relay. From (5.18) and (5.19),

the SNR at the jth subcarrier can be written as

SNRj =
pj|eHj Asw|2
wHDw + σ2

. (5.22)
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It can also be shown that the transmitted power of the ith relay can be written as

p̃i = |wi|2
(

Ncσ
2
i + |fi|2

(
Nc∑

j=1

pj

))

= |wi|2
(
Ncσ

2
i + |fi|21Tp

)
(5.23)

where 1 is a vector of all ones and p , [p1, . . . , pNc
]T .

5.2.3 Joint Power Loading and Distributed Beamforming

Using the signal model developed in Section 5.2.2, we jointly optimize the beamformer

weights {wi}Ri=1 and subcarrier powers {pj}Nc

j=1 by means of the max-min fair design

approach. The idea is to maximize the worst of the subcarrier SNRs subject to the

individual power constraints on the source and relay nodes. This problem can be

written as

max
w,p≥0

min
j

pj|eHj Asw|2
wHDw + σ2

s.t. 1Tp ≤ PTx,max (5.24)

|wi|2
(
Ncσ

2
i + |fi|21Tp

)
≤ Pmax,i, i = 1, . . . , R,

where Pmax,i is the maximum allowed transmitted power of the ith relay and PTx,max

is the maximum allowed source transmitted power. Note that without any loss of

generality, we can assume that all SNRs in (5.24) are balanced at the optimum, that

is, SNRj = SNRk for all j, k = 1, . . . , Nc. Otherwise, if SNRj > SNRk holds for some

particular values of j and k, then the optimal value of pj can be always reduced so

that SNRj = SNRk. This new value of pj does not alter the optimal value of the

objective function and does not violate the constraints in (5.24). Therefore, it follows

from the fact that the SNRs can be balanced that

pj |eHj Asw|2 = p1|eH1 Asw|2, j = 2, . . . , Nc (5.25)

or, equivalently,

pj = p1
|eH1 Asw|2
|eHj Aw|2 . (5.26)
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Another important remark regarding the problem in (5.24) is that at the optimum,

the second constraint in is active, that is,

1Tp = PTx,max (5.27)

holds true. To prove this, let po and wo denote the optimal values of the vectors

p and w, respectively. Let us also denote the jth SNR in (5.24) as φj(p,w). If

z , PTx,max/1
Tpo > 1, then

φj

(

zpo,
wo

√
z

)

=
poj |eHj Asw

o|2
z−1woHDwo + σ2

> φj(p
o,wo). (5.28)

Note also that zpo and wo/
√
z satisfy the ith relay power constraint in (5.24) as

z−1|wo
i |2
(
Ncσ

2
i + z|fi|21Tpo

)
=

|wo
i |2
(
z−1Ncσ

2
i + |fi|21Tpo

)
<

|wo
i |2
(
Ncσ

2
i + |fi|21Tpo

)
< Pmax,i. (5.29)

It follows from (5.28) and (5.29) that zpo and wo/
√
z belong to the feasible set of

(5.24) and achieve a larger value of the cost function than that achieved by po and

wo. However, this contradicts the optimality of po and wo. Hence, z has to be equal

to one, and (5.27) is proved. Inserting (5.26) into (5.27), we obtain that

p1|eH1 Asw|21Ty(w) = PTx,max (5.30)

where

y(w) ,

[
1

|eH1 Asw|2 , . . . ,
1

|eHNc
Asw|2

]T

. (5.31)

Noting that under SNR balancing, the objective function of (5.24) becomes

min
j

pj |eHj Asw|2
wHDw + σ2

=
p1|eH1 Asw|2
wHDw + σ2

(5.32)
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and using (5.30) in the right-hand side of (5.32), we rewrite the objective function as

PTx,max

1Ty(w)(wHDw + σ2)
. (5.33)

Maximizing (5.33) subject to the individual relay power constraints is equivalent to

min
w

1Ty(w)(wHDw + σ2)

s.t. |wi|2 ≤ βi, i = 1, . . . , R (5.34)

where

βi ,
Pmax,i

(Ncσ2
i + |fi|2PTx,max)

.

The max-min fair problem in (5.34) can then be rewritten as

min
w

Nc∑

j=1

wHDw + σ2

|eHj Asw|2

s.t. |wi|2 ≤ βi, i = 1, . . . , R. (5.35)

The optimization problem in (5.35) can be interpreted as the minimization of the sum

of the noise-to-signal ratios with the particular choice pj = 1, j = 1, . . . , Nc, subject

to individual relay power constraints. This problem is non-convex and rather difficult

to solve efficiently. Therefore, we will resort to the steepest descent algorithms to

find a local optimum of this problem [16]. To ensure that we obtain the “best” local

optimum, we solve the optimization problem in (5.35) several times, each time with

a different random initial point, i.e., a randomly generated weight vector w, and pick

the solution that results in the smallest value of the objective function among all

candidate solutions. We have used fmincon function from the Matlab Optimization

Toolbox to find local solutions of the problem in (5.35). Note that there are several

other techniques [89], [108] which can provide efficient solutions to the problem in

(5.35). We remark that the contribution of our proposed approach is to avoid the

synchronization problem of the relays in distributed beamforming relay networks.
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5.3 Simulation Results

5.3.1 Part I: Single-Group Multicasting in Synchronous Re-

lay Networks

In our numerical examples, we assume Rayleigh fading channels with i.i.d. circularly

symmetric coefficients with unit-variance. We assume that γj = γmin, j = 1, . . . ,M ,

and σ2
n = σ2

ν = 1. All our results are averaged over 1000 Monte-Carlo runs. We

compare the SDR-based technique of [97], denoted as SDR, and the iterative SOCP

algorithm of [14], denoted as Iter-SOCP, with the orthogonalization technique based

on the Gram-Schmidt procedure, which is proposed in Section 5.1.1 and denoted here

as GS-dL. The initial step-size µ0 and the maximum number of iterations in the local

refinement I were carefully chosen to achieve fast convergence and good performance

(µ0 = 1 and I ≤ 40). For the SDR technique we used three different randomization

procedures in parallel, with 1000 randomizations for each [97]. In all our simulations,

the lower bound corresponds to trace(Xopt).

In our first example, we consider a network with R = 7 relays and assume in-

stantaneous CSI, i.e., Rhj
= hjh

H
j . Fig. 5.3.1 shows the average total transmitted

relay power for γmin = 1 and number of users, M = [4, . . . , 20]. We observe that the

proposed technique outperforms all other techniques. In Table. 1, we compare the

percentage of Monte-Carlo runs rendered infeasible by all techniques at different SNR

thresholds γmin = [−5, . . . , 20] dB. In the low SNR region, GS-dL provides the least

infeasible cases while the performance degrades in the high SNR region compared to

iterative SOCP.

In the second example, we assume covariance CSI at the receiver. We model the

channel coefficients, fi, gij as:

fi = f̄i + f̃i, gij = ḡij + g̃ij

where f̄i is the mean of fi and f̃i is a zero mean random variable. We choose f̄i =
ejθi√
1+α

and var(f̃i) = α
1+α

. Similarly, ḡij = ejφij√
1+β

and var(g̃ij) = β
1+β

, where θi and φij are
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Figure 5.2: Average transmitted power for instantaneous CSI, R = 7, P0 = 10 dB,
γmin = 1.

uniformly distributed random variables chosen from the interval [0, 2π]. Based on

this model, if we define Rf , E{f fH}, Rgj , E{gj gH
j } then the (m,n)th entry of

the matrices Rf and Rgj are written respectively as:

[Rf ]m,n=

(

f̄mf̄
∗
n +

αδmn

1 + α

)

, [Rgj ]m,n=

(

ḡmj ḡ
∗
nj +

βδmn

1 + β

)

where δmn is the Kronecker delta and Rhj
= Rf ⊙ Rgj . As the values of α and β

increase, the variance of the random components of fi, gij increases and the matrix

Rhj
becomes full rank. In Fig. 5.3.1, we show the average total transmitted relay

power for R = 4, α = β = 1, and γmin = 1. Note that iterative SOCP can not be

applied here since Rhj
is full rank [14]. We observe that both GS-dL and SDR are

close to the lower bound whereas GS-dL performs slightly better as the number of

users increases.
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Figure 5.3: Average transmitted power for covariance CSI, R = 4, P0 = 10 dB,
γmin = 1, α = β = 1.

Table 5.2: Percent of infeasible MC runs for instantaneous CSI, R = 7, M = 20,
P0 = 10 dB.

γmin in dB -5 0 5 10 15 20
SDR 0% 0% 3% 41% 77.6% 100%
Iter SOCP 0% 0% 0.8% 19.2% 76.0% 100%
GS-dL 0% 0% 0.1% 21.3% 89.5% 100%
Lower bound 0% 0% 0% 4.3% 72.4% 100%

5.3.2 Part II: Joint Power Loading and Distributed Beam-

forming in Asynchronous Relay Networks

We consider a network with R = 10 relays, Nc = 16 subcarriers, and Ncp = 3. In

each simulation run, the delay of each relay is chosen randomly in the interval [0, 4Ts].

The channel coefficients {fi}10i=1 and {gi}10i=1 are modeled as zero-mean i.i.d. complex

Gaussian random variables with unit variance. The relay and destination noises are

assumed to have variances equal to one, i.e., σ2 = σ2
i = 1 and we choose the ith
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relay maximum transmit power, Pmax,i = 0.5PTx,max, i = 1, . . . , R. For the fmincon

function, we use 10 randomly generated initialization weight vectors. In Fig. 5.4, the

performance of our proposed scheme is compared to that of the fully synchronized

network in terms of average receive SNR versus the total transmit power consumed

in the whole network, i.e., P sym
Tx,max =

PTx,max

Nc
and P sym

max,i =
Pmax,i

Nc
, where P sym

Tx,max and

P sym
max,i denote the maximum transmit power per symbol at the source and ith relay,

respectively. The synchronous relay network is assumed to have the same transmis-

sion bandwidth and the same power constraints at the source and relay nodes. The

problem in this case is a SNR maximization problem rather than a max-min fair

problem and the solution was proposed in [48].
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Figure 5.4: Average receive SNR per symbol versus total transmit power per symbol,
R = 10.

As it can be seen from this figure, the proposed asynchronous scheme achieves SNRs

which are only 2.3 dB lower than that achieved by the synchronous scheme proposed

in [48]. We stress here that, in contrast to our asynchronous approach, in the syn-

chronous scheme the relays have to know their corresponding delays τi as well as the
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maximum delay maxi τi. Moreover, in the synchronous case the relays should deploy

a variable-length memory block to enable delay compensation over a wide range of

possible delays. This will impose extra complexity on the relay hardware and extra

feedback overhead as compared to the proposed scheme.

5.4 Conclusion

We considered the problem of distributed beamforming in AF relay networks for

single-group multicasting, where a single transmitter sends common information sym-

bols to a group of users via cooperating relays. The objective is to design a computa-

tionally efficient beamforming scheme to minimize the total transmitted power at the

relays subject to QoS constraints of all users. We extended the simple orthogonal-

ization techniques, originally developed in the context of conventional single-group

multicasting to solve the present problem in the case when instantaneous CSI or when

second-order statistics of the channel is available. Simulation results show that our

technique outperforms the popular SDR-based technique and provides an excellent

performance to complexity trade-off over a large range of QoS constraint thresholds

compared to the iterative SOCP technique. We also proposed an OFDM-based ap-

proach to combat the ISI in cooperative relay networks with large delay spread. By

avoiding relay synchronization, this approach does not require each relay node to

know its corresponding source-to-destination (total) path delay and the maximum

delay in the network. Furthermore, the relay nodes do not need to artificially com-

pensate for their delays, thus eliminating the additional cost of the variable-length

storage at the relays.
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ber 1997 - September 2002.
Notendurchschnitt: Sehr gut.

• Bachelorarbeit, “Bluetooth Drahtlose Technoligie und ihre Anwendungen”, Univer-
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